
Bucknell University
Bucknell Digital Commons

Faculty Conference Papers and Presentations Faculty Scholarship

6-2012

Modernizing the Microcontroller Laboratory with
Low-Cost and Open-Source Tools
Kenneth J. Hass
Bucknell University, kjh016@bucknell.edu

Juliana Su

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_conf

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This Presentation is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion
in Faculty Conference Papers and Presentations by an authorized administrator of Bucknell Digital Commons. For more information, please contact
dcadmin@bucknell.edu.

Recommended Citation
Hass, Kenneth J. and Su, Juliana, "Modernizing the Microcontroller Laboratory with Low-Cost and Open-Source Tools" (2012).
Faculty Conference Papers and Presentations. 10.
https://digitalcommons.bucknell.edu/fac_conf/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bucknell University

https://core.ac.uk/display/216954575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/fac_conf?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/faculty-scholarship?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/fac_conf?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/fac_conf/10?utm_source=digitalcommons.bucknell.edu%2Ffac_conf%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

AC 2012-4195: MODERNIZING THE MICROCONTROLLER LABORA-
TORY WITH LOW-COST AND OPEN-SOURCE TOOLS

Prof. K. Joseph Hass, Bucknell University

K. Joseph Hass was a Distinguished Member of the technical staff at Sandia National Laboratories, where
he worked in embedded signal processing and radiation-tolerant microelectronics, before beginning his
career in academia. He joined the Microelectronics Research Center at the University of New Mexico
and continued his work on radiation-tolerant microelectronics, adding an emphasis on unique signal pro-
cessing architectures, reconfigurable computing elements, and ultra-low-power CMOS electronics. The
research group at UNM moved to the University of Idaho, where Hass studied memory circuits based
on magnetic tunnel junctions, earned his Ph.D., and began teaching in the Electrical and Computer En-
gineering Department. In 2009, Hass accepted a teaching position as an Assistant Professor at Bucknell
University, where he teaches courses in digital design and embedded computing.

Juliana Su, University of Virginia

Juliana Su received a B.S. degree in computer science and engineering and an M.S. degree in electrical
engineering from Bucknell University in 2009 and 2011, respectively. She is currently pursuing a Ph.D.
degree in computer engineering at the University of Virginia. Her research interests include body sensor
networks, embedded systems, reconfigurable computing, and field-programmable gate arrays.

c©American Society for Engineering Education, 2012

Modernizing the Microcontroller Laboratory
with Low-Cost and Open-Source Tools

Instructors in the area of embedded systems face an ongoing struggle to incorporate current
design and development techniques into their laboratory exercises. In addition to the difficulty of
keeping pace with technological advances in the field, a significant investment is often made in
the design tools and development boards with the expectation that these costs will be amortized
over five years or more. Fortunately, a number of microcontroller manufacturers have adopted the
IEEE 1149.1 Standard Test Access Port, more commonly known as a JTAG interface, to facilitate
programming and debugging their processors. Software development tools have also begun to
converge into a collection of open-source point tools, such as a compiler and assembler, that are
managed by an open-source integrated development environment. As a result, instructors can
easily provide a sophisticated development environment for embedded systems using tools and
techniques very similar to those used in industry, supporting a variety of microcontrollers for less
than the cost of a typical textbook.

We have used such a development environment in a microcontroller systems design course for
second-year students in Electrical Engineering and Computer Engineering, using ARM
Cortex-M3 microcontrollers. Our students are able to program the microcontrollers in both C and
assembly language, or a combination of the two. We use the GNU debugger, gdb, with a
commercial high-speed USB-to-JTAG interface and a low-cost development board. Students
performed all of the essential development tasks, writing their programs, compiling them, and
debugging their code, from within the Eclipse integrated development environment.

We found an important pedagogical benefit accrued from using this tightly integrated
development environment, in that students were able to learn and practice more sophisticated
debugging techniques. They are generally accustomed to programming on a conventional
computer where the interaction between the software and hardware is just an abstract notion.
When programming embedded systems, this interaction often leads to programming errors and
the students’ previously learned debugging techniques are of little help. The instructor may
suggest that the student insert instructions to light an LED at certain points in the program, or add
print statements to send messages to a terminal. Unfortunately, this is a tedious method that
forces the student to modify and recompile their program repeatedly and may introduce its own
errors. In some cases, the student may be able to use a software simulation of the microcontroller,
but these simulations have a limited ability to simulate hardware beyond the microcontroller
itself. In our microcontroller laboratory, students use graphical tools to add breakpoints or single
step through their code, either by C program line or assembly instruction. The contents of all
processor registers, C variables, and specified memory addresses are automatically updated and
can be displayed in a number of useful formats. As a result, students clearly see the connection
between the C program, the compiled assembly version of the same program, and their interaction
with the processor and other hardware resources.

Introduction

In 2010, we began to completely redefine our introductory course in microcontroller system
design, in anticipation of offering the revised course in the spring of 2011. In prior years the
course had focused primarily on assembly language programming of the Motorola 68HC11.

Since this processor is essentially obsolete and the tools used in our laboratory sections were
significantly out-of-date, this was an appropriate time to wipe the slate clean and reconsider all
aspects of the course.

We identified several unique pedagogical goals for this particular course. First, it is important that
students use programming languages that are consistent with current industrial practice. Surveys
taken over the last decade have shown that about 80% of embedded projects will use C and about
60% of these projects will rely on C as the primary programming language.1 Assembly language
programming is still used in about 60% of the projects but is rarely the primary language. While
C++ is also a popular choice, twice as many projects use C as the primary language and assembly
language is more likely to be used than C++.

Clearly, engineers designing embedded systems need to be familiar with both C and assembly
language programming, at least for the foreseeable future. Perhaps more importantly, these
engineers must understand the linkage between C code and assembly. They must have some
understanding of how a compiler will convert their C programs to assembly language so that they
may write more efficient programs and effectively debug those programs. For example, students
need to learn how variable declarations in C (such as static, volatile, or const) affect how that
variable is stored in memory, whether it is initialized at run time, and how it will be treated by
compiler optimizations. Since many embedded systems are created using both C and assembly
language, students must be able to craft functions in assembly language that can be invoked, with
parameter passing, from C and then return their results to the calling C program using the
established compiler conventions.

A second pedagogical goal is to have the students experience current design techniques and tools.
Embedded system tools have evolved dramatically, and sophisticated tools are often a necessity
when designing with modern microcontrollers; gone are the days when students should spend
their time deducing the correct hexadecimal representation of an instruction given the operation
and the addressing modes of the operands. Programming is commonly done from within an
integrated development environment (IDE) that combines a smart text editor with automated
techniques for compiling, linking, and debugging. While experienced programmers may be quite
comfortable writing makefiles and linker scripts, the tight coupling between the source code
editor and the debugging tools can greatly improve the efficiency of finding and eliminating
program errors.

The third pedagogical goal for our course is that students should be able to easily transfer what
they have learned from the microcontroller systems course into other courses, research activities,
and their own personal projects. We hope that students become excited about the creative
potential of embedded systems and continue to design with microcontrollers after the course ends.
In particular, students should be able to easily incorporate microcontrollers into their fourth-year
capstone design or undergraduate research projects. To that end, we want the embedded design
environment to be portable in every way:

• The IDE should be physically portable, in the sense that it could be used in any campus
laboratory or on a student’s personal computer. This implies that the IDE must be free of
licensing restrictions.

• The IDE should be portable across target embedded systems. Ideally, the same IDE could be
used to develop applications on a wide variety of microcontrollers, so that student projects
could scale upward into research or capstone requirements.

• Similarly, the IDE should be portable from small projects to large projects. The tool set
should be easily scalable to more ambitious projects than we would encounter in this course.

• The IDE should be portable across host operating systems. Our campus laboratories use
both Windows and Linux platforms, and student laptops often run Apple’s OS X. Tools that
can be used on any of these platforms will be more accessible to students.

Our final goal is to teach microcontroller system design using a modern microcontroller
architecture. While there is certainly a strong demand for 8-bit and 16-bit microcontrollers, the
strongest growth in embedded systems is occurring for 32-bit devices.2, 3 The complexity and cost
of microcontroller devices is driven more by the program memory and peripherals integrated onto
the same chip and less by the width of the processor registers and arithmetic-logic unit, so that
complete 32-bit microcontrollers are now available for less than $1 in large quantities. Therefore,
the need to teach students how to perform multibyte arithmetic or deal with a segmented memory
space has greatly diminished, allowing us to incorporate higher-level content in introductory
courses.

Of course, the cost of providing a new suite of software tools and laboratory hardware is always a
limitation. Our laboratory sections typically have no more than nine student stations so, as a
minimum, we would require ten sets of software and hardware tools that could be simultaneously
in use. Allowing for capstone projects and research activities could double that number. While
our capital budget might allow for a significant investment in the laboratories that would be
amortized over several years, the desire for true portability drives us toward a different
perspective. Our goal is to allow any student to acquire his or her own complete suite of
development tools, essentially identical to what is being used in our laboratories, for about the
same price as a typical engineering textbook. Ideally, the cost will be reduced to the point that we
can reasonably require every student to purchase their own development tools. This is not
intended as a cost-saving measure for the university but rather to encourage the proliferation of
microcontroller projects beyond the classroom.

Developing a new infrastructure for the microcontroller laboratory required simultaneously
selecting three interdependent components, as shown in Figure 1: the IDE, the debug adapter, and
the microcontroller development board. As discussed above, the IDE is a collection of software
tools that the student uses to write program code, compile it, and generate a final form for the
program that is suitable for execution on the target microcontroller. The IDE runs on a desktop
host computer, typically under Microsoft Windows or Linux in our laboratories. The debug
adapter is a small hardware interface between the IDE and the target microcontroller. It receives
commands from the IDE, typically via a USB connection, to program the microcontroller and
control the execution of the firmware. Status and debugging information is also returned to the
IDE through the debug adapter. At the end of the chain is the microcontroller development board,
which of course contains the target microcontroller but also provides physical connections to the
debug adapter and to any student-built circuitry.

Integrated Development Environment

After considering commercial development tools available from both the microcontroller vendors
themselves and third-party software vendors, we realized that these tools had fairly restrictive
licensing conditions. Purchasing sufficient licenses for all of our laboratories, even with an

Integrated Development Environment

Debugger
Debug
Display

Assembler

Linker/Loader

Compiler
C

Source

Assembly
Source Debug

Adapter
Target

Microcontroller

Figure 1: Typical microcontroller system development environment

educational discount, would represent a considerable investment. A less-expensive alternative
would be the free “evaluation” versions of a particular vendor’s tools, but these are typically
limited in the size of the program that can be compiled or the software license expires after some
months of use. Furthermore, in many cases the commercial tools were not available for a Linux or
OS X host computer and could produce firmware for only a small set of target microcontrollers.

With the goals of portability and low-cost in mind, we decided to develop our microcontroller
laboratory around the Eclipse IDE.4 While originally developed by IBM for Java programming,
Eclipse was released as an open-source project in 2001 and has been extended to support a wide
variety of programming languages. Eclipse is itself written in Java, which means that it can be
used on any operating system that can run the Java Virtual Machine, including those most
commonly encountered in our engineering laboratories. Eclipse is well supported and actively
developed. We found that, in many cases, the commercial IDEs offered for sale consisted of
Eclipse with proprietary “plugins” developed by the software vendor.

We certainly recognize that commercial software development tools can enhance the productivity
of the embedded system developer. Tool vendors add value to the development environment in
several ways, such as providing a user interface that is efficiently tailored to the target processor,
automating the tedious tasks of configuring hardware peripherals, and supplying well-written
subroutines for common applications. However, for pedagogical purposes it is important for the
student to have some understanding of the fundamental behavior and usage of the
microcontroller, just as we require students to learn circuit analysis before they use SPICE or
Karnaugh maps before they employ logic synthesis. We believe that the deeper understanding
gained in this manner outweighs the initial drudgery in the learning process.

The Eclipse IDE provides an editor that recognizes the syntax of assembly and C language files,
uses color highlighting for syntactic elements, and provides a simple means for indenting code.
Eclipse also integrates project management capabilities for determining dependencies between
source code files, locating libraries, and maintaining up-to-date executable files. However, Eclipse
does not inherently include compilers, linkers, or debuggers for for C or assembly. These tools
must be obtained separately, and Eclipse must be told how to invoke them. Fortunately, Eclipse is
aware of common formats for generated files, such as object files and log files, and can generally
work with such files with little assistance. It is not surprising that when asked to name their

favorite software tools, the most popular response to a survey in 2011 was Eclipse.3

For our work, we decided to use open-source “back-end” tools from the Free Software
Foundation. These tools are popular with industrial embedded systems developers,3 are well
supported by the user community, and are being actively developed. We rely heavily on the GNU
Compiler Collection,5 which includes gcc, the C/C++ compiler, as, the assembler, and ld, the
linker/loader. Debugging is performed using the GNU Project Debugger, gdb.6 These tools are
easily integrated with Eclipse by adding the C/C++ Development Tooling package.7

A typical debugging session in Eclipse is shown in Figure 2. In this example, an assembly

Figure 2: Screen capture from Eclipse debugging session

language program is executing on a microcontroller. A large pane on the left side comprises the
editor view of the source file, with syntax coloring for assembly language code. The highlighted
line is the next instruction that will be executed by the debugger. When debugging a C program
the IDE shows both the C and assembly language versions of the program and the debugger can
apply breakpoints or single-stepping to either representation. The upper right pane shows the
current values of the microcontroller registers, and this view is automatically updated whenever
the debugger stops program execution. When debugging a C program, a similar view shows the
values of the C variables that exist in the current scope. The tabs in the wide bottom pane can be
used to examine the contents of specified memory addresses or view console messages from the
various back-end tools.

Software development for small embedded systems is complicated by the fact that the software is
being developed on a host computer, which is running an operating system such as Linux or
Windows, while the final form of the program must be executable on the (much different) target
platform. For our purposes, the target platform is typically a small “bare metal” microcontroller
board that does not in itself have the resources to support an operating system or the software
development tools. Compilers that work in this way are known as cross compilers, and it is
possible to create a cross compiler for any of the many possible combinations of host computer
and target platform that are supported by gcc. Fortunately, this task has already been performed
for most of the commonly encountered cases. The current version of gcc supports a wide variety
of target processors, including most ARM processors, the Atmel AVR, and the Motorola 68HC11
or 68HC12.

Target Microcontroller Selection

Selecting the microcontroller to be used as the design vehicle in our introductory course was the
first decision to be made. We recognized that several microcontrollers are already well established
in higher education, particularly the Motorola/Freescale 68HC11 and 9CS12 processors8–10 and
the Intel 8051 architecture.11 These processors are well-supported for educational purposes, with
a variety of textbooks and prepared laboratory exercises. However, in both cases, the processor
architecture is somewhat dated and we felt that neither choice was representative of current trends
in embedded system design.

The Atmel AVR processors, particularly in the form of the Arduino platform, also deserved
careful consideration. The Arduino ecosystem includes a very user-friendly design environment
and a rich selection of “shields” that can be easily plugged on to the top of a processor board and
extend the hardware capabilities. For hobbyists and experimenters who are more interested in
accomplishing some task than understanding the details of embedded systems, the Arduino is an
attractive option. Unfortunately, it is exactly these details of embedded system design that we
desire to teach in our microcontroller course so the Arduino is not particularly attractive to us.
Furthermore, our experience with Arduino projects suggests that this platform may not have the
flexibility or computational throughput to support the range of student projects that we encounter.

We noted over the past few years that there has been a dramatic increase in the number of
semiconductor manufacturers offering microcontrollers available with an ARM architecture,
including Freescale and Atmel. The dominance of 32-bit processors in current embedded design
projects was noted earlier, and closer examination shows that 54% of survey respondents in 2011
indicated that they were considering an ARM processor for their next project (up from 45% in
2010).3 In comparison, 32% said they would consider any processor from Freescale, 21% would
consider a processor from Atmel, and 19% would consider a processor from Intel. While ARM
processors do not yet enjoy the same popularity in the classroom, there are successful educational
precedents.12

Furthermore, we found that cross-compiler versions of gcc that would produce executable code
for ARM microcontrollers are readily available. Michael Fischer maintains the open-source
YAGARTO project, which includes the gcc back-end tools and detailed installation guidelines for
a Windows host computer.13 ARM also maintains and provides its own open-source gcc
toolchain for their microcontrollers, with pre-built binary versions as well as documentation and

source code.14 Mentor Graphics makes available a free version of its CodeSourcery development
tools, including gcc and gdb for Linux or Windows host computers.15 All of these options
comprise ready-to-run development tools that need only be installed on the host computer, but it
is certainly possible to create one’s own version of the tools from the source code available from
the Free Software Foundation.

We decided to focus our microcontroller course on the latest version of the ARM 32-bit
architecture, which is used in the Cortex family of processors. The Cortex-A processor line is
used in high-performance multimedia and communications appliances, and can be found in
virtually all smart cellphones and tablet computers. The Cortex-R series is intended for
applications requiring a moderate level of real-time performance. At the lowest performance
levels are the Cortex-M processors, although these devices may include hardware floating-point
and operate at clock frequencies up to 100MHz.

Debugging Interface

Since the debugging process is a critical component of the microcontroller course, we placed a
high priority on the availability of debugging tools that represent the current practice in embedded
systems design. Our portability goal provided an additional incentive to employ debugging tools
that could be used with a variety of microcontrollers. Thus, for our purposes, an important aspect
of the ARM Cortex architecture definition is that the debugging interface is standardized and well
documented, so that the same debugging tools can be used on any semiconductor manufacturers
implementation of a Cortex-M3 microcontroller.

In their specification for the Cortex-M3 processor, ARM provides definitions for two standardized
debugging interfaces. The first uses the standard JTAG (IEEE Std 1149) interface definition and
requires a minimum of four unidirectional signal lines. JTAG has been the traditional debugging
interface for ARM processors but is now considered to be a legacy interface, and new processor
designs are encouraged to implement the ARM Serial Wire Debug (SWD) interface instead.
SWD uses only two signal pins, a clock and a bidirectional data line, which is an important
consideration for microcontrollers that have few pins. Furthermore, the SWD interface supports a
data rate more than twice that achievable with JTAG. As a practical matter, the currently available
Cortex-M3 microcontrollers may provide either JTAG, SWD, or both.

Having committed to free, open-source, software development tools, the largest expense for the
microcontroller teaching laboratory becomes the debug adapter, the physical and electrical
interface between the host computer and the target development board. A variety of low-cost
adapters are available for the legacy JTAG port, and simple interfaces can be built from a handful
of common components that connect to the host computer’s parallel printer port. On the other
hand, there are relatively few commercial debug adapters for ARM’s SWD interface and a more
complex USB connection to the host computer is required to support the higher data bandwidth
requirements.

Fortunately, we located a commercial debug adapter, the J-Link from SEGGER Microcontrollers,
that supports both the JTAG and SWD interfaces and can be purchased with a substantial
educational discount. SEGGER also supplies a gdb server, software that communicates between
the GNU debugger (gdb) and their J-Link adapter.16 When the power requirement is modest, as is
the case for our laboratory activities, the J-Link is capable of providing power for the

microcontroller through the debug connector. Incorporating the J-Link and gdb server into the
Eclipse environment is straightforward, and is discussed in the YAGARTO documentation.13 As
of this writing, SEGGER’s software for the J-Link is well-supported for host computers running
Microsoft Windows but a beta version for use with Linux is also available.

For those who prefer to use only open-source software, the Open On-Chip Debugger (OpenOCD)
project, created by Dominic Rath, aims to provide software support for a variety of hardware
debug adapters.17 While OpenOCD does not currently support the SWD interface this is a
planned enhancement.

Development Board

The final puzzle piece in our microcontroller laboratory development system was the selection of
a Cortex-M3 development board. Since our course is intended for both electrical engineering and
computer engineering students, a large component of the course content involves the electrical
interfaces between the microcontroller itself and common peripheral devices. Therefore, our
preference is for a very simple development board, including only the minimum necessary
capabilities for programming the processor. Ideally, we would supply the students with the
microcontroller devices and a generic prototyping board and they would assemble all of the
required components themselves. The lack of a Cortex-M microcontroller available in a common
dual in-line (DIP) package makes that approach impossible now, but we are optimistic that such
devices will be available in the near future.18

Some of the Cortex-M3 microcontroller manufacturers themselves offer simple, low-cost
development boards. Examples of such products include the LPCXpresso boards from NXP
Semiconductor19 and the STM32 discovery from ST Microelectronics.20 These boards have a
built-in debug adapter so they can be connected directly to a host computer so they provide a very
easy and low-cost introduction to that particular microcontroller. However, the software tools
provided with the board are often restricted to a particular tool vendor’s “evaluation” tools, which
may be limited to developing only small programs or may require the purchase of a new license
after several months. To avoid these limitations, intrepid engineers have often been able to
physically separate the target microcontroller from the debug adapter and use a generic adapter
with open-source development tools.

When selecting a development board to use in our course, we searched for a low-cost board that
included the Cortex-M3 microcontroller, its system clock crystal, a standard connector for the
debug adapter, and a standard connector for supplying power to the microcontroller. Since we
anticipated connecting the microcontroller to student-built circuits on a prototyping board we also
wanted a relatively easy means for making those wired connections between the development
board. We ultimately selected the Olimex21 LPC-P1343 prototyping board, as shown in Figure 3.
This board includes the NXP LPC1343 microcontroller, a 20-pin connector for the debug adapter,
and a mini-USB connector. Eight LEDs and two pushbutton switches are provided and are
connected to the microcontroller’s general purpose I/O port pins. A small prototyping area on the
right side of the board includes an array of holes with a standard 2.54mm spacing, and most of
the microcontroller pins are directly accessible from the two columns of holes at the left edge of
the prototyping area. We soldered a receptacle connector onto the board so that students could
insert wires in the receptacle and connect the microcontroller pins to a breadboard.

In addition to the standard ARM debugging port, the LPC1343 microcontroller incorporates the
circuitry and firmware for a USB interface. A jumper on the Olimex board allows it to appear as a
USB mass storage class device (i.e. a flash drive) when connected to a PC. When accessed in this
way, the LPC1343 appears to contain a single file that comprises the program memory of the
microcontroller. The microcontroller can be reprogrammed simply by deleting this file and
dragging a new program file to the device. While there is no debugging capability, we have found
this to be a convenient method for restoring the Olimex boards to their original state between
laboratory sessions. The board may also be powered through the USB connector, whether
behaving as a USB device or simply running the student’s microcontroller firmware.

As a final programming method, the LPC1343 contains in-system programming (ISP) firmware in
ROM. When in the ISP mode, the microcontroller responds to commands given over a serial line
connected to its UART pins. ISP commands allow the user to erase, reprogram, read, and execute
the microcontroller program memory.

For ease of handling in the laboratory we have mounted the Olimex boards onto one side of a
standard breadboard, as shown in Figure 4. The J-Link is connected to the host computer via the
USB cable on the far left, and it is connected to the debug connector on the Olimex board with a
ribbon cable. Note that a receptacle has been added to the prototyping area on the Olimex board,
and wires have been added so that breadboard power is supplied from the Olimex board, which in
turn is powered by the J-Link adapter.

Course Materials

A common problem in all engineering courses is providing instructional materials that reflect the
current state-of-the-art. A variety of textbooks are available that present the Freescale 9S12, Intel
8051, or Microchip PIC microcontrollers. While not written as textbooks, there are also quite a
few introductory and tutorial books for the Arduino platform. However, to our knowledge there
are no textbooks for university courses that use the Cortex-M architecture as a model
microcontroller. For the first offering of the updated microcontroller course we required students
to purchase Yiu’s book on the Cortex-M3, which was written as a general introductory and
reference text.22 As such, it assumes some prior understanding of digital electronics and
microcontroller systems.

The course instructor provided supplemental material to ensure that students had the necessary

USB connector

Prototyping area
Debug connector

Microcontroller

Pushbuttons

LEDs

Figure 3: Olimex LPC-P1343 prototyping board (photo from Olimex21)

background for the course, recognizing that there was a considerable range in experience across
the computer engineering and electrical engineering students. The students tend to have
experience programming in Java from their computer science coursework, but very few have
programmed in C or C++, so a large part of the course content comprises learning to program in a
new language.

While Yiu’s book thoroughly presents the Cortex-M3 architecture and instruction set, each
microcontroller vendor is free to add their own peripheral I/O functions around the standard ARM
processor core. There is no guarantee that a given Cortex-M3 microcontroller will incorporate a
UART, for example, and the UART in an NXP microcontroller may look much different from the
UART in a Cortex-M3 microcontroller manufactured by Texas Instruments or ST
Microelectronics. Therefore, students must also study the user’s manual and data sheet for the
particular microcontroller being used. We provide these documents for the students in our course,
but at a total of almost 400 pages they find them to be quite daunting and they are often frustrated
when an internet search does not quickly return example code to meet their needs.

Laboratory Exercises

Our microcontroller class has the typical schedule for our engineering courses, with three
one-hour lectures and one three-hour laboratory session each week. Students work in pairs under
the guidance of the course instructor and an upper-class student teaching assistant. The laboratory
exercises for the course emphasize both the unique programming aspects of embedded computing
as well as the important electrical considerations, again reflecting the fact that our students are a
mix of computer and electrical engineers.

In the first few laboratory sessions, the students are provided a program skeleton that they must
complete to perform simple I/O functions, such as reading the state of a pushbutton switch and
turning an LED on or off. These exercises are intended to familiarize the students with the
mechanics of using the IDE, debug adapter, and microcontroller board. By executing one

Figure 4: Basic laboratory configuration of J-Link and Olimex board

assembly instruction at a time, they observe the interaction between their code and the hardware.

More sophisticated programming examples explore the design and behavior of interrupt service
routines, such as using timer interrupts to generate a pulse-width modulation (PWM) control for
an LED. In one session, they write an assembly-language program that recursively computes the
Fibonacci sequence. This exercise illustrates a number of difficult concepts, including the use of
the stack for both data storage and function return linking. By calculating successively larger
Fibonacci numbers, the students can directly observe the increase in the stack size and program
run time.

In another laboratory session, the students do nothing but observe the d.c. characteristics of the
microcontroller I/O pins and compare their observations to the data sheet specification. They use
a simple program that reads the state of an input pin and then turns an LED on or off based on the
observed logic value. By connecting a variable voltage source to the input pin, students can
determine the input switching thresholds (VIH and VIL). They make these measurements twice, for
a normal input pin and for an input pin with hysteresis. They usually notice that the LED is dim
when the input voltage is near the switching threshold and there is no hysteresis, and we explain
that electrical noise is causing the input to behave erratically. When hysteresis is used, the input
switches cleanly between logic levels and the LED is either fully illuminated or completely dark.
Replacing the LED with a fixed resistor allows the students to make measurements of the output
voltage (VOH and VOL) and calculate the corresponding output current values (IOH and IOL).

Some laboratory exercises combine electrical and programming concepts. For example, we
provide the students with a simple 16-button multiplexed keypad and ask them to write a program
that displays the hexadecimal value of the pressed key on four LEDs. The notion of multiplexing
is discussed in a prior lecture, and the students understand that they must program the keypad row
wires to be output pins while the column wires are inputs, look for a pressed key, reverse the roles
of the row and column wires, and look for a pressed key again. The students are free to use
whatever programming technique they chose to convert the row and column information into the
value of the key, and some will create a lookup table while others will create a mathematical
algorithm or devise a large nested conditional structure. To receive full credit for their work, the
students must implement “rollover” detection so that pressing two keys simultaneously does not
result in the display of an incorrect value.

Assessment of the student’s performance in the laboratory sessions takes several forms. In many
of the exercises the students are required to directly observe and measure some aspect of the
microcontroller’s behavior, such as toggling an I/O port pin before and after executing a function
and observing the function’s execution time on an oscilloscope. By initializing all RAM locations
with a known value the students can clearly see how the stack grows when a function is invoked
with different parameters, and they are able to correlate this observation to the number of registers
they chose to save on the stack in their functions. During the laboratory session the students are
required to record observations such as these, and to provide brief interpretations of the data, on
laboratory worksheets.

A second in-class assessment technique is that students are often required to demonstrate their
work for the lab instructor. Of course, the students must demonstrate that any software or
hardware they created during the lab will function properly and meet the specifications given to
them, but they are also expected to show that they can employ common debugging techniques.
We expect that all students will be able to execute their code by single-stepping, both by C

Assessment Statement Mean Response
The laboratory section was a valuable part of this course. 4.75
I would recommend this course to other students interested in this subject. 4.35
I can write and use programs in assembly language. 4.21
I can write and use programs in C for a microcontroller. 4.32
I am able to debug a microcontroller program. 4.30
I can interface a microcontroller to simple devices such as LEDs and switches. 4.46

Table 1: Assessment results

statements and by assembly instructions, and use breakpoints. Students must be able to use the
IDE to observe the run-time behavior of processor registers, C variables, and RAM locations. The
laboratory worksheets include checklists of such skills that must be demonstrated, and the
instructor will initial the worksheet after the successful demonstration. This also provides a
focused opportunity for the instructor to discuss and illustrate the importance of good debugging
techniques.

A final laboratory assessment is conducted outside of the laboratory session. When a laboratory
exercise requires that students write their own code they must provide that code to the instructor
by email. The students are given guidelines for writing embedded software in assembly language
and C, and their submitted code is graded for compliance with those guidelines. The guidelines
have been drawn from a sampling of industry “best practices” and include recommendations for
basic attributes such as effective comments and self-documenting identifiers.23, 24 While we do
not have rigid requirements for code style, we do expect that students will use consistent
capitalization for identifiers and uniform indentation.

Reflections and Conclusion

The revised microcontroller course was well-received in its first offering. Selected assessment
results are shown in Table 1, where students gave a numerical response from 1 (disagree strongly)
to 5 (agree strongly). Students were able to see an engineering design path from the simple ARM
microcontroller used in the course to the much more powerful Cortex-A processors used in their
smart phones and touchpad computers. Allowing the students to add circuitry of their own around
the microcontroller gave them insight into the electrical engineering aspects of embedded system
design.

Our curriculum had traditionally required students to take the microcontroller course in their
second year, while the first course specifically dedicated to digital systems design was not taken
until their third year. Electrical engineering students would have taken one computer science
course, and computer engineering students would have taken two computer science courses,
before the microcontroller course. In this course structure, the students are able to contextualize
the microcontroller as a much smaller extension of their desktop computer, which enables them to
transfer their programming experiences to a new platform. However, the students were generally
unable to place the microcontroller in the context of digital systems, where it can be seen as
simply a programmable finite state machine. Students also lacked an intuitive grasp of
synchronous digital systems so they often struggled with the simple notion of storing data in a
register. As a result of these difficulties we have reviewed our course sequence and reversed the

order of the digital design course and the microcontroller course, beginning with the class of 2015.

The students were most critical of the reading material used in the course. They expected to have
a typical textbook that would incorporate most of the critical background material and walk them,
step by step, through the learning process. When required to learn from a reference text (like Yiu)
or from the manufacturer’s data sheet and user manual they became frustrated, and they seem to
have difficulty gleaning the relevant information from these sources. Since this is often how
practicing engineers are forced to learn new technology we feel that we should help students
become more accustomed to the situation rather than removing all of their difficulties, and we will
be more proactive in addressing this issue at the beginning of the course.

By the careful use of open-source development tools, a low-cost debug adapter, and a very simple
development board we have succeeded in creating a new laboratory environment for our
microcontroller system design course. The students are using design tools that are consistent with
current industry practices and are studying a modern, 32-bit processor architecture. The total cost
of each laboratory station, including the development board and debug adapter, is significantly
less than a typical new engineering textbook. As this course continues to evolve we will develop
additional learning materials and laboratory exercises to support our students, and we look
forward to seeing the fruit of these efforts in future capstone design projects.

References

[1] M. Barr, “Real men program in C,” Embedded Systems Design, pp. 9–11, July/August 2009.

[2] C. Holland. (2011, Dec. 12) MCUs: High-end devices flourish. [Online]. Available:
http://www.edn.com/article/520296-MCUs High end devices flourish.php

[3] UBM / EE Times Group, “2011 Embedded Market Study,” 2011.

[4] The Eclipse Foundation. (2011) Eclipse. [Online]. Available: http://www.eclipse.org

[5] Free Software Foundation. (2011, Dec. 6) GCC, the GNU compiler collection. [Online]. Available:
http://www.gnu.org/software/gcc/

[6] ——. (2011, Dec. 6) GDB: the GNU project debugger. [Online]. Available: http://www.gnu.org/software/gdb/

[7] The Eclipse Foundation. (2011) Eclipse CDT. [Online]. Available: http://www.eclipse.org/cdt/

[8] R. Alba-Flores, “Laboratory enhancements for improving embedded systems education,” in American Society
for Engineering Education Annual Conference & Exposition, 2007.

[9] T. Morton, “New developments for courses in embedded microcontrollers,” in American Society for
Engineering Education Annual Conference & Exposition, 2007.

[10] C. Choi, “A microcontroller applications course and Freescale’s microcontroller student learning kit,” in
American Society for Engineering Education Annual Conference & Exposition, 2008.

[11] D. Wilcox, S. Wilson, and G. Wostenkuhler, “Embedded design in a sophomore course,” in American Society
for Engineering Education Annual Conference & Exposition, 2008.

[12] A. Clements, “ARMs for the poor: Selecting a processor for teaching computer architecture,” in ASEE/IEEE
Frontiers in Education Conference, 2010.

[13] M. Fischer. (2011, Nov. 20) YAGARTO - yet another GNU ARM toolchain. [Online]. Available:
http://www.yagarto.de/

[14] J. Ye. (2011, Dec. 22) GNU tools for ARM embedded processors. [Online]. Available:
https://launchpad.net/gcc-arm-embedded

[15] Mentor Graphics. (2011, Dec. 29) Sourcery codebench overview. [Online]. Available:
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/overview

[16] (2012) SEGGER microcontroller. [Online]. Available: http://shop-us.segger.com/

[17] (2012) Open On-Chip Debugger. [Online]. Available: http://openocd.sourceforge.net/

[18] NXP Semiconductors. (2011, Oct. 25) Cortex-M0 microcontrollers in high-volume TSSOP and SO packages
target 8/16-bit applications. [Online]. Available: http://www.nxp.com/news/press-releases/2011/10/nxp-cortex-
m0-microcontrollers-in-high-volume-tssop-and-so-packages-target-8-16-bit-applications.html

[19] ——. (2012) LPCXpresso. [Online]. Available: http://ics.nxp.com/lpcxpresso/

[20] STMicroelectronics. (2010, Sep. 14) STM32 discovery kit. [Online]. Available:
http://www.st.com/internet/com/press release/p3065.jsp

[21] Olimex, LTD. (2009, Dec. 14) Development boards and tools. [Online]. Available:
http://www.olimex.com/dev/index.html

[22] J. Yiu, The definitive guide to the ARM Cortex-M3, 2nd ed. Elsevier, 2010.

[23] M. Barr, Embedded C Coding Standard. Netrino, LLC, 2009.

[24] “Joint Strike Fighter air vehicle C++ coding standards for the system development and demonstration program,”
Lockheed Martin Corporation, Tech. Rep. 2RDU00001 Rev C, 2005.

	Bucknell University
	Bucknell Digital Commons
	6-2012

	Modernizing the Microcontroller Laboratory with Low-Cost and Open-Source Tools
	Kenneth J. Hass
	Juliana Su
	Recommended Citation

	Modernizing the Microcontroller Laboratory with Low-cost and Open-source Tools

