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Abstract 
 Modifications and upgrades to the hydraulic flume facility in the Environmental 

Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University are 

described. These changes enable small-scale testing of model marine hydrokinetic 

(MHK) devices.  The design of the experimental platform provides a controlled 

environment for testing of model MHK devices to determine their effect on local 

substrate.  Specifically, the effects being studied are scour and erosion around a 

cylindrical support structure and deposition of sediment downstream from the device.   

 In order to assess the impact of deploying large arrays of MHK devices in rivers 

and tidal estuaries, experiments must be performed at the early stages of these studies. 

Small-scale studies are a cost-effective means to predict possible environmental effects 

on a larger scale.  This data is also crucial to validate numerical computations used in 

designing of these devices to minimize their deleterious impact on the environment.  This 

testing platform for laboratory-scaled studies is instrumental in yielding physical 

measurements of MHK wake-induced changes to the sediment.  These results will help 

predict how these devices behave in real world environments. 

  An insert has been designed to hold sediment of desired size and material to 

allow for a multitude of environments to be tested.  Downstream of the test section is a 

set of collection bins to catch displaced sediment to control its dispersion within the 

facility. The test bed is of sufficient size to accommodate either a single model MHK 

device or an array of devices to evaluate potential arrangements in river environments. A 

nozzle insert has also been designed to increase the range of flow speeds available for 
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model device testing.  The device accelerates the flow through the nozzle by decreasing 

the cross-sectional area by a factor of two.  The flume facility also has a programmable 

3D traversing system that can accurately place an Acoustic Doppler Velocimeter (ADV) 

probe anywhere along the length, width and depth of the flume to within +/- 0.001 inches.  

Using ADV characterization of flow in the nozzle sediment insert, both span-wise 

velocity profiles and boundary layer profiles are evaluated within the test section. The 

facility is also equipped with a 2D sediment bed profiler consisting of both a low-

powered laser probe and a touch sensitive probe that accurately measure the topology of 

the sediment bed.  The laser probe can be used in both air and water and works by 

maintaining a constant distance between the laser sensor and the bed.  All of the 

instruments being used in the facility are non-evasive to the measurements being taken. 

 A full flume velocity profile both with and without the nozzle insert was created 

using the ADV by measuring velocities at various points in the flume. Furthermore, 

measurement methods were created to calculate the amount of displaced sediment using a 

2D sediment bed profiler. Finally, a sluice gate and straightener were added to the flume 

to help condition the flow. Velocity measurements and energy calculations were used to 

validate the use of these devices so baseline reference conditions could be evaluated for 

future testing using the experimental platform. 



3 
 

 

1.    Introduction 

1.1 Background 

1.1.1 Marine Renewable Energy 
Marine renewable energy is a growing possibility as a way to harness power to 

provide electricity to residential and commercial districts.  Energy is extracted from 

oceans and other tidal waterways that provide strong currents, similar to wind energy, 

used to push turbine blades connected to a shaft.  The two main sources of marine energy 

are wave energy and hydrokinetic energy.  Wave energy is harnessed by floating a bob at 

sea level, with connections to structures anchored on the sea floor.  The change in height 

of the waves displaces the bob, thus creating motion in the structures below which takes 

energy away from the wave.  Hydrokinetic energy is harnessed using the force of water 

across a set of turbine blades which causes it to rotate and produce energy.  This type of 

energy system will most likely be found in rivers and other tidal waterways.  Currently in 

the United States, conventional hydropower is the main type of water power.  

Hydropower plants convert potential energy from a reservoir created by the placement of 

dams to produce electricity.  The water is stored behind the dam as potential energy 

through a large hydrostatic pressure head then fed to large hydraulic turbines which spin 

and convert energy to shaft work which then powers a generator.  The idea behind 

hydrokinetic energy is to use the kinetic energy of the flow in a river or tides in an 

estuary to rotate the blades of a device, thus converting it to electrical power.  In common 

terms, hydrokinetic power is taking a wind farm and putting it underwater.  The drive to 

extract marine energy has been motivated and supported by government grants channeled 

down from national research laboratories to colleges and universities. 
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1.1.2 Governmental Support/Motivation 
 The Committee on Science and Technology in the U.S. House of Representatives 

has pushed for the initiative to discover and utilize new sources of renewable energy.  

The Marine Renewable Energy Research and Development Act of 2007 (H.R.  2313) 

“directs the Secretary of Energy to support programs of research, development, 

demonstration, and commercial application in marine renewable energy technologies.  It 

also [seeks to] establish National Centers for the testing of marine renewable energy 

technologies” (Marine Renewable Act 2007).  The bill has appropriated $50,000,000 a 

year from 2008 – 2012 for further development of marine renewable energy technologies.  

The Bucknell University hydraulic flume facility is hosting a project funded by Sandia 

National Laboratories through the Department of Energy to aid in the scientific research 

necessary (specifically the environmental effect on local substrate) for the addition of 

marine hydrokinetic power as a viable source of renewable energy in the United States.  

Some of these environmental effects for the different types of marine renewable energy 

devices can be seen in Figure 1.   

 

Figure 1: Possible environmental effects on substrate (adapted from Sandia National Laboratories). 
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For wave energy, the existence of the support structures for the bob anchored at 

the sea floor will cause scour and deposition of the surrounding bed.  The extraction of 

energy from the waves will cause reduced wave height and may impact the normal flow 

of the ocean.  Deterioration of the devices may also cause the presence of a chemical 

leachate which may harm the surrounding marine life.  For hydrokinetic power, the 

spinning blades may strike fish and the extraction of energy may cause a momentum sink 

behind the structure.  The erosion around the support structure at the base of the device 

may cause scour and disrupt the habitat of creatures in the substrate.  Also, the deposition 

on the sea floor will cause large sediment piles downstream of the device.  In some of the 

early developments of marine renewable energy technologies, the United Kingdom and 

the United States have come across challenges and setbacks in their progress in 

developing these technologies. 

1.1.3 Marine Current Turbines Ltd (UK) 
 In the United Kingdom (UK), Marine Current Turbines Ltd launched a project to 

design a commercial tidal energy power plant based on the concepts used for wind energy 

extraction.  The company currently has a working tidal mill located in the English 

Channel off the coast of Devon, England.  The tidal mill is cemented into the bed of the 

channel approximately 1.1 km off the coast.  The tidal mill rig rises a few meters above 

the water’s surface.  The rotor configuration is 11 meters in diameter and is capable of 

reversing direction to compensate for the change in flow direction with changing tides 

(Lang 2003).  A digitally created image of the tidal mill is shown in Figure 2. 
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Figure 2: Marine Current Turbines Ltd device  (taken from http://www.marineturbines.com/). 

Compared to wind turbines, the blades underneath the water rotate slowly, (i.e.  

17 RPM) as water is approximately 800 times as dense as air.  With appropriate gearing, 

the tidal mill harnesses sufficient tidal energy to drive the large blades to rotate the 

generator with frequency appropriate for power generation.  On average, the tidal mill is 

capable of producing 100 kW with peak power generation of 300 kW.  To produce 

adequate power, it must be placed between 66 – 98 feet deep and the minimum speed of 

the tidal currents must be 7.4 – 8.2 feet per second (Lang 2003).  Similar to the United 

Kingdom, Verdant Power in the United States is making progress in the installation of 

renewable energy devices. 
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1.1.4 Verdant Power (US) 
 In the United States, Verdant Power is currently taking steps toward introducing 

hydrokinetic energy to the power grid through an array of tidal turbines placed in the East 

River in New York called the Roosevelt Island Tidal Energy (RITE) project which was 

initiated in 2002.  As design failures in the East River project persist, further design and 

testing is crucial to the success of harnessing hydrokinetic power.  Verdant Power 

deployed six turbines in the river in December 2006 that “were capable of supplying 

1,000 daily kilowatt hours of power” (Hogarty 2007).  A picture of the turbines as they sit 

on a barge on the river is shown in Figure 3. 

 

Figure 3: Verdant Power's RITE Project (taken from http://verdantpower.com/what-initiative/). 

 Due to the strong currents in the East River, the company removed turbines out of 

the water with “[blades] that were sheared off a third of the way down” the length of the 

http://verdantpower.com/what-initiative/�
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blade, caused by cavitation erosion (Hogarty 2007).  Cavitation is the formation of gas 

bubbles in flowing liquid that form when the pressure of the liquid falls below its vapor 

pressure.  Due to the changes in pressure, these bubbles collapse causing cyclic stresses 

on the metal surface, thus eroding the material surface of the turbine blades.  Observing 

the struggles shown by this company alone, it is very important to have inexpensive 

methods for small-scale laboratory testing or extensive field testing of a prototype turbine 

design to accelerate the development of technology for marine hydrokinetic energy 

extraction.  Additionally, the devices were not in the water long enough for all of the 

environmental effects (i.e. aquatic life, substrate, fouling) to be observed and documented 

to assess the total impact on the surroundings. 

1.2 Significance 
In order to preserve the environment and the habitation of the rivers and tidal 

estuaries that will be used for power generation, studies must be done on a small-scale in 

a laboratory setting to be able to predict possible environmental effects on a larger scale.  

This data is crucial to know in advance to aid in the validation of numerical computations 

for the eventual implementation of these devices to have a minimal environmental 

footprint.  The challenge of this thesis project lies in the fact that for MHK devices a 

system of standards on how to construct a proper scaled-down testing facility are not 

readily available.  Also, measurement methods must be built upon available information 

from other areas of study.  The addition of the induced swirl from the rotating MHK 

device must also be accounted for, beyond just scour and erosion from support structures. 

A platform with baseline conditions will enhance the validity of testing and provide much 
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needed knowledge on environmental effects and how they will impact decisions in the 

future to accelerate technology development.   

2.    Thesis Statement 

2.1 Statement 
 The goal of this thesis project will center on the development of new 

measurement methods with a unique combination of instrumentation to create a small-

scale laboratory testing platform for model hydrokinetic turbines.  Once a viable 

methodology is attained the environmental effect of devices on the local substrate can be 

facilitated.  Specifically, power extraction measurements, scour and erosion patterns and 

sediment transport can be investigated to see how actual river beds may behave through 

the implementation of underwater turbines.  The way in which these objectives will be 

pursued is outlined in the four statements below. 

1 – Characterize the flow velocity in the hydraulic flume facility and develop 

methodology for repeatable velocity field measurements using the Acoustic Doppler 

Velocimeter (ADV). 

2 – Develop a flow device to increase the velocity in the flume for appropriate power 

extraction experiments. 

3 – Develop methods to determine how much sediment is displaced (through scour and 

erosion) by the presence of model devices through use of a two-dimensional bed profiler 

which yields bed form topology. 
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4 – Define baseline reference conditions of the hydraulic flume facility with appropriate 

flow control devices as a function of flow rate to be used as a comparison for parametric 

studies conducted in the future. 

3.  Equipment 

3.1 Facility 
 In the College of Engineering at Bucknell University, the Environmental Fluid 

Mechanics and Hydraulics Laboratory (EFMH) contains a 32 feet long, 4 feet wide, 15 

inch tall flume in the basement of Dana Engineering building.  A 3D model of the flume 

and the closed system by which it runs can be seen in Figure 4.   

 

Figure 4: 3D model of hydraulic flume. 

The flume facility consists of a 4000 gallon holding tank in which a 10.5 inch 

diameter impeller, 1780 rotations per minute (RPM), centrifugal pump made by Goulds 

Orifice-plate meter 

Pump 

Flow direction 

4000 gallon holding tank 
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Pumps, Inc (Model # 3796) draws water from the tank.  The water is pumped through 8-

inch PVC piping into flexible tubing that dispenses the water into a diffuser and flows 

down the length of the flume.  The water drains into a collecting device that draws 

through a trough and back to the holding tank.  The pump, as part of the flume facility, is 

capable of producing a flow rate ranging from 0-1000 GPM.  The flume can also be tilted 

from -0.27 to 1.80 degrees.  The flow rate of the water is determined by an orifice meter 

located in the PVC piping prior to entering the diffuser.  A typical orifice meter (shown 

in Figure 5) operates by relating the pressure and velocity of the water to determine the 

flow rate.  An orifice meter is a thin plate with a hole located on the central axis.  The 

fluid is forced to converge through this annular slot.  Downstream of the slot a vena 

contracta is formed, which is the point of maximum convergence of the water where the 

velocity increases and the pressure decreases.  The fluid pressure is measured upstream 

and downstream of the plate and the volumetric flow rate, �̇�, can be calculated using an 

energy balance where: 

�̇� = 𝐶𝐷𝐴𝑜�
2(𝑃1−𝑃2)
𝜌(1−𝛽4)

,     (1) 

 
 where: CD is the discharge coefficient, 
  A0 is the cross-sectional area of the throat or orifice,  
  P is the pressure of the fluid, 
  ρ is the density of the fluid, and  
  β is d/D, the ratio of throat diameter to pipe diameter. 
 
 The correction factor accounting for both the frictional losses and the differences 

in the vena contracta area and the flow area of the obstruction is called the discharge 

coefficient, denoted by CD (Cengel and Cimbala 2010).  A typical value for discharge 
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coefficient for an orifice plate meter is 0.61 while the coefficient for a flow nozzle 

measuring device is 0.96.  Although these are typical values, the drag coefficient also 

depends on the dimensions and specifications of the orifice meter as well as how it is 

calibrated. 

 
 

Figure 5: Orifice plate (taken from Cengel and Cimbala).  

The flume is fitted with a track that spans the entire length, width and depth of the 

flume which allows a 3D positioning device (gantry) instrumented to accurately and 

repeatedly move to any point within the flume.  Mounted to the gantry is a velocity 

measuring device and a point gauge measuring vertical displacement.  Probes and other 

instrumentation can be interchanged on the gantry which makes it an essential tool in 

making repeatable measurements at any specified locations.  Figure 6 shows a 

downstream view of the flume with the track and 3D positioning device near the end of 

the flume and the control panels on the left side wall.  Figure 7 shows a picture of the 

gantry device with labeled axes of movement.   
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Figure 6: Downstream view of flume. 

 

 

Figure 7: X, Y, and Z direction of gantry. 

X Z 

Y 

Flow Direction 

Control Panel 
Gantry 
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3.2 Measurement Devices 

3.2.1 Sontek Horizon Acoustic Doppler Velocimeter (ADV) Probe 
 The Sontek Horizon ADV system is capable of measuring the velocity of particles 

using the phase change of sound wave pulse-pairs within a sampling volume using the 

Doppler shift theory. For a single sound wave, the velocity is obtained using the 

frequency shift of an emitted sound wave due to the reflection of the wave off a moving 

particle. The equation used to calculate the Doppler frequency of the wave is given by 

(Sontek Manual): 

𝐹𝐷𝑜𝑝𝑝𝑙𝑒𝑟 = −𝐹𝑠𝑜𝑢𝑟𝑐𝑒
𝑉
𝐶
 ,     (2) 

 where: FDoppler is the change in received frequency (Doppler shift),  

  Fsource is the frequency of the transmitted sounds, 

  V is the velocity of the particles relative to the receiver, and 

  C is the speed of sound in water. 

 A picture of the ADV probe and a model of the probe and sampling volume are 

shown in Figure 8 and 9, respectively. 

 

Figure 8: Sontek ADV mounted on gantry. 



15 
 

 

 

Figure 9: Drawing of ADV system (Taken from Sontek Manual). 

The probe is a 16 MHz 3D MicroADV with a measurement sampling range that 

can vary from 0.1 – 50 Hz and a cylindrical sampling volume of 0.09 cubic centimeters.  

The pulse emitter is positioned a distance of 5 cm to the sampling volume with a velocity 

resolution of 0.01 cm/s and an accuracy of 1% of the velocity range.  The ADV works on 

the basis that the phase shift between the received beams of the dual pulse wave is 

converted to a velocity.  The phase shift is dependent upon the time between 

transmissions, phase angle and travel time.  The phase angle is defined as the angle, in 

radians, between the shifted wave and the y-axis on the coordinate plane.  The radial 

velocity, U, is measured using the ADV probe with the following equations (Voulgaris 

and Trowbridge 1998): 
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𝑈 =
𝑐�𝑑𝜃𝑑𝑡�

4𝜋𝑓
,      (3) 

 where: f is the ADV operating frequency (16 MHz), 

  c is the speed of sound, and 

  θ is the phase angle, 

 

𝑑𝜃
𝑑𝑡

= 1
𝜏

tan−1 �𝑠(𝑡)𝑐(𝑡+𝜏)−𝑠(𝑡+𝜏)𝑐(𝑡)
𝑐(𝑡)𝑐(𝑡+𝜏)+𝑠(𝑡)𝑠(𝑡+𝜏)

�,       (4) 

 where: s(t) and c(t) are sin(θ(t)) and cos(θ(t)), respectively, and 

  τ is the time between transmissions. 

The probe emits two square sound waves which constitutes a pulse pair with a 

frequency of 16 MHz for each pulse-pair.  Square sound waves are used in electronics 

and signal processing and are a type of non-sinusoidal waveform that alternate 

instantaneously between two levels.  These sound waves are emitted at intervals 

dependent upon the sampling rate and the velocity range at which the particles are 

moving.  The velocity range is user defined and determines the repetition rate for each 

pulse-pair.  The repetition rate of the first pulse-pair is very small so that the ADV can 

compensate for the location of the phase change within one of the four quadrants.  The 

rate of the second pulse-pair is larger to allow for more accurate velocity measurements.  

The ADV uses the information from the pulse-pairs to create a radial velocity.  Using a 

transformation matrix, the radial velocity is converted to Cartesian coordinates.  This data 

is then averaged together to form a sample (Garcia 2005).   



17 
 

 

The time, T, required to make a single measurement is given in Equation 5 

(McLelland and Nicholas 2000): 

𝑇 = 3(𝜏1 + 𝜏𝐷 + 𝜏2 + 𝜏𝐷),     (5) 

 where: τ1 is the repetition rate for the first pulse-pair, 

  τ2 is the repetition rate for the second pulse-pair, and 

  τD is the time between pulse-pairs (dwell time). 

Once the ADV has collected all the data, it averages the x-, y-, and z-axis 

velocities from three receivers.  The average of these values is output as a single sample.  

Averaging these values takes time to calculate and must be completed before the next 

sampling period begins. 

A single sample output by the ADV is a collection of many measurements.  For 

one sample, the ADV collects data from all 3 receivers for a set time interval controlled 

by the sampling rate.  Higher sampling rates mean an overall shorter time period for 

measurement and thus less data is averaged per sample.  Each measurement from the 

ADV requires 6 pulse-pairs: 2 for each receiver (x, y, and z).  The time required for a 

measurement constrains the amount of measurements made per sample.  A graphical 

representation of the pulse-pair system for a single measurement of T = 0.003792 seconds 

at 250 cm/s is shown in Figure 10.  Table 1 shows the variation in parameters with 

varying velocity range presets. 
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Figure 10: Chart of a single measurement at 250 cm/s (first pulse pair in blue, second in red). 

 

Table 1: Parameters that vary with sampling rate and velocity range. 

  (x 10^-6 s)   # of Measurements per Sample at Sampling  Rate (Hz) 

Velocity 
Range 
(cm/s) 

τ1 τ2 
Velocity 

Measurement 
Time 

1 5 15 25 35 45 50 

250 40 104 0.003792 263 52 17 10 7 5 4 

100 48 128 0.003888 256 51 16 9 7 5 4 

30 112 240 0.004416 226 45 14 8 6 4 4 

10 240 480 0.005520 180 36 11 7 4 3 3 

3 400 800 0.006960 143 28 9 5 3 3 2 
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ADV Uncertainty 

The velocity measurements taken by the ADV have a main source of error based 

on Doppler noise.  The ADV user manual cites a maximum error of +/- 0.1% of the 

measured velocity with +/- 0.25 cm/s zero offset (Sontek Manual).  As a validation that 

the data is accurate and usable, the manual presents two quantities to be checked during 

acquisition: (1) the signal to noise ratio (SNR) which is the difference between the peak 

sound of the received wave to the baseline noise level (Krause 1994); and, (2) the 

correlation coefficient which is a ratio of the coherent signal strength to the total signal 

strength of each received signal.  One correlation is output per receiver (three in total) 

given by the equation (Fisher, Miller, Quick 2002): 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑆𝑖2

�𝑆𝑖2+𝑁𝑖2�
 ,    (6) 

 where: Si is the coherent signal strength, and 

  Ni is the noise in each received signal. 

 The Sontek manual recommends that the SNR value should be greater than 15 dB 

and the correlation should be above 70% for reliable measurements.  Doppler broadening, 

velocity shear and errors due to phase ambiguity are the three main causes of the noise 

component in a velocity measurement.  These three combine to a total variance value for 

a velocity measurement.   

 In order to place the ADV probe in the same location to take repeatable 

measurements, the 3D positioning device is used to move the probe to set locations in the 

flume. 
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3.2.2 3D Positioning Device 
 The traversing gantry, with the capability to connect various measuring probes, is 

moved through three stepper motors which includes feedback to the control panel with 

manual settings of displacements from the user-defined origin.  The system can be 

programmed with up to 99 presets to easily position the device in certain set locations for 

repeated measurements.   

The gantry, shown in Figure 11, can move in the x-, y- and z-directions.  Each of 

the three stepper motors is accurate in placing the gantry at the predetermined locations, 

as was determined with verification measurements to make sure the same 3D location 

was precisely reached.  This was verified by directing the gantry to different locations, 

then set back to the initial position and measurements were taken manually to make sure 

the device reached the correct location with minimal error.  The error in the gantry device 

in repeatedly placing the ADV in precise preset locations is approximately +/- 0.001 

inches.   

 

Figure 11: 3D positioning device (gantry). 

Stepper Motors 
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 Due to the limited number of available preset locations, presets can be changed 

and re-defined based on the experimental tests and how many total points are needed.   

3.2.3 Tailgate Flow Control Device 
 At maximum flow rate, the water in the flume can only reach depths of up to 3 

inches.  In order to attain larger flow heights for model testing in the flume, a tailgate (or 

weir flow control device) was installed at the end of the flume outlet.  Different tailgate 

heights (3”, 4”, 5”, 9”) were tested to achieve proper flow heights.  The tailgate plates are 

bolted and unbolted onto the support structure and anchored in place with support 

brackets that are clamped to a cross-brace at the end of the flume as shown in Figure 12.  

Since the maximum diameter of the model MHK device to be tested is approximately 4 

inches, it was deemed necessary to have at least one diameter of water above and below 

the model, yielding 12 inches of water depth in total.  This helps maintain consistency 

and prevent any unwanted boundary or surface effects for the experimental conditions.  A 

picture of the tailgate is shown in Figure 12. A depiction of the model turbine in place 

with appropriate water depth is shown in Figure 13. 

 

Figure 12: 9 inch tailgate 
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Figure 13: Model turbine with appropriate water depth. 

At 800 GPM, this volumetric flow rate creates a 3 inch overflow depth (height of 

the water that flows above the tailgate obstruction in the flume) over a 9 inch tailgate 

which is used to produce a consistent depth of 12 inches throughout the flume.  The flow 

of the water over the tailgate with a 9 inch plate is shown in Figure 14. 

 

Figure 14: 9 inch tailgate with nappe. 

3 inches 

9 inches 

Flow 
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3.2.4 Sediment Insert 
 The main purpose of the insert is to hold sediment in a test section for 

experimentation.  The design for the test section is a 2 feet by 2 feet by 3 inch deep 

square hole.  In order to create the depth, the insert has a ramp which starts flush with the 

bed of the flume and rises to 3 inches over a distance of approximately 55 inches.  Figure 

15 is a picture of the entire insert as it is located in the flume. 

 

Figure 15: Overhead view of sediment insert. 

Following the ramp, the test section allows for a volume of 432 cubic inches of 

sediment.  The test section is located in the middle of the insert (12 inches in from each 

wall) to avoid any wall effects or boundary conditions from the sides of the flume.  This 
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location is important because the MHK model device with sediment is tested in this area.  

After the test section is the collection portion of the insert which is used for retaining 

displaced sediment from the scour induced by the flow.  There are three sections which 

are used to collect the sediment before being washed away downstream.  The insert is 

approximately 10 feet long, which accounts for about a third of the total length of the 

flume.  Pictured in Figure 16 is a cross-section of the sediment insert to illustrate the 

ramp, test section, and three baffles behind the test section to collect sediment. 

 

Figure 16: Cross-section of sediment insert with sediment. 

 

3.2.5 Significance of Components 
Each component in the flume plays an important role to the success of the 

experimental set-up.  The goal of the set-up is to replicate an environment in which 

model hydrokinetic devices will be placed.  It is important that the overall testing 

platform has components that will allow for repeatable measurements, have minimal 

effects on the integrity of the measurements and replicate the desired environment in the 

best way possible.  The specific purpose of each component contributes to the overall 

effectiveness of the platform in separate ways.  The ADV is the instrument used to make 

measurements, specifically to characterize the flow by measuring velocities at given 

points.  The 3D positioning device is used to accurately place the probes, such as the 
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ADV, in locations for repeatable measurements.  The tailgate is used to maintain the 

water height, one diameter above and below the model MHK device, for testing.  The 

sediment insert is where sediment can be placed in the flume in a controlled manner.  The 

test section allows for a focal point in the flume where the effects of sediment scour and 

erosion due to flow conditions can be isolated and measured without any boundary 

effects from the side walls of the flume.   

4.  Results and Analysis 

4.1 Flow Velocity in the Hydraulic Flume Facility – Preliminary Testing 
 A basic understanding of the capabilities of the flume was attained and 

documented before any further steps were taken to modify the flume.  Using the ADV, 

velocity profiles along the width and length of the flume were created at different flow 

rates and pitch angles without any components in place (i.e. sediment insert, flow control 

devices).  Over the course of creating these profiles, a methodology for repeatable 

velocity measurements was developed.  A literature review of the ADV system was 

conducted to understand how the probe works to validate its use as an accurate 

instrument to measure water velocity.  An in-depth review of the probe was provided in 

Section 3.2.1 of this thesis. 

 A full flow velocity characterization in the flume at different locations was 

necessary to determine the optimal location for placement of model MHK devices to 

conduct experiments.  Velocity samples were taken every 5 feet along the axial length of 

the flume.  Six data points were taken at each of these downstream locations along the 
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transverse width of the flume.  The data points were taken 0.5 feet from the origin in the 

transverse direction with each successive point in increments of 0.5 feet until reaching 3 

feet.  Figure 17 shows the locations of the data points taken for the full flume flow 

velocity characterization. 

 

Figure 17: Overhead view of flume with test point matrix. 

Each sample was measured for one minute and the data was compiled and 

analyzed in Microsoft Excel. All data values recorded were a measurement of the x-

component of velocity in the direction of flow. The average water depth was 12 inches. 
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Figure 18 depicts the results of the test.  Within the 6 sets of axial locations along the 

length of the flume, a recurring arcing trend can be observed.  The average velocity for 

the set of all axial and transverse data locations was approximately 0.47 ft/s (average 

velocity throughout the entire flume). Due to: the relatively small fluctuations in the 

velocity profile across the 20 feet axial location; a large volume of space available both 

upstream and downstream (shown in Figure 17); negligible tailgate effects; and back 

water accumulation, this area was determined to be best for locating the testing section.   

 

Figure 18: Full flume velocity profile (sampling volume height (z) is 6 inches from bottom of flume). 

Discrepancies in the velocity profiles at the different axial locations in the flume 

can also be attributed to the sampling volume being maintained at the same vertical plane 

height while slight variations in the water height along the length of the flume were 

noticed. Since the velocity of the fluid is maximum at the surface of an open channel 

flow, the sampling volume being closer to the surface at low water depths results in 
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higher velocities. Although the flow velocity profiles shown in Figure 18 are not uniform, 

it is an improvement over the initial velocity profiles generated prior to inserting angle 

irons into the diffuser.  This was done to help create a more even velocity profile across 

the width of the flume.  The angle irons in the diffuser create resistance in the flow and 

cause a more even distribution of velocity across the width of the flume.  Figure 19 

shows an overhead view of the diffuser with the flow conditioning devices.   

 

Figure 19: Flow conditioning devices in diffuser. 

The next step in understanding the facility was using the tilting capabilities of the 

flume to demonstrate the effect on the flow velocity.  Testing was done at 0.4, 1.0, and 

1.4 degree slopes at one flow rate: 800 GPM.  These slopes were chosen based on the 

facility limitations.  The values span a wide range of slopes which help illustrate the 

behavior of the flow velocity as a function of the tilt angle.  As shown in Figure 20, at 0.4 
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degrees, the velocity profile was fairly constant at 0.5 ft/s.  At 1.0 degree, 0.5 feet from 

the origin in the transverse direction, the flume experienced a higher water velocity of 

0.63 ft/s while 3 feet from the origin in the transverse direction the velocity was 0.48 ft/s.  

As the slope increased to 1.4 degrees, the velocity profile in the flume demonstrated a 

preferential direction at the 0.5 feet transverse location due to the presence of flow 

disturbances in the water inlet diffuser. The velocities ranged from highest to lowest 

across the flume with a difference of more than 1 ft/s.   

 

Figure 20: Velocity profile at various slopes 20 feet downstream at 800 GPM (sampling volume height (z) is 6 
inches from bottom of flume). 

  

 Changing the pitch angle caused a greater destruction of an even velocity profile 
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degrees, the average velocity is appropriate for power extraction measurements, the 

change in velocity between the two sides of the flume is too large and flow conditions 

cannot be maintained.   

 It was determined that the friction loaded model MHK device requires a flow 

velocity greater than 1 ft/s to be able to spin a shaft.  At the current velocity at 0o slope, 

the revolutions per minute of the model device were approximately 52.  Doubling this 

amount is necessary because most small motors are rated at about 800-1000 RPM and 

limitations on gear reduction would only allow around 100 RPM to be effective.  The 

uneven increase in velocity generated an unsteady hydraulic jump where different flow 

regimes formed upstream and downstream of the disturbance.  Hydraulic jumps are 

described using Froude number Fr, which is a dimensionless number that defines the 

ratio of a characteristic velocity to a gravitational wave velocity.  This is also described as 

the ratio of the fluid’s inertia to gravitational forces.  In the flume, Froude number is used 

to establish the resistance of an object moving through water.  In this case, the Froude 

number upstream of the jump was greater than one (supercritical) and the downstream 

value was less than one (subcritical).  When the Froude number is equal to one, the flow 

is said to be critical.  The Froude number is calculated using Equation 7 for rectangular 

cross-sections with uniform flow depth, d (Cengel and Cimbala 2010): 

𝐹𝑟 =  𝑉
�𝑔𝑑

,           (7) 

 where: V is the velocity, 

  g is the gravitational constant, and 
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   d is the depth of the water. 

During critical flow, when the Froude number is equal to one, the inertia forces 

are balanced by the gravitational forces.  For further testing in the flume and the 

development of the testing platform, the goal is to avoid hydraulic jumps and maintain a 

uniform subcritical flow that replicates the characteristics of a wide slow moving river in 

which these devices will be placed.   

4.2 Flow Device to Increase the Velocity in the Flume 
 In order to maintain subcritical flow and avoid hydraulic jumps, several options 

were considered to increase the velocity of the flow.  One possible option was creating an 

obstruction immediately after the water discharge site that would build up water behind 

it, then release it at a faster velocity as it cascaded over the obstruction.  Another 

possibility was to build and install a nozzle or contraction insert which decreases the 

cross-sectional area of the flow, thus increasing the velocity in order to maintain a 

constant flow rate.  The governing equations which justify the increase in velocity are 

outlined later in this section.  This option was deemed the most practical and simple way 

to achieve the desired velocities in the test section.  The design goals of a nozzle are to 

increase the velocity while maintaining flow uniformity (Ida at al. 2003).  Some 

important parameters in nozzle design include: contraction ratio, length, and shape, which 

all directly affect the quality of the flow through the device (Wetzel & Arndt 1994).  For 

example, the larger the contraction ratio the flow is more uniform and tends to have lower 

turbulence levels in the test section downstream of the contraction; and the length of the 

contraction should be short to reduce boundary layer development (Wetzel & Arndt 
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1994).  In general, when flow is forced through a contraction, the convective acceleration 

of the fluid distorts the velocity profile symmetrically about the vertical centerline axis 

(Howes et. al 2010).  Additionally, the contraction inlet should be designed to limit flow 

separation at the entrance by having a smooth bell-mouthed entry which will suppress 

turbulence and ultimately reduce velocity non-uniformity throughout the device 

(Walmsley 1999).  The magnitude of the pressure and the spatial gradient of pressure 

through the contraction, if immoderate, will yield boundary layer separation (Wetzel & 

Arndt 1994).  The nozzle insert helps to accelerate the flow and create velocities similar 

to that of a river environment.   

4.2.1 Design Concept of the Nozzle 
As a rough preliminary test to demonstrate the nozzle would work, a prototype 

was constructed out of plywood.  Using 2 pieces of 4 feet by 8 feet plywood, 4 sets of 

1.25 feet by 4 feet sections were cut and attached together using door hinges.  Each piece 

of wood was water-proofed with deck sealant to make sure the wood would not warp.  

Sets of “L” brackets were mounted to the back of each of the pieces to allow for easy 

anchoring.   

The nozzle was bolted together and anchored down using steel straps that were 

laid across the top of the flume and clamped down to make sure the nozzle would not 

float away downstream.  The prototype was adjustable to nozzle exit sizes of 2 feet, 2.5 

feet and 3 feet to allow for each to be thoroughly analyzed and tested before a final 

decision was made.  A picture of the wooden prototype nozzle is shown in Figure 21. 
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Figure 21: Wooden prototype nozzle. 

 Plots comparing the velocity data with the 2 feet nozzle size and without the 

nozzle are shown in Figure 22 at 0o slope and in Figure 23 at 1o slope.  The values shown 

are the x-components of velocity measured by the ADV. The velocity doubles with the 

use of the nozzle.   

 

Figure 22: Velocity profile at 800 GPM 20 feet downstream with 0 degree slope (sampling volume height (z) is 6 
inches from bottom of flume, 2 feet nozzle test section size). 
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Figure 23: Velocity profile at 800 GPM 20 feet downstream with 1 degree slope (sampling volume height (z) is 6 
inches from bottom of flume, 2 feet nozzle test section size). 

As shown in Figure 24, the velocity in the test section of the nozzle insert 

increases with variations in pitch angle and an increase in flow rate.   

 

Figure 24: Nozzle prototype with 2 feet test section with varying pitch angle (sampling volume height (z) is 6 
inches from bottom of flume). 
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4.2.2 Theoretical Description of the Flow through the Nozzle 
To verify the effectiveness of the nozzle, a detailed analysis of the velocity 

throughout the nozzle was performed.  Theoretical predictions of the velocity through the 

nozzle were calculated using the continuity equation.  Since the flow rate through the 

flume is constant, the rate which the mass enters the system is equal to the rate which the 

mass leaves the system. The continuity equation shown in Equation 8 can be used.  It 

“states that the time rate of change of mass within the control volume plus the net mass 

flow rate through the control surface is equal to zero” (Cengel and Cimbala 2010). 

𝑑𝑚𝑠𝑦𝑠

𝑑𝑡
= 𝑑

𝑑𝑡 ∫ 𝜌𝑑𝑉𝐶𝑉 + ∫ 𝜌 𝑉�⃗  𝑑𝐴𝐶𝑆 ,               (8)  

where: t is the time, 

 ρ is the density of the fluid, 

 V is the volume, and 

 A is the cross-sectional area. 

Some of the assumptions made for the nozzle were: steady state, 1D flow, 1 inlet, 

1 outlet, as well as integrating across the nozzle control volume.  For this case, Equation 

8 can be simplified to Equation 9 since the flow rate of the water through the flume is a 

constant 800 GPM. 

�̇�1 = �̇�2 ,                (9)  

 where: �̇� is the volumetric flow rate of the water, and 

  �̇�2 is a point downstream of �̇�1. 
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 At each cross-section in the nozzle where the velocity was calculated, Equation 

10 was used. 

�̇� = 𝑉𝐴 ,                                 (10) 

 where: V is the assumed integrated average velocity of the water, and 

  A is the cross-sectional area of the nozzle. 

By using the adjustable wooden prototype, Equation 9 was tested where a 

decrease in cross-sectional area produces an increase in velocity to maintain a constant 

flow rate.  After testing each option (i.e. 2, 2.5 and 3 feet test section sizes), a 2 feet 

nozzle test section size was deemed the optimal size by meeting required water velocity 

for power extraction studies and allowing room to mount the model MHK device or other 

cylinders in the test section.  Preliminary testing with the nozzle in place was done at a 2 

feet nozzle test section size at both 800 and 1000 GPM while varying pitch angle to 

understand how velocity would change (see Figure 24). 

4.2.3 Design of the Permanent Nozzle Insert 
 Using the preliminary data from the wooden contraction, a permanent nozzle 

insert for the flume was designed.  The nozzle was designed to fit with the existing 

sediment bed insert and allow the 3D positioning device situated along the top of the 

flume to which the ADV probe is mounted to traverse overtop the insert.  The fabrication 

and construction of the nozzle insert was done in the Project Development Lab (PDL) in 

the Dana Engineering building.  Final specifications for size and shape for a permanent 

nozzle insert were created based on the dimensions of the existing sediment bed insert.  
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In a paper by Howes, Burt and Sanders in 2010: “The subcritical contraction walls and 

floor should be relatively smooth. The height of the contraction should be set with 

sufficient freeboard so that overtopping does not occur…The floor of the contraction 

should be at the same elevation as the existing channel bed” (Howes et al. 2010). The 

design was modeled using Pro/Engineer to ensure the nozzle would fit in the flume in 

conjunction with the sediment bed insert.  Materials for the nozzle, polyethylene and 

acrylic, were chosen based on their smoothness and low cost.  The bottom of the nozzle 

follows the incline of the ramp of the sediment insert to maintain a constant elevation 

leading into the test section.  Further improvements were made from the initial wooden 

prototype including a curved entry, a transparent test section and a diffusing section.  The 

diffusing section of the contraction decelerates the flow after passing through the test 

section and prevents any unwanted swirling or wall effects from stagnant water lying on 

the outer sides of the test section.  The nozzle was designed to sit flush with the 

maximum height of the flume, maintaining a constant height of 15 inches.  This prevents 

overtopping from occurring.  The entry of the nozzle is curved following an equation 

used in the construction of low speed wind tunnels.  The curve helps to prevent 

separation of the flow along the walls as it enters the test section by use of two curves 

combined at an inflection point located 30 inches from the entrance of the nozzle 

(Watmuff 1986). For best results, “a contraction should be designed to prevent flow 

separation along its walls and also to minimize exit plane boundary layer thickness and 

flow non-uniformity” (Doolan 2007). The fifth-order polynomial equation used to define 
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the curvature is shown in Equation 11 with the only controllable parameter being the 

overall length of the contraction (Doolan 2007). 

ℎ = (−10𝜉3 + 15𝜉4 − 6𝜉5)(ℎ𝑖 − ℎ𝑜) + ℎ𝑖    (11) 

 where: h is the distance from the centerline of the flume, 

  𝜉 is the position of the contraction walls normalized over the length of the  
  contraction (x/L), 

  x is the distance from the contraction inlet, and 

  L is the overall length of the contraction. 

 Shown in Figure 25 is a schematic of the shape of the walls and the path of the 

water through the nozzle as it contracts from 4 feet to 2 feet. 

 

Figure 25: Representation of nozzle concept and design. 

 

55 inches 
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To build the curves, flexible 1/8 inch polyethylene was used to follow the contour 

of the more rigid ½ inch polyethylene.  The thicker polyethylene was marked and cut 

using a jigsaw to make sure the desired curve was followed.   

Since the existing sediment bed insert rises to a 3 inch height over a 55 inch span, 

the contraction portion of the nozzle followed this feature to maintain a consistent 15 inch 

height leading into the test section so the traversing gantry can freely move along the 

length of the flume.  An overhead picture of the permanent nozzle and sediment insert 

can be seen in Figure 26.   

 

Figure 26: Overhead picture of the permanent nozzle. 
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The test section was made using transparent acrylic for easy visualization of the 

flow so optical diagnostic instrumentation such as a Particle Imaging Velocimetry (PIV) 

system can be used.  The pieces were cut to a size 1 foot tall by 2 feet wide to span the 

entire distance of the test section.  Triangular pieces of acrylic were cut as perpendicular 

support structures and were anchored to the insert using ‘L’ brackets with holes in which 

screws were drilled.  A picture of the ‘L’ shaped support brackets can be seen in Figure 

27.   

 

Figure 27: Overhead view of support brackets of acrylic pieces. 

Using pieces of ½ inch polyethylene, the diffusing section was made by cutting 1 

foot tall by 3 feet wide sections that are anchored to the sediment insert by use of ‘L’ 

brackets on both the insert and diffuser pieces (shown in Figure 28).  The use of the 

‘L’ shaped 
support brackets 
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diffusing section prevents flow separation which would occur if the contraction abruptly 

stopped after the test section.   Flow separation is the process in which when “a fluid is 

forced to flow over a curved surface, such as the back side of a cylinder, the boundary 

layer may no longer remain attached to the surface and separates from the surface” 

(Cengel and Cimbala 2010).  In the case of the test section and the diffuser, vortices shed 

by the walls of the nozzle could contaminate the flow in the test section.  The fast flowing 

water meeting the stagnant water sitting outside the test section would cause flow 

disturbances that would propagate upstream into the test section and possibly skew 

experimental results.  The diffusing section guides the water out of the test section 

without inducing any disturbances upstream. 

 

Figure 28: Mounting brackets for diffusing section of nozzle.  

‘L’ shaped mounting bracket 



42 
 

 

4.2.4 Velocity Data through the Nozzle 
Experimental values for the velocity in the nozzle were taken using the ADV 

probe.  The nozzle was divided into five sections, 12.375 inches apart in the axial 

direction starting from the beginning of the nozzle.  A total of 26 points were measured 

and each row was averaged to find the mean velocity across the width of the flume 

section.  The sampling volume height was maintained at a constant six inches from the 

ramp for each of the points.  The location of the measured velocity values can be seen in 

Figure 29.  The calculated theoretical values using Equation 9 are shown in Table 2.  

Figure 30 shows the increase in velocity as the water moves through the nozzle.  Due to 

limitations of the 3D positioning device, locations farther than three feet from the wall in 

the transverse direction could not be measured.  These measurements were done before 

the sluice gate and honeycomb straightener were added to the flume. As observed in 

Figure 29, close to the exit of the contraction at the boundary, an overshoot of velocity 

occurs. This is accompanied by a drop in boundary pressure and has also been reported in 

recirculating water tunnel contraction data (Wetzel & Arndt 1994). 
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Figure 29: Overhead photo of nozzle with scaled velocity vectors at measurement points (all values in ft/s, only 
x- and y-components used for velocity vectors). 
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Table 2: Theoretical values at the first five rows in the nozzle using Equation 10 (assuming 12 inch water 
height). 

Row 

Location relative 

to start of nozzle 

(in) 

Height of water 

relative to height of 

insert (in) 

Width of 

nozzle 

(in) 

Area 

(ft2) 

Vtheoretical 

(ft/s) 

Vexperimental 

(ft/s) 

1 0.00 11.50 47.50 3.79 0.47 0.46 

2 12.38 11.13 45.00 3.48 0.51 0.53 

3 24.75 10.51 37.25 2.72 0.66 0.65 

4 37.13 9.89 27.75 1.91 0.94 0.91 

5 49.50 9.28 24.00 1.55 1.15 1.19 

 

 

Figure 30: Graphical representation of the increase in velocity in the nozzle. 
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4.3 Measurement Methods to Predict Scour and Erosion 
 Due to the presence of model MHK devices which obstruct the flow, scour and 

erosion patterns form along the sediment bed which is analyzed using an HR Wallingford 

2D bed profiler.  This bed profiler is capable of yielding bed form topology in a 

laboratory setting which will provide insight into how actual river beds respond to the 

addition of hydrokinetic devices.  Additionally, results from tests done with the profiler 

provide preliminary data on the optimal design of support structures for the devices. The 

basic concept of sediment scour around structures in flows can be seen in Figure 31.    

 

Figure 31: Drawing of sediment displacement around a cylindrical element (adapted from Sandia National 
Laboratories). 

4.3.1 Initial Tests with a Point-Gauge 
 Collecting data to estimate scour rates or bed form topology can be done in many 

ways.  Before receiving the 2D bed profiler, bed form topology was generated using a 

point-gauge attached to the gantry.  The point-gauge was zeroed at the base of the test 

section and the height of the sediment was measured as a delta or difference from the 

zero condition.  A portrayal of the erosion of the sand in the test section after five minutes 
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of running water is shown Figure 32.  Although a sieve analysis was done on a coastal 

sand sample, not enough sand was available to fill the test section. For this experiment, 

Red Flint Filter and Industrial sand was used for preliminary testing.  A close-up picture 

of the scour around the cylinder is shown in Figure 33.  A 2D graphical result of the data 

using the point gauge is shown in Figure 34. The 3D results using the point gauge are 

shown in Figure 35. 

 

 

Figure 32: Sediment in test section. 
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Figure 33: Erosion around cylinder in test section. 

 

 

Figure 34: 2D sediment profile across a cylinder. 
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Figure 35: 3D sediment profile across a cylinder. 

 

4.3.2 2D Bed Profiler System 
 Using the capabilities of the HR Wallingford 2D profiler, topographical plots of 

the bed form were constructed.  Upon receiving the 2D profiler, the system was set-up 

and the profiler was placed into the flume to be tested to ensure the system operated 

properly.  The track, traverse and laser probe are shown in Figure 36. 
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Figure 36: HR Wallingford Sediment Profiler. 

 

 The track of the profiler was bolted to two 4.5 feet long sections of 2 inch by 4 

inch wood.  The wood pieces straddled across the width of the flume and were anchored 

using C-clamps.  This set-up can be seen in Figure 37.   

 

Figure 37: Preliminary set-up. 

Track 

Laser Probe 

Traverse 
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 The traversing system moves along the track using a gear on a motor that works 

like a rack and pinion system.  Another motor connects to the track on the laser probe by 

way of a similar rack and pinion device as shown in Figure 38.  The probe is held onto 

the motor by two gears and a passive spring which create three points of contact to hold 

the probe in place.  The probe plugs into the top of the motor and then through a second 

cable which sends the data to a connected central hub that then connects to the computer.   

 

Figure 38: Traversing system. 

4.3.3 Tests with the 2D Profiler 
Initial testing using the sediment profiler yielded the data shown in Figure 39.  

This testing was done without sediment to see how the system would perform.  The probe 

was zeroed behind the diffusing section of the nozzle sediment insert and was set to run 

across the three baffles of the sediment collecting area.  Since the flume and insert are 

made of Plexiglas and polyethylene, respectively, the laser passed through the material 

until it hit the metal support bracing underneath it.  This explains the negative starting 
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value and the negative baseline values as the probe traversed the three baffles. Figure 40 

shows the location of where the initial test was taken. 

 

Figure 39: Preliminary profiler testing. 

 

 

Figure 40: Location of initial profiler testing. 

 After encountering errors without sediment due to the material of the flume and 

insert, sand was placed in the first of the three baffles to see how the touch probe would 

traverse across the section.  The flume was run for 2 hours and the sediment in the baffle 

was profiled.  A picture of the actual sediment is shown in Figure 41.  The red line on the 

photograph shows the contour of the top of the sediment where the data was taken.  The 

plot produced by the sediment bed profiler is shown in Figure 42.  A total of 58 data 
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points were taken every 0.2 inches along the length of the baffle for approximately 11 

inches.   

 

Figure 41: Eroded sediment in baffle (red line indicates top of sediment). 

 

Figure 42: Sediment displacement plot with touch probe. 
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 To determine the amount of sediment displaced by scour and erosion, a method 

based on Riemann sums was developed to use the data provided from the bed profiler.  

Since the distance (step value) between each point on the plot is approximately 0.2 

inches, the height is multiplied by the step value to create a series of rectangular areas.  

These 58 rectangles were added together to produce an approximate total area.  The 

approximate amount of sediment displaced, assuming a perfectly level initial condition of 

the bed, is 6.39 inches2.  This only accounts for one profile across the length of the baffle 

out of infinitely many cross-sections of the sediment bed.  With a new permanent 

mounting system for the bed profiler, the distance between each profile across the width 

of the flume will be used to determine a volume of displaced sediment.  With this 

information, scour rate can be determined using the volume of displaced sediment along 

with the period of time needed to move the sediment. 

4.4 Baseline Reference Conditions of the Hydraulic Flume 
 With both the sediment and contraction inserts in place, test results verify baseline 

reference conditions after theoretical calculations and data analysis are conducted. Data 

for multiple flow discharge rates is used as a comparison for studies performed in the 

future.  Two new conditioning devices were added in an attempt to create a more constant 

velocity profile across the width of the flume.  A sluice gate was added following the 

water discharge site about 3 feet downstream.  A honeycomb was also added 1.5 feet 

downstream of the sluice gate.  A schematic of the full flume with the components in 

place along with the nozzle sediment insert and tailgate is shown in Figure 43. 
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Figure 43: Full flume schematic (not to scale).   

 Having these new conditioners along with the nozzle sediment insert, it was 

necessary to measure a velocity profile across the width of the flume at a location after 

the sluice gate and straightener to understand the effects it has on the flow.  This allows 

for baseline reference conditions to be documented for later use.  When future testing is 

being done, these conditions can be referenced to make backwater calculations and 

determine energy losses when the model MHK device is in place based on components 

upstream of the test section.  

 A location prior to the nozzle was chosen to take measurements for the velocity 

following the flow conditioning devices. The approximate location is shown in Figure 43.  

The velocity measurements were taken at six points across the flume starting 6 inches 

away from the origin and moving in the transverse direction in increments of 6 inches 

until reaching a distance of 3 feet.   Each set of six points were taken at three different z-

locations: a sampling volume location of 5.5, 7.5 and 9 inches from the bed (bottom) of 

the flume.  Each set of measurements was made for a flow rate of 700, 800 and 900 

GPM.  Each point was taken for a 5 minute interval at a sampling rate of 10 Hz using the 

ADV probe.  Figure 44 shows the basic shape of a velocity profile of a turbulent flow 

Testing Location 
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over a flat plate.  The velocity, u, is used to describe the flow.  There is a no-slip 

condition at the bottom boundary where the fluid is bounded by the wall, u(Z=0)=0.  At 

the free surface, the flow reaches a maximum velocity defined as u(Z=12) = U∞.  The 

data from the experiment is shown in Table 3.  A velocity profile plot similar to what is 

illustrated in Figure 44 was observed in the data through an increase in velocity with 

depth. 

 

Figure 44: Schematic of a turbulent velocity profile. 

 Figure 45 shows a non-dimensionalized plot of the boundary layer at the 

beginning of the nozzle to support the presence of a turbulent boundary layer. Points 

were taken at a sampling volume starting at the bottom of the flume and increased in the 

z-direction at a 1/8 inch interval.  A total of 81 points were measured.  Z/δ is the non-

dimensionalized height of the sampling volume and u/U is the non-dimensionalized 

velocity.  The magnitude of velocity, U, is used “as the characteristic velocity scale for 

Flow direction 
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boundary layers” (0.45 ft/s) while the length scale, δ, (10 inches) is the distance normal to 

the streamwise direction with respect to Z (Cengel and Cimbala 2010).  The curve Z/δ(1/2) 

represents the laminar boundary layer while the transition to turbulence occurs at Z/δ(1/7) 

based on the Blasius laminar boundary layer solution, which is defined by the one-

seventh-power law (Cengel and Cimbala 2010). The actual data set most closely follows 

the Z/δ(1/8) curve. Since the one-seventh-power law states that anything above one-

seventh is turbulent, the flow at the beginning of the nozzle can be assumed to be 

turbulent flow. 

 

Figure 45: Non-dimensionalized turbulent boundary layer. 
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Table 3: Velocity (ft/s) across width of flume after sluice gate (x-component of velocity). 

Location along y-direction (ft) 
Flow Rate 0.5 1 1.5 2 2.5 3 Avg Velocity (ft/s) Height (inches) 

700 GPM 
0.432 0.446 0.429 0.412 0.382 0.403 0.417 5.5 
0.448 0.453 0.446 0.415 0.412 0.429 0.434 7.5 
0.469 0.474 0.456 0.417 0.426 0.456 0.450 9 

800 GPM 
0.483 0.486 0.472 0.448 0.429 0.447 0.461 5.5 
0.486 0.494 0.484 0.452 0.477 0.493 0.481 7.5 
0.519 0.532 0.501 0.48 0.479 0.521 0.505 9 

900 GPM 
0.52 0.503 0.51 0.494 0.484 0.536 0.508 5.5 

0.535 0.509 0.508 0.492 0.542 0.523 0.518 7.5 
0.547 0.537 0.536 0.504 0.498 0.58 0.534 9 

 

The plot in Figure 46 shows the height of the sampling volume versus the average 

velocity across the width of the flume.  As the flow rate increases, the average velocity in 

the profile increases.  The velocity profiles in Figure 46 do not exactly follow the 

turbulent velocity profile shown previously, but this variation can be attributed to the 

values being an average across the width of the flume. 

 

Figure 46: Varying sampling volume height at different flow rates (x-component of velocity). 
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 With the sampling volume at a height of 5.5 inches from the bed of the flume, the 

velocity profile at the three different flow rates are shown in Figure 47.  The velocity 

profile across the flume stays fairly consistent without any outlying velocity points. 

 

Figure 47: Velocity profile at 5.5 inch sampling volume height (x-component of velocity). 

 To prove the effectiveness of the sluice gate and straightener, energy calculations 

were completed using the mechanical energy equation to ensure that the velocity of the 

water after the flow control devices was faster with minimal head losses.  For a steady, 

incompressible flow, the total mechanical energy of a liquid is given as (Cengel and 

Cimbala 2010): 

𝐻 = 𝑦 + 𝑉2

2𝑔
+ 𝑆𝑜𝑥,      (12) 

 where: H is the energy, 

  y is the pressure head in an open channel flow, 
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  x is the location along the length of the flume, 

  g is the acceleration due to gravity, 

  V is the velocity of the liquid, and 

  𝑆𝑜𝑥 is the elevation of the bottom of the flume (So is the slope). 

 Modifying Equation 12, the energy upstream and downstream of the sluice gate 

and straightener was calculated using the energy equation (Equation 13) where section 1 

is a point upstream of the sluice gate and section 2 is a point downstream: 

𝑆𝑜𝑥1 + 𝑦1 + 𝑉12

2𝑔
= 𝑆𝑜𝑥2 + 𝑦2 + 𝑉22

2𝑔
+ ℎ𝐿,    (13) 

 where: ℎ𝐿 is the head loss across the flow conditions. 

 Figure 48 shows the control volume where Equation 13 was used with (1) being 

upstream of the sluice gate and (2) being downstream of the straightener. 

 

Figure 48: Sluice gate control volume (1 is upstream of sluice gate, 2 is downstream). 

 

 Table 4 shows the values of flow rate, velocity, water flow depth and head loss 

upstream and downstream at each of the three flow rates tested. For all three flow rates 

1 2 
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the flume was at a slope of zero (So = 0). Upstream and downstream water depths were 

measured for each flow rate. The average upstream velocities were calculated using 

Equation 10 while the average downstream velocities were measured using the ADV.  

These values were then used in Equation 13 to calculate the head loss between the 

upstream and downstream locations. 

Table 4: Head losses involved in use of sluice gate. 

Flow Rate 
(GPM) 700 800 900 

Location Upstream Downstream Upstream Downstream Upstream Downstream 

Elevation (ft) 3.27 3.27 3.27 3.27 3.27 3.27 

Sox (ft) 0 0 0 0 0 0 

Flow Rate (ft3/s) 1.560 1.734 1.783 1.990 2.006 2.166 

Vavg  (ft/s) 0.371 0.434 0.411 0.482 0.446 0.520 

Flow Depth (ft) 1.052 1.000 1.083 1.031 1.125 1.042 

Head Loss (ft) 0.000 0.051 0.000 0.051 0.000 0.082 

Energy Head (ft) 1.054 1.003 1.086 1.035 1.128 1.046 
  

The energy curves for each respective flow rate (700, 800 and 900 GPM) are 

shown in Figures 49, 50, and 51, respectively.  The energy curve is created using the 

upstream and downstream flow rates and water heights of the control volume as well as 

the width of the channel.  The MATLAB program used to create these curves is attached 

in Appendix I.  The solid line on the plot represents the energy before the sluice gate at 

point 1 and the dotted line represents the energy downstream at point 2 as shown in 

Figure 48.  The vertical difference between points 1 and 2 in Figure 49 is the change in 

water height and the horizontal difference is the loss of energy (head loss) due to the 
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sluice gate and straightener.  All values on the curves below the critical depth are 

supercritical while all values above the critical depth are subcritical. 

 

 

Figure 49: 700 GPM energy curve (using velocity and water height data from control volume of sluice gate and 
straightener). 
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Figure 50: 800 GPM energy curve (using velocity and water height data from control volume of sluice gate and 
straightener). 

 

Figure 51: 900 GPM energy curve (using velocity and water height data from control volume of sluice gate and 
straightener). 
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 At flow rates of 700 and 800 GPM, the head loss across the flow conditioner is 

approximately 0.051 feet.  For a flow rate of 900 GPM, the loss in energy is 

approximately 0.082 feet.  Although there is loss in energy, the average velocity 

downstream of the sluice gate increases, which is compensated by a decrease in flow 

depth.  For each flow rate, the average increase in velocity of the flow is approximately 

0.064 feet per second.  By adding the sluice gate and straightener, a minimal head loss 

was achieved while both increasing the flow velocity, as well as producing a more 

uniform velocity profile across the width of the flume. 

5.  Conclusions/Future Work 

In summary, the full flume velocity profile was crucial in understanding how the 

flow through the flume behaved without any components or inserts in place.   It is 

important to know all capabilities of equipment before making any changes or upgrades 

to a system.  After realizing that both the tilting capabilities and varying flow rate were 

not enough to reach appropriate velocities, new steps were taken to design and create 

components to aid in creating new baselines for the flume.  These steps included 

researching different ways to increase flow velocity while taking into account how they 

would work with the existing components already in the flume. 

Next, by designing and creating a nozzle insert to work in conjunction with the 

sediment insert, the water velocity in the flume was doubled, while maintaining the 

ability to have both components placed in the flume.  More importantly, the design of the 
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contraction was created to allow for future work to be done more easily, namely the ease 

of clearance by the 3D positioning device for the ADV probe and the clear test section 

walls for Particle Imaging Velocimetry (PIV) systems to be used.   

 Additionally, in order to understand the effects of scour and erosion on the 

substrate, a device for measuring displacement along with the methods necessary to 

determine the amount of sediment displaced were defined.  The HR Wallingford bed 

profiler gives two-dimensional plots of the substrate to characterize the contours of the 

bed after being exposed to flow across the surface.  As far as future work, a permanent 

fixture for the track and profiler will be designed and created to allow for accurate 

placement of the device across the width of the flume to be able to calculate volumes of 

displaced sediment more easily.  With the addition of the fixture, more accurate methods 

to calculate displaced sediment must be developed.   

 Lastly, with the addition of the sluice gate and straightener, the increase in flow 

velocity and minimal head losses justifies the use of these flow control devices in the 

flume.  By understanding how these devices affect the flow, energy data and velocity 

profiles will be considered as cylinders are placed in the test section, and later in the 

project model MHK devices, in such arrays that will be created in the river environments 

in which they will be placed.  The creation of this testing platform with associated 

measurement methods will aid in the advancement of hydrokinetic device technologies 

and help predict the environmental effect on the local substrate more easily, so that 

eventually green energy can be added to our power grid more quickly.  
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Appendix I 

MATLAB Energy Curve Code (Created by Drew Riley) 

% Clean everything out 
clear all 
close all 
  
% Input variables 
Q1 = input('What is the first flowrate? (ft^3/s) '); 
b1 = input('What is the width of the channel? (ft) '); 
Q2 = input('What is the second flowrate? (ft^3/s) '); 
Y1 = input('What is the water height upstream? (ft) '); 
Y2 = input('What is the water height downstream? (ft) '); 
g = 32.2; 
y = linspace(.01,5,1000); 
q1 = Q1/b1; 
q2 = Q2/b1; 
  
% Calculating Energy Head curve 
for j = 1:1000 
    E1(j) = y(j) + Q1^2/(2*g*(b1*y(j))^2); 
end 
% Calculating Energy Head curve 
for k = 1:1000 
    E2(k) = y(k) + Q2^2/(2*g*(b1*y(k))^2); 
end 
% Solving for actual Energy Head 
Energy1 = Y1 + Q1^2/(2*g*(b1*Y1)^2) 
Energy2 = Y2 + Q2^2/(2*g*(b1*Y2)^2) 
Yc1 = (q1/g)^(1/3) 
Yc2 = (q2/g)^(1/3) 
% Yc and Ec 
Emin1 = min(E1); 
Emin2 = min(E2); 
  
  
% Line for ansyntope for y axis 
% E1 = linspace(1,5,1000); 
% y1 = linspace(1,5,1000); 
  
plot(E1,y,E2,y,'--') 
axis([0 1.2 0 1.2]) 
xlabel('Energy (ft)') 
ylabel('Water Height (ft)') 
title('Energy Head Curve') 
% text(Energy,Y,'\leftarrow Energy Head') 
% text(Emin,Yc,'\leftarrow Critical Depth') 
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