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Abstract

We find necessary and separate sufficient conditions for the difference between two

labeled partially ordered set’s (poset) partition generating functions to be positive in

the fundamental basis. We define the notion of a jump sequence for a poset and

show how different conditions on the jump sequences of two posets are necessary

for those posets to have an order relation in the fundamental basis. Our sufficient

conditions are of two types. First, we show how manipulating a poset’s Hasse diagram

produces a poset that is greater according to the fundamental basis. Secondly, we

also provide tools to explain posets that are constructed by combining other posets

in certain ways through the so-called Ur-operation. Finally, we are able to provide

both necessary and sufficient conditions for positivity among posets of Greene shape

(k, 1) and among a subclass of caterpillar posets, and a complete (and graphically

pleasing) representation of the order relations between posets of the former type.
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Chapter 1

Introduction

Perhaps the most widely known open question in Combinatorics is “What is Com-

binatorics?” It is an incredibly varied field of mathematics that has the tendency to

arise other fields. One proposed answer to this question is “The study of finite sets.”

Two important tools of study in Cominatorics are generating functions and ordered

sets. The focus of this thesis is primarily in the combination of these two, generating

functions for ordered sets.

Most are familiar with the concept of total orders. These are sets in which every

single pair of elements has an order relation; two elements are either equal to each

other or one is larger. The integers (Z), rational numbers (Q), and the real numbers

(R) all have this familiar total order on them. We are focusing on the generating

functions for partially ordered sets. These sets have order relations on them, but not

every element is related to every other. Some elements are less than others, some are

greater, but some pairs of elements have no relation to each other at all. Detailed

examples and explanations of these objects can be found in Chapter 2.

Combinatorists are often concerned with counting how many elements are in what-

ever finite set they happen to be studying. One of the most powerful tools for doing
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this is generating functions. Say that you were trying to count an object determined

by some parameter n, and the size of this object was f(n). The generating function

for this object would be
∑
n≥0

f(n)xn. This representation allows combinatorists to

use algebraic techniques to solve problems rather than strictly combinatorial ones.

For example for the Fibonacci numbers, which are defined as a0 = 0, a1 = 1, and

an = an−1 + an−2 for n ≥ 2, it is natural to ask what is the nth number in this

sequence. One could iteratively calculate every element up to n, but what if n was

100? How about 1, 000, 000? These calculations can quickly get out of hand, but

using algebraic techniques afforded by generating functions, one can get an explicit

formula for the nth Fibonacci number. This explicit formula allows us to compute

the nth Fibonacci number without computing every element that comes before it.

Two important objects of study in Combinatorics are partitions and compositions

of an integer n. Partitions of n are sequences of positive integers that sum to n where

order doesn’t matter. For example (3, 2, 5) and (5, 3, 2) are the same partition of 10.

It is standard to write them in decreasing order. Compositions of n on the other

hand are sequences of positive integers that sum to n where order does matter. In

the previous example (3, 2, 5) and (5, 3, 2) are the same partition of 10 (although we

wouldn’t write it in the first way), but they are different compositions of 10. Our main

object of study are P -partitions introduced by Stanley [Sta71], which lie somewhere in

between partitions and compositions. They use a partially ordered set (which is what

the P references) to partially order sequences of integers that sum to n. The main

goal of this thesis is to find necessary and/or sufficient conditions for the P -partition

generating functions for two partially ordered sets to be related to each other in a

certain fashion (that we will explain in the following section).

Many of our results were motivated by calculations performed with [The18]. This

is an open-source mathematical software that allowed us to generate all posets of a
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certain size, then determine whether or not one’s P -partition generating functions

were related to one another. This was possible up to posets of size 6, beyond which

calculations took or would take several months or more to complete. Even in the case

of comparing two posets alone this problem becomes intractible rather quickly.

Our research is motivated by a special case that has received a lot of attention.

We will not include the specific details of this special case as it is well beyond the

scope of this thesis, but this special case is motivated itself by symmetric functions.

The symmetric functions have several bases, but the Schur basis is arguably the most

important as Schur functions arise naturally in several areas of mathematics. It is

important then to understand what occurs when two Schur functions are multiplied.

The famed Littlewood-Richardson rule shows that the product of two schur basis

elements sλ and sµ has positive coefficients when expanded in terms of Schur functions.

Thus sλsµ is called Schur-positive. The next natural question to arise from this asks

when the differences between two such products are also Schur-positive. This question

is the subject of [BBR06], [Kir04], [LPP07],[Oko97], [RS06], [LP07], and [DP07]. A

natural step beyond products of Schur functions is to look at skew Schur functions

and ask the analogous question: when is the difference positive? This is the focus of

[KWvW08], [McN08], [McN14], [MvW09], and [MvW12].

Our generating function K(P,ω) is a partially ordered set analogue of skew schur

functions (and hence products of Schur functions), and includes both as (very) special

cases. As posets are fundamental in combinatorics, K(P,ω) is worthy of study in its

own right. Many of our specific questions however are inspired by ideas from the

Schur function case and the progress we make fits appropriately within this classical

framework. Our work also builds on several papers which have looked at K(P,ω and

also asked when two generating functions for different posets are equal, as in [Fér15],

[MW14], [IW18], [IW19], and [BHK17]. Closest in study to this thesis is [LP08], which
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investigates positivity in the more restricted case of cell transfer between disjoint

partially ordered sets.

The thesis is structured as follows. In Chapter 2 we provide the necessary mathe-

matical background on partially ordered sets, labeled posets, P -partitions, and their

generating functions. Chapter 3 details some of the strictly necessary conditions that

we proved for our poset relation to hold. These are conditions that must be true for

two posets’ generating functions to be related, but the mere fact that they are satis-

fied does not mean we actually have that relation. Chapter 4 contains a collection of

related sufficient conditions and proofs that completely explain certain classes of poset

relations. Note that these conditions will not be necessary for all poset relations, but

showing that they are true will guarantee that the relation holds. Chapter 5 provides

proofs of certain tools one can use to combine together posets whose relations are

already known in order to get larger posets where that relation also holds. Chapter

6 details and proves the validity of a visual process that at times can simplify the

process of telling whether or not two posets are related. Finally, Chapter 7 gives some

examples of classes of posets wherein our necessary conditions are also strong enough

to be sufficient.
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Chapter 2

Mathematical Background

In this section we give the necessary background information about labeled posets

and their generating functions.

2.1 Partially Ordered Sets

Given a set, it is normal to associate some sort of order on its elements. For

example given the set {1, 2, 3, 4}, the usual ordering is 1 < 2 < 3 < 4. This is

an example of a totally ordered set. An important visualization of ordered sets are

Hasse diagrams, where relationships between elements are denoted by lines between

nodes and the direction of those relations are given by height. For example our set

{1, 2, 3, 4} with the usual ordering would have the Hasse diagram shown in Figure

2.1.

There is no need to order elements of a set so simply however. Take the set

{1, 2, 3, 5, 6, 10, 15, 30} of divisors of 30 ordered by divisibility (Figure 2.2 (a). For

example, 3 is “less than” 30 because 3 divides 30. Even though 3 ≤ 5 in the usual

ordering, 3 is not “less than” 5 here because 3 does not divide 5. This is why we
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4

3

2

1

Figure 2.1: The Hasse diagram of {1, 2, 3, 4} under the usual order

call such structures partially ordered sets (posets): not every pair of elements has a

relation between them.

Definition 2.1.1. A partially ordered set (poset) is a set P and an order relation ≤P
where the following conditions hold:

1. a ≤P a for all a ∈ P (Reflexivity),

2. If a ≤P b and b ≤P a then a = b (Antisymmetry),

3. If a ≤P b and b ≤P c then a ≤P c (Transitivity).

A poset is called totally ordered if in addition to the previous three conditions the

following holds:

4. For any a, b ∈ A, either a ≤P b or b ≤P a (Comparability).

We can look at another poset: the subsets of {a, b, c}. The order we impose on

this one is that one set A is less than another B if it is contained within it (i.e.

A ≤ B if and only if A ⊆ B). This poset can be seen in Figure 2.2 (b). We can

see that the structure of the poset in Figure 2.2(a) is actually the same as that in

Figure 2.2(b), despite each poset containing different elements. Thus they can be

treated as the same in many respects. Because we wish our results to be as general



CHAPTER 2. MATHEMATICAL BACKGROUND 7

1

2 3 5

6 10 15

30

(a)

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

(b) (c)

Figure 2.2: (a) The Hasse diagram of {1, 2, 3, 5, 6, 10, 15, 30} ordered by divisibility.

(b) The Hasse diagram of the subsets of {a, b, c} ordered by containment.

(c) The abstract poset representing both of these structures.

as possible, we consider posets as abstract objects having “elements” and “edges”

instead of specifying what those elements might represent. So instead of restricting

our attention to the specific posets shown in Figure 2.2(a) and 2.2(b), we can study

the generic poset in Figure 2.2(c).

The cardinality (size) of a poset will be denoted |P |. For example all three posets

in Figure 2.2 have cardinality 8. The order relation for a given poset P will be denoted

≤P . For example, for the poset P in Figure 2.2 (a), we would write that 3 ≤P 6 and

3 �P 10. At times we may omit the subscript P if it is clear from context.
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2.2 (P, ω)-partitions

On a poset P , we can attach numbers to the elements of P to form what is called

a P -partition. More formally, a P -partition is a map f from the elements of a poset P

to the positive integers that is order-preserving. That is to say if a and b are elements

of P where a ≤P b, then f(a) ≤ f(b). For example Figure 2.3 shows several valid

P -partitions of a poset.

1

2 2

1

2 3

1

3 1

1

1 3

3

4 red2

Figure 2.3: A poset P with four (of many possible) different P -partitions, and one assign-

ment of numbers that breaks the rules for P -partitions.

Here however we want more structure on our P -partition. Specifically, we desig-

nate some of the edges as “strict,” denoted by double lines in Figure 2.4 (a). If a < b

is a strict edge, we require f(a) to be strictly less than f(b), i.e. f(a) < f(b).

1

2 1

1

3 1

1

2 2

1

2 3

1

3 2

1

3 3

2

3 2

2

3 3

(a)

1

1 3

(b)

Figure 2.4: (a) A poset P with weak and strict edges and all of the P -partitions that can

be made with {1, 2, 3}.

(b) That same poset with a P -partition that worked for the unlabeled version,

but not with our new labels.
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Figure 2.4 (a) is an example of the same poset with all of the different P -partitions

that can be made using only {1, 2, 3}. In terms of the diagram, single lines are allowed

to have the same number above and below them, where as double lines are not. The

single lines we will designate as “weak” edges.

When we designate strict and weak edges, we do so by imposing an underlying

labeling on a poset. A labeling ω on a poset is an injective function from the elements

of a poset to a totally ordered set (normally {1, 2, ..., |P |} under the usual ordering).

From that labeling, we designate strict edges as those edges where the element larger

in the poset has the lesser label, and weak edges as edges where the element larger

in the poset has the larger label. For example, the poset in Figure 2.4 (a) can be

labeled with the totally ordered set {1, 2, 3} under the usual order to get the labeled

poset in Figure 2.5.

2

1 3

1

2 3

3

2 1

Figure 2.5: Three different ways (of several) to label a particular poset and get weak and

strict edges.

When given an abstract poset P and a labeling ω, we denote the combined labeled

poset as (P, ω). Now that we have this labeling, instead of talking abstractly about

“weak” and “strict” edges we can define our P -partitions in terms of the labeling

function we have on our poset.

Definition 2.2.1. For a labeled poset (P, ω), a (P, ω)-partition is a map f from P

to the positive integers satisfying the following two conditions:

(i) if a ≤P b, then f(a) ≤ f(b);
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1

2 3 4

5 6 7

8

5

3 1 2

4 6 8

7

8

1 2 3

5 4 7

6

8

7 6 5

4 3 2

1

Figure 2.6: The same poset with several different labeling functions, and the different

strict and weak edges that result from them.

(ii) if a ≤P b and ω(a) > ω(b), then f(a) < f(b).

For a, b ∈ P , we say that a is covered by b if a <P b and there is no c ∈ P such

that a <P c <P b. We refer to the relation between a and b as an edge because

these covering relations are exactly the edges of the Hasse diagram. Note that every

relation between elements of a poset is capable of being represented by a series of

cover relations. Thus the cover relations alone are a sufficient representation of an

entire poset. Additionally, it will sometimes be easier to notate for us to reference

elements of the labeled posets by their labels. We will always note beforehand when

we are going to use this style of reference.

Because of the requirements on a (P, ω)-partition in Definition 2.2.1, we say that

an edge a <P b of a poset is weak if ω(a) < ω(b), and strict if ω(a) > ω(b). This is

the origin of our weak and strict edges from the Hasse diagrams before. For examples

see Figures 2.5 and 2.6.

As we can see from Figure 2.6, the same poset P with different labelings can result

in different strict and weak relations. Similarly, different labelings of a poset can (and

often do) result in the exact same collection of weak and strict edges. This may seem

problematic, but the flexibility afforded in the labels is vital for several of our results.

As we will often wish to work from an abstract labeling rather than a fixed one, we
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require terminology for our different representations:

Definition 2.2.2. An labeling τ of a labeled poset (P, ω) is valid alternative labeling

if it respects all edge relations, meaning that for all elements a, b ∈ P where b covers

a

• if ω(a) < ω(b) then τ(a) < τ(b), and

• if ω(a) > ω(b) then τ(a) > τ(b).

Since the labelings in this sense only determine which edges are weak and which

are strict, and are not unique, most of our diagrams will omit the labelings in favor of

only showing the weak and strict edges. We refer to a labeled poset as being naturally

labeled if its labeling implies all cover relations are weak.

2.3 Generating Functions

Given a labeled poset such as the one in Figure 2.4, there are an infinite number of

valid (P, ω) partitions. This is because the numbers that we attach to these elements

can be any positive integer; they do not only have to come from the set {1, 2, 3} as

was the case in Figure 2.4 (a). Any trio of positive integers that respects those weak

and strict relations is a valid (P, ω)-partition. It is natural to desire a more tangible

representation of all of these partitions.

We can achieve this through generating functions. Transferring an unwieldy math-

ematical construct to a generating function is a good way to get a more concrete

representation of that object. It also allows us to use algebraic techniques on those

functions in order to make claims that otherwise may be very difficult to state or

prove. Let us first look again at the poset in Figure 2.4. One can see that every

(P, ω)-partition of the poset is one of the four following types, where a, b, and c are
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positive integers:

a < b

x2
axb

a

b a

a < b < c

xaxbxc

a

c b

a < b < c

xaxbxc

a

b c

a < b

xax
2
b

a

b b

(2.1)

The inequalities that are written below each of the posets are the restrictions placed

upon a, b, and c. To verify these are correct, simply take a, b, and c to be integers

from {1, 2, 3}, and fill in the posets following the rules written below them. You will

recover all of the (P, ω)-partitions that are shown in Figure 2.4 (a).

The monomials that are written below the rules are the components of the gener-

ating function that we are attempting to create. The power on each xi is the frequency

at which i appears in that (P, ω)-partition. Concretely, if we were to do this with

the (P, ω)-partitions from Figure 2.4 (a), then each (P, ω)-partition would have the

following algebraic representation:

1

2 1

x2
1x2

1

3 1

x2
1x3

1

2 2

x1x
2
2

1

2 3

x1x2x3

1

3 2

x1x2x3

1

3 3

x1x
2
3

2

3 2

x2
2x3

2

3 3

x2x
2
3

One can check that each of these monomials falls in to one of the four types mentioned

before.

Before our formal definition of the (P, ω)-partition generating function, note that

for a (P, ω)-partition f , the size of the inverse-image of a number a, denoted |f−1(a)|,

is the number of elements of P that f maps to a

Definition 2.3.1. For a labeled poset (P, ω), we define the (P, ω)-partition generating
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function K(P,ω) = K(P,ω)(x1, x2, ...) by

K(P,ω) =
∑

(P,ω)-partition f

x
|f−1(1)|
1 x

|f−1(2)|
2 . . .

where the sum is over all (P, ω)-partitions.

Now that we have the formal definition of the (P, ω)-partition generating function,

we construct the (P, ω)-partition generating function for the poset from (2.1). We

know that every one of the (P, ω)-partitions takes one of the four forms we identified

here. The sum for each of these individual forms is given by the rules and algebraic

representation below the Hasse diagrams. Thus we have that

K(P,ω)(x) =
∑
a<b

x2
axb +

∑
a<b<c

xaxbxc +
∑
a<b<c

xaxbxc +
∑
a<b

xax
2
b =

∑
i≤j≤k
i<k

xixjxk. (2.2)

These summations give an algebraic representation for every (P, ω)-partition, and we

can write it neatly as the latter sum. The following section provides more information

on how these functions behave, and how they are represented in this thesis.

2.4 Quasisymmetric functions

All (P, ω)-partition generating functions are types of functions called quasisym-

metric functions. Quasisymmetric functions have a rich structure, and we will ma-

nipulate and compare the (P, ω)-partition generating functions of different posets by

means of these quasisymmetric-function representations.

Definition 2.4.1. A quasisymmetric function in the variables x1, x2, . . . with ratio-

nal coefficients, is a formal power series g = g(x) ∈ Q[[x1, x2, . . .]] of bounded de-

gree such that for every sequence a1, a1, . . . ak of positive integer exponents, we have

that the (nonzero) coefficient of xa1i1 x
a2
i2
· · ·xakik is equal to the (nonzero) coefficient of

xa1j1 x
a2
j2
· · ·xakjk whenever i1 < i2 < · · · < ik and j1 < j2 < · · · < jk.
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For an example, take the polynomial

2x2
1x2x

3
3 + 2x2

1x2x
3
4 + 2x2

1x3x
3
4 + 2x2

2x3x
3
4.

The sequence of positive integer exponents is 2, 1, 3. We are working with x1, x2, x3,

and x4. The ways to choose three of these variables so that the indices are strictly

increasing are x1x2x3, x1x2x4, x1x3x4, and x2x3x4. The coefficients of each of x2
i1
x1
i2
x3
ik

when i1 < i2 < i3 are the same, which is what makes a polynomial quasisymmetric.

Now look at the generating functions for labeled posets. For any specific (P, ω)-

partition, one can replace the numbers i1 < i2 < · · · < ik to which the partition maps

with any strictly increasing series of numbers. See the poset in Figure 2.7. Note that

1

2 2 2

2 3 3

4

x5x
4
6x

2
7x11

(a)

5

6 6 6

6 7 7

11

x5x
4
6x

2
7x11

(b)

i1

i2 i2 i2

i2 i3 i3

i4

xi1x
4
i2
x2
i3
xi4

(c)

Figure 2.7: For a poset (P, ω):

(a) A (P, ω)-partition of the poset.

(b) Another partition with a different series of elements

(c) A general way to construct this type of partition, with i1 < i2 < i3 < i4.

for (c), the nature of the general way to construct the partition is that any sequence

of positive i1 < i2 < i3 < i4 can be chosen, and the resulting contribution to the

(P, ω)-partition generating function is therefore quasisymmetric.

We will make use of two bases for quasisymmetric functions in this thesis. The
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first is the monomial quasisymmetric function Mα given by

Mα =
∑

i1<i2···<ik

xa1i1 x
a2
i2
· · ·xakik ,

where α = (a1, a2, ..., ak). We will call the way of writing a quasisymmetric func-

tion in terms of its M -basis elements that function’s M-expansion. For example,

M32 =
∑
i1<i2

x3
i1
x2
i2

.

The second basis requires several introductory definitions to properly define.

Definition 2.4.2. A composition of a series of n is a series of positive integers

a1, a2, ..., ak such that
∑k

i=1 ai = n.

Definition 2.4.3. A refinement of a composition (a1, a2, ..., ak) is a sequence of pos-

itive integers (b1, b2, ..., bl) such that

(a1, a2, ..., ak) =

 `1∑
i=1

bi,

`2∑
i=`1

bi, ...,

`k∑
i=`k−1

bi

 .

For example, one can think of a refinement of a composition as a “breakdown”

of a composition. If one were to take the composition (3, 3, 3) of 9, then (2, 1, 3, 3),

(3, 1, 2, 3), (3, 3, 1, 1, 1) would all be refinements. The composition (4, 2, 3) on the

other hand would not be a refinement. The sequence of n ones (1, 1, ..., 1) is a refine-

ment of any composition of n.

The second basis is the fundamental quasisymmetric functions Fα, given by

Fα =
∑
β

Mβ, (2.3)

where β is any refinement of α. For example, F3,1 = M3,1 +M2,1,1 +M1,2,1 +M1,1,1,1.

We will call the way of writing a quasisymmetric function in terms of its F -basis

elements that function’s F -expansion.
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The M -expansion of the (P, ω)-partition generating function can be computed

by noting all of the different ways that a (P, ω)-partition can be assigned. We have

actually already computed the M -expansion of the poset (P, ω) represented in (2.1).

Constructing the different forms that a (P, ω)-partition can take is how you compute

the M -basis expansion. Thus we have that in this case,

K(P,ω) =
∑
a<b

x2
axb +

∑
a<b<c

xaxbxc +
∑
a<b<c

xaxbxc +
∑
a<b

xax
2
b = M2,1 + 2M1,1,1 +M1,2.

By inspection of the M -expansion, or more easily using Theorem 2.4.9 below, we

determine that the F -expansion is

K(P,ω) = F2,1 + F1,2.

Definition 2.4.4. We say that a quasisymmetric function g is F -positive, denoted

g ≥F 0, if all of the coefficients of its F -basis expansion are non-negative.

As a consequence of Theorem 2.4.9 below, all (P, ω)-partition generating functions

are F -positive.

It is the goal of this thesis to determine conditions for F -positivity in the difference

between two (P, ω)-partition generating functions. In the notation, we wish to study

when labeled posets (P, ω) and (Q, τ) satisfy K(Q,τ) − K(P,ω) ≥F 0, also denoted

K(Q,τ) ≥F K(P,ω).

Definition 2.4.5. For labeled posets (P, ω) and (Q, τ), we say that P is F -less than

or equal to Q, denoted P ≤F Q, if K(Q,τ) −K(P,ω) ≥F 0. Define M-less than or equal

to similarly, and denote it by P ≤M Q.

From this point on we will only consider relations P ≤F Q or P ≤M Q in the case

when |P | = |Q|, since otherwise P and Q are incomparable.
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Definition 2.4.6. The F -support of (P, ω), denoted suppF (P, ω), is the set of compo-

sitions α such that Fα appears with nonzero coefficient in the F -expansion of K(P,ω).

Define the M-support analogously.

For example the generating function that we found for (2.1) implies that that

poset has an F -support of {(2, 1), (1, 2)} and an M -support of {(2, 1), (1, 2), (1, 1, 1)}.

Comparing the F -support of posets is often much easier to handle than the ≤F rela-

tion, because it is generally easier studying containment rather than positivity. The

following proposition connects many of the different ways of comparing the generating

functions of posets.

Proposition 2.4.7. Let (P, ω) and (Q, τ) be labeled posets. Then

• If (P, ω) ≤F (Q, τ) then (P, ω) ≤M (Q, τ).

• If (P, ω) ≤F (Q, τ) then suppF (P, ω) ⊆ suppF (Q, τ).

• If (P, ω) ≤M (Q, τ) then suppM(P, ω) ⊆ suppM(Q, τ).

• If suppF (P, ω) ⊆ suppF (Q, τ) then suppM(P, ω) ⊆ suppM(Q, τ)

How we get the F -support from the F -basis and how we construct the F -basis from

the M-basis directly implies these relations. None of these implications hold in the

converse direction.

This proposition combined with Theorem 2.4.9 gives us a collection of implications

that is represented in the following diagram:
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L(P, ω) ⊆ L(Q, τ)

(P, ω) ≤F (Q, τ)

(P, ω) ≤M (Q, τ)

suppF (P, ω) ⊆ suppF (Q, τ)

suppM(P, ω) ⊆ suppM(Q, τ)⇒

⇒

⇓ ⇓

⇓

This observation will drive much of our necessary conditions for inequality. As it

turns out, examining F -positivity is a related problem of examining simpler combi-

natorial objects which we introduce next. The definition is rather intricate, see the

example that follows for the essence.

Definition 2.4.8. A linear extension of a labeled poset (P, ω) is a permutation

(a1, a2, ..., a|P |) of (1, 2, ..., |P |) such that for any elements ai and aj, if ω−1(ai) ≤P
ω−1(aj) then i < j. We denote the set of all linear extensions of (P, ω) as L(P, ω).

For example the labeled poset given in Figure 2.8 has five linear extensions:

(1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3), and (2, 4, 1, 3). Roughly, a linear exten-

sion is a list of the labels that starts at some minimal element and works up the poset

respecting the order relations: if i < j in the poset, then i comes before j in list.

2

4

1

3

Figure 2.8: A labeled poset of size 4

A descent of a permutation π = (π1, ..., πn) of {1, 2, 3, ..., n} is a position i such

that πi > πi+1. This is denoted Des(pi). For example, the descents of π = (2, 3, 1, 5, 4)
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are 2 and 4. Given a permutation π of {1, 2, 3, ..., n}, we define a descent composition

co(π) by

co(π) = (d1, d2 − d1, d3 − d2, ..., dk − dk−1, n− dk)

where the descents of π are at positions d1 < d2 < · · · < dk. Take for example the

permutation π = (2, 3, 1, 5, 4). We know that d1 = 2, d2 = 4, and n = 5. From the

definition this gives us that co(π) = (2, 4 − 2, 5 − 4) = (2, 2, 1). In practice this is

determined by counting the runs of strictly increasing numbers in π. For example we

would determine the descent set of (2, 3, 1, 5, 4) by recognizing the first run (2, 3) is

of length 2, the second run (1, 5) is of length 2, and the third and final run is just (4),

of length 1.

The following theorem will drive many of our proofs, and is the simplest method

of computing the F -basis expansion of a given poset’s generating function.

Theorem 2.4.9. [Sta71, Sta72, Ges84] For labeled poset (P, ω),

K(P,ω) =
∑

π∈L(P,ω)

Fco(π)

where the sum is over all linear extensions π of (P, ω).

For example the poset (P, ω) in Figure 2.5 whose partition generating function

we computed earlier has linear extensions (2, 1, 3) and (2, 3, 1). The compositions of

these are (1, 2) and (2, 1), confirming that K(P,ω) = F12 +F21. As for the Poset (Q, τ)

in Figure 2.8, We would perform the calculation as follows:

Linear Extension Composition Fundamental Basis Element

(1, 2, 3, 4) (4) F4

(1, 2, 4, 3) (3, 1) F31

(2, 1, 3, 4) (1, 3) F13

(2, 1, 4, 1) (1, 2, 1) F121

(2, 4, 1, 3) (2, 2) F22
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Thus we have that K(Q,τ) = F4 +F31 +F13 +F121 +F22. Especially in the second case,

the method of Theorem 2.4.9 can be much simpler than guessing every configuration

of P -partition and building up the M -basis.

2.5 Involutions on labeled posets

Additionally, there are elementary transformations that can be applied to posets

that lead to trivial implications on equality. For a labeled poset (P, ω), we take (P, ω)

to be the transformation that changes all strict edges to weak and vice versa. We

take (P, ω)∗ to be the transformation that rotates a poset 180◦ while preserving strict

and weak edges. We will refer to the map that sends (P, ω) to (P, ω) (resp. (P, ω)∗)

as the bar (resp. star) involution. An example of the effects of these involutions on

the Hasse diagram of a poset can be seen in Figure 2.9. The following Lemma from

(P, ω) (P, ω)

(P, ω)∗ ((P, ω)∗)

Figure 2.9: A labeled poset (P, ω) and its star, bar, and combined star and bar involution.

[MW] will allow us to greatly lessen the number of relations we need to explain.
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Lemma 2.5.1. [MW] Let (P, ω) be a labeled poset. Then we have:

(a) the descent compositions of the linear extensions of (P, ω) are the complements

of the descent compositions of the linear extensions of (P, ω);

(b) the descents compositions of the linear extensions of (P, ω)∗ are the reverses of

the descent compositions of the linear extensions of (P, ω).

We deduce from this a result analogous to [MW, Prop. 3.7]:

Proposition 2.5.2. For labeled posets (P, ω) and (Q, τ), the following are equivalent:

• (P, ω) ≤F (Q, τ)

• (P, ω)∗ ≤F (Q, τ)∗

• (P, ω) ≤F (Q, τ)

• ((P, ω)∗) ≤F ((Q, τ)∗)

This will allow us to study several different relations through the analysis of one.

Remark 2.5.3. Because of Proposition 2.4.7, we know that the relations above in

Proposition 2.5.2 also hold with respect to F -support, M -positivity, and M -support.

2.6 Orders on Sequences

This section contains necessary definitions of orders that we can put on sequences

of numbers. The definitions here are vital for several of the conditions for Chapter 3.

Definition 2.6.1. Given two sequences p = (p1, p2, ...pa) and q = (q1, q2, ..., qb), the

sequence p is less than q in dominance order if
k∑
i=1

pi ≤
k∑
j=1

qj for all k ≥ 1, where

pi = 0 if i > a and qj = 0 if j > b. We denote this as p ≤dom q.
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Definition 2.6.2. Given two sequences p = (p1, p2, ...pa) and q = (q1, q2, ..., qb), the

sequence p is less than q in lexicographic order if pi < qi for the first i where pi 6= qi.

We denote this p ≤lex q.

Take the sequences (1, 6, 1), (3, 2, 2, 2), and (3, 2, 4, 1, 1). We know that (3, 2, 4, 1, 1) >lex

(3, 2, 2, 2) >lex (1, 6, 1). We know that (3, 2, 4, 1) >lex (3, 2, 2, 2) because the first ele-

ment between (3, 2, 4, 1, 1) and (3, 2, 2, 2) that differs is the third one and 4 > 2. We

know that (1, 6, 1) differs from both of the others in the first slot, and since 3 > 1 we

get the relation above. Lexicographic ordering gives a total order on sequences, and

two are going to either be equal or comparable in lexicographic ordering.

Take those same three sequences and look at them in dominance order. We know

that (3, 2, 2, 2) 6≤dom (1, 6, 1) because 1 < 3, however we also have that (1, 6, 1) 6≤dom
(3, 2, 2, 2) because 3 + 2 < 1 + 6. Thus there is no dominance relation between the

two sequences. Looking at (3, 2, 2, 2) and (3, 2, 4, 1, 1), we get that (3, 2, 2, 2) ≤dom
(3, 2, 4, 1, 1) because

1) 3 ≤ 3,

2) 3 + 2 ≤ 3 + 2,

3) 3 + 2 + 2 ≤ 3 + 2 + 4,

4) 3 + 2 + 2 + 2 ≤ 3 + 2 + 4 + 1,

5) and finally 3 + 2 + 2 + 2 ≤ 3 + 2 + 4 + 1 + 1.

The following lemma relates these two ordering systems.

Lemma 2.6.3. For sequences p = (p1, p2, ...pa) and q = (q1, q2, ..., qb), if p ≤dom q

then p ≤lex.
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Proof. If the sequences are equal this is trivial. If two elements p = (p1, p2, ...pa) and

q = (q1, q2, ..., qb) are related in dominance order such that p <dom q, we know that

the lowest index i in which the element pi 6= qi must be such that

i∑
k=0

pk <

i∑
l=1

ql.

However since pj = qj for all j < i, we know that pi < qi and therefore p ≤lex q.
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Chapter 3

Necessary Conditions

This section will focus on necessary conditions for F -positivity. Our first of two

main results is for naturally labeled posets, and our second is on a construction called

the jump sequence of a poset.

3.1 Weak and Strict Edges

Lemma 3.1.1. If (P, ω) ≤F (Q, τ) and (P, ω) only has weak edges, then so does

(Q, τ).

Proof. We examine the linear extensions of (P, ω), and seek to show by induction

that (1, 2, ..., |P |) is a linear extension of P . If |P | = 1, this is trivial. Say then that

(1, 2, ..., k) is a linear extension of Pk for any labeled poset Pk such that |Pk| = k.

Take then a poset Pk+1 such that |Pk+1| = k+1. Impose a labeling such that all edges

are weak. Because all edges are weak, we know that the element labeled k + 1 must

be a maximal element. Remove that element, and we are left with a poset that has k

elements and all weak edges. By our induction hypothesis, we know that (1, 2, ..., k)

is a valid linear extension for this poset. Since our deleted element was maximal, we
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know that for Pk+1 that (1, 2, ..., k, k+1) is a valid linear extension. Thus by induction

we know that (1, 2, ..., |P |) is a linear extension of (P, ω). Since (1, 2, ..., |P |) is strictly

increasing, its descent composition is simply (|P |), and therefore we know that F|P |

is an element of the support of (P, ω).

Suppose to the contrary that the labeled poset (Q, τ) has at least one strict edge.

Then there exist elements p, q ∈ Q such that p < q in Q however τ(p) > τ(q). This

relation must be respected in any linear extension of (Q, τ). Thus there is at least one

descent in every linear extension of (Q, τ), as τ(p) must appear before τ(q). Therefore

F|Q| = F|P | is not in the support of (Q, τ). We conclude then that (P, ω) 6≤F (Q, τ),

a contradiction. Thus (Q, τ) contains no strict edges.

Applying Proposition 2.5.2, we get the following corollary:

Corollary 3.1.2. If (P, ω) ≤F (Q, τ) and (P, ω) only has strict edges, then so does

(Q, τ).

3.2 Ordering on the Jump

This section introduces the jump a labeled poset, and the resulting necessary con-

ditions that must be fulfilled for two labeled posets to be comparable. The following

definition will assist us in defining the jump.

Definition 3.2.1. A chain is a sequence of elements of a poset x1, x2, x3, ..., xk where

x1 <P x2 <P x3 <P · · · <P xk. A chain is a saturated chain if all of the relations

xi <P xi+1 are cover relations.

Definition 3.2.2. The jump(p) of an element p of a labeled poset (P, ω) is the

maximum number of strict relations in a saturated chain from the element to a min-

imal element of P . The jump sequence of (P, ω), denoted jump(P, ω), is defined by
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jump(P, ω) = (j0, ..., jk), where ji is the number of elements of elements of jump i,

and k is the maximum jump of an element of (P, ω).

It will be useful (particularly in Chapter 7) to notate jump(P, ω) as the jump of

the poset taken after the bar-involution. Realize this is the same as the jump if we

count weak relations instead of strict.

Alternatively, one can easily find the jump of a poset by considering the (P, ω)-

partition where each number assigned is the least one possible. For example the jump

sequences of the posets (P, ω), (Q, τ), and (R, ρ) in Figure 3.1 are (1, 6, 1), (3, 2, 2, 1),

1

2 2 2

2 2 2

3

(P, ω)

1

1 1 2

2 3 3

4

(Q, τ)

1

1 1 2

1 3 3

4

(R, ρ)

Figure 3.1: Three posets with the partition that gives the jump sequence for each.

and (4, 1, 2, 1) respectively.

The star-jump of an element and the star-jump sequence of a poset is defined

similarly, but with saturated chains to a maximal element. This is also the same as the

jump under the star involution. Since all relations must hold under this involution,

we know that all necessary conditions we place on the jump sequence will have a

corollary in the star-jump sequence.

Observe further that the jump(p) of an element p is the minimum value of f(p) over

all (P, ω)-partitions f . Therefore for any (P, ω)-partition f , the number of elements

p with f(p) ≤ i cannot exceed

jump1(P, ω) + jump2(P, ω) + · · ·+ jumpi(P, ω). (3.1)
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This relates nicely to Definition 2.6.1, and leads to our next lemma:

Lemma 3.2.3. The M-support of (P, ω) contains jump(P, ω), which is the maximum

element of the M-support under dominance order.

Proof. Let the composition α = (α1, ..., αk) be an element of the M -support of K(P,ω),

and let f be a (P, ω)-partition that contributes xα1
1 x

α2
2 · · · x

αk
k to K(P,ω). Then for

1 ≤ i ≤ k, we have α1 + ... + αi equals the number of elements of (P, ω) that

f maps to the elements of {1, 2, ..., i}. By the observation in (3.1), we know that

α1 + ...+αi ≤ jump1(P, ω)+ ...+jumpi(P, ω). Thus we know that α ≤dom jump(P, ω).

It also follows directly from our observation after Definition 3.2.2 that jump(P, ω) is

in the M -support of (P, ω), as required.

This leads to the following necessary condition, which is our main necessary con-

dition involving the jump sequence.

Corollary 3.2.4. If suppM(P, ω) ⊆ suppM(Q, τ), then jump(P, ω) ≤dom jump(Q, τ).

Proof. By Lemma 3.2.3, we have that jump(P, ω) must be an element of the M -

support of K(Q,τ). Thus, again by Lemma 3.2.3 we have that jump(P, ω) ≤dom
jump(Q, τ).

Note that we assume the condition that suppM(P, ω) ⊆ suppM(Q, τ), which is the

weakest condition we require. By Proposition 2.4.7 we can take any of the other three

relations there as our hypothesis.

Corollary 3.2.5. If suppM(P, ω) ⊆ suppM(Q, τ), then jump(P, ω) ≤lex jump(Q, τ).

Proof. By Corollary 3.2.4 and Lemma 2.6.3 we get jump(P, ω) ≤lex jump(Q, τ).

Similarly, any formulation we would make for the star-jump sequence can be han-

dled under the same circumstances with the star involution. Consider the posets from
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Figure 3.1. We have stated before that their jump sequences are (1, 6, 1), (3, 2, 2, 1),

and (4, 1, 2, 1) respectively. We can use this to tell whether pairs of those three

posets are related in the F -positivity order. We know that (R, ρ) 6≤F (Q, τ) and

(Q, τ) 6≤F (P, ω) because (4, 1, 2, 1) >lex (3, 2, 2, 1) >lex (1, 6, 1). We also know

that (P, ω) 6≤F (Q, τ) and (P, ω) 6≤F (R, ρ) because (1, 6, 1) 6≤dom (3, 2, 2, 1) and

(1, 6, 1) 6≤dom (4, 2, 1, 1). When examining whether or not (Q, τ) ≤F (R, ρ), we see

that (3, 2, 2, 1) ≤lex (4, 1, 2, 1) and (3, 2, 2, 1) ≤dom (4, 1, 2, 1). One might be inclined

then to guess that (Q, τ) ≤F (R, ρ), but this is not the case. It is this property that

makes these conditions necessary and not sufficient.

The following series of claims are other ways to quickly get necessary conditions

that are also based on elements of the M -support.

Lemma 3.2.6. If suppM(P, ω) ⊆ suppM(Q, τ), then the largest number of strict

connections in a saturated chain in (P, ω) must be greater than or equal to the largest

number of strict connections in a saturated chain in (Q, τ).

Proof. We have by Corollary 3.2.4 that jump(P, ω) ≤dom jump(Q, τ). Since the ele-

ments of jump(P, ω) and jump(Q, τ) both sum to |P | = |Q|, we know that the length

of the jump sequence of (P, ω) must be greater than or equal to that of (Q, τ). The

length of a jump sequence is the largest value of jump(p) for p ∈ P . Therefore the

length of the jump sequence is also the largest number of strict connections in a satu-

rated chain from an element down to a minimal element. We conclude that the largest

number of strict connections in a saturated chain in (P, ω) must be greater than or

equal to the largest number of strict connections in a saturated chain in (Q, τ).

Corollary 3.2.7. If suppM(P, ω) ⊆ suppM(Q, τ), then the largest number of weak

connections in a saturated chain in (P, ω) must be greater than or equal to the largest

number of weak connections in a saturated chain in (Q, τ).
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Proof. Apply the bar operation to both (P, ω) and (Q, τ), from Remark 2.5.3 we know

suppM(P, ω) ⊆ suppM(Q, τ). Then apply Lemma 3.2.6, and recall that the number

of strict edges edges in a chain in the (P, ω) (resp. (Q, τ)) is the same as the number

of weak edges in a chain in (P, ω) (resp. (Q, τ)).

Definition 3.2.8. A sub-poset (S, σ) inside of (P, ω) is convex if y ∈ S if x ≤P y ≤P z

and x, z ∈ P .

Definition 3.2.9. The weak width of a labeled poset (P, ω), denoted weakwidth(P, ω),

is the number of elements in the largest convex subposet of (P, ω) that contains only

weak edges. See Figure 3.2.

Figure 3.2: Examples of posets with their (not always unique) largest convex subposet

containing only weak dashed edges colored in blue

Observe that the weak width is also the largest number of elements that can be

mapped to the same value by a (P, ω)-partition.

Corollary 3.2.10. Suppose (P, ω) and (Q, τ) are labeled posets. If suppM(P, ω) ⊆

suppM(Q, τ), then weakwidth(P, ω) ≤ weakwidth(Q, τ).

Proof. Let k be the weak width of (P, ω). By definition of weak width, there exists an

element α in suppM(P, ω) that itself has an element equaling k. Since suppM(P, ω) ⊆
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suppM(Q, τ), we know that (Q, τ) contains a convex subposet of size at least k that

contains all weak elements. Therefore weakwidth(Q, τ) ≥ k = weakwidth(P ).
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Chapter 4

Adding, Deleting, and Linear

Extensions

This section focuses on the relationships that result from deletion of an edge to

an existing labeled poset, preceded potentially by the addition of what we will define

as a “redundant edge.”

Note that if L(P, ω) ⊆ L(Q, τ), then (P, ω) ≤F (Q, τ) by Theorem 2.4.9. This

will form the basis for many of our sufficient conditions for (P, ω) ≤F (Q, τ).

4.1 Deleting Edges

The simplest way that we obtain linear extension containment is by simply deleting

an edge from the Hasse diagram. Thus we get the following proposition, which this

chapter as a whole will seek to generalize:

Proposition 4.1.1. If (Q, τ) is obtained from (P, ω) by deleting an edge from the

Hasse diagram of (P, ω), then L(P, ω) ⊆ L(Q, τ).

Proof. Identify each element in P with the corresponding label in Q. Since (Q, τ) is
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simply (P, ω) without an edge, we know that ω and τ can label each corresponding

pair of elements of P and Q with the same number, essentially getting the same

labeling. Take a linear extension γ of (P, ω). We know that every edge of (P, ω) is in

(Q, τ), and that γ is a linear extension in (P, ω) (and therefore (Q, τ)) if and only if γ

respects all of the edges in the poset. Thus we know that γ is also a linear extension

of (Q, τ). Since γ was arbitrary we know that L(Pω) ⊆ (Q, τ).

As an example, we can explain poset relations such as

(P, ω)

≤F

(Q, τ)

by means of Proposition 4.1.1.

4.2 Augmented Diagrams and Labels

Definition 4.2.1. An augmented diagram (P, ω)+E of a labeled poset (P, ω) consists

of the Hasse diagram of (P, ω) along with a set E of edges (x, y) such that x <P y

but (x, y) is not a covering relation. Each such additional edge is defined as strict or

weak independent of ω.

Examples of augmented diagrams can be seen in Figure 4.1.

Definition 4.2.2. Given an augmented diagram (P, ω)+E form a directed graph D

by orienting weak edges upwards and strict edges downwards. Then we say (P, ω)+E

has a bad cycle if it has any directed cycles.
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(P, ω) (P, ω)+E1 (P, ω)+E2

Figure 4.1: A poset (P, ω) with two different augmentations.

For examples of what bad cycles can look like, see Figure 4.2. We will restrict

ourselves in this thesis to augmented diagrams that do not contain any bad cycles,

primarily because of the Lemma below.

Figure 4.2: Examples of posets with a bad cycle

Lemma 4.2.3. There exists a labeling ω′ of (P, ω)+E that respects all of the strict

and weak conditions on the edges including those for E if and only if (P, ω)+E has no

bad cycles.

Proof. First assume that there exists a labeling ω′ for (P, ω)+E that respects all of

the strict and weak edges. Assume for contradiction that (P, ω)+E contains a bad

cycle, whose elements in order of the cycle are x1, x2, ..., xk. If (P, ω)+E has a labeling,

then each element xi of this bad cycle must have a label associated with it. Notice



CHAPTER 4. ADDING, DELETING, AND LINEAR EXTENSIONS 34

however that as we have defined the direction of these edges, an edge in the directed

graph xi → xi+1 implies that ω′(xi) < ω′(xi+1). This means that in our bad cycle,

ω′(x1) < ω′(x2) < · · · < ω′(xk) < ω′(x1). This is of course a contradiction, as ω′(x1)

cannot be strictly greater than itself. Thus we know that there can be no bad cycle

in (P, ω)+E.

Now assume that (P, ω)+E contains no bad cycles. We will construct an explicit

labeling of (P, ω)+E that respects all of the new edges that were written in. As

before we can form a directed graph from (P, ω)+E where the weak edges are oriented

upwards and the strict edges are oriented downwards. Form a new all weak-edged

poset Q defined by a ≤Q b if there is a directed path from a to b. See Figure 4.3

for an example. We represent Q as an augmented diagram whose set of edges equals

that of (P, ω)+E but possibly with new directions. We must check that Q is a valid

poset.

We know that Q is reflexive and transitive trivially.

Say that Q is not anti-symmetric. This implies the existence of a, b such that

a 6= b however a ≤Q b and b ≤Q a. This means however that there exists a directed

path from a to b and b to a, which implies the existence of a bad cycle. Thus we

know Q must be anti-symmetric.

It is clear then that Q can be naturally labeled, as all of the edges are weak. We

can apply this labeling to the elements of (P, ω)+E and it will respect all strict and

weak edges, because if a < b in (P, ω)+E is a strict edge then a > b in Q, and if a < b

in (P, ω)+E is a weak edge then a < b in Q. By construction we have that a labeling

of (P, ω)+E that respects the strictness and weakness of all edges.

From Definition 4.2.1 and 4.2.3, it makes sense to refer to edges (a, b) that are

added to augmented diagrams and that don’t create bad cycles as redundant edges.

This is because their relation (a, b) is already implied by the edges in the Hasse
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An Augmented

Diagram

a

bc

d

e

f

Its Directed

Graph

a

bc

d

e

f

Its Labeling

Poset

c1

a3

b2

e4

f5 d6

The Labeled

Diagram

3

21

6

4

5

Figure 4.3: An example of the process of labeling an augmented diagram as described in

Lemma 4.2.3.

diagram, and the validity of their strictness and weakness (whichever that may be) is

implied by whether or not that same strictness or weakness would create a bad cycle.

4.3 Less-Than Sets

Definition 4.3.1. The less-than set of labeled poset (P, ω) is the set of label relations

S<(P, ω) = {(ω(a), ω(b)) : a <P b}. This is also called the transitive closure of the

cover relations.

This section will focus on the deletion of elements from a less-than set, and what

that may imply about poset relations. For simplicity’s sake, for the remainder of the

section we will identify each element of a poset with its label, so that ω−1(a) ≤P ω−1(b)

can instead be written as a ≤P b.

Definition 4.3.2. We say that a linear extension (or any permutation) ρ violates an
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element (a, b) of a less-than set if b appears before a in ρ.

Note that if a permutation ρ violates any (a, b) ∈ S<(P, ω), then ρ cannot be a

linear extension of (P, ω). Moreover, by the definition of linear extension (Definition

2.4.8), if there are no violations of S<(P, ω) in ρ, then ρ is a linear extension of (P, ω).

Lemma 4.3.3. Say that (P, ω) is a labeled poset with a <P b. Then S<(P, ω) \ (a, b)

is a less-than set for another labeled poset Q if and only if a <P b is a cover relation.

Proof. We know that regardless of what type of relation (a, b) is, S<(P, ω)\ (a, b) will

still preserve reflexivity and antisymmetry. Thus we must check transitivity.

Say first that (a, b) is a covering relation. Let us take then (x, y), (y, z) ∈ S<(P, ω)\

(a, b). Since S<(P, ω) is transitive we know that (x, z) ∈ S<(P, ω). Clearly x ≤P z is

not a cover relation in (P, ω), thus we know that (x, z) ∈ S<(P, ω)\(a, b). Thus the set

of relations preserves transitivity, and represents a poset. By construction the same

labeling ω can be used to label the new poset, and we have that S<(P, ω) \ (a, b) =

S<(Q, τ) for some labeled poset (Q, τ).

Now say that (a, b) is not a cover relation. This means that in (P, ω) there exists a

c such that a <P c <P b. We know however then that (a, c), (a, b) ∈ S<(P, ω) \ (a, b),

while (a, b) is clearly not. Thus S<(P, ω) \ (a, b) is not transitive, and therefore does

not represent a poset.

Note that repeated application of Lemma 4.3.3 can result in a wide variety of

posets. For example the posets (Q, τ) and (R, ρ) in Figure 4.4 are obtained by deleting

cover relations from the less-than set of (P, ω) in the following way:

S<(Q, τ) = S<(P, ω) \ {(2, 6)} \ {(2, 5)} \ {(4, 5)}

S<(R, ρ) = S<(P, ω) \ {(2, 5)} \ {(2, 6)} \ {(4, 6)} \ {(3, 6)}.

Note how some of the relations deleted are not cover relations in S<(P, ω). They are

however cover relations once a previous deletion has been made. For example, the
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(P, ω)

3

4

2

5 6

1

(Q, τ)

3

4

2

5

6

1

(R, ρ)

3

4

25

6

1

Figure 4.4: Three labeled posets (P, ω), (Q, τ), and (R, ρ) where both(R, ρ) and (Q, τ)

are obtained from (P, ω) by deleting some cover relations.

relation (4, 6) that was deleted to make (R, ρ) is not a cover relation in S<(P, ω),

however it is a cover relation in the poset obtained from first deleting (2, 6). This is

what we mean by deleting a series of cover relations.

We will connect the less-than sets with the set of linear extensions, and to do so

we need a preliminary lemma.

Lemma 4.3.4. For poset (P, ω), if a 6≤P b then there is a linear extension ρ such

that b appears before a in ρ.

Proof. If a >P b, then by definition every linear extension of (P, ω) must have b come

before a. Thus we only need to check the case where a is not related to b.

Partition all of the elements of (P, ω) into two sets as follows: the first set A is all

of the elements x 6= a, b of (P, ω) such that x 6>P a and x 6>P b, and the second set

B is all of the remaining elements y 6= a, b such that y >P a or y >P b. Build ρ as

follows:

ρ = ((linear extension of x ∈ A), b, a, (linear extension of y ∈ B)).

Take p ∈ (P, ω) \ {a, b}. If p /∈ A then p >P a or p >P b, so p ∈ B. Thus we know
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that ρ does contain all of the elements of (P, ω). Similarly, p cannot be both greater

than and not greater than a or b, so we know that A ∩B = ∅.

We know that within the linear extensions of A and B all of the relations will hold.

The sets are also defined such that there will be no conflicts in ρ where an element

greater than b or a occurs before them (in A) or an element less than b or a occurs

after them (in B). This is because A (everything before) is defined as containing all

elements less than a or b, so no such element is in B. It thus remains to be seen that

every element in A is not greater than any element in B. Take x ∈ A and y ∈ B, and

say for contradiction that x >P y. Then x >P y >P a or x >P y >P b. In either case

this means that x ∈ B, but A ∩B = ∅ so there cannot exist such an x.

Thus we know that ρ is a valid linear extension of (P, ω), and by construction we

have our claim.

The next lemma seeks to relate containment of these less-than sets to containment

of sets of linear extensions.

Lemma 4.3.5. Take two labeled posets P and Q. Then L(P, ω) ⊆ L(Q, τ) for some

valid (Definition 2.2.2) ω and τ if and only if S<(P, ω) ⊇ S<(Q, τ) for the same ω

and τ .

Proof. Say first that S<(P, ω) ⊇ S<(Q, τ). Now take any ρ ∈ L(P, ω). We know that

ρ is a linear extension of a poset Q if it obeys all of the relations in Q. We know

that all of the relations in Q are also relations in P , thus we know that if ρ obeys all

relations in P that it will obey all relations in Q. Thus we have that ρ ∈ L(Q, τ).

Now say that L(P, ω) ⊆ L(Q, τ). We seek to show that S<(P, ω) ⊇ S<(Q, τ).

For contradiction assume that there is a γ ∈ S<(Q, τ) such that γ /∈ S<(P, ω). Let

γ = (a, b). Since γ /∈ S<(P, ω), we know by Lemma 4.3.4 that there must be a linear

extension ρ ∈ L(P, ω) such that b appears before a in ρ. This means however that ρ

violates γ, which is contained within S<(Q, τ). This means that ρ /∈ L(Q, τ). This
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contradicts our assumption that L(P, ω) ⊆ L(Q, τ), thus we know that there cannot

exist such a γ, and therefore S<(P, ω) ⊇ S<(Q, τ).

The following lemma will establish our connection to the augmented diagrams.

Lemma 4.3.6. For labeled posets (Q, τ) and (P, ω), we have S<(P, ω) ⊇ S<(Q, τ) if

and only if S<(Q, τ) can be obtained from S<(P, ω) by a series of deletions of cover

relations.

Proof. If S<(Q, τ) can be obtained from S<(P, ω) by a series of deletions of cover

relations, then it is clear that S<(Q, τ) ⊆ S<(P, ω).

Assume that S<(P, ω) ⊃ S<(Q, τ). We seek to show that there must always be a

cover relation a < b of (P, ω) such that a 6≤Q b. Say for contradiction that all cover

relations of (P, ω) were contained within S<(Q, τ). We know however that cover

relations generate the entire poset, and therefore S<(P, ω) ⊆ S<(Q, τ), a contradic-

tion. Thus S<(P, ω) \ S<(Q, τ) contains a cover relation (a, b) ∈ S<(P, ω). Delete

this cover relation from S<(P, ω), and by Lemma 4.3.3 you have a (P ′, ω′) such that

S<(P ′, ω′) ⊇ S<(Q, τ).

Repeated application of this process means that eventually S<(Q, τ) will be ob-

tained by a deletion of a cover relation, and we have our claim.

The following corollary is a corollary to the previous two lemmas.

Corollary 4.3.7. For labeled posets (P, ω) and (Q, τ), L(P, ω) ⊆ L(Q, τ) if and only

if S<(Q, τ) can be obtained by a sequence of deletions of cover relations from S<(P, ω).

Proof. This follows directly from in Lemmas 4.3.5 and 4.3.6.

In summary we have a necessary and sufficient condition in terms of the less-

than sets for inequalities among posets that are due to linear extension containment.

However, our real goal is such a condition in terms of adding redundant edges and

deleting edges; this is the focus of the next section.
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4.4 Linear Extension Containment

The previous methods for determining linear extension containment, as appearing

in Proposition 4.1.1 and Corollary 4.3.7, each have their different advantages and

disadvantages. The less-than sets provide the benefit of the converse also being true,

however writing down the whole less-than set is an arduous task. The deletion method

with Hasse diagrams is sufficiently visual that it can be checked easily by eye in many

cases, but is far from the only way to get linear extension containment. The following

theorem combines the best of both methods; it is our main result of the chapter.

Recall valid alternative labelings, as defined in Definition 2.2.2.

Theorem 4.4.1. Let (P, ω) and (Q, τ) be labeled posets. The following are equivalent:

(1) L(P, ω′) ⊆ L(Q, τ ′) for some valid alternative labelings ω′ and τ ′.

(2) S<(P, ω′) ⊇ S<(Q, τ ′) for some valid alternative labelings ω′ and τ ′.

(3) (Q, τ) is obtained from (P, ω) by adding redundant edges and then deleting edges

from the augmented diagram.

The following Figure 4.5 shows how this theorem might be applied to a Hasse

diagram in order to get a relation.

(P, ω)

=

(P, ω)+E

⊆

(Q, τ)

Figure 4.5: An example of how this addition and deletion can be used to show that one

poset’s set of linear extensions are contained within another’s
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Proof of Theorem 4.4.1. Much of this proof has already been completed. Look first

at (1)⇔(2), which is true by Lemma 4.3.5 with ω′ and τ ′ playing the roles of ω and

τ respectively. To complete the theorem we will show here that (2)⇔(3).

Assume (2): S<(P, ω′) ⊇ S<(Q, τ ′) for some alternative labelings ω′ and γ′. Look

at the Hasse diagrams for (P, ω′) and (Q, τ ′), and write in every redundant edge

implied by the labels. We know that all relations in (Q, τ ′) are also in (P, ω′), thus

all edges redundant or otherwise in this augmented diagram of (Q, τ ′) are in the

augmented diagram for (P, ω′). This means that we can delete some set of redundant

and non-redundant edges from the augmented diagram for (P, ω′) to get all of and

only the edges of the augmented diagram for (Q, τ ′). From there we can remove all of

the redundant edges from what remains to get the regular Hasse diagram for (Q, τ ′).

Since by definition τ ′ imparts the same strict and weak cover relations as τ on Q, we

know that this is also the Hasse diagram for (Q, τ). Similarly the Hasse diagrams for

(P, ω) and (P, ω′) are also identical. Thus we have that (Q, τ) is obtained from (P, ω)

by adding redundant edges and then deleting edges from the augmented diagram.

Now assume (3): (Q, τ) is obtained from (P, ω) by adding redundant edges (with-

out bad cycles) and then deleting edges from the augmented diagram (P, ω)+E. By

Lemma 4.2.3 we define ω′ to be the labeling of (P, ω)+E that respects all of the

redundant edges as well. Now to (P, ω) add all redundant edges AP with strict-

ness/weakness determined by ω′, giving us (P, ω′)+AP . Realize that this is a graphical

representation of S<(P, ω′), the transitive closure of (P, ω′).

Our assumption is that (Q, τ) is achieved by deleting edges from (P, ω)+E. Since

(P, ω′)+AP is (P, ω)+E with even more redundant edges added in, we know that the

Hasse diagram for (Q, τ) can also be achieved by deleting edges from (P, ω′)+AP . Now

take τ ′ = ω′. Since all cover relations of (Q, τ) are in the diagram for (P, ω′)+AP , we

know that τ ′ must be a valid alternative labeling for (Q, τ). Now add all redundant
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edges Aq to (Q, τ) with strictness and weakness determined by τ ′ to get the augmented

diagram (Q, τ ′)+AQ , which is the transitive closure of (Q, τ ′). As all edges of (Q, τ ′)

appear in (P, ω′)+AP (recall: it’s the same labeling with deleted edges), and (P, ω′)+AP

is transitively closed, we get that all edges of (Q, τ ′)+AQ appear in (P, ω′)+AP . In other

words, S<(P, ω′) must contain all of S<(Q, τ ′). Thus we have that (3)⇒(2).

Note (and you can see this clearly by the previous proof) that redundant edges are

simply a visual representation of the less-than sets. Thus it is clear how they would

be logically equivalent. They have very different benefits however. The method of

adding redundant edges and deleting them is far more intuitive, allowing one to more

easily see the connection from a simple Hasse diagram. It also has the benefit of not

particularly caring what the actual labeling of either poset is. On the other hand,

less-than sets are certainly more difficult to visualize and rely on the proper labelings,

but mathematically they are far easier to handle rigorously.
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Chapter 5

Combining Posets

In this section we provide tools to explain positivity relationships between posets

by means of analyzing components of them as opposed to their entirety. This is par-

ticularly useful for relationships between posets with many elements, as it is generally

much easier to analyze posets of smaller size.

5.1 Sums and Unions

Definition 5.1.1. For posets P and Q, the ordinal sum, denoted P ⊕Q, is the poset

whose order is defined such that for elements u, v ∈ P ∪Q, u ≤ v if and only if

• u, v ∈ P and u ≤P v, or

• u, v ∈ Q and u ≤Q v, or

• u ∈ P and v ∈ Q.

For labeled posets (P, ω) and (Q, τ), there are two notions of ordinal sum. In the

weak (resp. strict) ordinal sum, denoted (P, ω)⊕| (Q, τ) (resp. (P, ω)⊕‖ (Q, τ)) the
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(P, ω)⊕| (Q, τ)

Figure 5.1: Two posets (P, ω) and (Q, τ), and their weak ordinal sum (P, ω)⊕| (Q, τ).

edges from the maximal elements of P to the minimal elements of Q are weak (resp.

strict) edges.

For an example of an ordinal sum consider Figure 5.1.

Lemma 5.1.2. Suppose (P1, ω1) ≤F (Q1, τ1) and (P2, ω2) ≤F (Q2, τ2). Then (P1 ⊕|

P2) ≤F (Q1 ⊕| Q2).

P1

P2

Q1

Q2

≤F

Figure 5.2: Structured of labeled posets as described in Lemma 5.1.2. It is understood

that the connection of each maximal element in P2 (resp. Q2) to each minimal

element in P1 (resp. Q1) is represented by the single weak edge between posets.

Proof. To obtain a labeling for P1 ⊕| P2, let it inherit the labelings from P1 and P2

with the modification that the labels for P2 are all increased by |P1| and call this new

labeling ω. Construct the labeling for Q1 ⊕| Q2 similarly and call it τ . Both ω and
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τ are valid labelings, as all of the labels for P2 (resp. Q2) are greater than the labels

of P1 (resp. Q1), and all of the connections between the two posets are weak. In the

interest of brevity of notation, we will omit labelings when referencing the ordinal

sums for the remainder of this proof.

By construction of P1⊕|P2, a linear extension of P1⊕|P2 takes the form (a1, ..., an, b1, ..., bm)

where (a1, ..., an) is a linear extension of P1 and (b1 − |P1|, ..., bm − |P1|) a linear ex-

tension of P2. Since an < b1 always, the descents of linear extensions of P1 ⊕| P2

are uniquely constructed from the descents of (a1, ..., an) and (b1, ..., bm). A linear

extension of Q1 ⊕| Q2 is determined similarly.

We know that there exists an injective map from the linear extensions of P1 (resp.

P2) to the linear extensions of Q1 (resp. Q2) such that the pattern of descents for a

linear extension and its image are the same.

We have then that there must exist an injective mapping g from the linear exten-

sions of P1 ⊕| P2 to the linear extensions of Q1 ⊕| Q2 such that the descents of linear

extension y and g(y) are the same. This is because since an < b1, the descents of

linear extensions of P1 ⊕| P2 or Q1 ⊕| Q2 are uniquely constructed from the descents

of the two linear extensions of their constituent posets.

Since the descent sets determine the F -expansion of K(P,ω) and K(Q,τ) by Theorem

2.4.9, we conclude that (P1 ⊕| P2) ≤F (Q1 ⊕| Q2).

Corollary 5.1.3. Suppose (P1, ω1) ≤F (Q1, τ1) and (P2, ω2) ≤F (Q2, τ2). Then (P1⊕‖

P2) ≤F (Q1 ⊕‖ Q2).

Proof. Apply Proposition 2.5.2 and then Lemma 5.1.2.

Definition 5.1.4. We let the disjoint union of posets (P, ω) and (Q, τ), denoted

(P + Q,ω + τ), be the set P ∪ Q with the relation defined by x ≤P+Q if x, y ∈ P

and x ≤P y, or if x, y ∈ Q and x ≤Q y, where the labeling ω + τ is defined by

(ω + τ)|P (x) = ω(x) and (ω + τ)|Q(x) = τ(x) + |P |.
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We require the following proposition from [MW].

Proposition 5.1.5. [MW] If (P, ω) and (Q, τ) are labeled posets, then K(P+Q,ω+τ)(x) =

K(P,ω)(x)K(Q,τ)(x).

Proposition 5.1.6. If (P1, ω1) ≤F (Q1, τ1) and (P2, ω2) ≤F (Q2, τ2), then (P1 +

P2, ω1 + ω2) ≤F (Q1 +Q2, τ1 + τ2).

Proof. We have that K(Q1,τ1) − K(P1,ω1) ≥F 0. Therefore we know that there is an

F -positive quasisymmetric function f such that K(Q1,τ1) = K(P1,ω1) + f . Similarly,

there is an F -positive g such that K(Q2,τ2) = K(P2,ω2) + g. By Proposition 5.1.5 we

have that K(P1+P2,ω1+ω2) = K(P1,ω1)K(P2,ω2) and K(Q1+Q2,τ1+τ2) = K(Q1,τ1)(x)K(Q2,τ2).

Therefore

K(Q1+Q2,τ1+τ2) −K(P1+P2,ω1+ω2) =

= K(Q1,τ1)(x)K(Q2,τ2) −K(P1,ω1)K(P2,ω2)

= (K(P1,ω1) + f)(K(P2,ω2) + g)−K(P1,ω1)K(P2,ω2)

= K(P1,ω1)f +K(P2,ω2)g + fg

As the product and sum of F -positive quasisymmetric functions is also F -positive,

we conclude that K(Q1+Q2,τ1+τ2) −K(P1+P2,ω1+ω2) is F -positive.

5.2 The Ur-Operation

We will generalize some of our results to different combinations of posets using an

operation that allows us to “compose” posets.

Definition 5.2.1. [BHK17] For a poset P = {x1, ..., xn} and a sequence of posets

(P1, P2, ..., Pn), we define the Ur-operation on P of (P1, P2, ..., Pn) as the poset P [xi →



CHAPTER 5. COMBINING POSETS 47

Pi]
n
i=1 on ∪ni=1Pi with the following order relation:

For p ∈ Pj, q ∈ Pk, p ≤ q when

p ≤Pj q j = k

xj ≤P xk j 6= k

, (5.1)

We will refer to Pi as composite posets and P as the parent poset.

Since if |P | = n there will always be n maps from elements to posets, we will

notate the Ur-operation in this section as P [xi → Pi] rather than P [xi → Pi]
n
i=1.

Note that this is a generalization of the ordinal product operation as defined in

section 3.2 of [Sta12].

Definition 5.2.2. For a labeled poset (P , ω) with elements {x1, ..., xn} and a se-

quence of labeled posets {(P1, ω1), (P2, ω2), ..., (Pn, ωn)}, we define the inherited label-

ing Ω on P [xi → Pi] as

For p ∈ Pl, Ω(p) = (ω(xl), ωl(p)),

where the total order is imposed lexicographically.

For example, take the following posets:

2

1 3

(P , ω)

2

1 3

4

(P1, ω1)

3

1 4

2

(P2, ω2)

1 3

4 2

(P3, ω3)

If we are to apply the Ur-operation and give the resulting poset its inherited labeling,

we get the following:
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2, 3

2, 1 2, 4

2, 2

1, 2

1, 1 1, 3

1, 4 3, 1 3, 3

3, 4 3, 2

(P [xi → Pi],Ω)

Note that the inherited label preserves the strict and weak edges not only within the

each composite poset Pi, but also between composite posets. Whenever labeling a

Ur-operation poset we will use this inherited labeling; for example L(P [xi → Pi],Ω)

and L(Q[yi → Qi],Υ) in the following section have Ω and Υ as the inherited labeling.

Remark 5.2.3. The less-than set for P [xi → Pi] can be read off from (5.1). Moreover,

two elements associated with labels (a1, b1) and (a2, b2) have the relation (a1, b1) <

a2, b2) if and only if ω−1(a1) <P ω−1(a2), or ω−1(a1) = ω−1(a2) (both in Pi) and

ω−1
i (b1) <Pi ω

−1
i (b2). This follows directly from the construction in (5.1).

Theorem 5.2.4. If L(P , ω) ⊆ L(Q, τ) and L(Pi, ωi) ⊆ L(Qi, τi) for all i such that

1 ≤ i ≤ |P|, and each element xj and yj corresponds to the element of P and Q

respectively such that ω(xj) = τ(yj) = j, then L(P [xi → Pi],Ω) ⊆ L(Q[yi → Qi],Υ).

It is not so difficult to see why this might be true, especially when looking at

the composed Hasse diagrams. Consider what changes would be made there to the

connections in the parent and composite posets, and how those would connect to each

other. For an example see Figure 5.3. The formal proof below will of course use the

more mathematically-friendly less-than set.
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2

1 3

(P , ω)

⊆L
2

1 3

(Q, τ)

3

1 4

2

(Qi, τi)

3

1 4

2

(Pi, ωi)

⊆L

2, 3

2, 1 2, 4

2, 2

1, 3

1, 1 1, 4

1, 2

3, 3

3, 1

3, 43, 2

(P [xi → Pi],Ω)

⊆L 2, 3

2, 1 2, 4

2, 2

1, 3

1, 1 1, 4

1, 2

3, 3

3, 1

3, 43, 2

(Q[xi → Qi],Υ)

Figure 5.3: Four posets (P, ω), (Q, τ), (Pi, ωi), and (Qi, τi), with relations L(P, ω) ⊆

L(Q, τ) and L(Pi, ωi) ⊆ L(Qi, τi). Also pictured is the resultant relation

L(P[xi → Pi],Ω) ⊆ L(Q[xi → Qi],Υ).

Proof of Theorem 5.2.4. We will proceed by considering the less-than sets for P [xi →

Pi] and Q[yi → Qi], and then apply Lemma 4.3.5. We have by the definition of the

Ur-operation that a <P[xi→Pi] b if and only if either a, b ∈ Pk and a ≤Pk b, or

a ∈ Pi, b ∈ Pj and xi <P xj. The same applies to Q[yi → Qi]. Take a less-than

rule (α, β) ∈ S<(Q[yi → Qi]). Note that each of α and β is in fact a tuple, which

we will reference accordingly as (α1, α2) and (β1, β2). We will seek to show that

(α, β) ∈ S<(P [xi → Pi]).

There are two cases we will need to consider: that the poset elements that are
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assigned α and β originate from the same composite poset, or they do not.

First assume that Υ−1(α),Υ−1(β) ∈ Qk for some k. This means that α1 = β1.

Since L(Pk, ωk) ⊆ L(Qk, τk) and (α2, β2) ∈ S<(Qk, τk), we have by Lemma 4.3.5

that (α2, β2) ∈ S<(Pk, ωk). Thus ω−1
k (α) <Pk ω

−1
k (β), and therefore Ω−1(α) <P[xi→Pi]

Ω−1(β). Thus (α, β) ∈ S<(P [xi → Pi]).

Now assume that Υ−1(α) ∈ Qk and Υ−1(β) ∈ Ql for k 6= l. We know that

yk ≤Q yl. This means that xk ≤P xl by Lemma 4.3.5 and our assumption that

L(P , ω) ⊆ L(Q, τ). We also have that Ω−1(α) ∈ Pk and Ω−1(β) ∈ Pl. This means

that Ω−1(α) ≤P[xi→Pi] Ω−1(β), and therefore (α, β) ∈ S<(P [xi → Pi]).

In either case, since (α, β) was arbitrary, we have that S<(P [xi → Pi]) ⊇ S<(Q[yi →

Qi]), and by Lemma 4.3.5 we have that L(P [xi → Pi]) ⊆ L(Q[yi → Qi]).

This concludes our discussion on Ur-operation posets that have linear extension

containment. We next consider the question of when the Ur-operation preserves F -

positivity. This is not always the case; for example the posets

(P , ω)(Q, τ) (Pi, ωi) for all i

are such that (P , ω) ≤F (Q, τ), however it is not the case that (P [xi → Pi],Ω) ≤F
(Q[yi → Pi],Υ), where Ω and Υ denote the inherited labelings. It must be noted

however that it is the case that the F -support of (Q[yi → Pi],Υ) contains the F -

support of (P [xi → Pi],Ω). This actually works for all two-element posets Pi and

four-element posets P and Q, and for at least half of the three-element posets Pi and

four-element posets P and Q.
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There are certain restrictions we can place on the elements of the Ur-operation

that are weaker than those in Theorem 5.2.4. Additionally, for ease of notation we

will identify the elements of T with their labels, much as we had done in Section 4.3.

The following theorem is the second main result of this section, and serves to

generalize several of the relations seen in the first section of this chapter.

Theorem 5.2.5. Take labeled posets (P , ω), (Q, τ), and ordered sets of labeled posets

{(P1, ω1), ..., (Pn, ωn)} and {(Q1, τ1), ..., (Qn, τn)}. If L(P , ω) ⊆ L(Q, τ) and (Pi, ωi) ≤F
(Qi, τi) for all i = 1, ..., n, then (P [xi → Pi],Ω) ≤F (Q[yi → Qi],Υ).

We will construct a map Φ: L(P [xi → Pi],Ω) → L(Q[yi → Qi],Υ). In more

readable terms, Φ alters the tuples in a given linear extension of (P [xi → Pi],Ω)

such that the first element of the tuple—the one originating in ω—is unchanged,

while the second element of the tuple—the one originating in ωi—is mapped to the

corresponding label in τi.

This process (especially when mathematically defined as you will soon see) can

be very difficult to visualize. The following is an example meant to assist in this by

showing a specific Ur-Operation construction and how Φ acts upon one of its linear

extensions.

Take the following labeled posets:

2

1 3

(P , ω)

2

1 3

(Q, τ)

1 3

4 2

(Qi, τi)

3

1 4

2

(Pi, ωi)

The next step is to construct the posets (P [xi → Pi],Ω) and (Q[xi → Qi],Υ), which

we do below with the inherited labelings Ω and Υ.
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2, 3

2, 1 2, 4

2, 2

1, 3

1, 1 1, 4

1, 2

3, 3

3, 1

3, 43, 2

(T [xi → Pi],Ω)

1, 1 1, 3

1, 4 1, 2

2, 1 2, 3

2, 4 2, 2

3, 1 3, 3

3, 4 3, 2

(Q[xi → Qi],Υ)

Now we can take a linear extension in (P [xi → Pi],Ω), and show how Φ will transform

it in to a linear extension of (Q[xi → Qi],Υ).

One linear extension of (P [xi → Pi],Ω) is

π = (3, 3), (3, 4), (1, 3), (1, 1), (1, 2), (1, 4), (3, 1), (3, 2), (2, 3), (2, 1), (2, 4), (2, 2).

The first step of course is to determine the sub-sequences associated with each compos-

ite poset. This is done by grouping by the first index in the tuple-labels, shown by the

colors. We get three sub-sequences (since |T | = 3), which are (1, 3), (1, 1), (1, 2), (1, 4)

for P1, (2, 3), (2, 1), (2, 4), (2, 2) for P2, and (3, 3), (3, 4), (3, 1), (3, 2) for P3.

The next step is to determine how to match up the second linear extensions. It

turns out we can map 3124 → 3124 for P1 → Q1, 3142 → 3124 for P2 → Q2, and

3412→ 1324 for P3 → Q3 to preserve the descents of the linear extensions.

Now we can construct Φ(π). If we swap the corresponding parts of π, we get a

new linear extensions,

Φ(π) = (3, 1), (3, 3), (1, 3), (1, 1), (1, 2), (1, 4), (3, 2), (3, 4), (2, 3), (2, 1), (2, 4), (2, 2).

One can check that this is in fact a linear extension for (Q[xi → Qi],Υ), as we

expected. One can also check that the descents of π are the same as the descents
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of Φ(π). This concludes our example; we will now construct our injection Φ more

rigorously.

Since (Pi, ωi) ≤F (Qi, τi), there exists an injective function ζ i : L(Pi, ωi)→ L(Qi, τi)

such that Des(β) = Des(ζ i(β)) for each i. Now let

π = (π1, ..., πk) = ((α1, β1), ..., (αk, βk)) ∈ L(P [xi → Pi],Ω).

If we fix an αi for this π, we know that the the corresponding βj form a linear extension

for Pαi . We will refer to this linear extension as

παi = (αi, β1), (αi, β2), (αi, β3), ..., (αi, β|Pi|).

Now we know that the second elements of each of these pairs forms a linear extension

β of (Pi, ωi) to which we can apply ζ i. Let the jth element of ζ i(β) be denoted by

a subscript: ζ i(β)j. We construct Φ as the function that replaces every such subse-

quence (αi, β1), (αi, β2), ..., (αi, β|Pi|) in π by (αi, ζ
i(β)1), (αi, ζ

i(β)2), ..., (αi, ζ
i(β)|Pi|).

This is what we did in our example: we keep all of the first terms in the tuples

of the sequence the same, and map each of the second terms for a linear extension

of (Pi, ωi) to their counterpart in the corresponding linear extension of (Qi, τi). To

prove Theorem 5.2.5, we will have to show that this function injects to the linear

extensions of L(Q[yi → Qi],Υ) in such a way that it preserves the descents.

Lemma 5.2.6. If π ∈ L(P [xi → Pi],Ω), then Φ(π) ∈ L(Q[yi → Qi],Υ).

Proof. It is clear that Φ(π) maps to the set of valid tuple labelings of (Q[yi → Qi],Υ),

thus we simply need to show that Φ(π) is a linear extension of (Q[yi → Qi],Υ), i.e.

it does not violate a less-than rule for (Q[yi → Qi],Υ).

Take two tuple elements of Φ(π): an (αi, ζ
i(β)`) that comes before (αj, ζ

j(β)k).

We claim that ((αj, ζ
j(β)k), (αi, ζ

i(β)`)) 6∈ S<(Q[yi → Qi],Υ), i.e. there is not a

rule in the less-than set of (Q[yi → Qi],Υ) that prohibits (αi, ζ
i(β)`) from appearing

before (αj, ζ
j(β)k).
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First say that the potential violation comes from 2 posets being mapped to ele-

ments of the same label in (P , ω) and (Q, τ) (i.e. they are (Pi, ωi) and (Qi, τi), the

same i). In terms of our labels, this means that αi = αj, and therefore ζ i = ζj.

This also means that β` and βk come from the same linear extension β of Pi, which

of course implies that ` < k. Since ζ i(β) is a linear extension of Qi, this means

that ζ i(β)k 6≤Pαi ζ i(β)`. By the definition of the Ur-operation this means that

(αj, ζ
j(β)k) 6≤(Q[yi→Qi],Υ) (αi, ζ

i(β)`), and we have our claim in this case.

Now assume that the potential violation comes from different composite posets.

In terms of our labels, this means that αi 6= αj. We know however that ω−1(αi) 6≥

ω−1(αj). Since L(P , ω) ⊆ L(Q, τ), we know that all relations of labels in (Q, τ) are

preserved in (P , ω). First this guarantees that αi and αj are in fact labels for (Q, τ),

but it also means that τ−1(αi) 6≥ τ−1(αj). Thus we know that ((αj, ζ
j(β)k), (αi,

zetai(β)`) 6∈ S<(Q[yi → Qi],Υ).

Thus we have that in either case, ((αj, ζ
j(β)k), (αi, ζ

i(β)`)) 6∈ S<(Q[yi → Qi],Υ).

Since (αi, φπαi (βi)) and (αj, φπαj (βj)) were arbitrary pairs of elements of Φ(π), we

know that there exists no violations of S<(Q[yi → Qi],Υ) in Φ(π). Since there exist

no violations and all labels are represented, we have that Φ(π) is a linear extension

of (Q[yi → Qi],Υ).

Lemma 5.2.7. Φ is injective.

In short the injectivity comes from the fact that Φ does nothing to the first ele-

ments and ζ i injects on the second elements. It makes sense that these two operations

combined would result in an injection.

Proof of Lemma 5.2.7. Say that Φ(π) = Φ(γ). Say for contradiction that π and γ

differ at some index r, call the tuples there (a(π)r, b(π)r) and (a(γ)r, b(γ)r). Since

the first element of each tuple remains unchanged by Φ, we know that the first

elements a(π)r and a(γ)r must be the same. Since this is true for all tuples, we
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know that (a(π)r, b(π)r) and (a(γ)r, b(γ)r) must both be the kth tuple with first

element a(π)r = a(γ)r. This means that under Φ, b(π)r and b(γ)r both get mapped

to ζa(β)k for some β. Since ζ i is injective for all i, we get that b(π)r = b(γ)r.

Thus (a(π)r, b(π)r) = (a(γ)r, b(γ)r), and we know that π and γ cannot differ at any

index.

We have now that Φ is an injection from L(P [xi → Pi],Ω) to L(Q[yi → Qi],Υ).

The final piece is to show that descents are preserved.

Lemma 5.2.8. If π ∈ L(P [xi → Pi],Ω), then Des(π) = Des(Φ(π)).

Proof. Take two adjacent elements (..., (αi, βi), (αj, βj), ...) = π. For all j, let αj de-

note the linear extension associated with αj, and suppose βj = (λj)kj . We seek to show

that (αi, βi) ≤lex (αi+1, βi+1) if and only if (αi, ζ
i(λi)ki) ≤lex (αi+1, ζ

i+1(λi+1)ki+1
).

Say first that αi 6= αi+1. Since the first element of the tuple is unchanged by Φ and

lexicographic order relies on the first element first, we know that the lexicographic

order of the tuples will hold.

Now say that αi = αi+1. This implies three things: first that ζ i = ζ i+1, that

λi = λi+1, and that ki+1 = ki+1. Since ζ i preserves descents, we know that βi < βi+1

if and only if ζ i(λi)ki < ζ i(λi)ki+1 = ζ i+1(λi+1)ki+1
. Since the ordering is lexicographic

and αi = αi+1, this means that (αi, βi) ≤lex (αi+1, βi+1) if and only if (αi, ζ
i(λi)ki) ≤lex

(αi+1, ζ
i+1(λi+1)ki+1

).

Thus in both cases we have our claim, and we have that Φ preserves descents.

We are finally ready to prove Theorem 5.2.5, which follows immediately:

Proof of Theorem 5.2.5. This follows directly from Lemmas 5.2.6, 5.2.7, and5.2.8.

Note that in this case, there is no reason why (T, ω) 6= (Q, τ), or why (Pi, ωi) 6=

(Qi, τi). For this reason, Theorem 5.2.5 generalizes several of our previous results,
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namely Lemma 5.1.2, Corollary 5.1.3, and Proposition 5.1.6. In other words, the

results for ordinal sum and disjoint union of labeled posets are both special cases of

Theorem 5.2.5.
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Chapter 6

Deletion and Reversal

This section explores the relationships that arise from the addition (or subtraction)

of valid edges from posets. When there is no relationship between two elements x, y of

(P, ω), every (P, ω)-partition either satisfies f(x) ≤ f(y) or f(x) > f(y). Thus we can

write the generating function as a sum of the generating function of two other posets,

one where x ≤P y and one where x >P y. Note the strictness of these inequalities

could just as easily be switched, where f(x) ≥ f(y) or f(x) < f(y). For an edge that

is x ≤P y (resp. x >P y), we call its reversal the edge that denotes x >P y (resp.

x ≤P y), and vice versa. For notational purposes, in the following section we will

label a poset (P, ω) such that (P, ω)d(e) is the poset that results from deleting an edge

e, and (P, ω)r(e) is the poset that results from that same edge’s reversal. We have

then the relationship

(P, ω) + (P, ω)r(e) = (P, ω)d(e) or, equivalently, (P, ω) = (P, ω)d(e) − (P, ω)r(e).

For an example see Figure 6.1.

Proposition 6.0.1. If deleting edges e1 and e2 from posets (P, ω) and (Q, τ) respec-

tively are such that (P, ω)d(e1) ≥F (Q, τ)d(e2) and the reversal of that edge is such that

(P, ω)r(e1) ≤F (Q, τ)r(e2), then (P, ω) ≥F (Q, τ).
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(P, ω)

x

y

+

(P, ω)r(e)

x

y
=

(P, ω)d(e)

x

y

Figure 6.1: An example of three posets (P, ω), (P, ω)d(e), (P, ω)r(e) and their relation to

one another.

Proof. We have that

(P, ω)− (Q, τ) = ((P, ω)d(e1) − (P, ω)r(e1))− ((Q, τ)d(e2) − (Q, τ)r(e2))

= ((P, ω)d(e1) − (Q, τ)d(e2)) + ((Q, τ)r(e2) − (P, ω)r(e1)).

Since we know that (P, ω)d(e1)− (Q, τ)d(e2) ≥F 0 and (Q, τ)r(e2)− (P, ω)r(e1) ≥F 0, we

know that there sum is also F -positive and therefore (P, ω)− (Q, τ) ≥F 0.

Using very similar methods we get the following results:

Proposition 6.0.2. Take labeled posets (P, ω) and (Q, τ).

(a) If (P, ω) ≤F (Q, τ) and (P, ω)d(e1) ≥ (Q, τ)d(e2), then we have that (P, ω)r(e1) ≥F
(Q, τ)r(e2).

(b) If (P, ω) ≤F (Q, τ) and (P, ω)r(e1) ≤F (Q, τ)r(e2), then (P, ω)d(e1) ≤F (Q, τ)d(e2).

We use these methods to explain inequalities such as

≤F
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Where the lesser poset can be decomposed as

x y
=

x

y + x

y

and the greater poset can be decomposed as

x y
= x

y

+

x

y

We know by Theorem 4.4.1 that the second elements of these sums give us the

relation that we desire by Proposition 6.0.2 (b). This can be accomplished by adding

a weak redundant edge from lowest element in the chain to the third lowest element

in the chain, then deleting the lowest edge.
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Chapter 7

Cases with Necessary and

Sufficient Conditions

In this chapter we look for classes of posets for which our conditions are both

necessary and sufficient to explain all relations. In this chapter we will first concern

ourselves with posets of all weak (or equivalently all strict by the star involution)

edges. These are called naturally labeled posets, because the weak version has all of the

labels increasing. When we refer to the jump or star-jump sequences of these posets,

we are referring to the jump as we defined it under all strict edges. Additionally when

referencing to a naturally labeled poset (P, ω), we will forego the ω and simply note

P .

7.1 Greene Shape (k, 1)

This section is concerned with a naturally labeled poset’s Greene shape, defined

below. Here we will restrict our search for conditions to posets of a particular Greene

shape—namely (k, 1)—and find both necessary and sufficient conditions based on the
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P P w/ 1 chain P w/ 2 chains

Figure 7.1: A naturally labeled poset and the maximal unions of one and two chains that

gives its Greene shape of (4, 2)

jump sequences. The study of these shapes in the context of our work was inspired

by [IW18].

Definition 7.1.1. [Gre76] For naturally labeled poset P and k ≥ 0, let ck represent

the maximal cardinality of a union of k chains in P . Then the Greene shape of a

poset is the sequence (λ1, λ2, ..., ) where λi = ci − ci−1.

The first class we consider is those labeled posets that consist of a single chain,

referred to as the spine, and a single other element. These are all of the naturally

labeled posets of Greene shape (k, 1). There are four possible ways that this element

can be connected, which can be seen in the example in Figure 7.2. Note that these

chains are of arbitrary length. The extra element p in Type I posets are covered by

a non-minimal element of the spine. In Type II posets the p covers a non-maximal

element of the spine. In Type III posets p both is covered by and covers elements of

the spine. Note that these two connections cannot be to adjacent nodes, or else the

connection on the spine would be redundant and the poset would become a single

chain. Type IV posets consist of the spine and a single disconnected element. This

complete classification of connections allows us to narrow our search for conditions

and simplify the representation of the poset.
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Type I Type II Type III Type IV

Figure 7.2: Examples of the four different ways an additional node can be connected to a

chain of any length

We only wish to compare posets of the same size, and since there is only one

element not in the spine, we know that the number of elements in the spine of two

comparable naturally labeled posets of Greene shape (k, 1) are going to be the same.

We can also change how we encode this poset. We will define the height of an

element q in the spine to be the number of nodes in a saturated chain from q to the

minimal element of the spine. It is clear then that for a naturally labeled poset P of

shape (k, 1) that the height of the maximal element of the spine will be k = |P | − 1.

Letting p denote the non-spine element of P , we can therefore encode P in tuples

where the first entry is the height of element that p covers (0 if there is none) and

the second entry is the height of the spine element that p is covered by (|P | if there

is none). For example all of the encodings for all possible such posets of shape (5, 1)

can be seen in Figure 7.3. For the different types, the tuples of Type I will be for the

form (0, b), Type II of the form (a, |P |), Type III of the form (a, b), and Type IV of

the form (0, |P |), where 0 < a < b < |P |. We will denote the tuple representation of

P as T (P ).

We can determine the jump and star-jump sequence of each type of poset from

these tuples as well. For example the jump for poset P where T (P ) = (0, b) will be

(2, 1, 1, ..., 1) and the star-jump will be (1, 1, ..., 1, 2, 1, ..., 1), where the 2 in the star-
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(0, 5) (0, 4) (0, 3) (0, 2) (1, 6) (2, 6) (3, 6) (4, 6) (1, 3) (1, 4) (1, 5) (2, 4) (2, 5) (3, 5) (0, 6)

Figure 7.3: All of the tuple encodings for all naturally labeled posets of Greene shape

(5, 1).

jump occurs at position |P |− b+ 1 of the sequence. A poset P where T (P ) = (a, |P |)

will be formulated similarly with the star-jump and the jump switched. A poset P

with T (P ) = (a, b) will have jump of (1, 1, ..., 1, 2, 1, ..., 1) where the 2 in the jump

occurs at position a+1, and a star-jump formulated the same way as for Type I. Any

poset of Type IV will of course have jump and star-jump of (2, 1, ..., 1).

We can also view these tuples as intervals on the real line, which, abusing notation,

we will also denote T (P ). Note then that if T (P ) = (a, b), then T (P ∗) = (|P |−b, |P |−

a). Thus as intervals T (P ) ⊂ T (Q) if and only if T (P ∗) ⊂ T (Q∗). We can formulate

then the following proposition which gives a simple necessary and sufficient condition

for whowing F -positivity between posets of Greene shape (k, 1).

Theorem 7.1.2. Suppose naturally labeled posets P and Q both have Greene shape

(|P | − 1, 1). Then P <F Q if and only if T (P ) ⊂ T (Q).

Proof. First note that P =F Q if and only if T (P ) = T (Q). We know that if T (P ) =

T (Q) then clearly P and Q are the same, and therefore P =F Q. If T (P ) 6= T (Q),

then we have realized that the jump or star-jump of P and Q will not be equal,

and therefore P 6=F Q. Since we are assuming inequality, all relations are strict

F -inequalities (<F ) rather than our usual weak F -inequalities (≤F ). The remainder

of this proof will be done in cases, looking at the different posets capable of being
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constructed, as seen in Figure 7.2.

Case 1—P or Q of Type IV.

It is clear that in the case of any comparison involving poset Q of Type IV and

another poset P of type I, II, or III, the Type IV poset Q will always be greater than

P by edge deletion (Proposition 4.1.1, and the associated tuple T (P ) will always be

contained in T (Q) since T (Q) = (0, |P |).

Case 2—P and Q of types I and/or II

First take relations involving P and Q both of Type I. There are two possibilities:

either the connection to the spine is the same (in which case the tuples and F -

expansion are also equal), or they are different and in one poset the extra element

is connected higher than the other. Say that T (P ) ⊂ T (Q), i.e. T (P ) = (0, b1) and

T (Q) = (0, b2) where b1 < b2. We know P must be F -less than Q (by Theorem 4.4.1),

because Q is equal to the addition of a redundant edge from the extra element up to

the b2th element of the chain to P , and subsequent deletion of the original edge in P .

Similarly if T (P ) 6⊂ T (Q), then we know that T (Q) ⊆ T (P ) and we know from the

process above that Q ≤F P and therefore P 6<F Q. Thus the proposition holds.

Since Type II posets are simply Type I posets under the star-involution, by sym-

metry we know that similar rules must apply to relationships between two Type II

posets. Thus we know our proposition holds when P and Q are posets of Type II.

In the sub-case of comparing a poset P of Type I to a poset Q of Type II, dom-

inance order on the jump tells us that P 6<F Q, and dominance order on the star-

jump would have us believe that Q 6<F P . For the other direction, in this case

T (P ) = (0, b1) with b1 < |P | and T (Q) = (a1, |P |) with a1 > 0. Clearly T (P ) 6⊂ T (Q)

and T (Q) 6⊂ T (P ), consistent with our proposition.

Case 3—P or Q (not both) are Type III

Now we must consider relations containing a poset P of Type III. Since applying
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the star involution on posets of Type II give posets of Type I and applying the star

involution on posets of Type III give other posets of Type III, we can simply consider

the relations between posets of types I and III. Let Q be a poset of Type I. From the

dominance order on the jump sequence, we know that if there is a relation, it must be

that P <F Q. This is consistent with our proposition as it is similarly only possible

in this case for T (P ) ⊂ T (Q) if P is the poset of Type III and Q is the poset of Type

I.

Assume then that T (P ) ⊂ T (Q). This means that the extra element in Q is

connected to the spine of Q at least as high as than both of the connections for the

extra element to the spine of P . Thus if we delete the lower edge of P and raise the

connection on the upper edge by redundant addition and deletion, we can obtain Q.

By Theorem 4.4.1 we know that P <F Q.

Now assume that T (P ) 6⊂ T (Q). This means that if T (Q) = (0, b2) and T (P ) =

(a1, b1) then b2 < b1. That would mean however that the star-jump of P is dominant

over the star-jump of Q, and therefore P 6<F Q. Thus we know that our proposition

holds in the case of comparing a Type III and Type I (and II) poset.

Case 4—P and Q of type III

Finally we will consider relations between posets P and Q both of Type III.

Assume that T (P ) ⊂ T (Q). Then there are two cases. First the upper (resp. lower)

connection for Q is higher (resp. lower) than the upper (resp. lower) connection for

P . Then it is clear that by the addition of two redundant edges to P and deletion of

two edges that P <F Q. Secondly, if only one of the upper (resp. lower) edge in Q

satisfies that it is higher (resp. lower) than the upper (resp. lower) in P , then Q can

be obtained from P by the addition of a redundant and deletion of a single edge, and

the same conclusion applies.

Now assume that T (P ) 6⊂ T (Q). Then if T (P ) = (a1, b1) and T (Q) = (a2, b2) then
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either a1 < a2 or b1 > b2 (if it is both then T (Q) ⊂ T (P ), and by the above argument

P 6<F Q). If a1 < a2 the jump sequence of P will dominate the jump sequence of

Q and therefore P 6<F Q. If b1 > b2 the star-jump sequence of P will dominate the

star-jump sequence of Q and therefore P 6<F Q. Thus there must be no relation

P ≤F Q, consistent with our proposition.

Since every pair P and Q of naturally labeled posets of Greene shape (k, 1) must

fall in to one of the four above cases, we have that P <F Q if and only if T (P ) ⊂

T (Q).

Theorem 7.1.2 allows us to only consider the tuple representation when comparing

naturally labeled posets of Greene shape (k, 1). This in turn not only allows us to

quickly determine the relation (if any) between two posets of this type, but achieve

a clean representation of the F -positivity relationships between all naturally labeled

posets of Greene shape (k, 1), as can be seen in Figure 7.4. Note that this figure is

the upper-half of the lattice given by a product of two chains. The lower half of the

lattice is not here because the first element of the tuple must be at least two less than

the second element for the connections to be meaningful.

7.2 Mixed spine caterpillar posets

Now we will consider more general set of labeled posets. Note that this means

we are reverting to our original definition of the jump. Take the class of posets that

consist of a single chain with s elements (referenced similarly to posets of the previous

section as the spine), and k extra elements each with at most a single weak connection

to the chain to result in a poset P of size |P | = s+ k = n. We will call these posets

mixed spine caterpillar posets for their spines with strict and weak edges and visual

similarity to caterpillar graphs.



CHAPTER 7. NECESSARY AND SUFFICIENT CASES 67

(0, n)

(0, n− 1) (1, n)

(0, n− 2) (1, n− 1) (2, n)

(0, 2)

(0, 3)

(0, 4)

(1, 3)

(1, 4) · · ·
(a, b)

(a− 1, b) (a, b+ 1)

(a− 1, b+ 1)

(n− 2, n)

(n− 3, n)

(n− 4, n)

(n− 3, n− 1)

(n− 4, n− 1)· · ·

. .
. . . .

...

Figure 7.4: The full representation of posets with Greene shape (k, 1), where |P | = n

We can encode these posets in a similar way as the naturally labeled posets of

Greene shape (k, 1) from the previous section: as a list of tuples representing the

non-spine nodes. As above these tuples will be of the form (a, b), where either a = 0

or b = s+ 1, or in the case of an unconnected element, both. We will denote this list

T (P ), and order the list in lexicographic order. Thus the poset P given in Figure 7.5

would be encoded as T (P ) = (0, 3), (0, 5), (0, 8), (1, 8), (1, 8), (4, 8), (5, 8), (6, 8).

Figure 7.5: An example of a mixed-spine caterpillar poset
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The bar involution will be a useful tool in the next two results, including this

preliminary lemma.

Lemma 7.2.1. Say that the mixed-spine caterpillar posets (P, ω) ≤F (Q, τ) have s

elements in their spines and |P | − s = k other nodes. We will let X denote either P

or Q. Let αX be the number of non-spine nodes that cover an element of the spine

in X, let βX be the number of non-spine nodes that are covered by an element of

the spine in X, and let γX be those elements that are unconnected in X. Then the

following are true:

(i) αP + γP ≤ αQ + γQ,

(ii) βP + γP ≤ βQ + γQ, and

(iii) γP ≤ γQ.

Proof. If we bar-involute the poset if necessary so that the minimal connection on the

spine is strict, the only elements with jump 0 will be the ones covered by the spine,

the minimal node of the spine, and those elements that are completely disconnected.

For example the bar-involution would have to be performed on the poset in Figure

7.5. Thus the first element of the jump sequence of X is 1 + βX + γX . By performing

the star involution and proceeding similarly, we know that the first element of the

star-jump sequence is 1 + αX + γX . Since both sums for P must be less than those

for Q, we know that (i) and (ii) hold.

For (iii), we know that αP + βP + γP = s = αQ + βQ + γQ. Thus we know by

summing the inequalities in (i) and (ii) that

αP + γP + βP + γP ≤ αQ + γQ + βQ + γQ.

Thus s+ γP ≤ s+ γQ, and we have (iii).
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We will denote the ith index tuple of T (P ) as T (P )i = (a(pi), b(pi)), hereby

referring to the extra node whose connections to the spine are represented by T (P )i

as pi. We can obtain from this representation a similar relationship as in Theorem

7.1.2.

Proposition 7.2.2. Say that P and Q are both caterpillar posets with identical spines,

and extra elements that are connected to each spine with either all weak (or equiva-

lently all strict) edges or no connection. Then P ≤F Q if and only if T (P )i ⊆ T (Q)i

for all i = 1, ..., k.

Proof. Let s denote the number of elements in the spines of P and Q.

(⇐) Assume that T (P )i ⊆ T (Q)i for all i = 1, ..., k. That means for each i, the

tuple T (Q)i = (aQ,i, bQ,i) can be obtained from T (P )i = (aP,i, bP,i) by the deletion

of an edge, possibly preceded by the addition of a redundant edge. We know that it

is impossible to create bad cycles in this case, because the redundant edge and the

original edge will be either both strict or both weak. Thus by Theorem 4.4.1 we have

P ≤F Q.

(⇒). We will proceed by the contrapositive. Now assume that there exists at least

one index i ∈ {1, 2, ..., k} where (aP,i, bP,i) ∈ T (P ) and (aQ,i, bQ,i) ∈ T (Q) are such

that (aP,i, bP,i) 6⊆ (aQ,i, bQ,i). Say that the element in P whose tuple is (aP,i, bP,i) is pi

and the element in Q whose tuple is (aQ,i, bQ,i) is qi. There are three different ways pi

(resp. qi) can be connected to its spine of P (resp. Q). Either pi (resp. qi) covers an

element of its spine, is covered by an element of its spine, or is disconnected. With

our ordering, we know that T (P ) and T (Q) will list tuples representing elements that

are covered by an element of respective spines, then those with no connections, then

those that cover an element of its spine.

Case 1—pi is covered by an element of its spine, qi is not

Say first that pi is covered by an element of its spine and qi covers an element
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of its spine. By the order of the tuples from T , if a tuple in T (P ) of type (0, bP )

where bP ≤ s is compared to a tuple in T (Q) of type (aQ, s+ 1) where aQ ≥ 1, then

P will have more non-spine nodes that are covered by an element of its spine (βP )

than Q has elements that are covered by or are disconnected from its spine combined

(βQ + γQ). By Lemma 7.2.1 (ii) we have P 6≤F Q. Thus we know that pi cannot be

covered by an element of its spine of P while qi covers one of its spine.

If qi is disconnected then (aP,i, bP,i) ⊆ (aQ,i, bQ,i) regardless of what (aP,i, bP,i) is,

contrary to our assumption. Thus there is nothing to check for this case.

Case 2—pi covers an element of its spine, qi does not

Say first that pi covers an element of its spine and qi is covered by an element of

its spine. By the order of the tuples from T , if a tuple in T (P ) of type (aP,i, s + 1)

where aP ≥ 1 is compared to a tuple in T (Q) of type (0, bQ,i) where bQ ≤ s, then

P will have more non-spine nodes that cover an element of its spine (αP ) than Q

has elements that cover or are disconnected from its spine combined (αQ + γQ). By

Lemma 7.2.1 we have P 6≤F Q. Thus we know that pi cannot cover an element of its

spine of P while qi is covered by one of its spine.

If qi is disconnected then (aP,i, bP,i) ⊆ (aQ,i, bQ,i) regardless of what (aP,i, bP,i) is,

contrary to our assumption. Thus our claim still holds.

Case 3—pi is disconnected from its spine, qi is not

If qi is covered by an element of its spine, then by the way that T orders the

tuple we know that P must have more elements that either cover an element of or are

disconnected from its spine (αP + γP ) than Q has elements of the same (αQ + γQ).

By Lemma 7.2.1 we know that P 6≤F Q. An entirely analogous argument holds if qi

covers an element of its spine.

Case 4—Both pi and qi both cover elements of their spines

We assume then that (aP , k + 1) 6⊆ (aQ, k + 1). This means that aP < aQ. This
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however means that there are more elements of T (P ) with first element less than or

equal to aP then there are in T (Q). There must also be at least one covering edge

in the chain between its spine element that is covered by pi and the corresponding

one that is covered by qi. Say first that this is a strict edge. Thus we have that

jump(pi) < jump(qi). This means that the sum of the jump sequence to the jump(pi)–

th element is greater for P than it is for Q. This means that jump(P ) 6≤dom jump(Q),

and therefore P 6≤F Q. If there is no strict connection, then we are guaranteed a

weak one and therefore jump(pi) < jump(qi). This means that the sum of the weak

jump sequence to jump(pi)–th element is greater for P than it is Q. Thus we have

that P 6≤F Q in the same manner.

Case 5—Both pi and qi both are covered by elements of their spines

Now say that both pi and qi are covered by an element of their respective spines,

and we assume that (0, bQ,i) 6⊆ (0, bQ,i). If we perform the star involution, we will

have the case discussed in Case 4, and we know again that P 6≤F Q.

Finally note that there is nothing to check if both pi and qi are disconnected from

their spines.

Thus we have in all cases if there exists at least one j ∈ {1, 2, ..., k} where (aP,i, bP,i)

in T (P ) and (aQ,i, bQ,i) ∈ T (Q) are such that (aP,i, bP,i) 6⊆ (aQ,i, bQ,i), then P 6≤F
Q.
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Conclusion

In this thesis, we studied the (P, ω)-partition generating of labeled partially or-

dered sets under the F -basis for quasisymmetric functions, and found methods of

determining whether or not the difference between two of these generating functions

is or could be F -positive. We showed that if the labels induce all weak or all strict

edges in one of the posets we can quickly tell if it is at all possible that the two are

related. We showed that there are a number of necessary conditions for F -positivity

based off the jump sequence. These conditions are not sufficient to show that two

labeled posets are related in the F -positivity order, but since they are necessary they

can show quickly when two posets are not related.

We next considered linear extension containment, which is a sufficient condition

for F -positivity. We then considered the operation of adding redundant edges then

deleting edges from the Hasse diagrams. By means of less-than sets showed that those

posets that are related by linear extension containment are exactly those that can be

obtained from one another by redundant-deletion.

We showed how to use known relations to build far larger ones by means of the

Ur-operation, a generalized method of combining posets. This is particularly adept

at showing relations between posets that are too large to reasonably compute even by

means of a computer. This is because the worst case time for the computation grows at

least factorially, and combining posets together grows the size of the resultant posets
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very quickly. For example the relations below L(P , ω) ⊆ L(Q, τ) and (Pi, ωi) ≤F
(Qi, τi) are quickly done on a computer:

(P , ω) (Q, τ) (Pi, ωi) (Qi, τi)

But (P [xi → Pi],Ω) and (Q[yi → Qi],Υ) each have 8 · 5 = 40 elements and are very

difficult even for a computer to show that F -positivity is preserved.

We then showed a possible method for determining whether or not two posets are

related in F -positivity order by means of deletion and reversal.

Finally we gave two classes of posets within which our conditions are both neces-

sary and sufficient: those of Greene shape (k, 1) and mixed-spine caterpillar posets.

We conclude with potential areas of further investigation. First all of our purely

necessary conditions are based on the M -support of the (P, ω)-partition generating

functions. Necessary conditions that are based on F -support, M -positivity, or F -

positivity would be ideal. Similarly our sufficient conditions are primarily based on

linear extension containment rather than F -positivity. Finding sufficient conditions

for posets of the latter nature would be closer to our goal. Finally, we intend to

further investigate the Ur-operation where the “larger” posets (P , ω) and (Q, τ) do

not have linear extension containment. Computer testing suggests that the resulting

posets under the Ur-operation may be related in F -support containment, but that

is in no way confirmed and as just shown computer testing with the Ur-operation

quickly becomes intractible.
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