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A hybrid cognitive architecture with primal 
affect and physiology 

Christopher L. Dancy, Member, IEEE 

Abstract—Though computational cognitive architectures have been used to study several processes associated with human 
behavior, the study of integration of affect and emotion in these processes has been relatively sparse. Theory from affective 
science and affective neuroscience can be used to systematically integrate affect into cognitive architectures, particularly in 
areas where cognitive system behavior is known to be associated with physiological structure and behavior. I introduce a unified 
theory and model of human behavior that integrates physiology and primal affect with cognitive processes in a cognitive 
architecture. This new architecture gives a more tractable, mechanistic way to simulate affect-cognition interactions to provide 
specific, quantitative predictions. It considers affect as a lower-level, functional process that interacts with cognitive processes 
(e.g., declarative memory) to result in emotional behavior. This formulation makes it more straightforward to connect these 
affective representations with other related moderating processes that may not specifically be considered as emotional (e.g., 
thirst or stress). An improved understanding of the architecture that constrains our behavior gives us a better opportunity to 
comprehend why we behave the way we do and how we can use this knowledge to recognize and construct a more ideal 
internal and external environment. 

Index Terms— Cognitive Models, Modeling human emotion, Mood or core affect, Emotion theory 

——————————   u   ————————— 

INTRODUCTION
he human mind is a complex biological system that 
operates as a computational system to behave within 
its environment. Given this (immense) complexity, it 

can be useful to breakdown the mind into hierarchies to 
develop models and simulate behavior of the human 
mind and human behavior (e.g., [1]). Indeed, this idea 
has been used to begin to develop integrative models of 
human physiology relevant for understanding and 
predicting behavior of several aspects of physiology [2]. 
Hierarchy is a useful concept when discussing a very 
difficult aspect of modeling human behavior, 
computational models of emotion.  

Several computational models of emotion or affect 
have been proposed and developed into systems that can 
be run through simulations (e.g., see [3, 4] for a useful 
overview). Progress in developing unified computational 
models and systems that integrate theory in affect and 
emotion remains slow relative to the overall activity in 
unified computational models of human behavior. 
Nonetheless, there have been useful developments of 
computational models of emotion that provide unified 
computational accounts of human behavior [5-9]. 

Marsella and Gratch [5] and Marinier III, et al. [8] 
implement computational models of appraisal processes 
[10] and their effects of cognition by implementing this 
appraisal process within versions of the Soar cognitive 
architecture [11]. MicroPsi [9] provides a useful hierarchy 
of urges (physiological, cognitive, and social) that 
modulate behavior of the system, albeit in way that is 
more concerned with intelligent agent behavior, than 

particularly intelligent human behavior. Clarion [7] uses 
lower-level (e.g., related to eating) and higher-level (e.g., 
relating to belonging to a group) drives to approximate 
emotions. More recently, Juvina, et al. [6] use core affect 
[12] to break down emotion into valence and arousal and 
have these modulate cognitive processes. 

All these computational systems use hierarchies to 
model and simulate interactions between emotion and 
cognitive systems, albeit with different representations 
and components. It remains less clear how these systems 
may handle the  interaction between emotional processes 
and other cognitive moderators [13] that are not 
emotional, but nonetheless may influence affective and 
cognitive processes. It may be difficult to develop models 
that can realistically and tractably combine moderators 
(including emotion) and simulate their effects on 
behavior (e.g., the combination of being tired, caffeinated, 
and in a fearful state). 

Panksepp [14] offers a useful hierarchy that can 
begin to approach the previously mentioned problem 
and can be used to separate emotional experience into 
increasingly complex levels. They postulate a continuum 
of processes (Fig. 1) to represent the processing that 
mediates human thinking and behavior and use the 
organization of neural systems as a basis for this 
formulation.  

T 

  •C. L. Dancy is with the Department of Computer Science, 340 Dana 
Building, Bucknell University, Lewisburg, PA 17837. 
Email: christopher.dancy@bucknell.edu 



 
Fig. 1. Panksepp [16] describes levels of processing that mediate 
behavior. This spans from the more general global modulating 
processing to the metacognitive processes used to internally reflect 
upon experience. 

Thus, it is useful to think about emotion as the 
intersection between these levels. Put another way, 
emotion is the result of feeling some combination of 
affect and having that affect interact with cognitive 
processes. This allows us to separate subjective reports of 
emotional experience, from affective experience that can 
be inferred from physiological or behavioral change but 
are nonetheless inaccessible to awareness or unconscious 
(e.g., [15-17]). 

Panksepp and Biven [18] posit several systems that 
are on the primary-process level and are implemented by 
neural circuits that cause affect. Most important for this 
paper are the SEEKING and FEAR systems that mediate 
appetitive motivations (e.g., those that are activated by 
hunger) and some response to aversive stimuli (e.g., a 
powerful shock), respectively. Though aspects of the 
FEAR system and circuit have been the most dominantly 
studied, the SEEKING system may be considered as, if 
not more, fundamental to human behavior. 

I use the primary-process affect theory to connect a 
unified theory of cognition to an integrated model of 
physiology. I have implemented this multi-level model in 
a hybrid cognitive architecture that can be used to 
simulate and predict interactions between physiological, 
affective, and cognitive processes and how they mediate 

behavior. This formulation gives us the opportunity to 
understand a wide range of behavioral moderators and 
representations that can be used to tractably understand 
how multiple moderators (affective or otherwise) may 
interact to affect behavior. 

In the next sections, I provide an overview of some 
connections between physiological and affective systems, 
and how these interactions can affect cognitive processes. 
I then describe a hybrid cognitive architecture with 
physiology and affect and an affective-cognitive agent 
that runs within the architecture. Lastly, I discuss 
limitations and potential future work related to the 
architecture. 

PHYSIOLOGICAL-AFFECTIVE SYSTEMS 
Nonlinear physiological processes interact with affective 
and cognitive processes across time. To develop a 
realistic, tractable computational theory of emotion that 
can be applied to real-world situations we often 
encounter, it is important to directly consider the 
underlying physiological processes that affect behavior 
both in the face of and in the absence of affective stimuli. 

In the proceeding sections, I discuss two areas of 
physiological-affective systems that are important to 
studying human behavior in realistic contexts and thus 
important for any computational model of human 
behavior that seeks to develop a comprehensive account 
for behavior across time in varying contexts. First, I 
discuss the physiological bases for hunger and thirst, and 
their interactions with existing affective systems. I also 
discuss sleep, stress, and arousal from an integrative 
physiological systems perspective; when taken from this 
perspective, it becomes clearer how these concepts can all 
be related, especially as it pertains to developing 
systematic, integrative computational models of emotion. 
Lastly, I discuss some of the many interactions these 
physiological systems have with memory. 

Hunger and thirst 
Hunger and thirst describe basic physiological-affective 
processes that govern our behavior, potentially in subtle 
ways (e.g., [19]). Changes in homeostatic physiological 
processes modulate peripheral and central systems to 
create certain SEEKING behavior (or wanting behavior, 
[20]), where behavioral tendencies begin to reflect the 
homeostatic need of particular physiological systems. 
(Because of the similarities between the theories, I will 
use SEEKING/wanting when discussing this system.) To 
understand and quantify how physiological-affective 
systems may interact to modulate human behavior, it is 
important to gain an understanding of processes that 
mediate these systems. Hunger and thirst both represent 
particularly useful homeostatic processes as they’ve been 
extensively studied and heavily involve hypothalamic 
nuclei. This known connection with neural substrates 
gives one a more straightforward way to connect existing 
models in this area with work done with affective (and 
other behavioral) neural systems. 
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Hunger behavior involves several peripheral 
regulators, including leptin [21], ghrelin [22], blood 
glucose [23], and insulin [24] which cause changes in 
bodily need states and thus changes to hunger-related 
appetitive and consummatory behavior [25].  Though 
these changes sometimes manifest themselves as overt 
behavior, they can also be more covert throughout the 
day, potentially biasing affective and cognitive processes 
to behaviors that encourage (or discourage) behaviors 
related to food cues (e.g., [26]). This bias of processes is 
facilitated through the hypothalamus, more specifically 
through the lateral and ventromedial hypothalamic 
nuclei (LH and VMH, respectively). The LH acts as an 
excitatory neural regulator, while the VMH is important 
for inhibition of hunger [25]. Thus, these densely 
connected nuclei act as a middle-layer between peripheral 
changes indicating bodily need in the form of hunger, 
and affective processes that modulate behavior. 

Thirst and hunger are linked in many ways including 
salt appetite, that is, salt appetite and thirst typically have 
an inverse relationship. This is because homeostasis 
related to thirst (fluid homeostasis) involves mechanisms 
that maintain a balance between sodium and water 
balance. As with hunger, behavioral biases that are 
generated from homeostatic modulation can often 
manifest as behavior that is overtly thirst-appetite (e.g., 
taking a drink of water) or more covert (e.g., causing 
changes in perception to related stimuli; [27]). 

These physiological-affective interactions have 
consequences for behavior in larger contexts. For 
example, Danziger, et al. [19] show that hunger may have 
unintended consequences on something as serious as 
judicial decisions. The authors showed that the 
proportion favorable judicial decisions after a food break 
was approximately 65% while just before the break, the 
proportion had dropped all the way down to 0%; this is 
with a beginning proportion of around 65% that steadily 
declined until the food break was taken. As a way to 
show general overlap of neural processes that modulate 
thirst and SEEKING/wanting behavior, Winkielman, et 
al. [16] studied effects of unconscious affective stimuli 
(happy or angry faces). They found that those who were 
unconsciously exposed to happy faces poured and drank 
more of a sugar beverage. In addition, the authors also 
found that study participants exposed to happy faces 
were willing to pay more money for a can of that 
beverage. For thirsty participants, unconscious stimuli 
affected water pouring and consuming behavior, as well 
as the amount participants were willing to pay for the 
water. In an interesting study (due to its control and 
objective and subjective thirst), Wright, et al. [28] used a 
primary motivation and reward (i.e., thirst and water) 
version of the ultimatum game (which typically uses 
money as the main reward; [29]). In the study, the 
participants had a choice that resulted in a tradeoff of 
rejecting an unfair offer from what they believed to be 
another participant (a 12.5% distribution of a drink of 
water for the participant and 87.5% for the other 
participant) versus accepting the offer (and thus getting a 
drink of water). The authors found that physiological 

thirst (i.e., osmolarity) failed to make a statistically 
significant difference on participants’ choice. However, 
subjective thirst did affect their choice, with participants 
who accepted the offer showing a higher subjective thirst 
that was statistically significant. This shows (in a 
laboratory setting) that affective processes can modulate 
higher-level cognitive processes that may balance 
absolute self-interest and fairness. A person may be more 
likely to accept unfair offers when those offers are 
directly related to a physiological need. 

Thus, even in cases where a decision or action may 
not be directly related to a human’s hunger or thirst state, 
such a state may affect the outcome of said decision or 
choice of said action. When the state and decision are 
related, there may be an especially pervasive change in 
behavior. Physiological motivational states can be 
pervasive and have global consequences on affective and 
cognitive processes that influence human behavior. It is 
important to develop models that consider these 
consequences and how they may affect memory, 
learning, and decision-making (e.g., [30]). I address how 
one may represent this affective-cognitive interaction in a 
computational model and architecture in Integrating the 
theory into a computational architecture.  

Sleep, stress, and arousal 
Humans are bombarded with stressors that cause 
physiological (and behavioral) adaptation. Though this 
adaptation is generally referred to as stress, the term 
stress, itself, is not as useful without specificity of the 
stressor and the processes that change because of this 
stressor. Often, stress is characterized by an activation of 
several systems including the hypothalamic-pituitary 
adrenal (HPA) axis and the Locus-Coeruleus 
noradrenergic system [31]. The latter system is a main 
driver in changes in arousal as the system that releases the 
excitatory neurotransmitter noradrenaline. 

Several psychological, physiological, and 
environmental changes may cause adaptation that lead to 
stress on the body. One of the common stressors that can 
lead to pervasive allostatic changes in physiological and 
cognitive systems is sleep deprivation [32]. Variables 
associated with the HPA-Axis (e.g., Corticotropin 
Releasing Hormone [CRH], Adrenocorticotropic 
Hormone [ACTH], and cortisol) are characterized by a 
diurnal cycle (i.e., circadian rhythms). This rhythmic 
release of the hormones is disrupted by sleep deprivation 
[33], causing physiological and behavioral adaptation to 
offset these effects. Sleep deprivation and disruption also 
affects the LC-Noradrenergic system as this system 
receives input from neural systems important for the 
sleep-wake cycle, that is, the LC-Noradrenergic system 
receives inhibitory input from sleep promoting systems 
[33]. 

Sleep deprivation is known to cause several 
behavioral deficits, all of which may be caused by 
modulation of cognitive processes [34-36]; though see 
[37] for a counterexample task in which behavioral 
deficits were not found. Given work linking stress-related 
physiological variables and memory modulation [38, 39], 



and the effects that sleep changes have on these variables, 
one can begin to construct a computational process 
model of the effects of sleep changes on cognition. In 
linking these physiological changes with changes in 
cognitive processes (through known neural and 
behavioral modulation) one can develop a more unified 
process model of sleep-deprivation, stress, and arousal 
and their effects on behavior. This would be useful for 
more tractable and nuanced understanding of how these 
physio-cognitive interactions mediate behavior. 

In the next sections I discuss connections between the 
physiological-affective systems I have discussed thus far, 
and memory systems. I then describe a computational 
model that links these physio-affective-cognitive 
processes and can be integrated into a unified 
architecture (the implementation of which is discussed 
later in Integrating the theory into a computational 
architecture).  

Physiological-affective systems and memory 
Developing a computational understanding of the 
physiological processes that interact with (and in some 
cases partially govern) affective and cognitive processes 
allows one to move beyond a static noise representation in 
a cognitive system. With a computational model, we can 
trace changes and can begin to understand how 
physiology may change a cognitive system over-time. 
Related to the previous sections, I focus on changes to 
physiology that cause changes in primary affective 
systems, namely the effect of hunger and thirst on the 
SEEKING/wanting system, as well as stress-related 
physiology and effects on memory. 

Hunger, Thirst, and Affect 
As mentioned previously, primary homeostatic 

systems (i.e., hunger and thirst here), interact with 
affective processes to enact behavioral changes that help 
restore balance of those related systems. It appears these 
behaviors are related to various brain neural processes 
that connect the sensing of peripheral homeostatic 
imbalance with the downstream dopaminergic system 
that is the primary driver behind the SEEKING/wanting 
system. Perhaps most important at a high-level is the 
connections between the lateral hypothalamus (LH) and 
the ventral tegmental area (VTA), the latter of which is 
responsible for the widespread release of dopamine, the 
main neurotransmitter implicated in the 
SEEKING/wanting system and related affect [18].  

These connections are affected by several hormones, 
with Orexin being one of the more notable mediators in 
homeostatic-imbalance, affect connections. Orexin is 
related to several peripheral changes that relay a hunger-
based need (e.g., glucose, insulin, and leptin changes; 
[21]), relay a thirst-based need [40], and it is one of the 
major excitatory systems involved in sleep onset [33]. 

Subcortical basal ganglia (BG) structures are 
important for linking the previously mentioned 
physiological sensors, the SEEKING/wanting system, and 
behavioral output. Berridge [20] formulates the incentive 
salience theory that postulates a separate wanting and 

liking system, the former of which is mediated by the 
discussed dopaminergic system and its effects on the 
ventral striatum (which is a part of the BG). Berridge [20] 
notes the importance of the affective (or motivational) 
effect of this system as it relates to behavior and learning. 
Thus, though the two systems come from separate 
theories, the wanting and SEEKING system are 
functionally similar. 

These structures are also important in linking the 
SEEKING/wanting system with learning, particularly 
aligning well with reinforcement learning related the 
dopaminergic system. Incentive salience theory provides 
an account for wanting affect and its effect on 
reinforcement learning processes, including how wanting 
and liking differ in this learning-behavior process. In 
addition to effects of SEEKING/wanting system affect on 
memory related to processing in the BG, this system also 
modulates declarative memory systems primarily 
mediated by medial temporal lobe (MTL) system that 
includes the hippocampus [41, 42]. Dopamine modulates 
the declarative memory learning process by affecting 
long-term potentiation (LTP) in the hippocampus, 
causing more stable memories that are more difficult to 
forget [41]; this effect on LTP is also relevant to the 
computational architecture that is discussed in Integrating 
the theory into a computational architecture as the 
architecture’s declarative memory system has a 
functional account for LTP (see [43] for more discussion 
on this declarative memory-LTP connection). The 
modulatory power of novelty on memory elements [44] 
seems to confirm the importance of affect/motivation in 
this learning process (e.g., as discussed by [20]) as one 
may have an intuition that as stimuli become less novel, 
there would be a decrease in the accompanying positive 
motivation. Relating to previous discussions, this effect of 
appetitive affect on declarative memory is seen in tasks 
as simple as small changes in thirst state resulting in an 
increased likelihood of retrieving thirst-related 
declarative memory [27]; this also is likely related to the 
decision-processing seen in Wright, et al. [28]. 

Though presented as distinct models, with distinct 
effects on behavior, these physio-affective-cognitive 
processes occur with an integrated system. As we 
continue to accumulate this knowledge, it is useful to pull 
all of these results together into a unified model (e.g., 
[45]), ideally into a computational architecture that can be 
simulated so that we may understand the assumptions of 
theories and models. Simon [1] noted, “…even when we 
have correct premises, it may be very difficult to discover 
what they might imply”. In Integrating the theory into a 
computational architecture, I present a computational 
model that brings together the theory and models 
previously discussed, and that is implemented into a 
computational system that can be simulated. This 
computational model gives an account for how affective 
processes may interact with cognitive processes to 
mediate behavior. 



Stress and memory 
Many studies on stressors focus on particularly 

negative affective stimuli (stressors) to induce a 
physiological change in stress-related variables. These 
negative stimuli often affect portions of what Panksepp 
and Biven [18] calls the FEAR system; some researchers 
have changed their wording to emphasize the survival 
nature of these neural circuits more recently (e.g., [46]). 

The amygdala is, perhaps, the most well-known 
structure in the FEAR system, however nuclei in the 
central portion of the amygdala (CeA) appear to be the 
central structure in causing behavioral and affective 
changes related to stressors [18, 47]; indeed, the 
amygdala is made up of several areas that are 
functionally separable [48]. The CeA has connections 
with structures such as the previously discussed lateral 
hypothalamus, periaqueductal gray (PAG), and the 
paraventricular nucleus (PVN), all of which are key 
structures in physiological, affective, and behavioral 
change (some of these connections are shown in Fig. 2). 
The PAG has been associated with the neural processing 
of several behaviors, perhaps most notably to add to this 
discussion is its relation to breathing and stress (e.g., [49, 
50]), as well as anxiety ([47]). Taken together, these neural 
structures and corresponding systems operate on the 
primary-process level (i.e., Fig. 1) and interact with global 
modulating and secondary processes to mediate human 
behavior.  

Stressors associated with conditioned learning of 
fear, which involve the basolateral and lateral amygdala 
substructures [46, 51, 52], are often used to induce 
aversive physiological change. Physiological changes 
normally seen due to stressors can cause various effects 
memory, many of which are dependent upon the timing 
and nature of the stressor [38, 39]. Stress appears to cause 
a switch in the use of types of memory-systems [38], that 
is, it modulates the use of declarative memory and 
procedural memory in behavior when both may be used 
for a given task. This switch is facilitated with an increase 
in both glucocorticoids (cortisol) and (neural) 
norepinephrine, but typically not seen when either of 
those components are absent [38]. In this formulation, 
declarative memory facilitates more flexible learning 
behavior, whereas procedural memory facilitates more 
constrained behavior. Indeed, this relates to the ties 
between exploration, exploitation, and locus coeruleus 
activity: moderate activity in the locus coeruleus (and 
norepinephrine levels) allows more accurate behavior, 
whereas higher-than normal activity can result in 
impulsive behaviors that are more habitual (greater use 
of procedural memory) and may be less relevant to the 
goals of the task [53]. 

This effect on uses of memory and learning systems 
interacts with timing of the stressor, and thus the 
physiological variables that mediate the stress response. 
This importance of timing also applies to more affective 
memory mediated by the basolateral amygdala [39]. 
Joëls, et al. [39] gives a useful indication of when and 
how noradrenergic effects on BLA-mediated affective 
memory will interact with glucocorticoid effects on the 

same memory. Schwabe et al. [38] provides a related 
model that provides the timing from the perspective of 
(declarative-based) memory performance, learning, and 
retrieval, Table 1 gives this learning-stress timing 
formulation. Table 1 predicts that, for example, stress 
followed by a short break (roughly 1 hour) before a 
learning session results in a decreased declarative 
memory performance as does stress directly before 
retrieval, but after learning the item previously. 

Table 1. Timing of physiological change due to stressors 
interacts with the effects those stressors have on 

behavior (adapted from figure in [38]). Here, breakS 
denotes a shorter break time (1 hour), while breakL 

denotes a longer break (a few hours to a day). 

Stress-Behavior order Effect on memory 
stress-breakS-learn-breakL-retr worsened 
stress-learn-breakL-retr improved 
learn-stress-breakL-retr improved 
learn-breakL-stress-retr worsened 
 
Thus, stress affects both, learning based on the 
physiological systems recruited during exposure to the 
stressor, and timing of that recruitment relative to the 
learning. Effects on specific memory systems used during 
behavior are also seen: more procedural dependent 
memory is used when stressors cause increases in 
glucocorticoids and norepinephrine (e.g., stress from 
tasks like the Trier Social Stressor Task or TSST; [54]). 
This has important implications not only for the point-in-
time behavior on a task which may be more suited for a 
specific type of memory, but also for learning stages 
related to declarative and procedural memory (e.g., those 
described by [55]). I describe how these ideas are 
integrated into a computational model and how this 
model has been implemented to make a hybrid cognitive 
architecture. 

INTEGRATING THE THEORY INTO A COMPUTATIONAL 
ARCHITECTURE 
Physiological need can cause changes in affective 
systems, which, in turn, can modulate the likelihood of 
thinking about memory related to that need; for example, 
thoughts related to water occur more often when one is 
thirsty. Conversely, thinking about an item that has been 
associated with affect (through learning) can cause an 
increase in related affect, that is, when thinking about a 
stressful situation one may experience the affect and 
physiological changes associated with that stressor. The 
theory, models, and results given in previous sections 
leads to a coherent computational model, which may 
describe how some of these physiological, affective, and 
cognitive processes interact. 
With this model, we’ve focused on the FEAR system and 
the SEEKING/wanting system. Fig. 2 gives a high-level 
view of neural systems, as well as their relation to 
physiological, affective, and cognitive systems; some 
general connections between affective levels (and lower 



levels, for example as indicated in Fig. 1) are also shown 
in the figure. I use an existing unified theory of cognition 
(ACT-R, [43, 56]) to frame the cognitive systems listed in 
the Fig. 2. 

 

 
Fig. 2. Functional systems, associated neural structures, and some 
of the bottom-up connections from the primary-process affect and 
global/physiological systems. A-A: Affective-Associations; ACC: 
anterior cingulate cortex; BLA: basolateral amygdala; CeA: central 
amygdala; CN: caudate nucleus; DlPFC: dorsolateral prefrontal 
cortex; DMH: dorsomedial hypothalamus; F: FEAR; LA: lateral 
amygdala; LC: Locus Coeruleus; NAcc: nucleus accumbens; NTS: 
nucleus tractus solitarus; OFC: orbitofrontal cortex; PAG: 
periaqueductal gray; PVN: paraventricular nucleus; PPC: posterior 
parietal cortex; SCN: suprachiasmatic Nucleus; S/W: 
SEEKING/wanting; VlPFC: ventrolateral prefrontal cortex; VMH - 
ventromedial hypothalamus; VmPFC - ventromedial prefrontal 
cortex; VP - ventral pallidum; VTA - ventral tegmental area. 

Both the SEEKING/wanting and FEAR system have 
wide ranging effects on declarative memory and 
procedural memory systems (e.g., [41]). The many 
studied effects make these two systems a useful starting 
point for integrating primary-process affect theory into 
any cognitive architecture. 

Implementing the continuum: a unified 
computational architecture 
To develop this architecture and computational model of 
emotion, we’ve connected the HumMod physiological 
model [57] to the ACT-R cognitive architecture [43], using 
theory from primary-process affect theory [18] to 
represent basic affective systems (i.e., at the primary-
process level in Fig. 1). These three models all have two 
advantages for implementation in a computational 
system: 1) they have a strong theoretical and empirical 
basis, coming from separate disciplines (which can be 
useful in providing a fairly diverse perspective); 2) the 

theories have representations of either neural structures 
to go along with functional systems (e.g., [56, 58]) or, in 
the case of HumMod, representations at the levels of 
organs and hormones. The latter provides an advantage 
when using data from existing research to verify 
interactions between functional systems (e.g., we can use 
existing theory on the effects of stress and arousal on 
behavior [38, 39, 53]). 

ACT-R/Φ 
ACT-R/Φ extends the ACT-R architecture with a 
physiological system and an affective system. The 
physiological system is composed of the HumMod model 
of physiology physio module (in the ACT-R system) that 
communicates between the model of physiology and the 
other modules in the system (e.g., the physiological 
components of arousal and their functional effects on the 
declarative memory module). 

The affect system is composed of the SEEKING 
module, FEAR module, and affective-associations 
module. The SEEKING and FEAR modules are meant to 
represent behavioral functionality attributed to the 
SEEKING and FEAR neural circuits posited by Panksepp 
and Biven [18]. The affective-associations module is not 
associated with a specific primary-process affect circuit, 
and instead represents functionality of systems that 
operate between the primary and secondary levels 
specified in Fig. 1. In the next few sections, I discuss the 
systems, including different equations used. For a 
summary of the parameters used (and their function) see 
the appendix. 

The physiological system 
The physiological system uses the HumMod 
physiological model to simulate bottom-up physiological 
modulation of behavior. The physiology module serves 
as a communication/timing system between the 
physiological model, affect system, and cognitive system. 
In addition, it is used to calculate the effects of the HPA-
Axis and sympathetic arousal (i.e., epinephrine) on 
arousal (1). 

 
𝑎𝑟𝑜𝑢𝑠𝑎𝑙 = 	𝑓(𝑐𝑜𝑟𝑡) ∗ [𝛼 ∗ 𝑔(𝐶𝑅𝐻) + 	𝛽 ∗ ℎ(𝑒𝑝𝑖)]       (1) 

In (1) f(cort),	 g(CRH),	 and	 h(epi) represent 
transformation of raw values of cortisol, corticotrophin 
releasing hormone (CRH), and epinephrine 
(respectively). In this case, the functions are simply 
values normalized according to initial state baseline, that 
is, each function gives an output of 1 when in a normal 
state. This representation affects both procedural and 
declarative memory noise (see Dancy, et al. [59] for 
related work on simulating the impact of stress on 
memory during a serial subtraction task). Arousal also 
modulates the ACT-R production rule firing threshold when 
below a nominal value. 
Though the physiological model has ways to adjust 
arousal related physiological variables, the canonical 
model is noticeably missing an account for circadian 
rhythms and sleep deprivations, as well as cyclic effects 
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of breathing (i.e., changes in breathing rate and their 
effects on related physiological receptors, and 
sympathetic and parasympathetic nervous system 
arousal). We’ve added to the physiological model itself 
by developing extensions for circadian rhythms, sleep, 
and breathing (see [34, 60] for a more detailed account of 
these extensions and physio-cognitive models that 
complete tasks while being modulated by these 
mechanism). This is useful not only for their effects as 
more global modulators on cognition (e.g., cortisol effects 
on arousal and memory), but also to open the 
architecture to computational representation of 
interactions between sleep and affect or breathing and 
affect (e.g., computational modeling sleep or breathing 
effects on anxiety) and subsequent interactions with 
cognitive systems. 

The SEEKING module 
As one may expect, the SEEKING module is based on the 
SEEKING/wanting system previously discussed. In the 
architecture, this system and module are key to 
appetitive motivation and behavior, for example, feeling 
thirsty and changing one’s goals to more readily reflect 
this affective state of thirst. 

The SEEKING module acts as a major interface 
between procedural memory in ACT-R and homeostatic 
imbalance. The module equations below draw on work 
by Zhang et al. [61] to integrate SEEKING/wanting 
behavior into the existing ACT-R procedural memory 
system. Equations (3) and (4) show that the utility 
updated by an affective component that is determined by 
the current SEEKING system value. 

 
𝑈K = 𝑈 + log	(𝑘)	 	 	 	 	 					  (3)	

𝑘 = (S + 	ε) ∗ 𝑒PQRSPTUVW		𝑠. 𝑡.		𝑆 ∈ 0,1          (4) 

In (4), 𝑘 is specified by taking the input value from a 
specific sensor system (e.g., osmolarity levels/thirst), 
which I call S; a noise component is also added to S as 
represented in ε. 𝑟𝑒𝑤𝑎𝑟𝑑_S` is the maximum expected 
reward that is set according to the situation by the agent 
developer (see [62] for a useful discussion on setting and 
scaling reward values for cognitive agents that use utility 
and reinforcement learning). Functionally, these 
equations allow the agent to change utility values of 
procedural memory elements (rules) as the affective 
context changes and environmental (internal or external) 
needs change. Procedural memory elements also have 
affective values directly provided by the SEEKING 
module that are independent of those described in the 
section on the Affective-Associations module (see (5) for 
the equation which describes the almost identical FEAR 
module version of the equation). 

Given that it should bias our behavior towards items 
that relate to certain affective states (especially when, for 
example, in a physiological state of need like being 
thirsty or hungry), the SEEKING module should 
influence goal selection. While I could have developed a 

special mechanism to adjust goal state directly, without 
an account for the whole system, the memory for goals [63] 
model provides a much more parsimonious and tractable 
way to achieve this functionality. When combined with 
the offsets used in the affective-associations module it 
becomes clearer how the activation bias (which is used to 
determine one’s own goal state) could then begin to affect 
the goals a cognitive agent would pursue; see the final 
paragraph of the Affective Associations Module section 
for an explanation of what I mean here by offsets. 

The SEEKING module provides an integrated 
functional account of the interaction between appetitive 
motivations and cognitive behavior (in concert with the 
affective-associations module). Another important 
system and module is, in some ways, at the opposite end 
of the spectrum. 

The FEAR module 
Where the SEEKING module represents approach, 
appetitive affect related behavior, the FEAR module 
represents avoid, aversive related behavior. Thus, the 
FEAR module encapsulates low-level processing of 
aversive stimuli (e.g., a painful shock) the module can be 
directly affected by nociceptive or aural stimuli and 
indirectly affected by visual stimuli. Visual stimuli do not 
directly change the FEAR module state as the function of 
the primary neural substrates that are involved in low-
level processing of aversive visual stimuli are 
represented in the affective-associations module. 

The FEAR module principally operates independent 
of the learning systems but can be affected by them 
depending on the affective content in the specific 
memory elements. As with the SEEKING module, the 
state of the FEAR module subsymbolically affects the 
declarative and procedural memory systems. The FEAR 
module also has direct connections with the physiological 
system and affects stress system variables (i.e., those 
implicated in the architectural representation of arousal). 

Equation (5) is the production updating equation that 
updates production-affect values.  

 
𝐹b(𝑛) = 𝐹b(𝑛 − 1) + 	𝛼(	𝑟 +

efgh(ijk)
klmn

	− 	𝐹b(𝑛 − 1))	 					(5)	

𝑟 = log(𝐹𝐸𝐴𝑅qrPPQin ∗ 𝑒esKtUVW)        (6) 

In (5) the delayed reward parameter 𝑘 and the 
learning rate α can be set as a parameter in a model. As 
with the similar TD-inspired equations discussed in the 
previous two sections, 1 1 + 𝑘𝑡 is a discount function 
(e.g.,) that decreases the weight of the new chunk-value 
pair on the current memory hyperbolically as time 
between the update of the chunk-value pair and its last 
update increases. The affective (FEAR) value of the next 
production from the most recent production trace is 
represented by 𝐹blk 𝑛 − 1  and the variable 𝑡	is the time 
elapsed since the same rule was last fired. 𝐹𝐸𝐴𝑅qrPPQin (6) 
is the current state (value) of the FEAR system and 
𝐹𝐸𝐴𝑅_S` is a parameter that allows the agent to be 
calibrated to the expected maximum FEAR values given 



an environment; that is, the max expected FEAR affect to 
be experienced in an environment. 

The Affective Associations Module 
The affective-associations module contains internal 
memory systems that link affective states (at a point in 
time) to visual, auditory, and declarative representations. 
Fig. 3 gives a high-level view of these systems. I chose to 
represent separate module-affect systems, focusing on 
perceptual systems and the declarative memory system 
(which, itself, can be considered a system to perceive the 
past, [43]). 

 

 

Fig. 3. The affective-associations module provides multiple affect-
memory representations and thus gives affective value to memory 
elements to modulate their processing. 

Separate systems were used due to existing evidence 
for multiple affective memory systems [51]. These 
internal memory systems can modulate both the 
underlying affective state due to the context of the 
cognitive system, and the cognitive state by biasing the 
cognitive system towards certain behaviors due to the 
current affective state; these changes operate principally 
at the subsymbolic level (i.e., values that affect 
probabilities of using memory representations as 
opposed to directly changing the symbolic portions of 
memory representations). Equations (7) and (8) show 
how affect values are updated for memory 
representations (I use similar sets of equations for the 
SEEKING system and related values.). 

 
𝐴b 𝑛 = 𝐴b 𝑛 − 1 + 	𝛼 	𝑟 + e

klmn
	− 	𝐴b 𝑛 − 1        (7) 

𝑟 = argmax 𝐹𝐸𝐴𝑅`            (8) 

𝐴b 𝑛 − 1  is the previous affective value (paired with 
a chunk from a perceptual system or the declarative 
memory system). The 𝛼 variable is the learning rate that 
controls how much each instance of a chunk-value pair 
affects the overall chunk-value memory of that chunk. 𝑟 
is some primary reinforcer that has the max effect on the 
FEAR system at the time that the reinforcement process is 
initiated (e.g., if a loud noise and a painful shock are 

sensed simultaneously, the higher value produced 
between the two is used as the reward for 𝑟) and F 
represents the current state of the FEAR system (given by 
the FEAR module). As previously discussed, 1 1 + 𝑘𝑡 is a 
discount function used (here) to discount the FEAR value 
over time. 

The Affective-Associations module also modulates 
declarative memory retrieval by affecting levels of 
activation for those chunks that are in the corresponding 
internal memory system. It adds offsets to the 
subsymbolic values of a chunks based on their affect 
value. Functionally, this makes it so that the more similar 
the current affect state is to the one when the memory 
was encoded (given the previously mentioned update 
equation for multiple encodings), the more that chunk 
memory element is to be retrieved (i.e., being in a fearful 
state, biases the cognitive agent to retrieve memories of 
other times it was afraid). 

THE INFLUENCE OF AFFECT ON RESPONSES TO 
UNFAIRNESS 
I used these physio-affect systems to better understand 
the influence of affect on choice. Particularly, I modeled 
the ultimatum game (UG), to understand how 
homeostatic affect may interact with a choice that also 
involves the influence of alternative goals. The ultimatum 
game is a task where a proposer is given an endowment 
and must propose a division of that endowment to a 
second player (the responder). The responder may accept 
the proposal or reject the proposal, the latter of which 
results in neither participant getting any of the money. 
Thus, the task involves competing goals. of 
fairness/reciprocity and maximizing the amount of 
money one may receive in any given round. I focus on 
modeling the respondent as there exists both respondent 
choice behavior data during normal ultimatum game 
under a variety of proposals [64], but also choice 
behavior while participants have homeostatic imbalance 
that characterizes thirst [28]. 

Modeling the UG with and without Affect 
A high-level view of the cognitive process model is given 
in Fig. 4. The model processes the offer and keep (the 
amount proposer offers and the amount the proposer will 
keep if the offer is accepted, respectively). The model 
then uses either declarative memory (past experience) or 
the imaginal system (transformation of the offer-keep 
into a representation of fairness) to determine whether it 
is fair. It then retrieves a decision and reports either 
accept or reject. The declarative memory subsymbolic 
process (i.e., selection based on activation) is affected by 
both the base-level activation (which is biased by both 
recency and frequency) and spreading activation (which 
is biased by related chunks that may be in other buffers. 

 
Fig. 4. A high-level diagram of the information processing in the 
cognitive model 



I used MindModeling@Home [65] to run simulations 
and find the parameter set that produced model behavior 
closest to human data (see the appendix for more 
information on the simulations). After finding the best 
parameter combinations, I ran the model with the highest 
performing set of parameters with the affective system 
turned on and while varying only the 𝑟𝑒𝑤𝑎𝑟𝑑_S` (i.e., 
from equation (4)). I used the physiological system in the 
architecture to simulate hypertonic saline infusion and 
create a homeostatic imbalance and run the simulation to 
match the exact experimental parameters used in the 
human study by Wright, et al. [28]. This homeostatic 
imbalance (characterized by a change in osmolarity 
similar to that reported in the aforementioned study) 
then triggered a change in the SEEKING system that 
primarily caused downstream effects on the model’s 
decision to report an accept of the offer.  

Model Results 
The top three subsymbolic parameter combinations 
produced an 𝑅𝑀𝑆𝐸 of 0.058864 and 𝑅~ of 0.97 when 
compared to those human data from [64]. Fig. 5 gives a 
plot of the model with the parameter-set that produced 
the highest match to human data, as well as those human 
data. 

 

 
Fig. 5. Acceptance Rate vs Offer-Keep for the model and Human 
Data. The parameters listed above stand for the following ACT-R 
parameters: ans = :ans, g-s = :ga, i-s = :imaginal-activation, fair-
noise = custom noise for fairness calculation. 

When using the model from Fig. 5 (with the same set 
of parameters) to simulate the primary reward version of 
the ultimatum game, I found that a 𝑟𝑒𝑤𝑎𝑟𝑑_S` of 1.4 
showed the closest acceptance rate (48.9%) to the 50% 
reported by Wright, et al. [28] for the hypertonic 
condition, while the isotonic model showed a slightly 
lower 26.2% acceptance rate (vs 27% shown by [28]) 
when the 𝑟𝑒𝑤𝑎𝑟𝑑_S` parameter is set to 1.75. Fig 6 also 
shows a predicted higher acceptance rate for the 
hypertonic model in other offer-keep conditions, 
principally due to the influence of thirst-based 
homeostatic affect  (as shown by the general difference 
between the hypertonic and isotonic models.) 

 
Fig 6. Acceptance Rate vs Offer-Keep for the Hypertonic and 
IsoTonic models (as well as Human Data). srew-max represents 
𝑟𝑒𝑤𝑎𝑟𝑑_S` from equation (4). 

DISCUSSION 
By developing a cognitive model that accounted for the 
differences in acceptance rates across offer-keep ratios in 
human data, I constrained the parameter space of the 
physio-affective version of the model. This is a useful 
exercise as it allows one to assume those parameters 
would be reasonable for versions of the task that would 
incur less behavioral change due to affective processes. 

With this model and simulation, one also can now 
explore more complex questions, like how the same 
system might respond to different offers given a similar 
physiological imbalance. I began to explore that question 
by expanding the validated non-affective model to the 
primary reward conditions studied by Wright, et al. [28]. 
The data from Wright, et al. [28] are limited in that they 
do not indicate how thirsty individuals acceptance rate 
changes over time.  

The thirsty model’s acceptance rate declines as the 
ratio skews towards the proposer, showing a large 
decline after the offer is no longer fair. Thirsty 
individuals are predicted by the model to be noticeably 
more likely to accept offers that give the proposer just a 
bit more water (81% acceptance rate vs 53% acceptance 
rate). Thus, though there certainly is an effect of 
reciprocity predicted after crossing that threshold, that 
effect is greatly reduced by bottom-up homeostatic 
processes. This may be counter-intuitive if one expects 
that bottom-up processes should not have a large effect 
on decisions that involve fairness and reciprocity.  The 
model predicts that thirsty individuals will show a 
qualitative difference in how they treat reciprocity, 
especially in cases where decisions involve quantities 
deemed to be close to fair. 

Future work can now include using these 
simulations to understand how these physio-cognitive 
processes may interact with cognitive systems in the 
ultimatum game over time with repeated proposer-
respondent interactions. These simulations would prove 
as a useful complement to similar human studies that 
would prove complex and expensive, which would limit 
the scope of what could be addressed in such studies. 



Limitations 
While this architecture begins to pull together how we 
might regard something as emotional given some set of 
affective states and physiological states, the system likely 
needs more specification in how top-down appraisal may 
interact with the systems. This would manifest itself as a 
tertiary process (e.g., “how do I feel?”). Though the 
affective-associations modules does provide a way to 
connect an affective state to a memory element, the 
pattern-matching that leads to that affective state (or in 
the implementation’s case, the affective value in a specific 
system) is underspecified and will need to be expanded 
to provide a more encompassing computational model of 
emotion; taking lessons from existing appraisal models 
(e.g. [5]) may prove useful here. 

In addition, functional connections between 
physiological and cognitive (as well as affective) systems 
can be difficult to determine. Careful analysis of existing 
literature and theory related to function/structure being 
explored can be very useful here, but this remains a 
difficult task and relies on the assumption that data and 
theory exist.  

From a practical standpoint, as the hybrid 
architecture continues to add representations and uses 
the already  complex physiological model, computational 
simulations of behavior take longer to run. This decreases 
opportunities to explore the parameter space of the 
system. Though it is doubtful that the system will grow 
at a pace where the (computing) complexity it such that it 
takes an unreasonable amount of time to run, it could 
limit its uses on personal machine. The use of many of 
these computational cognitive architectures on general 
personal computers (especially such as ACT-R/Φ that are 
available to be used by those who request it) is an 
advantage for those trying to gain an initial 
understanding of the systems to understand assumptions 
of these implementations of theory and the behavioral 
results of those assumptions. 

Using the architecture to understand addiction 
Both primary-process affect theory and incentive salience 
theory have been used to explain addiction behavior [58, 
66]. Given this has already been explored at a high-level, 
using the architecture to simulate these processes would 
be useful to study how the SEEKING/wanting system 
might interact with cognitive systems. This would be 
useful for understanding how psychiatric interventions 
may affect behavior in the short and long-term, under 
different circumstances. 

Given the theoretical model that is implemented in 
the architecture, one could hypothesize that addiction 
would manifest at the subsymbolic level. Causing 
difficulty in avoiding rumination related to the addiction 
(e.g., [67]), a constant subversion of normal goals for 
those related to addition due to these memory dynamics 
(e.g., [63]), and an automatic use of basal-ganglia 
mediated procedural memory and action, resulting in 
behavior that occurs without much constant thought. 
This continues to be a complex topic, but systems and 
theories like that introduced here are useful for better 

understanding and teasing apart these processes in a 
systematic manner. 

Evolving the affect in more complex environments 
I have noted the need for a more encompassing way to 
generate affect in a previous section. Simulating an 
intelligent agent over in an expansive and complex 
environment to interact with potentially affective stimuli 
may be a useful way to build these affective value 
associations. I could use a tertiary process-level system to 
train on top-down representations, while also using the 
physiological system to associate physiological changes 
(e.g., pain) that feed directly into affective systems. 

There are several environments for intelligent agents, 
though there are less that are usable and provide the 
possibility to expand enough to be useful in multiple 
contexts for the evolution approach just mentioned. 
Project Malmo [68], which extends Minecraft to make it 
more accessible for AI research, may be one such system 
that is useful in this context. The flexibility would be 
useful, its representations translate particularly well to 
ACT-R’s perceptual-attention mechanism, and Minecraft 
is used by multiple age groups. The latter point provides 
an interesting opportunity to explore developmental-
related questions with a computational model of 
emotion, which is an underexplored topic in the area. 

CONCLUSION 
That emotion affects our behavior is an intuitive idea to 
many people. What is not so intuitive is just how 
connected are our physiological, affective, and cognitive 
states. Though we may regard physiological, affective, 
and cognitive processes separately, they interact to form 
an intricate and complex stream of behavior over time. I 
have begun to make understanding and predicting these 
interactions more straightforward and tractable with a 
computational model of physiology, emotion, and 
cognition that is implemented with the ACT-R/Φ 
architecture. 

ACT-R/Φ combines theory from the various areas in 
cognitive systems, cognitive science, psychology, 
neuroscience to begin to simulate and predict the 
hierarchy of processes that result in emotional behavior. 
An improved understanding of the architecture that 
constrains our behavior gives us a better opportunity to 
comprehend why we behave the way we do and how we 
can use this knowledge to recognize and construct a more 
ideal internal and external environment. 
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