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The future perspective: metabolomics in laboratory
medicine for inborn errors of metabolism

YANA SANDLERS

CLEVELAND, OHIO

Metabolomics can be described as a simultaneous and comprehensive analysis of
small molecules in a biological sample. Recent technological and bioinformatics
advances have facilitated large-scale metabolomic studies in many areas,
including inborn errors of metabolism (IEMs). Despite significant improvements in
the diagnosis and treatment of some IEMs, it is still challenging to understand howge-
netic variation affects disease progression and susceptibility. In addition, a search for
new more personalized therapies and a growing demand for tools to monitor the
long-termmetabolic effects of existing therapies set the stage formetabolomics inte-
gration in preclinical and clinical studies. While targeted metabolomics approach is
a common practice in biochemical genetics laboratories for biochemical diagnosis
andmonitoring of IEMs, applications of untargetedmetabolomics in the clinical lab-
oratories are still in infancy, facing some challenges. It is however, expected in the
future to dramatically change the scope and utility of the clinical laboratory playing
a significant role in patient management. This review provides an overview of tar-
geted and global, large-scale metabolomic studies applied to investigate various
IEMs. We discuss an existing and prospective clinical applications of metabolomics
in IEMs for better diagnosis and deep understanding of complexmetabolic perturba-
tions associated with the etiology of inherited metabolic disorders. (Translational
Research 2017;189:65–75)

Abbreviations: GC-MS ¼ gas chromatography mass spectrometry; LC-MS ¼ liquid chromatog-
raphymass spectrometry; CSF¼Cerebrospinal fluid; IEM¼ inborn errors ofmetabolism;MALDI¼
matrix-assisted laser desorption ionization; SELDI ¼ Surface-enhanced laser desorption/ioniza-
tion; NMR ¼ nuclear magnetic resonance; NBS ¼ newborn screening; PKU ¼ phenylketonuria;
LCHAD ¼ Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency; TFP ¼ Trifunctional pro-
tein deficiency; MMA ¼ methylmalonic acedimia; PA ¼ propionic acedimia; OTC ¼ Ornithine
transcarbamylase deficiency; RDC ¼ respiratory chain deficiencies; SLOS ¼ Smith-Lemli Opitz
syndrome; CTX ¼ Cerebrotendinous xanthomatosis; RP ¼ Reverse phase; HILIC ¼ hydrophilic
interaction liquid chromatography; ROC ¼ receiver-operating characteristic; AUC ¼ Area un-
der the curve

M etabolic changes as a disease symptom have
already been recognized in ancient medi-
cine.1 In the early 19th century, an English

physician and pioneer of inherited metabolic disorders,
Sir A. Garrod developed the concept of ‘‘chemical indi-
viduality’’ and suggested that there are phenotypes
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studies 13C NMR and 31PNMR are less frequent
although these techniques can also be very
informative.6,7 NMR relies on chemical shifts and
multiplet patterns for metabolite identification.
It requires minimal sample preparation with
reproducible and nondestructive analysis however, it
has relatively low sensitivity. Mass spectrometry is a
versatile detector that provides higher sensitivity and
can be implemented as separation-free (MALDI,
SELDI) or combined with chromatography platforms
such as GC, capillary electrophoresis or LC. In gas
chromatography (GC), compounds are heated and
nonvolatile metabolites require a derivatization step.
Capillary electrophoresis provides excellent separation
for polar and charged molecules, but suffers from low
repeatability. In liquid chromatography (LC), a wide
range of metabolites can be analyzed depending on
the type of column and mobile phase.

Approach. Independent of the analytical technique
employed, metabolite determination can be performed
with two main conceptual approaches. The first, global
untargeted metabolomics, is primarily data driven
rather than specific hypothesis driven. This unbiased
approach provides a comprehensive insight of the sys-
temic response of the subject to the pathophysiological
stimuli or genetic modifications. In the untargeted
approach, data preprocessing, statistical, and pathway
analyses have a very significant role. In NMR for
example, to address chemical shift variability across
the data, spectra are segmented into small areas called
bins. The binning process significantly minimizes the
effects from variations in peak positions and reduces
the data size for multivariate statistical analyses. In
MS, all detectable features are preprocessed through
peak alignment, baseline correction, and deconvolu-
tion. The resulting preprocessed data is subject to
multivariate and pattern recognition analyses such as
principal component analysis, hierarchical cluster
analysis, and supervised methods such as partial
least squares discriminant analysis (PLS-DA) or
orthogonal partial least squares discriminant analysis
(OPLS-DA). Such analyses can discriminate
populations with different health statuses to make
predictive models and find potential biomarkers.
Data preprocessing and statistical analyses are exten-
sively reviewed by Karaman8 and Ren et al,9

respectively.
An additional layer of metabolomic data interpreta-

tion involves pathway analysis. Pathway analysis is a
visualization of metabolic pathways and mapping
groups of metabolites related to the same biological
process. It is applied to metabolomic data for
in-depth biological interpretation. Pathway enrichment
analysis10 also identifies pathways that have significant
perturbations in concentrations of involved metabolites.
Pathway mapping and visualization tools are reviewed
by Chagoyen et al.11

The benefit of untargeted, nonhypothesis-driven
metabolomics is that it may provide unexpected and
previously unknown correlations between metabolites
and biochemical pathways in a systematic way. The
bottleneck of this strategy however, is that most of
the studies rely on complex statistical models as the
endpoint of the study and do not follow up with the
validation of candidate biomarkers.
In contrast to global untargeted metabolomics,

metabolic profiling or targeted metabolomics, is a nar-
rower, hypothesis-driven approach. This approach fo-
cuses on the analysis of a specific class of metabolites
or group of metabolites related to a specific metabolic
pathway. This type of workflow allows accurate

associated with specific metabolites. In the 1960s, prog-
ress in science and technology expanded our ability to 
test Garrod’s hypothesis and study metabolism.2,3 In 
1998, SG Oliver4 was the first to use the term ‘‘metabo-
lomics,’’ indicating comprehensive analysis of all me-
tabolites in a biological system. Since the publication 
of his article, technological advances facilitating 
metabolomic studies have allowed the field to grow 
rapidly. As of April 2017, a PubMed search yields 
more than 15,000 published studies containing the 
word ‘‘metabolomics.’’
The metabolome can be described as the complete 

composition of all low molecular weight molecules 
present in a given biological system, fluid, cell, or 
tissue.5 Endogenous metabolites indicate the end 
products of the complex ‘‘omics’’ cascade which is 
initiated by the genome followed by the transcriptome 
and proteome. Hence, the metabolome bridges the gap 
between a given genotype and phenotype.

ANALYTICAL TOOLS TO STUDY METABOLOME

The human metabolome is very diverse and dynamic. 
Physicochemical properties such as polarity and 
volatility, a wide dynamic range of endogenous 
metabolites, and the presence of exogenous metabolites 
obtained by diet and medication present a significant 
analytical challenge to the field. No single metabolomic 
methodology is currently able to measure the entire 
metabolome accurately. Depending on the goal, several 
metabolomics approaches and analytical platforms are 
available (Table I). Currently, nuclear magnetic 
resonance spectroscopy (NMR) and mass spectrometry 
(MS) are the dominant tools in the metabolomics field. 
While 1H NMR is very common in metabolomics

http://dx.doi.org/10.1016/j.trsl.2017.06.005


identification and absolute or relative quantification of a
predefined group of metabolites.

INHERITED METABOLIC DISORDERS

Inborn errors of metabolism (IEMs) represent a group
of inherited conditions with a collectively estimated
incidence of 1:800.12 The genetic basis of IEMs is
very heterogeneous and can involve abnormalities
such as point mutations, deletions or insertions, or
more complex genomic rearrangements. Introduction
of molecular genetics techniques have made it possible
to identify molecular defects and confirm diagnoses in
IEMs however, disease phenotypes are not always
explained by the detected mutations. Indeed, the level
of IEM complexity requires an integrated understanding
of perturbations in genetic and biochemical networks.
Metabolically, IEMs are characterized by direct toxic

accumulation of upstream metabolites or deficiency of
downstream metabolites and/or channeling of excess
intermediates to an alternative pathway. Any of these

metabolic abnormalities can lead to morbidity and
mortality. Thus, timely diagnosis and early disease
management, which in many cases include life-saving
dietary restrictions and nutritional supplements, are
critically important. The newborn screening (NBS)
program is a public health initiative that involves
laboratory testing to timely diagnose even asymptom-
atic neonates. It is an unique system for predictive,
preventive, and personalized medicine at the same
time. The NBS program was launched in the United
States in 1963, but it was restricted for phenylketonuria
(PKU) screening.13 Since then, millions of newborn
babies in the United States have been screened for
genetic, endocrine, and metabolic disorders via
heel-pricked blood samples collected on filter paper.14

Metabolic profiling by tandem MS for NBS was first
proposed by Millington et al in 1990.15 The workflow
involved quantitative analysis of a small subset of
predetermined analytes extracted from dried blood
spots from umbilical cord blood and neonatal blood.
The platform was extended a few years later to include

Table I. Summary of the most common analytical tools in metabolomics studies

Analytical
platform Principle Advantage Disadvantage

NMR External magnetic field
interacts with spin active
nuclei (1H and13C for example).
Metabolite identification by
chemical shifts and multiplet patterns

� Minimal sample preparation
� Nondestructive
� Robust
� Databases for identification

� Low sensitivity
� High instrumentation cost

GC-MS Sample is vaporized and
separated on column.
Metabolites are detected by
mass spectrometry

� Reproducible
� High sensitivity
� Standard databases for

identification (NIST, Fiehn)

� Polar compounds require
derivatization step

� Only volatile compounds
can be analyzed

� Low throughput
� Samples are not recovered

FIA-MS Sample is delivered to mass
spectrometry with no
chromatographic separation

� Very high throughput
� Low cost analysis
� Highly Automated
� No need for calibration

curve construction;
can be performed
as single-point calibration

� Gold standard for NBS
� High sensitivity

� No separation of isobaric
masses and isomeric compounds

� Subject to the significant
ion suppression

� Samples are not recovered

LC-MS/MS Sample is separated high
pressure on column. Wide
selection of stationary phases

� Minimal sample preparation
� High-throughput capability
� Wide selection of stationary phases

� Samples are not recovered
� Some analytes require

derivatization step
� Ion suppression can

affect results
Capillary

electrophoresis
Ions are separated based on

their electrophoretic mobility
under applied voltage. Can be
coupled to mass
spectrometric detector

� Very high resolution
� Sensitive technique for highly polar

and charged analytes
� Inorganic anions can be analyzed
� Can be coupled to MS

� Samples are not recovered
� Low throughput

Abbreviations: FIA-MS, flow injection analysis-mass spectrometry;GC-MS, gas chromatography mass spectrometry; LC-MS/MS, liquid chroma-

tography mass spectrometry; NBS, newborn screening; NMR, nuclear magnetic resonance.
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that due to b-oxidation defect, long-chain fatty acids
(LCFA) are rerouted to complex lipid biosynthetic
pathways. These findings represent new insight in
disease pathophysiology and may provide additional
diagnostic biomarkers even for mild phenotypes.
Metabolic abnormalities in Barth syndrome have

been investigated with the untargeted approach and
provided new insight into the pathogenesis of
the disease. Sandlers et al combined 1H NMR

Table II. Summary of IEM metabolomics studies

reviewed

Group/name of
metabolic disorders Specifics Citation

Disorders of amino
acids

MSUD, PKU,
Citrullinemia,
Homocystinuria

Chance et al16

M€utze et al22

FAOD LCHAD, CPT2,
VLCAD, MCAD

McCoin et al23

Janeckova
et al24

Urea cycle disorders Argininosuccinic acid
lyase (AL)
deficiency,
Argininemia,
ornithine
transcarbamylase
deficiency

Miller et al25

LSD Niemann-Pick C1,
Fabry, Pompe,
Gauche, Krabbe.
MPS (all types)

Matern et al19

Fan et al26

Organic acidemias MMA, PA, glutaric
aciduria type 1,
isovaleric acidemia

Wikoff et al27

Miller et al25

X-ALD Vogel et al20

Mitochondrial
disorders

Leigh syndrome Thompson
et al28

Barshop29

Disorders of
cholesterol
biosynthesis

CTX, (SLOS),
Sitosterolemia

Vaz et al21

Oostendorp
et al30

Barth syndrome Sandlers et al31

3-methylcrotonyl-CoA
carboxylase

Miller et al25

3-OH-3methylglutaryl
(HMG) CoA lyase
deficiency

Miller et al25

Guanidinoacetate
methyltransferase
(GAMT) deficiency

Miller et al25

Lysinuric protein
intolerance

Miller et al25

Abbreviations: CPT2, carnitine palmitoyltransferase 2 deficiency;
CTX, cerebrotendinous xanthomatosis; FAOD, fatty acid oxidation
disorders; LCHAD, long-chain 3-hydroxyacyl-CoA dehydrogenase;

LSD, lysosomal storage diseases; MCAD, medium chain acyl CoA
dehydrogenase deficiency; MMA, methylmalonic acidemia;
MSUD, maple syrup urine disease; PA, propionic acidemia; PKU,
phenylketonuria; SLOS, Smith-Lemli Opitz syndrome; VLCAD, very
long-chain acyl-CoA dehydrogenase deficiency.

more diagnostic analytes.16-18 Currently, it is highly 
automated and implemented worldwide. In the United 
States, every newborn is routinely screened for at least 
29 disorders however, recent technical advances in 
MS and new treatment options unlock the potential 
for expanding this significant public health initiative 
for more conditions.19-21
Despite significant improvements in the diagnosis 

and treatment of IEMs, it is still challenging to 
understand how genetic variation affects disease 
progression and susceptibility. In addition, a search 
for new personalized therapies and a growing demand 
for tools to monitor long-term metabolic effects of 
existing therapies set the stage for metabolomics 
integration in preclinical and clinical studies of the 
IEM field.

APPLICATIONS OF GLOBAL METABOLOMICS IN IEMS 
STUDIES

Although NBS is a well-validated and robust 
platform, it represents only a snapshot of a very small 
subset of the metabolic information. Global untargeted 
metabolomics has been employed by different groups 
in a various ways (Table II). Wikoff et al. used 
untargeted, large-scale MS-based metabolomics in 
plasma to characterize metabolic disturbances in 
methylmalonic acidemia (MMA) and propionic 
academia. As a proof of concept, propionyl carnitine 
(C3), a known diagnostic biomarker for both disorders, 
was validated through the study (ANOVA P value of 
1.8 3 10218).27 This comprehensive study also 
identified previously unreported plasma. However, the 
secondary diagnostic MMA marker, methylmalonic 
carnitine (C4DC), was not detected. The authors 
attribute this false-negative outcome to the high 
polarity of methylmalonic carnitine-acylcarnitine. 
These findings uncover the powerful potential of 
global metabolomics in disease pathophysiology 
investigations of even very well-studied disorders like 
MMA and propionic academia but raise a question of 
the analytical platform choice for the study.
To assess the global metabolic state in long-chain 

3-hydroxyacyl-CoA dehydrogenase deficiency and 
carnitine palmitoyltransferase II deficiency-affected 
individuals, McCoin et al applied untargeted plasma 
MS-based metabolomics and detected 832 metabolites. 
Routinely, fatty acid oxidation disorders can be 
diagnosed biochemically by abnormal plasma acylcar-
nitines and urine organic acids however, the 
authors identified 114 nonacylcarnitine-discriminating 
metabolites including some nonlipids.23 Significantly 
higher levels of triglycerides and low levels of 
phosphatidylethanolamines, ceramides, and sphingo-
myelins in the plasma of affected individuals suggest
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detection. With tandem MS and NBS test development,
a small set of diagnostically significant amino acids are
analyzed in dried blood spots with flow injection
analysis (FIA) tandem MS. This extremely
high-throughput and low-cost approach does not
involve chromatographic separation. Furthermore,
derivatization with hydrochloric acid/n-butanol pro-
vides high sensitivity and specificity to the assay and
allows simultaneous analysis of amino acids and
acylcarnitines. Despite the enormous diagnostic
significance, FIA-MS/MS is a first-tier screening
method and does not provide resolution of isomeric
and isobaric metabolites. To achieve higher specificity,
accuracy, and precision, a variety of GC-MS and
LC-MS/MS methods have been developed.32,33

Different groups demonstrated the application of
targeted metabolomics as a discovery tool for IEMs
(Table II). Janeckova et al validated known diagnostic
biomarkers in various metabolic disorders through a
combination of chemometrics and quantitative targeted
metabolomics.24 The study analyzed 163 plasma
metabolites and applied unsupervised statistical
analysis to successfully detect 34 IEM patients. Fan
et al explored a targeted metabolomics approach to
test the hypothesis that specific plasma sphingolipids
can serve as outcome measures in clinical trials for
Niemann-Pick C1 (NPC1) disease therapies.26 First,
blood and cerebrospinal fluid in animal models were
analyzed and then the analysis was extended to 56
NPC1 and matching control human subjects. The
human study found alterations in multiple plasma
sphingolipid species, while aberrant sphingolipid
metabolism is a known metabolic hallmark of NPC1
disease. The study then identified specific sphingolipids
as potential biomarkers in plasma and cerebrospinal
fluid in monitoring longitudinal miglustat intervention.
Alterations in the discovered sphingolipids during pre-
and postintervention periods suggest that these
biomarkers may provide useful endpoints for
monitoring the efficacy of drug candidates during
clinical trials.
Diet represents a significant factor that affects the

metabolome even in healthy individuals. IEM manage-
ment often includes nutritional limitations and supple-
ments. Medical foods for IEMs fall in few categories:
foods that do not include ‘‘offending’’ amino acid,
protein-restricted foods and foods that include some
amino acids or vitamins, or other components used to
replace essential nutrients or to enhance enzyme activity.
Although targeted relevant analysis is already in use

to monitor nutritional management in many IEMs, the
overall long-term impact of dietary restrictions is not
clear. For example, in PKU patients only plasma
phenylalanine to tyrosine ratio and phenylalanine level

and LC-MS/MS platforms to study biochemical 
abnormalities in the plasma of Barth syndrome 
patients.31 A supervised multivariate analysis (OPLS-
DA) of all metabolites detected in MS assay showed a 
clear distinction between Barth syndrome patients and 
controls. Statistically significant different metabolites 
identified in the multivariate data analysis of the NMR 
metabolomics data and those identified in the MS 
analysis were used in the pathway enrichment analysis 
that validated previously known plasma markers and 
associated new, broad metabolic dysregulations with 
the etiology of this multisystem disease. The study also 
revealed new therapeutic targets for further exploration 
in Barth Syndrome.
Miller et al. performed a retrospective diagnosis of 

190 plasma samples with 120 confirmed IEM cases. 
The study applied an untargeted workflow based on an 
analysis by 3 separate MS platforms in parallel.25 

Despite high intra-assay precision for most metabolites 
and the potential to cover multiple metabolites under 
one single test, the study yielded a few false-negative 
outcomes. Specifically, it failed to identify guanidinoa-
cetate which led to failure in guanidinoacetate 
methyltransferase deficiency detection. In addition, 
long-chain 3-hydroxy acylcarnitines which are 
diagnostic for long-chain 3-hydroxyacyl-CoA dehydro-
genase deficiency and trifunctional protein deficiency 
were missing from the detected metabolites. 
Metabolomic investigations also included 70 
undiagnosed patients’ samples however, obtained data 
did not facilitate correlation to clinical findings. Only 
two undiagnosed cases were uncovered as female 
heterozygous ornithine transcarbamylase deficiency and 
TMLHE deficiency (disorder of carnitine biosynthesis). 
Two additional cases were preliminarily identified as 
sarcosinemia.

APPLICATIONS OF TARGETED METABOLOMICS IN IEM 
STUDIES

The targeted metabolic approach is a common 
practice in biochemical genetics laboratories for 
biochemical diagnosis and monitoring IEMs such as 
aminoacidopathies, organic acidurias, and fatty acid 
oxidation disorders. For example, GC-MS is a gold 
standard platform for routine urinary organic acids 
analysis. Organic acids are extracted by acidic liquid-
liquid extraction and analyzed as methoxyamine/
trimethylsilyl derivatives. The deri-vatization step 
allows formation of more volatile compounds and 
creation of specific and recognizable fragmentation 
patterns of diagnostic metabolites.
Historically, analysis of plasma and urine amino acids 

has been performed by ion exchange chromatography 
followed by postcolumn derivatization and UV
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Retrospective analysis of urine organic acids from
3646 randomly selected samples was performed by
Barshop, who found that the urinary lactate level is
not a good discriminator of mitochondrial disease
patients, but did find a correlation of fumarate and
malate levels to the patients’ diagnosis.29 Reinecke
et al extended urinary organic acids analysis and
performed an untargeted GC-MS study with 39 selected
samples from children diagnosed with respiratory chain
deficiencies and matching controls.38 Vigorous
statistical analysis did not reveal unique diagnostic
markers, although the study provided some global
metabolic perturbations in urinary profiles as a
consequence of the respiratory chain deficiencies.

LIPIDOMICS STUDIES IN IEMS

The lipidome refers to the organic solvent–soluble
components of the metabolome; thus, it is recommen-
ded that these compounds be analyzed separately from
water-soluble metabolites. In contrast to the metabo-
lome, the lipidome can also be performed in a shotgun
manner. This analytical approach allows the separation
of lipids from other biological sample components by
extraction and analysis of crude extracts directly by
MS.39 Similar to metabolomic approaches, lipid anal-
ysis can be performed in either a global or targeted
manner. Abnormal lipid metabolism40 including
cholesterol biosynthesis pathways41 is associated with
a rare but rapidly expanding group of inherited meta-
bolic disorders. Recent developments in high-
throughput assays for diagnostic markers and new treat-
ment options led to pilot NBS programs for disorders of
lipid metabolism in several states14 however, there is a
growing demand for tools to assess and monitor treat-
ment efficacy and safety. Application of global lipido-
mics for this group of inherited disorders provides
such a tool and facilitates the development of new ther-
apies. Byeon et al found variation in plasma and urinary
lipids in Fabry disease patients under enzyme replace-
ment therapy.42 The nontargeted nanoflow LC
electrospray-ionization tandem MS (nLC-ESI-MS/
MS) approach led to the identification of 129 plasma
and 111 urinary lipids. Based on the first nontargeted
phase, authors selected 29 plasma and 23 urinary statis-
tically significant species for targeted quantitative anal-
ysis to identify lipid alterations under enzyme
replacement therapy.
Oostendorp et al. demonstrated a targeted application

of 1H NMR and 2D-NMR to identify and quantify
abnormal lipids in patients with a known inborn error
of cholesterol biosynthesis. Based on plasma profiling
of a predefined set of 9 lipids, the study successfully
identified patients with Smith-Lemli Opitz syndrome,

are routinely monitored with no consideration of overall 
metabolic profile.
Mutze et al. investigated the influence of the long-term 

PKU diet on fatty acid metabolism.22 The targeted meta-
bolic study found no functional influence on unsaturated 
fatty acid metabolism however, it demonstrated that 
long-term dietary fatty acid restriction influences mito-
chondrial beta-oxidation intermediates. Karam et al34 

analyzed cardiovascular disease biomarker levels in a 
group of patients with various IEMs maintained on 
protein-restricted diet for a number of years. Plasma 
cholesterol, triglycerides, lipoproteins, and total homo-
cysteine (a thrombotic factor) were analyzed in a cohort 
of patients diagnosed with PKU, tyrosinemia type I, urea 
cycle disorders, branched chain organic academia, and 
healthy controls. No significant differences were found 
in cardiovascular disease risk markers between IEM pa-
tients and the control group, possibly due to decreased 
saturated fat and increased fiber in IEM patients’ diet.
Despite a few published targeted studies on medical 

foods effects on metabolism, scientific and clinical 
communities are still missing comprehension of the 
complex network of interactions between medical 
nutrients and metabolism at global level. According to 
Camp et al, there is ‘‘gap in knowledge regarding the 
safety and utility of nutritional interventions for 
management of IEM’’35 and there is a need for more 
studies on ‘‘impact of nutritional interventions on health 
outcomes and on the psychosocial issues identified by 
patients and their families.’’

APPLICATION OF METABOLOMICS IN 
MITOCHONDRIAL DISORDERS

Mitochondrial diseases are a group of very complex 
inherited disorders that can result from abnormalities 
in the mitochondrial and nuclear genomes.36 Nuclear 
DNA abnormalities can be inherited in an autosomal 
recessive or autosomal dominant manner, while mito-
chondrial DNA defects are transmitted through 
maternal inheritance. These are multisystem disorders 
with a highly variable clinical presentation and no 
specific and effective therapies.37 Patient management 
includes supportive treatments to maximize life quality 
and to modulate disease progression. Due to genotypic 
and phenotypic heterogeneities and small patient 
cohorts, there are only few metabolomics studies in 
mitochondrial disorders. Thompson et al investigated 
the metabolic presentation of a genetically homoge-
nous, French Canadian variant of Leigh syndrome in 9 
patients.28 This targeted metabolomics experimental 
design encompassed clinically established assays as 
well as targeted nonclinical GC-MS and LC-MS 
methods. The study resulted in 45 distinctive markers 
that provide possible therapeutic targets.
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need to be considered. Appropriate sample sizes are
necessary to obtain the statistical power of the results.
Since the human metabolome is very dynamic and
affected by environmental factors, including nutrition
and gut microflora products, criteria for sample
rejection should be established and documented by the
laboratory.
Moving to the analytical phase, there are no standard

sample preparation methods and standard chromato-
graphy tools. Sample preparation is an important starting
point of any analytical process. Most of the metabolomic
workflows prefer nonselective sample preparation such
as dilution or protein precipitation methods over more
selective procedures like solid phase or liquid-liquid
extractions. The sample preparation step is often
minimized to increase analysis throughput and
compatibility to automation however, matrix effect and
ion suppression caused by proteins and phospholipids,
especially in blood, serum, or plasma samples can
decrease the sensitivity and selectivity of the analysis
masking biological variation. In NMR, macromolecules
and inorganic salts from the biological matrix can cause
problems with baseline distortion and variation in the
chemical shifts. In LC-MS/MS, metabolites co-eluting
with matrix components will have different ionization
efficiency and/or adduct formationwhichwill affect their
quantitative signals. A proper choice of the sample
preparation will increase selectivity and may reduce the
false-positive and false-negative discovery rate,
thereby increasing the validity of any metabolomics
investigation.
Most of the LC-MS/MS studies reviewed here were

limited to reverse phase (RP) chromatography with
various C18-bonded silica stationary phases. This type
of analytical approach is robust, highly sensitive, and
reproducible however, it introduces bias toward certain
classes of analytes, as many clinically relevant
metabolites are water soluble and thus are not retained
on RP. To enhance the resolution of highly polar
metabolites, hydrophilic interaction LC (HILIC) is
recommended44,45 and was demonstrated as an
effective choice in urine metabolomics.46,47Although
the experimental setup of two column analyses
requires later data fusion from two analyses,
combination of RP and HILIC allows a broad
metabolome coverage. Alternatively, 2-dimensional
chromatography system can be a choice of the
analytical platform. In this case although, due to
differences in equilibration times and mobile phases
incompatibility between RP and HILIC stationary
phases, only RP columns should be employed for
2-dimensional chromatography system.48

Interlaboratory precision in metabolomics is a
critical step toward standardization. There is a gap in

cerebrotendinous xanthomatosis (CTX), and sitostero-
lemia.30 The clinical picture of CTX is extremely 
heterogeneous and patients’ responses to therapy can 
be different. Prognostic markers of cholesterol 
metabolism before and after chenodeoxycholic acid 
(CDCA) treatment were studied by Mignarri et al in 
19 CTX patients by targeted GC-MS analysis.43 

Although the study did not reveal biomarkers that can 
distinguish CTX-stable patients and those with 
neurologic progression, it found that CDCA treatment 
normalized overall abnormal sterols, with the exception 
of 7a-hydroxy-4-cholesten-3-one (7aC4). In addition, 
levels of plant sterols were proposed to be monitored 
under CDCA therapy; especially lathosterol that may 
assist the clinician in deciding whether to add a statin 
to CDCA therapy.

THE FUTURE PERSPECTIVE: METABOLOMICS IN 
LABORATORY MEDICINE

Targeted metabolomics is already in current use and 
is widely implemented to achieve timely diagnoses and 
monitoring nutritional management in many IEMs. 
These assays are highly regulated and meet CLIA 
quality standards under nonwaived, laboratory-
developed tests. Applications of untargeted 
metabolomics in the clinical laboratory are still in 
infancy however, it is expected to dramatically change 
the scope and utility of the clinical laboratory playing a 
significant role in patient management. Especially, 
global untargeted studies aim in defining metabolic set 
points as a long-term monitoring tool for nutritional 
interventions in many IEMs and enzyme replacement 
therapies in lysosomal storage disorders. It is also 
expected to reveal the variation in an individual’s 
response to the therapy based on the collected data. 
Mitochondrial disorders group also will benefit from 
untargeted metabolomic studies, as these disorders 
suffer from a lack of diagnostic markers, and generation 
of large metabolic data sets offers a discovery tool for 
better diagnosis and identification of potential 
therapeutic targets.
Although incorporation of global metabolomics in 

clinical laboratories allows the detection of a wide range 
of metabolites in a single test and opens up new 
prospectives in precision and personalized medicine, 
the translation of large-scale untargeted metabolomics 
from the bench to the bedside is facing some challenges.
To deliver quality results, standardization and harmo-

nization of many aspects of the metabolomics workflow 
are mandatory. Nonstandardized experimental designs, 
sample collection, storage, and pretreatment could have 
negative impact on the tests outcomes. Experimental 
designs should be planned carefully to minimize bias: 
age, gender, ethnicity, and basic diet
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Initiative is a group of highly qualified scientists who
recently published recommended reporting standards
for untargeted metabolomics studies. Published
guidelines refer to all aspects of untargeted
metabolomics workflow for NMR and MS methods ‘‘to
develop consistent and appropriate descriptors to
support the dissemination and reuse of metabolomic
data.’’54 The outcomes from the global discovery phase
provide metabolites associated with the biological status.
At this stage, statistically discriminatingmetabolites need
to be identified and validated. Despite accurate mass and
fragment ions pattern generated by MS, it is still a very
challenging and time-demanding task. To facilitate
metabolite identification, several databases are available
based on MS and NMR acquisitions.55-58 In the next
step, the identified potential biomarkers must be
validated analytically and biologically through
additional cross studies. Currently, there is a lack of a
coherent pipeline connecting the biomarker discovery
phase with the biomarker validation phase.
Most of the untargeted studies demonstrate the ability

of metabolite profiling to distinguish between disease
and healthy control cohorts however, only few studies
follow up to replicate and validate discovery outcomes
in accordance with clinical performance standards. It
is crucial to understand that biomarker detection and
identification only represent the starting point in the
translation from discovery phase to clinical diagnostics.
In most metabolomics studies, a list of ‘‘putative

biomarkers’’ is selected based on univariate or
multivariate statistical approaches that capture data
variance. Multivariate techniques are potentially more
powerful, since univariate models could overestimate
the significance of certain variables, because correlation
between variables is not taken into account. In other
words, treating the data with univariate analysis does
not always provide a good predictive model particularly
for IEMs. For many IEMs, a metabolic pattern rather
than a single biomarker is diagnostic. For example,
urea cycle defects such as carbamylphosphate synthetase
deficiency or ornithine transcarbamylase deficiency are
accompanied by low plasma citrulline levels. However,
low plasma citrulline levels will be also observed
secondary to mitochondrial dysfunction, an extended
period of reduced protein nutrition, or a disease of the
gastrointestinal tract, where citrulline is synthesized. In
the case of lowplasma citrulline, glutamine levels should
be examined to exclude hyperammonemia. The levels of
some essential amino acids will also be evaluated to
exclude malnutrition and sample hemolysis.
The selection of highly ranked metabolites by

multivariate statistics most of the time is also supported
by regression analysis, P values, or variable importance
in projection scores (VIP). While these algorithms are

standard and certified reference material availability. 
Uniform internal standards must be established and 
periodically validated in a similar manner as it is 
done in NBS laboratories. For many clinically relevant 
metabolites, there are no commercially available 
stable isotope-labeled standards, and it is a common 
practice in biochemical genetic laboratories to use 
single-point calibration for some targeted tests 
such as amino acids or acylcarnitines. Although 
single-point calibration and FIA-MS/MS significantly 
increase throughput, they are subject to ion 
suppression and matrix effects.
Siskos et al reported a quantitative targeted 

metabolomics reproducibility study49 which involved 
6 laboratories performing the analysis of identical 
plasma and serum samples through different 
instrumentation but a common protocol for the analysis 
of 189 metabolites via LC-MS/MS or FIA-MS/MS. 
Quantitative LC-MS/MS analysis was achieved by 
7-point calibration curves with isotope-labeled internal 
standards and levels of 146 metabolites under study 
were obtained by single-point calibration FIA-MS/MS 
analysis. To achieve high interlaboratory reproduc-
ibility for FIA-MS/MS, the authors used data 
normalization. Overall, this work demonstrated high 
reproducibility across participating laboratories for the 
established protocol and normalization approach for 
single-point calibration methods that can be integrated 
in large-scale metabolomics studies.
The interlaboratory performance evaluation of 

untargeted metabolomics studies however, does not 
look very optimistic. The Metabolomics Research 
Group of the Association of Biomolecular Resource 
Facilities reported a study that involved 14 participating 
laboratories with different analytical platforms.50 The 
goal of the investigation was to replicate an initial 
quantitative metabolomics discovery experiment that 
was performed by core facility. The study concluded 
that application of more than one analytical platform 
provides broad metabolome coverage and increases 
chances for identification of unknowns. At the same 
time, some laboratories reported a change in the relative 
concentration of metabolites, but in opposite direction. 
In addition, quantitation of spiked metabolites with 
high endogenous levels was not as accurate as those 
that had lower endogenous levels. The biggest 
challenge, however, reported in the study was unknowns 
identification.
Several algorithms and workflows have been developed 

to reduce within-experiment analytical variation51-53 

however, there is no uniform approach in data handling, 
processing, or metabolite identification tools which are 
critical components for generating scientifically 
meaningful results. The Metabolomic Standard
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better IEM phenotypes characterization, potentially
providing the clinician the ultimate information for
personalized care. In combination with genomics,
large-scale untargeted metabolomics is expected to
reveal genotype-phenotype correlations and the overall
effect of drugs and dietary interventions however, for
the successful translation of the global metabolomics
from bench to the bedside, some gaps need to be bridged
and quality control challenges need to be addressed.
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very important for understanding of disease mechanism, 
they do not provide information on biomarker 
performance by a clinical meaning. Clinical biomarker 
performance evaluation has to address the sensitivity 
and specificity at the specific cut-offs. For this purpose, 
a receiver-operating characteristic (ROC) curve is 
widely applied.59 ROC describes the relationship 
between the sensitivity and specificity of any diagnostic 
test at various decision thresholds. The area under the 
curve reflects the ability of the test to discriminate 
between true-positive and true-negative results.
Additional challenge is that IEMs are a group of 

relatively rare disorders thus, studies usually include 
small cohorts of affected patients. In biomarkers 
discovery, a small sample size will not provide enough 
information to build a predictive model. To allow 
unbiased estimates of model performance, cross-
validation methods are recommended. This approach 
uses a subsampling of the data to estimate the predictive 
power of the small cohort model in a large 
population.60,61

For example, Lee et al designed and performed a 
study to validate a panel of nephrotic syndrome urinary 
markers.62 The experimental design of the study 
encompasses untargeted metabolomics approach 
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in constructed panels. Multistage statistical tools 
were applied to select biomarker panels from a 
discovery samples set and to validate the selected 
biomarkers through an independent set of urine sample 
analyses. The selectivity and sensitivity of putative 
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Another significant gap that needs to be addressed for 

future large-scale metabolomic clinical applications is 
the development of external quality assurance 
programs. Such programs will improve the robustness 
and validity of clinical data and guarantee the 
comparability of results between different laboratories. 
In 2016, the National Institute of Standards and 
Technology (NIST) launched a pilot quality assurance 
program, ‘‘qMet’’, to study and address quality control 
deficiencies across metabolomic studies with NMR, 
GC-MS, and LC-MS (https://www.nist.gov/programs-
projects/qmet-quality-assurance-program-meta 
bolomics). This effort, combined with the regulatory 
agencies’ collaboration, will expedite metabolomics 
incorporation in clinical practices through the develop-
ment of new recommendations, protocols, and policies.
In summary, the field of targeted metabolomics with 

respect to diagnostic biomarkers detection in IEMs will 
continue to be important in future clinical settings. 
Global, untargeted metabolomics holds the promise of
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