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DEVELOPMENT OF ESI-LC-MS METHOD FOR DRUG ANALYSIS

KIMBERLY YACOUB

ABSTRACT

Brain cancer, particularly astrocytomas, is one of the ten most common related

deaths related to cancer. Temozolomide (TMZ), an oral alkylating chemotherapy drug, is

used to treat anaplastic astrocytoma and glioblastoma multiforme. A few advantages of

TMZ are its ability to cross the blood-brain barrier, its small size, and it is rapidly

absorbed in the small intestine. Since this drug is advantageous to brain cancer patients, it 

is important to study the extraction of this drug. In addition, it is important to study 

administering this drug via microdialysis as the efficiency of the drug could increase.

In mice brain tumor tissue and lamb brain tissue, LC-MS was used to quantitate 

TMZ. TMZ has been recovered from brain tissue using a strong cell lysis protease 

(proteinase K) and protein precipitation using alcohol dehydration in order to increase 

percent recovery of TMZ and decrease matrix effects.

Most research articles have studied the plasma or urine of mice to quantitate

TMZ. However, only a handful of studies focused on brain tumor tissue. Comparing with

another research article that studied the recovery of TMZ from mice brain tissue, this

method achieved higher percent recoveries of the chemotherapy drug, and lowered the

matrix effects.
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CHAPTER I

INTRODUCTION

1.1 Astrocytomas

Astrocytomas are primary brain tumors and one of the ten most common cancer-

related deaths. Most primary brain tumors, including gliomas, originate from

neuroepithelial cells. If a tumor arises from supportive tissue of the brain, referred to as 

glial, it is considered a glioma. Even though gliomas are rare, approximately 30-40% of 

all brain tumors are gliomas and approximately 50% of gliomas are glioblastomas.1

Between 1-5% of gliomas are considered hereditary and a majority of gliomas 

have unknown causes. Although these causes are unknown, a large risk factor can be 

attributed to ionizing radiation. Middle-aged adults are most typically affected by

gliomas. The way that gliomas grow is by infiltrating into the brain, more specifically,

the white matter of the brain; therefore, they are not directly visible on the surface of the 

brain. Most commonly in adults, gliomas can be found in the cerebral hemispheres 

(Figure 1).1
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Figure 1. Magnetic Resonance Image of Glioblastoma in the Cerebral Hemisphere.1 

With radiation therapy (RT), surgery, and chemotherapy, the average survival rate

of patients with gliomas is less than 1 year.2 During the past few decades, the main

method of treating gliomas is a combination of alkylating agents and radiotherapy. With

this combination of treatment, the survival rates of patients with glioblastoma multiforme 

has greatly improved.3

1.2 Glioblastoma Multiforme

Glioblastoma multiforme (GBM) is a type of high-grade astrocytoma. GBM is a

type of tumor in the central nervous system (CNS). Unfortunately, GBM prognosis is

poor. It is one of the most frequent types of brain tumors in adults. According to the

World Health Organization (WHO), GBM is considered a Grade IV astrocytoma. There

are four types of astrocytomas and grade IV is the most serious type. Primary GBMs are

very aggressive and highly invasive tumors that are more common in the elderly.

Secondary GBMs develop from astrocytomas that are low-grade and typically affect
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people who are less than 45 years of age. Primary GBMs are more common than

secondary GBMs and secondary GBMs have a much better prognosis than primary

GBMs. Histologically, these two tumors cannot be distinguished, but they evolve from

different genetic alterations.4 Since GBM cells grow invasively into normal brain tissue, 

surgery is not possible for the resection of tumor cells.5 Not only is GBMs invasiveness a 

factor in the inability to resect the tumor, but GBM tumors are also highly vascularized

making surgery impractical. The high vascularization of GBM tumors is due to the

overactive formation of new blood vessels also known as angiogenesis. The over­

activation of these blood vessels is critical for supplying oxygen for tumor growth.4 

The pathogenesis of GBM can be mainly attributed to an altered pathway that

involves receptor tyrosine kinases (RTKs), which are receptors located on the surface of

cells. Growth factors (GFs) are bound by RTKs through cross-linking. When cross­

linking occurs, two adjacent receptors are dimerized, which then induces a

conformational change. Once a conformational change is induced, the kinase of RTK is

activated, which allows for cross-phosphorylation of tyrosine residues to prepare for

signaling cascades. One of these signaling cascades is epidermal growth factor receptor

(EGFR). EGFR is a transmembrane protein that plays a role in GBM pathogenesis.

EGFRs normally function by dividing and proliferating normal CNS cells. When there

are genetic mutations, EGFR is overexpressed. Thus, this leads to increased activity of

phosphorylation and proliferation of oncogenic cells.4 

Not only are RTK pathways altered, but the Ras pathway is too. Ras is a

guanosine-binding protein (G protein). When bound to GDP, Ras is in an inactive state.

When bound to GTP, Ras is in an active state (Ras-GTP). Ras-GTP leads to advancement
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through the cell cycle, a cascade of downstream effectors, and survival. Like EGFR,

when there is an interaction with RTK and GF, there is a signaling cascade. PI3K,

phosphoinositide 3-kinase, moves to the cell membrane. Once this occurs, a secondary

messenger PIP3, phosphatidylinositol trisphosphate, is created. PI3K-Akt pathway

activation leads to proliferation, survival, and angiogenesis of cells.4

The symptoms of GBM vary based on the location of the tumor. Some of these

symptoms are persistent headaches, double/blurred vision, nausea, vomiting, loss of

appetite, changes in mood/personality, changes in ability to think and learn, loss of

memory, new onset of seizures, muscle weakness, and speech difficulty. GBM, which

may appear on any lobe of the brain, most commonly appears on the frontal and temporal 

lobes.6

1.3 Anaplastic Astrocytoma

Like GBM, anaplastic astrocytoma (AA) is a type of high-grade astrocytoma in 

the CNS, but it is rare.7 AAs comprise about 30% of all astrocytomas and 7% of all 

primary brain tumors in adults.8, 9 AA is considered a grade III astrocytoma according to 

the WHO. Over time, AA can develop into a higher grade astrocytoma, or GBM.7 The 

typical treatment plan for patients with AA is to maximally and safely resect the tumor, 

and then further treat the tumor with RT. The combination of surgery and RT has been 

associated with longer survival periods.9 AAs are most frequently found in the frontal 

lobe of the brain. Some prognostic factors that influence survival are Karnofsky

performance score (KPS), amount of tumor resected, as well as the age of the patient at

diagnosis.10 The KPS method was first introduced in 1949. It is a widely used method in 

order to determine the functional status of a patient on an 11-point scale with percentages
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ranging from 100% (no symptoms) to 0% (death of patient).11 There is no link between

AAs and familial inheritance, and in most cases the cause is unknown. AAs, like other

cancers, are believed to occur due to factors such as genes and environment. In addition,

there is a higher chance of developing AA if a patient has inherited disorders such as

neurofibromatosis type I, Li-Fraumeni syndrome, tuberous sclerosis and Turcot

syndrome.12

Like GBM, the symptoms of AA are dependent upon the location of the tumor in

the brain. Some common symptoms include headaches, lethargy or drowsiness, vomiting, 

changes in personality and mental status, seizures, vision problems, and weakness of the 

arms and legs resulting in coordination difficulties.7

1.4 Temozolomide Background

The aim of this thesis is to develop a quantification method for the 

pharmacokinetic analysis of injecting temozolomide (TMZ) in the brain directly to target 

the drug to the tumor cells. Previous research has studied the concentration of TMZ in

mice plasma; however, only a handful of studies have studied the concentration of TMZ

in brain tissue. None have studied the effect of TMZ injected directly into the brain.

Thus, the significance of this research is imperative to study the effects of TMZ in

patients with GBM and AA to target the drug specifically to the tumor in the brain. One

study attempted to create a pharmacokinetic model to determine the amount of TMZ that 

reaches brain tumors. Zhou et al. determined that the concentration of TMZ varied with 

changes in blood-brain barrier permeability as well as tumor blood volume.13 Therefore, 

studying the recovery of TMZ injected in mice brain and developing a method is

imperative in attempting to increase the pharmacokinetics of TMZ in patients.
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In the early 1980s, Robert Stone chemically synthesized TMZ at Ashton

University. TMZ is a unique compound since it contains three adjacent nitrogen atoms, as

shown in Figure 2. Prior to synthesizing TMZ, other compounds were synthesized that

only contained two adjacent nitrogen atoms; however, TMZ had far greater cytotoxicity

when compared to the other drugs. Not only was TMZ more cytotoxic, but it was more

effective than compounds with two adjacent nitrogen atoms.2 

TMZ is an alkylating imidazotetrazine chemotherapy pro-drug approved by the

Food and Drug Administration (FDA) as a first-line treatment for GBM and a second-line 

treatment for AA.2 The International Union of Pure and Applied Chemistry (IUPAC) 

name for TMZ is 3-methyl-4-oxoimidazo [5,1-d][1,2,3,5] tetrazine-8-carboxamide.14 It is 

typically administered orally and is rapidly absorbed in the small intestine. Before the 

synthesis of TMZ as an oral pill, it was administered intravenously. TMZ has a molecular 

weight of 194.154 g/mol and a molecular formula of C6H6N6O2. TMZ is stable at a pH 

less than 5 and it is labile at physiological pH. As TMZ is a pro-drug, its mechanism of 

action is through conversion to an active form at physiological pH.14, 15
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1.5 Mechanism of Temozolomide

TMZ is able to readily cross the blood-brain barrier since it is small (194 Da) and

lipophilic, which are a few advantageous characteristics of this drug. TMZ is hydrolyzed

rapidly and spontaneously to Methyl-(trazen-1-yl) imidazole-4-carboxamide (MTIC)

under physiological conditions, which is then hydrolyzed to 5-Aminoimidazole-4-

carboxamide (AIC) and diazomethane (Figure 3).14, 15 Unlike TMZ, MTIC does not

readily penetrate the CNS. AIC is an intermediate in purine and nucleic acid biosynthesis

and it is excreted out via the kidneys. Diazomethane is able to react with RNA, but there 

has been little evidence in its role in the cytotoxicity of TMZ. In comparison to other 

alkylating chemotherapy drugs, TMZ is spontaneously converted to MTIC at

physiological pH, while other drugs require metabolism in the liver. Thus, the conversion

rate of TMZ to MTIC is not hepatic-dependent and will not vary between patients.2

Figure 3. Mechanism of Action of TMZ and Methylation of Guanine.16 

Since TMZ is an alkylating drug, it serves to damage DNA in order to halt cancer

cell replication. TMZ undergoes this alkylation by methylating DNA at different

positions of DNA, but the most common positions include the N7 position of adenine, the
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N7 position of guanine, and the O6 position of guanine.2 Although only 5% of DNA is

methylated at the O6 position of guanine, this methylation is a key player in the

mismatching of thymine instead of cytosine (Figure 4).17 The constant mismatching with 

thymine leads to apoptosis, double stranded breaks and ultimately, cell cycle arrest after 

the next cycle of DNA replication.14 O6-methylguanine-DNA methyltransferase (MGMT) 

has served as the only enzyme that is able to repair these mismatched adducts. Research

has been conducted on the effect of TMZ in relation to the levels of MGMT and the

levels of TMZ.18

Figure 4. DNA Methylation.17
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1.6 O6-methylguanine-DNA methyltransferase (MGMT)

MGMT is a human protein that is critical for the stability of DNA. The DNA 

repair protein is 354 amino acids long with a molecular mass of 39 kDa.19 It is encoded 

by chromosome 10q26.14 MGMT is considered a "suicide enzyme" since it is able to

irreversibly inactivate itself.19 Low MGMT levels, since it is a repair enzyme, correlate

with higher efficiency of TMZ.18 A number of studies have correlated the inverse

relationship between levels of TMZ and MGMT.20

Since TMZ serves to halt the proliferation of cancer cells by mismatching DNA 

adducts, repairing O6-methylguanine is not ideal for oncogenic cells. The purpose of 

MGMT is to serve as a DNA repair enzyme, which hinders the effects of TMZ. MGMT 

is able to repair the O6-methylguanine lesions by transferring an alkyl group from

guanine to cysteine via acid catalysis allowing the protein to bind the methyl and cleave 

the ether bond (Figure 5).9 Methylation of MGMT has led to improved survival in 

patients who were treated in combination with RT and TMZ. Although it is important to 

recognize that tumor cells should have depleted levels of MGMT to increase the

efficiency of TMZ, MGMT is also depleted in normal cells, which unfortunately leads to 

hematologic toxicity.3
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Figure 5. MGMT Repairing O6-methylguanine Lesion.19

1.7 TMZ Pharmacokinetics and Stability

As stated previously, TMZ is rapidly absorbed in the small intestine.

Consumption of food does delay the absorption of TMZ; however, the delay has been 

found to be clinically insignificant. The concentration of TMZ in plasma reaches its peak 

1 hour after administration, and then decreases slowly. According to a clinical study, it 

was determined that the average maximum concentration of TMZ in the brain interstitium 

was 2 hours after administration. This clinical study concluded that levels of TMZ in the 

brain interstitium gradually rise over time and stayed at higher levels longer than plasma 

levels of TMZ.21 In another study, it was determined that the maximum concentration of 

TMZ in the brain is reached at 0.75 hours.22 Although this is different from the first

study, both of these studies concluded that the maximum concentration of TMZ in brain

occurs later than the maximum concentration of TMZ in plasma and the levels of TMZ in 

brain stayed higher for longer periods of time. The maximum concentration time 

differences may be attributed to the routes of administration, as well as the subjects. The
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first study administered TMZ orally in humans, while the second study administered

TMZ intraperitoneally in mice.

The stability of TMZ in human plasma has been studied extensively. The half-life

of TMZ in vitro is 2.4 hours. At three different concentrations (0.2, 1.5, and 15 μg∕mL),

TMZ was stable at a pH < 4 using phosphoric acid for approximately 24 hours at room

temperature (25°C). In addition, TMZ was found to be stable at a pH < 4 at -20°C for at 

least 30 days at the same three concentrations.23

1.8 Dacarbazine and TMZ

Dacarbazine (DTIC), like TMZ, is a chemotherapy drug administered 

intravenously to treat Hodgkin lymphoma, melanoma and soft tissue sarcoma. DTIC was 

approved by the FDA in the mid-1970s. Like TMZ, DTIC is also a pro-drug that is 

converted to MTIC. The primary difference between TMZ and DTIC is that DTIC is 

converted in the liver, while TMZ is spontaneously converted at physiological pH. TMZ 

was introduced as an alternative to DTIC because of its potential as an antitumor agent 

and the fact that preclinical assessments found it to be a safer drug. Not only is TMZ 

safer; however, it is more convenient as it can be administered orally, while DTIC is 

administered intravenously.23 TMZ also has extensive tissue distribution when compared 

to DTIC.23, 24

1.9 Rationale of the Work

A number of research papers have focused on determining the amount of TMZ 

found in the plasma matrix. However, very few have focused solely on brain tumor 

tissue; therefore, we have studied TMZ extraction procedures in mice brain tumor tissue. 

The problems with the extraction of TMZ from plasma have been low extraction yields
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and time-consuming repetitive solvent extractions.20 The problems with the extraction of 

TMZ from brain tumor tissue have also been low extraction yield, as well as high matrix 

effects due to the high amounts of biological matrices found in brain.25 It is worthy to

note that mice brain contain between 45.0-20.1 mg/g of phospholipids, 105.8-107.4 mg/g

of proteins and 14.1-20.1 mg/g of cholesterol between ages 3 months to 26 months to

assist in the reduction of matrix effects.26 Therefore, studying the method development

for the injection of the drug directly targeted to the brain tumor is of utmost importance.

The two main goals of this research were to develop a method that increased the 

extraction efficiency of TMZ in brain and to decrease matrix effect signaling. It is known 

that TMZ can readily cross the blood-brain barrier if administered orally or

intravenously, but studying the administration of TMZ targeted directly to the brain

tumor is critical to improve the efficiency of TMZ in treating brain cancers. When

determining the most useful preparation techniques for this research, two other papers

were taken into consideration.

Goldwirt et al. were one of the few researchers to recover TMZ from brain tissue. 

A number of studies researched TMZ in plasma; however, recovering the drug from brain 

tissue has rarely been studied. Goldwirt et al. used small slices of mice brain (400 mg).

The brain cells were lysed with 200 μL of ammonium acetate 10 mM pH 3.5 buffer and

the proteins were precipitated using 200 μL of 100 mM zinc sulfate and 400 μL of

methanol in order to extract the TMZ from mice brain that was administered

intraperitoneally. Their results were found to be precise, accurate, and specific with low

limits of detection on UPLC-MS both intra- and inter-day. For brain, the extraction

recovery of TMZ was 67.7% for 125 ng/g, 61.0% for 1250 ng/g, and 61.4% for 12,500
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ng/g. The matrix effect was 245% for 125 ng/g, 204% for 1250 ng/g, and 212% for

12,500 ng/g. The matrix effects were very high as expected for brain tissue due to 

phospholipids and a number of unwanted biological matrices.22 Therefore, to improve 

this method, a stronger lysis buffer was used along with better protein precipitation

solvents.

Shen et al. quantified TMZ in human plasma and urine using HPLC-UV. The

difference in techniques between the two papers is that Shen et al. used solid-phase

extraction (SPE) to eliminate interfering material from the biological matrices. Their 

results were found to be accurate and precise for both urine and plasma intra- and inter­

day. The extraction recovery of TMZ ranged between 86.0-90.0% for plasma and 102.5­

104.8% for urine. When using SPE, multiple solvent extractions could be avoided and 

higher extraction recovery of TMZ is possible when compared to liquid-liquid 

extraction.20 Therefore, to extract TMZ from mice brain, ZipTips were attempted in order 

to recover the drug and remove unwanted biological matrices.

1.10 Solid Phase Extraction

There are a number of different techniques to prepare samples before injection 

into an LC-MS such as liquid-liquid extraction and protein precipitation. The reason that 

cleaning biological samples before injection into HPLC is important is because high 

protein concentration leads to a decrease in the longevity of the column, inability to 

separate, and a build-up of column backpressure. High protein samples injected directly 

in the HPLC will contaminate the system leading to electrospray instability as well as a 

reduction in sensitivity. The single most used technique is solid-phase extraction (SPE)
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since it is able to cleanup samples, it has high throughput, extraction reproducibility, and 

short sampling times.27

The purpose of SPE is to desalt, fractionate, and purify sample before analysis for

the best quality. In SPE, much like liquid chromatography, different materials will have

different affinities with the stationary phase. Thus, either the impurities that are unwanted

from the sample, or the analytes in the sample are bound to the stationary phase leading

to the separation of wanted and unwanted sample compounds. If the wanted sample

compounds are in the mobile phase that passes through the stationary phase, then this is

injected into the LC-MS. If the wanted sample compounds bind to the stationary phase,

then the mobile phase is discarded and the analytes are eluted from the stationary phase.

The eluent is then injected into the LC-MS.28 There are different means to perform SPE,

such as normal-phase, reverse-phase, ion exchange, and cartridges. The type of SPE that

was attempted to separate biological matrices from brain tissue and TMZ in this research 

was ZipTip.

ZipTip is a small-scale reverse-phase separation technique that is packed with 

resin at the end of a 10 μL pipet tip. The resin beads serve to desalt small amounts of 

peptides. There are different ZipTips, such as C4 and C18. C18 is more hydrophobic and C4 

is less hydrophobic. The carbon chains are on the surface of silica beads. SPE consists of 

five simple steps: wetting, conditioning, sample loading, washing, and eluting. The initial 

wetting step requires using a water-miscible organic solvent, such as methanol. Then, the 

conditioning step requires using a water of aqueous buffer that is able to displace the 

organic solvent in the pores. The sample is then loaded and the compounds that are

attracted to the stationary phase of the ZipTip will bind. Then, the compounds that did
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not bind to the stationary phase are washed away with an aqueous solvent. The sample is 

then eluted from the stationary phase for injection into HPLC.28 SPE may give low 

recovery of the analyte. If there is low recovery in SPE, the reasoning could be due to the

use of incorrect conditioning, strong loading and wash solvent, large volume of sample

loading, or too weak or too small elution mobile phase volume.27

1.11 Protein Precipitation

Protein precipitation is a very common technique that was discovered by Franz

Hofmeister over 120 years ago. Protein precipitation occurs via hydrophobic aggregation. 

The proteins can precipitate in two ways. First, the folded structure of proteins can be 

slightly disrupted thereby exposing more of the hydrophobic interior of proteins.

Therefore, the proteins begin to aggregate towards one another and the amount of water

per protein decreases. Second, the water molecules that begin to form over hydrophobic

areas on proteins that are folded correctly can be dehydrated.29 

Salts maintain large and stable solvent shells so salts have high protein

precipitation abilities. The surface tension of the solution is then increased thereby

increasing the hydrophobic effect. Thus, proteins that have a larger amount of

hydrophobic surface character are able to precipitate at lower salt concentrations. Organic 

solvents, such as ethanol and trifluoroacetic acid, can partially denature proteins and in 

effect, expose more hydrophobic surfaces of the solvents. Since this research focused on 

removing proteins, the possible denaturation of proteins did not deter from the use

organic solvents.29
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1.12 Comparing Solid Phase Extraction and Protein Precipitation

Using the research methods Shen et al. used for extracting TMZ from plasma and 

urine, solid phase extraction using C18 ZipTips were conducted to remove phospholipids 

and unwanted biological matrices from the brain. Focusing on mice brain tissue, Goldwirt

et al. used ammonium acetate 10 mM pH 3.5 buffer to lyse the cells and zinc sulfate and

methanol to precipitate proteins to extract TMZ. Protein precipitation is a common

hydrophobic aggregation method. Protein precipitation is achieved by lowering the 

solubility of the solute by reducing the hydration layer in order to decrease the likelihood 

of protein aggregation.29 To compare, this research compared trifluoroacetic acid and 

ethanol to precipitate proteins to recover TMZ. To further this, proteinase K was used to 

digest the unwanted proteins in biological samples and lyse the cells to recover TMZ with 

a higher recovery. Therefore, this research compared SPE to protein precipitation 

solvents in order to successively extract TMZ from brain tissue.

1.13 High-Performance Liquid Chromatography (HPLC)

HPLC is a widely used separation technique of mixtures on the basis of molecular 

structure and composition. Specifically, reverse-phase liquid chromatography is most 

used as it can separate a large variety of different molecules. HPLC consists of a mobile 

phase and a stationary phase. The specific column used was a C18, which is a reversed 

phase column. In reversed phase chromatography, there is strong attraction between the 

polar solvent and polar molecules in the mixture being passed through the column, which 

is the mobile phase. The stationary phase is the hydrocarbon chains of the column (C18). 

Therefore, polar molecules of the sample will be attracted to the solvent. On the other 

hand, non-polar molecules in the sample will be attracted to the stationary phase, which
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are the hydrocarbons of the column. Due to these interactions, the polar compounds will

elute quicker leading to chromatographic separation. HPLC is different from column

liquid chromatography because the high pressures allow for a much quicker separation.

Some of the fixed chromatographic conditions include flow rate, temperature, and the

column. Quantitative analysis of HPLC can be determined by taking the area under the

peak, which is proportional to the concentration of the sample. Qualitative analysis can

be determined by comparing retention times of standards and samples. The advantages of

HPLC are sensitivity, accurate quantitative analysis, ease of automation, stability of

separating non-volatile species or thermally fragile ones, and applicability to substances

important to industry. 30, 31

1.14 Mass Spectrometry (MS)

Mass spectrometry is a multi-purpose analytical technique in chemistry. MS can 

aid in the identification of compounds that are unknown in a sample, determine the 

concentration of known materials, and determine the structure and chemical properties of 

different molecules. First, gas phase ions of the compound are produced through electron 

ionization. The molecular ion then fragments. From the molecular ion, every primary 

product ion fragments and this continues. In the mass spectrometer, the ions are separated 

based on the mass-to-charge ratio (m/z) and are detected relative to their abundance. If 

present in a pure compound, the molecular ion appears at the highest value of m/z, which 

provides the molecular mass of the compound.32

The MS is composed of three key components- ion source, analyzer, and detector 

system. The purpose of the ion source is to produce gaseous ions of the sample. The 

purpose of the analyzer is to sort ions into their specific mass components according to
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their m/z ratio. Finally, the purpose of the detector system is to detect the ions and record 

the relative abundance of every individual resolved ionic species.32 Therefore, LC-MS 

was used in this research due to sensitivity and selectivity.
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CHAPTER II

MATERIALS AND METHODS

2.1 Chemicals and Solutions

Temozolomide (>98%), anhydrous theophylline (≥99%), methanol (≥99.9%), 

ethanol (≥99.5%) and ammonium acetate (≥99%) were purchased from Sigma Aldrich 

(St. Louis, MO). Water was purified using the Millipore Milli-Q system (Milford, MA, 

USA). Formic acid was purchased from Fluka and proteinase K was purchased from

Qiagen. Acidic methanol was prepared by taking 10 mL of 10 mM ammonium acetate

diluted to 50 mL with methanol (20:80, v/v).

2.2 Sample Preparation

Two groups of four mice brain tumor tissues were provided. Four mice were 

injected with 0.9375 mg of TMZ while the other four were injected with saline solution. 

The mice were sacrificed 12 hours post injection and the brains were resected then sliced 

in half for a total of 16 samples. The brain samples were collected and kept at -80°C until 

use. The brain tissues were thinly sliced with a razor blade and weighed to 30 mg.
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2.3 Calibration Curve Standard Preparation

The calibration curve standards were prepared as shown in Table I. 1 mg/mL of 

TMZ stock solution was prepared by weighing 3.9 milligrams of temozolomide diluted 

with 3.9 mL of acidic methanol. 1 mg/mL of the internal standard, theophylline, was 

prepared by weighing 10.9 milligrams of theophylline diluted with 10.9 mL of stock

solution methanol. All calibration curve solutions were prepared by using Table I and 

spiked in 30 mg of lamb brain. For calibration standard number 1 (10 ng/mL), 6.8 μL of

the TMZ stock solution was diluted to 1 mL with Mobile Phase A and 34 μL of the 

theophylline stock solution was diluted to 1 mL with Mobile Phase A. The final 

concentration of theophylline was kept at 50 ng/mL for all calibration standards.

Table I. Calibration Curve Standard Preparations for Lamb Brain.

Calibration
Standard
Number

Final TMZ 
Concentration 

(ng/mL)

Secondary 
Stock 

Solution 
from 1 
mg/mL

Stock TMZ 
(μL)

Final
Theophylline
Concentration

(ng/mL)

Secondary 
Stock Solution 
from 1 mg/mL 

Stock
Theophylline

(μL)

Amount
of

Mobile 
Phase A 

(μL)

1 10 6.8 50 34 993.2
2 50 34 50 34 966
3 100 68 50 34 932
4 200 136 50 34 864
5 250 170 50 34 830
6 500 340 50 34 660
7 1000 680 50 34 320

The same calibration curve standard preparations shown in Table I were also developed 

using control mice brain. For further linearity, calibration standard number 5 was left out

of the calibration curves for both mice and lamb brains.
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2.4. HPLC-MS/MS Instrumentation

The instrumentation used was a Shaimadzu HPLC system (Kyoto, Japan) coupled

to an AB SCIEX Q-Trap 5500 triple quadropole mass spectrometer (MS) with Analyst

software Version 1.6.1. The HPLC was composed of a solvent reservoir, a degassing unit

(DGU-20A3R), a binary pump (LC-30AD), a flow controller (CBM-20A), a column

oven (CTO-10A) and an autosampler (SIL-30AC).

2.5 HPLC-MS/MS Optimization Parameters

High-performance liquid chromatographic separation was carried using a Waters 

Symmetry C18 column (2.1 mm x150 mm, 5 μm). The oven temperature was 30°C, the 

injection volume was 10 μL, while the flow rate was kept at 0.4 mL/min. Mobile phase A 

consisted of 10 mM ammonium acetate in ultrapure water and 0.1% formic acid. Mobile 

phase B consisted of 100% methanol. The chromatographic system was run on a linear 

gradient from 5 to 30% Mobile Phase B for 6 minutes then increased to 90% and

decreased to 5% for 2 minutes.

The mass spectrometer was operated in multiple reaction monitoring (MRM)

positive-ion mode. High purity nitrogen (99.99%) was used as the nebulizer, auxiliary,

collision and curtain gases. The MRM transition of TMZ was m/z 195.1 → 138.1 and for 

theophylline it was m/z 181.0 → 124.1 as shown in Figures 6 and 7 respectively.
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Table II shows the optimized detection parameters of the mass spectrometer for

temozolomide and theophylline.

Table II. Optimized Parameters of TMZ and Theophylline (IS).

Analyte Curtain
Gas

Ion
Spray
Voltage

Temperature Ion
Source 
Gas 1

Ion
Source 
Gas 2

Declustering
Potential

Entrance
Potential

TMZ 30.0
psi

5500 V 100°C 10 psi 10 psi 150 V 10 V

IS 30.0
psi

4000 V 100°C 10 psi 10 psi 150 V 10 V

2.6 Optimizing ZipTip Conditions

As TMZ is slightly soluble in water, C18 ZipTips Millipore were used. The 

wetting solvent was 50% methanol in 0.1% formic acid, and the conditioning and

washing solvent was 0.1% formic acid. The loading sample consisted of 1 μL of 50

μg∕mL of TMZ, 1 μL of 50 μg∕mL of IS and 58 μL of Mobile Phase A. The elution

solvents consisted of a varying mixture of Mobile Phases A and B (Table III). The elution

22



samples were further diluted so that the final amount of methanol injected in the LC/MS

was 5%.

Table III. Varying Elution Mixtures for Optimization of ZipTips.

Percent of Methanol Mobile Phase A 
(ul)

Mobile Phase B 
(ul)

Mobile Phase A 
Dilution (μL)

5% 47.5 2.5 0
10% 45 5 50
15% 42.5 7.5 100
20% 40 10 150
25% 37.5 12.5 200
30% 35 15 250
35% 32.5 17.5 300
40% 30 20 350
50% 25 25 450
90% 5 45 850

2.7 Optimizing Protein Precipitation
The two chosen solvents to precipitate the proteins in the brain were ethanol and 

TFA. These two solvents were compared to one another using lamb brain tissue. To first 

lyse the cells, varying volumes of proteinase K were tested to dissolve the tissue. 10 μL 

of 60 μg/ml. of TMZ, 10 μL of 30 μg/ml. of internal standard, 10 μL of formic acid and

varying amounts of proteinase K (40 μL, 4 μL and 0.4 μL) were added to 30 mg of lamb 

brain tissue. The samples were incubated at 37°C for 1 hour. 270 μL of ethanol were 

added after incubation, the samples were vortexed for two minutes, incubated for 1 hour 

at -20°C, centrifuged at 14,000 rpm for 10 minutes, and 50 μL of supernatant was mixed 

with 950 μL of Mobile Phase A for injection into the LC-MS.

To compare, TFA with varying proteinase K volumes were also run. 10 μL of 60 

Lg/ml of TMZ, 10 μL of 30 Lg/ml of internal standard, 10 μL of formic acid and

varying amounts of proteinase K (40 μL, 4 μL and 0.4 μL) were added to 30 mg of lamb 

brain tissue. The samples were incubated at 37°C for 1 hour. 130 μL of ultrapure water
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and 40 μL of trifluoroacetic acid (TFA) were added after incubation, the samples were

vortexed for two minutes, incubated for 1 hour at 4°C, centrifuged at 14,000 rpm for 10

minutes, and 50 μL of supernatant was mixed with 900 μL of Mobile Phase A and 50 μL

of methanol for injection into the LC-MS. As ethanol had greater recovery when

compared to TFA, ethanol was the chosen protein precipitation solvent. In addition, 40

uL of proteinase K dissolved the tissue best when compared to the other volumes. The

experimental design for the calibration curve for mice brain is shown in Figure 8.

Figure 8. Experimental Design of Cell Lysis and Protein Precipitation.
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The comparison of Goldwirt's current experimental design to this experimental

design is shown in Table IV. In addition, Goldwirt injected their mice intraperitoneally

while the mice used in this research were injected via microdialysis.

Table IV. Comparison of Goldwirt et al. Experimental Design for TMZ Extraction and 
This Experimental Design for TMZ Extraction.
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CHAPTER III

RESULTS AND DISCUSSIONS

3.1 Mass Spectrometry Infusion

For TMZ, MS infusion was done by injecting 1 Lg/mL of TMZ in acidic 

methanol. The chromatograms for MS, CID and MRM are shown in Figures 9-11. The

mass spectrum showed the precursor of TMZ to be 195.1. The collision-induced 

dissociation (CID) showed the product ion of TMZ to be 138.1. The MRM showed the 

unique fragmentation ion for TMZ used for quantification.

For theophylline, MS infusion was done by injecting 1 Lg/mL of theophylline (IS) 

in methanol. The chromatograms for MS, CID and MRM are shown in Figures 12-14.

The mass spectrum showed the precursor of IS to be 181.0. The collision-induced 

dissociation (CID) showed the product ion of IS to be 124.1. The MRM showed the 

unique fragment ion for theophylline.
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Figure 9. Mass Spectrum of TMZ.

Figure 10. CID of TMZ.
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Figure 11. MRM Spectrum of TMZ.
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3.2 Method Application

As TMZ did not bind to the ZipTip columns using many different preparation

techniques and ZipTip solutions, protein precipitation was chosen as the better 

application to recover TMZ. The LC-MS/MS method was used to quantitate TMZ in 

mice brain to achieve the best recovery via protein precipitation. When comparing the 

two solvents used for protein precipitation, ethanol was proven to be best due to fewer 

matrix effects and less ion suppression. Slices of mice brain without TMZ were weighed 

to 30 mg and used as the control standards. The resulting chromatograms are shown in 

Figures 15-20. TMZ had a retention time near 2.5 minutes, while the internal standard

eluted later near 3.5 minutes.

Figure 15. Chromatogram of 30 mg Mice Brain Spiked with 10 ng/mL of TMZ and 50 
ng/mL of IS.
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Figure 16. Chromatogram of 30 mg Mice Brain Spiked with 50 ng/mL of TMZ and 50 
ng/mL of IS.

Figure 17. Chromatogram of 30 mg Mice Brain Spiked with 100 ng/mL of TMZ and 50 
ng/mL of IS.

31



Figure 18. Chromatogram of 30 mg Mice Brain Spiked with 200 ng/mL of TMZ and 50 
ng/mL of IS.

Figure 19. Chromatogram of 30 mg Mice Brain Spiked with 500 ng/mL of TMZ and 50 
ng/mL of IS.

32



Figure 20. Chromatogram of 30 mg Mice Brain Spiked with 1000 ng/mL of TMZ and 50 
ng/mL of IS.

The calibration curves for TMZ were constructed using six calibration standards. 

The linear calibration range was between 10 - 1000 ng/mL. The calibration curve for 

mice brain tissue tumors spiked with TMZ can be shown in Figure 21. In addition to mice 

brain calibration curve, a calibration curve was developed for lamb brain (Figure 22) 

consisting of six calibration standards (Table I) as 250 ng/mL was left out for further 

linearity.
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Calibration Curve for Mice Brain

Figure 21. Calibration Curve of 30 mg Mice Brain Spiked with Varying Amounts of 
TMZ and 50 ng/mL IS (n=2 replicates).

Figure 22. Calibration Curve of 30 mg Lamb Brain Spiked with Varying Amounts of 
TMZ and 50 ng/mL IS (n=3 replicates).

34



3.3 Recovery of TMZ and Theophylline

The percent recoveries of the lamb brain were determined by comparing the mean 

peak areas of spiking TMZ and IS before protein precipitation (n=3) with the mean peak 

areas of spiking TMZ and IS after protein precipitation (n=2). Table V shows the mean 

absolute recoveries for TMZ were consistent and ranged from 88.0%-138.6%. The 

percent recovery values were found by taking the values spiking the analytes before 

protein precipitation over the values spiking the analytes after protein precipitation and 

multiplying by 100.

Table V. Percent Recoveries of TMZ.
Standard
Concentration
(ng/mL)

Average Mean Peak Areas 
of Spiking TMZ/IS Before 
Protein Precipitation (n=3)

Average Mean Peak Areas of 
Spiking TMZ/IS After Protein 
Precipitation (n=2)

Percent
Recovery

10 0.07 0.08 88%
50 0.35 0.25 139%
100 0.53 0.44 120%
200 1.27 1.29 99%
500 3.23 2.83 114%
1000 6.51 6.68 97%

When compared to Goldwirt, the percent recoveries obtained were closer to 100%. As 

mentioned prior, the extraction recovery of TMZ for Goldwirt was 67.7% for 125 ng/g, 

61.0% for 1250 ng/g, and 61.4% for 12,500 ng/g. The differences in extraction

techniques are the protein precipitation and cell lysis solvents. Proteinase K was stronger 

than 10 mM ammonium acetate/water/0.1% formic acid. For protein precipitation, 

ethanol was used in this method, while methanol and zinc sulfate were used by Goldwirt. 

The amount of ethanol used was about 80% of the total volume for protein precipitation, 

while the amount of methanol used was Goldwirt was approximately 40% of the total 

volume. The greater amount of alcohol used improved purification. Ethanol has a lower
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dielectric constant than methanol, so it is able to reduce protein solubility leading to

better protein precipitation.

3.4 Matrix Effects

The matrix effects of the lamb brain were determined by comparing the mean 

peak areas of the neat sample with no lamb brain (n=2) with the mean peak areas of 

spiking TM and IS after protein precipitation (n=3). Table VI shows the matrix effects 

ranged from 75%-140%. The matrix effect percentages were found by taking the values 

of spiking TMZ and IS after protein precipitation divided by the values of the neat 

samples with no lamb brain and multiplying by 100.

Table VI. Matrix Effects.
Standard
Concentration
(ng/mL)

Average Mean Peak Areas 
of Neat Samples with No 
Lamb Brain (n=2)

Average Mean Peak Areas of 
Spiking TMZ/IS After Protein 
Precipitation (n=2)

Matrix
Effect

10 0.06 0.08 140%
50 0.33 0.25 75%
100 0.52 0.44 84%
200 1.18 1.29 109%
500 3.74 2.83 76%
1000 7.21 6.68 93%

When compared to Goldwirt, the matrix effect percentages obtained were almost half. 

The matrix effect for Goldwirt was 245% for 125 ng/g, 204% for 1250 ng/g, and 212%

for 12,500 ng/g. The differences in matrix effects are thought to be due to the addition of 

proteinase K as it digests unwanted proteins. In addition, proteinase K is a strong

protease.
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CHAPTER IV

CONCLUSIONS

4.1. Conclusions and Future Directions

An LC-MS/MS method was developed to analyze temozolomide in mice brain 

tumor tissue. As many studies focused on plasma, this method focused on brain tissue. In 

comparison to Goldwirt et al., this method proved to obtain higher percent recoveries as 

well as lower matrix effects. Many different techniques were employed in order to 

achieve these goals. As TMZ was not able to bind to the ZipTip column, protein 

precipitation was utilized along with proteinase K for cell lysis.

Future work will include studying the mice brain that were injected with TMZ 

and quantifying the amount of drug in brain. To achieve this, larger slices of brain will be 

taken in order to increase the chances of the location of the drug in the brain. In addition, 

since 40 μL of proteinase K seemed to be most effective when compared to smaller 

quantities, greater volumes of proteinase K will be studied. This research will also be 

validated with mice brain samples.
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