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ABSTRACT

The interaction between prenatal environments and postnatal
environments is an important source of phenotypic variability.
We examined the ability of prenatal steroid exposure and post-
natal energy restriction to explain adrenocortical function and
fledging age in captive seabird chicks. We proposed and tested
two hypotheses: (1) the strength of prenatal effects is attenuated
by challenging postnatal environments (postnatal override) and
(2) the strength of prenatal effects increases with the severity of
postnatal challenges (postnatal reveal). We reared commonmurre
(Uria aalge) chicks and measured prenatal exposure to cortico-
sterone (CORT) and testosterone (T) from allantoic waste. Ad-
renocortical function was assessed after 10 d of ad lib. feeding
and then after 5 and 10 d on controlled diets. Postnatal override
predicts that prenatal steroids will explain more phenotypic var-
iation before implementation of energy restriction; postnatal re-
veal predicts that the contribution of prenatal steroids will in-
crease with duration and severity of energy restriction. Energy
restriction increased secretion of baseline CORT and the adre-
nocortical response to the standardized stressor of handling and
restraint. The ability of prenatal steroids to explain baseline CORT
increased with duration of energy restriction, and for day 20 free
baseline CORT, there was a significant interaction between kilo-
joules per day and prenatal CORT levels; severity of restriction
strengthened the relationship between prenatal hormone levels
and postnatal hormone levels. Both maximum CORT at day 20
and fledging age were best explained by diet treatment and day 15
or day 20 baseline CORT, respectively. Overall, prenatal CORT

increased fledging age and baseline secretion of CORT, while
prenatal T decreased them. However, prenatal effects on adreno-
cortical function were apparent only under the energy restriction
conditions. Thus, we found some support for the postnatal reveal
hypothesis; our results suggest that some prenatal effects on phe-
notype may be more likely to manifest in challenging postnatal
environments.

Keywords: corticosterone, testosterone, prenatal steroids, stress
response, fledging, food restriction, murre.

Introduction

It is a classic tenet of biology that phenotype reflects the in-
teraction of genes and environment. In particular, aspects of
the early environment, both prenatal and postnatal, can have
long-term consequences. However, environmental contribu-
tions to phenotype reflect a combination of not only prenatal
and postnatal factors but also their interactions. There is a grow-
ing literature demonstrating interactions between prenatal envi-
ronments and postnatal environments, such that prenatal effects
can have different consequences for phenotype, depending on
the environment into which offspring emerge (Monaghan 2008;
Sheriff and Love 2013). An important aspect of phenotype that
is shaped by the interaction of pre- and postnatal factors is the
ability of an organism to cope with developmental transitions
and physiological challenges. This ability is mediated by ad-
renocortical function, the secretion of glucocorticoids from the
adrenal glands in response to acute or prolonged stressful stimuli
(Wingfield and Kitaysky 2002; Crespi et al. 2012). Variation in
adrenocortical activity can have substantial implications for phys-
iology and behavior and thereby potentially fitness (Breuner et al.
2008; Bonier et al. 2009). Here we examine contributions of pre-
and postnatal environments to interindividual variation in adre-
nocortical function and developmental transitions of a long-lived
vertebrate, the common murre (Aves, Uria aalge; Pontoppidan
1763).

Sources of Environmental Variability

In animals, much of the variation in the prenatal environment
is generated by exposure to endogenously produced or mater-
nally provided biomolecules, including antibodies, nutrients, and
hormones (Mousseau and Fox 1998). Variation in prenatal hor-
mone exposure can be particularly powerful at programming, or
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permanently altering, multiple aspects of offspring phenotype
(Fowden and Forhead 2009; Bertram and Hanson 2010). Em-
bryonic exposure to androgens and glucocorticoids has received
particular attention in vertebrates. Cross-generational transmis-
sion and embryonic production of both of these steroid hormones
fluctuate in response to the internal and external environment
experienced by mothers and embryos; they both affect traits rele-
vant to fitness, such as growth, behavior, and endocrine activity,
and, particularly relevant for this study, both have been shown to
affect avian adrenocortical function (Sockman and Schwabl 2001;
Groothuis et al. 2005; Henriksen et al. 2011; Schoech et al. 2011).
The phenotypic impacts of prenatal experiences such as hormone
exposure may be altered by challenging postnatal environments,
which tend to force physiological trade-offs and alter resource
allocation during development (Metcalfe and Monaghan 2001;
Monaghan 2008).
Variation in the postnatal environment is more directly con-

trolled by external biotic and abiotic factors, including climate,
predation pressure, and food availability, though the influence of
these factors may still be mediated by parents (Kitaysky et al.
2001a; Monaghan 2008; Love et al. 2012; Sheriff and Love 2013).
Food availability is a particularly important aspect of the post-
natal environment because food restriction forces changes in al-
locationof limited resources towardgrowth (Benowitz-Fredericks
and Kitaysky 2006; Hou et al. 2011), alters adrenocortical activity
(Kitaysky et al. 2001a, 2006), and can have other important effects
on phenotype (Monaghan 2008).

Are Prenatal Effects Revealed or Overridden?

Understanding relationships between prenatal environments
and postnatal environments is critical to interpreting manip-
ulations of either environment and understanding the results in
the context of selection. While many studies have focused on the
fitness consequences of matches and mismatches between the
maternal environment and the offspring’s postnatal environment
(Love and Williams 2008; Monaghan 2008; Sheriff and Love
2013), we are still missing a more basic framework for pre-
dicting the contexts in which variation in the prenatal envi-
ronment will manifest at all in offspring phenotype. For exam-
ple, a lack of consistent effects of experimental manipulations has
generated questions about the importance of variation in mater-
nal effects such as yolk steroid deposition, despite the probability
that the consequences are context dependent (Benowitz-Fredericks
et al. 2013). We propose two nonexclusive study hypotheses to
describe the context-dependent manifestation of prenatal effects
in different postnatal environments. Specifically, we propose that
for phenotypic traits affected by both prenatal environments and
postnatal environments, the postnatal environment may affect
manifestation of the prenatal effects in one of two ways: (1) post-
natal override, where the impact of prenatal effects on a trait is
attenuatedby challengingpostnatal environments, or (2)postnatal
reveal, where the impact of prenatal effects on a trait increases
with the severity of postnatal challenges (fig. 1). Although these
broad hypotheses about the potential interactions between pre-
natal environments and postnatal environments have not been

explicitly articulated before, evidence exists for both scenarios
(Mainwaring et al. 2010; Vergauwen et al. 2011; Kim et al. 2013).
While the strength and direction of the relationship are likely to
differ for different combinations of traits and aspects of pre- and
postnatal environments, both hypotheses have implications for
the interpretation of experimental results. For example, prenatal
variables that act as potent modifiers of phenotype in lab con-
ditions lacking behavioral or physiological challenges may often
be irrelevant in free-living animals if they are usually combined
with environmental constraints that obscure them (postnatal
override). Similarly, prenatal variables identified as irrelevant in
the lab may contribute significantly to phenotype in a resource-
limited environment (postnatal reveal). Thus, the postnatal over-
ride/reveal framework is a useful tool for assessing the interactions
between prenatal effects and postnatal environment.

Goals and Predictions

The goal of this study was to test the roles of postnatal override
and postnatal reveal in the context of generating variation in ad-
renocortical function and initiation of a developmental transition
(fledging) in captive chicks of a seabird, the common murre.
Murres are colonial seabirds that lay a single egg and rear their
single semiprecocial chick at the colony (Ainley et al. 2002). We
measured allantoic corticosterone (CORT) and testosterone (T)
at hatch as integrative measures of in ovo hormone excretion
and thus indicators of the prenatal endocrine environment
(Benowitz-Fredericks et al. 2005) and manipulated posthatch
energy intake to generate variation in the postnatal environment.
Availability of food is a highly variable aspect of the postnatal
environment for seabird chicks, and it can shape multiple aspects
of phenotype, including adrenocortical function (Kitaysky et al.
2001a) and fledging (reviewed in Crespi et al. 2012). The pheno-

Figure 1. Schematic of two competing hypotheses about the potential
effects of the postnatal environment on the manifestation of a
prenatal effect. While some traits may be affected solely by either
prenatal environments or postnatal environments, in cases where the
two environments interact to affect a phenotypic trait, the postnatal
override hypothesis (solid line) posits that the contribution of the
prenatal environment to phenotype is reduced by challenging postnatal
environments. In contrast, the postnatal reveal hypothesis (dashed line)
posits that the impact of the prenatal environment is magnified by post-
natal challenges.
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typic traits we measured quantified components of adrenocorti-
cal function: total and free baseline CORT levels and total acute
stress–induced CORT levels (Romero 2004), in addition to the
age at which chicks chose to fledge from their nests. Fledging
age for seabirds is variable and is a major life-history transition
that not only can be affected by postnatal food availability but
also may be mediated by adrenocortical function (Quillfeldt et al.
2007; Sprague and Breuner 2010; Riou et al. 2012).
In the context of our study, postnatal override predicts that

the ability of prenatal steroids to explain variation in adre-
nocortical function will (a) decrease with duration of postnatal
challenge (i.e., prenatal steroids will better explain interindividual
variation in the adrenocortical function before implementation
of restricted diets than after implementation of restricted diets)
and (b) decrease with the strength of the postnatal challenge
(i.e., at any single time point, relationships between prenatal
steroids and phenotypic traits will be weaker in chicks with more
restricted diets). Alternatively, postnatal reveal predicts the op-
posite: the ability of prenatal steroid levels to explain variation
in phenotypic traits will increase with the duration and severity
of postnatal nutritional stress.

Material and Methods

Egg and Chick Husbandry

Egg collection, incubation conditions, and chick husbandry
and feeding have been previously described in detail (Benowitz-
Fredericks and Kitaysky 2006). Briefly, in 2000, eggs of unknown
lay dates were collected on the same day from incubating parents
on a single ledge on Gull Island, a colony of free-living murres in
the Gulf of Alaska, and transported to the University of Wash-
ington. Eggs were artificially incubated, and when chicks hatched
(average duration of artificial incubation was 12 d; range p 9–
14 d), they were housed in individual cages and hand-fed whole
smelt (Osmerus mordax) and silverside (Menidia menidia) five
times daily (with a daily vitamin supplement) for the duration of
the study. Food was offered ad lib. for the first 10 d, and intake
(kJ/d) was recorded; for the remainder of the study, each chick
was placed on one of four controlled diets yielding experimental
caloric intakes of 187 kJ/d (np 6), 247 kJ/d (np 6), 266 kJ/d (np
5), or 353 kJ/d (n p 5; Benowitz-Fredericks and Kitaysky 2006).
Chicks were assigned to treatment groups in order of hatching;
thus, hatch dateswere distributed evenly across treatment groups.
Chickswere sexed after euthanasia by visual inspection of gonads.

Sample Collection

Collection of allantoic waste from eggs immediately after hatch-
ing has been previously described (Benowitz-Fredericks et al.
2005). Allantoic waste is the accumulated excreta from in ovo
development that remains in egg shells after chicks have hatched
and can provide an integrated measure of steroid metabolism
duringdevelopment (Benowitz-Fredericks et al. 2005).Eachchick
was bled for baseline CORT when it was 10, 15, and 20 d post-
hatch. On sampling days, postabsorptive chicks were taken quietly
from their individual cages before feeding and were bled from

the alar vein within 3 min of disturbance (thus preceding eleva-
tion of CORT in response to sampling-induced stress; Romero
and Reed 2005). On day 20, chicks were subject to a standardized
acute-stress series; they were bled for a baseline sample and then
held in a cloth bag in between collection of 15-, 30-, and 60-min
blood samples (maximum CORT being the highest concentration
of CORT found in any of these samples). While it would have
been valuable to assess maximum CORT before energy restric-
tion as well as after implementation of controlled diets, the stress
series was conducted only once because repetition of the acute-
stress protocol results in a stressor that is no longer novel and can
alter adrenocortical responsiveness (Lynn et al. 2013).

Fledging Behavior

Free-living common murre chicks fledge at night, at approx-
imately 20 d of age (Cameron-McMillian et al. 2006), by leap-
ing from their open cliff-face nests to the beach or water, of-
ten hundreds of feet below. They fledge before they are able to
fly, and the exact age at fledging is variable, ranging from 16 to
30 d, with no difference in fledging age between the sexes (Net-
tleship and Birkhead 1985; Cameron-McMillian et al. 2006).
Starting on day 20 posthatch, the evening after the acute-stress
series samples were taken, we gave chicks the opportunity to
fledge by leaving their cage open so that they could jump to the
floor below (maximum height p 6 ft). A chick’ s cage was left
open every night until the chick was found on the floor on two
consecutive mornings, after which it was considered fledged
and its cage was not left open again.

Sample Analysis

Allantoic waste was lyophilized, finely powdered and homog-
enized, and extracted and analyzed using radioimmunoassay
as described earlier (Benowitz-Fredericks et al. 2005). Blood
samples were centrifuged, and plasma was separated and fro-
zen in two aliquots (one for CORT, one for CORT-binding
globulin [CBG]; no CBG sample was taken on day 15) at2207C
until assays were run. For CORT, all samples were assayed in
duplicate using the radioimmunoassay protocol described in
Benowitz-Fredericks et al. (2008) and Kitaysky et al. (2003)
with the Endocrine Sciences/Esoteric CORT antibody (B3-163;
Calabasas Hills, CA; cross reactivity with other steroids less than
1%). Briefly, for each sample, 2,000 cpm of tritiated CORT was
added to determine postextraction hormone recovery; final val-
ues were corrected for percent recovered. Steroids were extracted
from 20 mL of plasma with dichloromethane, dried down under
nitrogen, and reconstituted in phosphate-buffered saline. Samples
were distributed across two assays, with sampling ages and treat-
ments randomized across assays. Postextraction steroid recoveries
ranged from 83% to 100% (averagep 91%). Inter- and intraassay
coefficients of variation were less than 2%. In order to calculate
free baseline CORT (CBG was not measured for maximum
CORT), binding capacity of plasma CBGwas quantified for day 10
and day 20 samples as described in Shultz et al. (2008) and opti-
mized for the common murre. Briefly, plasma was stripped of
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endogenous CORT using charcoal and then incubated in triplicate
with tritiated CORT; bound CORT was retained on a glass fiber
filter that was counted in scintillation fluid. Optimal plasma dilu-
tion for murre chicks was 1∶194, and incubation time was 3 h; the
dissociation constant, Kd, was 2.98 5 0.25. Free CORT was cal-
culated as described by Barsano and Baumann (1989). Plasma
T was not detectable (assay sensitivity at 1.95 pg/sample; anti-
body T-3003, Research Diagnostics), even in pooled samples of
more than 100 mL of plasma.

Statistical Analysis

To assess the relative contributions of prenatal environment (as
indicated by allantoic steroids) and postnatal environment (ex-
perimental food intake) on phenotype, we used an information-
theoretic approach with the Akaike information criterion cor-
rected for finite sample sizes (AICc; Burnham and Anderson
2002). We generated a candidate set of models based on a priori
identified competing hypotheses with biological significance (ta-

ble 1). Candidatemodel sets for baseline CORT levels had a similar
structure. For maximum CORT at day 20, we added models in-
cluding day 10, day 15, andday 20 baselineCORTbecause previous
studies in seabirds have suggested that prior or recent adreno-
cortical activity may be the best predictor of maximum CORT
secretion (Kitaysky et al. 2007; Benowitz-Fredericks et al. 2008).
We included total baseline CORT because it has been clearly
established that it changes in seabirds as a consequence of food
availability (Kitaysky et al. 2007) and free baseline CORT be-
cause it not only fluctuates in response to environmental con-
ditions such as food availability (Shultz and Kitaysky 2008) but
also has been specifically linked to variation in seabird fledging
age (Sprague and Breuner 2010).
For fledging age we used the same set of models as for

baseline CORT but also included day 20 baseline CORT because
there is evidence that fledging decisions may be regulated by ad-
renocortical function (reviewed in Crespi et al. 2012) and early
food intake (day 0–10) because early developmental trajectories
can also affect life-history transitions (Day and Rowe 2002). We
did not include body mass in our analyses because changes in body

Table 1: Candidate set of models for effects on total and free baseline corticosterone (CORT) at chick ages 10 d (models 1–5, 7–
10), 15 d, and 20 d (models 1–4, 6–10); for maximum CORT at day 20 (models 1–4, 6–13); and for fledging age (models 1–10,
13–15)

Model Parameters Biological significance

1 Intercept only Null model (models not fitting data)
2 Sex Expanded null model; only sex determines phenotype
3 Hatch date Expanded null model; only hatch date determines phenotype
4 Allantoic CORT 1 allantoic T Prenatal environment determines phenotype
5 Energy intake earlya Postnatal environment determines phenotype
6 Energy intake latea Postnatal environment determines phenotype
7 Allantoic CORT 1 allantoic T 1

energy intakeb
Pre- and postnatal environments determine phenotype additively

8 Allantoic CORT 1 energy intakeb 1
allantoic CORT # energy intakeb

Different postnatal environments lead to differential expression of
prenatal effects (i.e., support for postnatal reveal or postnatal
override); CORT is the most relevant prenatal hormone

9 Allantoic T 1 energy intakeb 1
allantoic T # energy intakeb

Different postnatal environments lead to differential expression of
prenatal effects (i.e., support for postnatal reveal or postnatal
override); T is the most relevant prenatal hormone

10 Allantoic CORT 1 allantoic T 1 energy
intakeb 1 allantoic CORT # energy
intakeb 1 allantoic T # energy intakeb

Different postnatal environments lead to differential expression of
prenatal effects (i.e., support for postnatal reveal or postnatal
override); both CORT and T are relevant prenatal hormones

11 Total baseline CORT (day 10) Early adrenocortical activity is the best predictor
12 Total baseline CORT (day 15) Recent adrenocortical activity is the best predictor
13 Total baseline CORT (day 20) Current adrenocortical activity (total CORT) is the best predictor
14 Free baseline CORT (day 20) Current adrenocortical activity (free fraction of CORT) is the

best predictor
15 Maximum CORT (day 20) Current adrenocortical capacity is the best predictor

Note. T p testosterone.
aEnergy intake early in the model selection for 10-d baseline CORT (i.e., before the postnatal challenge) and for 20-d maximum CORT was calculated as

kilojoules per day consumed while fed ad lib.; energy intake late in the model selection for 15- and 20-d baseline CORT and for 20-d maximum CORT was
calculated as kilojoules per day of the restricted diet treatments.

2Models 7–10 include energy intake early for 10-d baseline CORT and energy intake late for 15- and 20-d baseline CORT and 20-d maximum CORT.
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mass in our study were driven by the daily energy intake (fig. 3
in Benowitz-Fredericks et al. 2005); thus, daily energy intake and
body mass were highly autocorrelated. However, body mass at
fledging varies dramatically across colonies and years for murres
(e.g., Davoren and Montevecchi 2003) and is considered a less
direct predictor of fitness in semiprecocial species such as murres,
which fledge when they are many months from adult body size
and mass (Ainley et al. 2002).
We proceeded with a model selection based on AICc values

and multimodel averaging. We calculated relative variable im-
portance and model-averaged parameter estimates from the set
of top models selected by DAICc ! 4, based on Burnham and
Anderson (2001), which states that DAIC values 14 have con-
siderably less support than those !4. We then examined sup-
port for the predictions of the postnatal override hypothesis and
the postnatal reveal hypothesis via two lines of inquiry, both of
which assessed the ability of prenatal environment (allantoic
CORT and/or allantoic T) to explain phenotypic traits at day 10
(before experimental manipulation of the postnatal environ-
ment) and at day 15 and day 20 (after imposition of postnatal
challenges).
First, we considered the length of postnatal challenges. The

postnatal override hypothesis was supported if there was a
decreased influence of prenatal environment on chick phe-
notype (free and total baseline CORT, total maximum CORT)
with duration of the postnatal challenge, that is, if allantoic
hormones explained chick baseline CORT better before im-
plementation of controlled diets (age 10 d) than after either 5
or 10 d of controlled diets (age 15 or 20 d). In contrast, the
postnatal reveal hypothesis was supported if there was an
increased influence of prenatal environment (allantoic hor-
mones) on chick phenotype with duration of controlled diets.
The influence of prenatal environment was assessed by whether
selected candidate models included allantoic hormones (i.e.,
models 4, 7–10; table 1) and by the relative importance of allan-
toic CORT and allantoic T. Second, we considered the influence
of the magnitude of postnatal challenges. This was the only
way to test our hypotheses for the measures taken at only one
time point: maximum CORT and fledging age. If the interaction
model (i.e., model 7) was selected (i.e.,DAICc ! 4), we examined
the relationship between prenatal environment and chick phe-
notype at the different levels of postnatal challenge by regres-
sion analysis of the allantoic hormones and diet treatment. The
postnatal override hypothesis was supported if the more chal-
lenging postnatal environments (more restricted diets) yielded
an increased slope in the relationship between prenatal environ-
ment and chick phenotype (both after 5 and 10 d of challenge).
In contrast, the postnatal reveal hypothesis was supported if
the most challenging postnatal environment resulted in a de-
creased slope between prenatal environment and chick phe-
notype.
Finally, to determine the direction of relationships between

prenatal or postnatal variables and phenotypic traits, we relied
on estimates of slopes for energy intake and the effects of both
allantoic steroids on measures of CORT and fledging behavior
in the best-performing models (excluding those containing

interactions between the explanatory variables, where slope
estimates are confounded by the interaction). R was used for
all statistical analyses with packages AICcmodavg and MuMIn
(R Core Team 2012).

Results

Effects of Diets on Baseline CORT

Energy intake at all stages was selected into the set of top models
for baseline CORT (table 2). Both total and free baseline CORT
increased with the duration and severity of energy restriction
(but decreased from day 10 to day 20 in the highest–energy
intake group; 353 kJ/d; fig. 2).

Role of Allantoic Steroids in Baseline CORT

A consistent pattern emerged for measures of baseline CORT.
Experimental energy intake always affected CORT; however,
the ability of allantoic steroids to explain variation grew stronger
after the transition from ad lib. (day 10) to controlled (days 15 and
20; tables 2, 3) energy intake.

Total Baseline CORT

At 10 d of age, selected top models for baseline total CORT
included the null model (intercept only), expanded null mod-
els (hatch date, sex), and a simple postnatal environment model
(ad lib. food intake; table 2). The strongest model including
prenatal environment (e.g., allantoic steroids) was 15 AICc away
from the best model and accounted for only 3% of the model
weights (table 2). After 5 d of controlled energy intake, the set
of top models included prenatal environment in an interaction
model with postnatal environment, though a simple postnatal
environment model (controlled energy intake) scored best (ta-
ble 2). Although the interaction between prenatal environments
and postnatal environments at day 15 reflected different slopes
among treatments, those slopes were not consistently associated
with the level of restriction of daily energy intake. At day 20, after
10 d of restricted intake, prenatal environment remained in the
top models in an additive model with postnatal environment,
while the simple postnatal environment model (controlled energy
intake) remained the best model (table 2). Overall, relative im-
portance of allantoic hormones increased through the postnatal
challenge, from 0.04 (day 10), to 0.15 (day 15), to 0.20 (day 20) for
allantoic CORT and from 0.04 (day 10), to 0.08 (day 15), to 0.19
(day 20) for allantoic T (table 3).

Free Baseline CORT

Free baseline CORT showed a stronger version of the same
pattern. Although there was limited evidence (the null model
was selected as the top model, DAICc p 0) for a role of
prenatal environment on day 10 (DAICc p 3.54), at day 20 a
pre/postnatal environment additive model scored best among
the top models (DAICc p 0), and a pre/postenvironment
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Table 2: Model selection results for effects of pre- and postnatal environment on baseline corticosterone (CORT; free and total),
maximum stress-induced CORT, and fledging age

Response and model df
Log

likelihood AICc DAICc
AICc
weights

Total baseline CORT (day 10):
Intercept only 2 22.33 9.28 .00 .46
Hatch date 3 21.68 10.70 1.42 .23
Energy intake 3 22.23 11.79 2.51 .13
Sex 3 22.25 11.83 2.55 .13
Allantoic CORT 1 allantoic T 4 22.28 14.92 5.63 .03
Allantoic T 1 energy intake 1 allantoic T # energy intake 5 21.45 16.64 7.36 .01
Allantoic CORT 1 energy intake 1 allantoic CORT #

energy intake 5 21.86 17.47 8.19 .01
Allantoic CORT 1 allantoic T 1 energy intake 5 22.18 18.12 8.84 .01
Allantoic CORT 1 allantoic T 1 energy intake 1 allantoic

CORT # energy intake 1 allantoic T # energy intake 7 21.31 24.62 15.34 .00
Total baseline CORT (day 15):
Energy intake 3 23.52 14.38 .00 .72
Allantoic CORT 1 energy intake 1 allantoic

CORT # energy intake 5 22.24 18.24 3.86 .10
Intercept only 2 27.63 19.88 5.50 .05
Hatch date 3 26.47 20.27 5.89 .04
Allantoic CORT 1 allantoic T 1 energy intake 5 23.34 20.43 6.06 .03
Allantoic T 1 energy intake 1 allantoic T # energy intake 5 23.35 20.44 6.06 .03
Sex 3 27.09 21.52 7.14 .02
Allantoic CORT 1 allantoic T 1 energy intake 1

allantoic CORT # energy intake 1 allantoic T #
energy intake 7 21.42 24.84 10.46 .00

Allantoic CORT 1 allantoic T 4 27.43 25.22 10.84 .00
Total baseline CORT (day 20):
Energy intake 3 1.33 4.68 .00 .74
Allantoic CORT 1 allantoic T 1 energy intake 5 2.79 8.17 3.49 .13
Allantoic CORT 1 energy intake 1 allantoic

CORT # energy intake 5 2.15 9.44 4.76 .07
Allantoic T 1 energy intake 1 allantoic T #

energy intake 5 1.91 9.93 5.24 .05
Intercept only 2 25.52 15.66 10.98 .00
Allantoic CORT 1 allantoic T 1 energy intake 1

allantoic CORT # energy intake 1 allantoic T #
energy intake 7 2.96 16.07 11.39 .00

Sex 3 25.12 17.57 12.89 .00
Hatch date 3 25.50 18.33 13.65 .00
Allantoic CORT 1 allantoic T 4 25.28 20.91 16.23 .00

Free baseline CORT (day 10):
Intercept only 2 71.82 2139.00 .00 .37
Hatch date 3 72.93 2138.52 .48 .29
Sex 3 72.07 2136.80 2.20 .12
Energy intake 3 72.02 2136.71 2.29 .12
Allantoic CORT 1 allantoic T 4 72.90 2135.46 3.54 .06
Allantoic CORT 1 allantoic T 1 energy intake 5 72.96 2132.17 6.83 .01
Allantoic T 1 energy intake 1 allantoic T #

energy intake 5 72.85 2131.95 7.05 .01
Allantoic CORT 1 energy intake 1 allantoic CORT #

energy intake 5 72.65 2131.55 7.45 .01

This content downloaded from 134.82.75.161 on Sun, 6 Sep 2015 14:50:41 PM
All use subject to JSTOR Terms and Conditions



interaction model was also selected into the top models
(DAICc p 2.39). Relative importance of allantoic hormones
increased in a pattern that was similar to that for total baseline
CORT (allantoic CORT: day 10 p 0.08, day 20 p 0.74;

allantoic T: day 10 p 0.09, day 20 p 0.59; table 3). Further
analysis of the interaction between prenatal environment and
postnatal environment at 20 d revealed that the slope of the
positive relationship between allantoic CORT and free base-

Table 2 (Continued )

Response and model df
Log

likelihood AICc DAICc
AICc
weights

Allantoic CORT 1 allantoic T 1 energy intake 1 allantoic
CORT # energy intake 1 allantoic T # energy intake 7 73.33 2124.66 14.34 .00

Free baseline CORT (day 20):
Allantoic CORT 1 allantoic T 1 energy intake 5 75.45 2137.15 .00 .55
Energy intake 3 71.40 2135.47 1.68 .24
Allantoic CORT 1 energy intake 1 allantoic

CORT # energy intake 5 74.26 2134.76 2.39 .17
Allantoic T 1 energy intake 1 allantoic T # energy intake 5 72.14 2130.53 6.62 .02
Allantoic CORT 1 allantoic T 1 energy intake 1 allantoic

CORT # energy intake 1 allantoic T # energy intake 7 76.15 2130.30 6.85 .02
Intercept only 2 65.06 2125.49 11.66 .00
Hatch date 3 65.59 2123.86 13.29 .00
Sex 3 65.46 2123.59 13.56 .00
Allantoic CORT 1 allantoic T 4 66.13 2121.92 15.23 .00

Maximum CORT (day 20):
Energy intake 3 5.50 23.67 .00 .53
Total baseline CORT (day 15) 3 4.20 21.07 2.59 .14
Allantoic CORT 1 energy intake 1 allantoic

CORT # energy intake 5 6.70 .35 4.02 .07
Intercept only 2 1.93 .76 4.43 .06
Total baseline CORT (day 20) 3 2.99 1.36 5.03 .04
Allantoic T 1 energy intake 1 allantoic T # energy intake 5 6.19 1.37 5.04 .04
Allantoic CORT 1 allantoic T 1 energy intake 5 6.13 1.48 5.15 .04
Total baseline CORT (day 10) 3 2.78 1.77 5.44 .03
Sex 3 2.03 3.27 6.93 .02
Hatch date 3 1.95 3.43 7.10 .02
Allantoic CORT 1 allantoic T 4 2.30 5.75 9.42 .00
Allantoic CORT 1 allantoic T 1 energy intake 1 allantoic

CORT # energy intake 1 allantoic T # energy intake 7 6.84 8.31 11.98 .00
Fledging age:
Energy intake late 3 241.89 91.11 .00 .43
Allantoic T 1 energy intake 1 allantoic T # energy intake 5 240.01 93.76 2.66 .11
Allantoic CORT 1 allantoic T 1 energy intake 5 240.04 93.83 2.72 .11
Free baseline CORT (day 20) 3 243.35 94.04 2.93 .10
Total baseline CORT (day 20) 3 243.54 94.41 3.30 .08
Allantoic CORT 1 energy intake 1 allantoic

CORT # energy intake 5 240.79 95.33 4.22 .05
Allantoic CORT 1 allantoic T 1 energy intake 1 allantoic

CORT # energy intake 1 allantoic T # energy intake 7 236.96 95.92 4.81 .04
Intercept only 2 246.13 96.88 5.77 .02
Maximum CORT (day 20) 3 245.42 98.16 7.06 .01
Allantoic CORT 1 allantoic T 4 244.27 98.90 7.79 .01
Energy intake early 3 245.87 99.08 7.97 .01
Hatch date 3 246.10 99.54 8.43 .01
Sex 3 246.13 99.58 8.48 .01

Note. Models with DAICc ! 4 are shown in bold. df p degree of freedom; AICc p Akaike information criterion corrected for finite sample sizes.
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line CORT was significantly different from 0 (P p 0.022;
adjusted r 2 p 0.71) only in the most restricted group (187 kJ/d;
fig. 3).

Maximum CORT (Day 20)

Adrenocortical responsiveness to the acute stress of handling
and restraint was tested once at day 20 posthatch; thus, it was
not possible to assess whether the role of allantoic steroids
changed after imposition of diet treatments. However, roles
for allantoic steroids or an interaction between allantoic steroids
and diet were not strongly supported. Instead, top models for
maximumCORT included only energy intake and baseline CORT
at 15 d (table 2).

Fledging Age

No chick opted to fledge before day 26 posthatch. Top models
for fledging age included energy intake, a model combining
additive effects of allantoic T and diet with the interaction
between allantoic T and diet, additive effects of energy intake
and allantoic steroids, and CORT at day 20 (free and total CORT
were similarly weighted; table 2). However, further investigation
of the interactions yielded no consistent effect of severity of en-
ergy restriction.

Directionality of Effects

Values of total and free baseline CORT, maximum CORT, and
fledging age are summarized by treatment in table 5. Neither
energy intake nor allantoic steroids showed any strong relation-
ships with CORT before imposition of controlled diets on day 10
(table 2). After day 10, energy intake was negatively correlated
with all CORT measures but positively associated with fledging
age (table 4). Allantoic CORT and allantoic T had opposite re-
lationships with baseline CORT at day 20 and fledging but had no
effect on maximum CORT (table 4). High allantoic CORT was
associated with higher baseline CORT and later fledging, and
higher allantoic T was associated with lower plasma CORT and
earlier fledging (table 4). A schematic summary of these results
is shown in table 6.

Discussion

Summary

In this study we examined the relative contributions of pre-
and postnatal environments to aspects of phenotype in seabird
chicks. Specifically, we assessed phenotypic traits related to
adrenocortical function (baseline and maximum CORT) and
fledging—a postnatal behavior associated with a major devel-
opmental transition. In our sample of captive seabird chicks,
these traits were strongly affected by postnatal food availability;
a postnatal challenge in the form of energetic restriction in-
creased baseline and maximum CORT secretion (table 4; fig. 2)
and promoted chicks’ readiness to fledge (table 4; fig. 4). Inter-
estingly, when considering contributions of the prenatal envi-
ronment, we found support for the postnatal reveal hypothesis
(fig. 1): indicators of the prenatal environment (allantoic ste-
roids) did not contribute significantly to explaining phenotype
until after the imposition of a postnatal challenge (tables 2, 6),
and there is evidence that the strength of their contribution
increased with the severity of challenge (tables 2, 3; fig. 3). Our
results emphasize the importance of interpreting studies of pre-
natal effects in light of the postnatal environment.

Adrenocortical Function

Baseline CORT. Changes in baseline CORT levels over the
course of the experiment revealed a strong effect of postnatal
energy intake (fig. 2) but also yielded two lines of evidence that
effects of the prenatal environment on CORT production can be

Figure 2. Total (a) and free (b) baseline corticosterone (CORT) in
captive common murre chicks. Lines are regression lines, and shading
indicates 95% confidence intervals. CORT was not different among
treatment groups at day 10, before implementation of controlled diets.
For illustrative purposes, treatments are indicated as chick daily en-
ergy intake. At day 20 posthatch, after 10 d of controlled diets, there
was a negative relationship between energy intake and both total and
free baseline CORT. Baseline CORT increased in the three most
restricted groups (187, 247, and 266 kJ/d) but decreased in the least
restricted group (353 kJ/d).
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Table 3: Model-averaged parameter estimates with confidence intervals (CIs; 2.5% and 97.5%) and relative importance of
predictor variables

Response and parameter
Relative

importance Estimate Lower CI Upper CI

Total baseline CORT (day 10):
Hatch date .23 .0655 2.0592 .1902
Energy intake early .16 .0249 2.1047 .1544
Sex .13 .0455 2.2055 .2965
Allantoic T .04 .0036 2.1411 .1482
Allantoic CORT .04 2.0128 2.1548 .1292
Allantoic T # energy intake early .01 .1039 2.0920 .2998
Allantoic CORT # energy intake early .01 .0745 2.1302 .2791

Total baseline CORT (day 15):
Energy intake .89 2.1971 2.3366 2.0575
Allantoic CORT .15 .0435 2.1596 .2465
Allantoic CORT # energy intake late .11 .1417 2.0674 .3508
Allantoic T .08 2.1107 2.2657 .0443
Allantoic T # energy intake late .04 2.0297 2.1833 .1240
Hatch date .04 2.0338 2.2674 .1999
Sex .02 2.1495 2.4624 .1634

Total baseline CORT (day 20):
Energy intake late .99 2.2189 2.3314 2.1064
Allantoic CORT .20 .0403 2.1141 .1947
Allantoic T .19 2.0718 2.1907 .0472
Allantoic CORT # energy intake late .07 2.0753 2.2462 .0956
Allantoic T # energy intake late .06 2.0092 2.1919 .1735
Sex .00 2.1178 2.4038 .1683
Hatch date .00 2.0131 2.1614 .1352

Free baseline CORT (day 10):
Hatch date .29 .0029 2.0013 .0071
Energy intake early .15 .0028 2.0058 .0114
Sex .12 .0012 2.0033 .0056
Allantoic T .09 2.0018 2.0066 .0030
Allantoic CORT .08 2.0018 2.0064 .0029
Allantoic T # energy intake early .01 .0016 2.0051 .0083
Allantoic CORT # energy intake early .01 .0008 2.0061 .0077

Free baseline CORT (day 20):
Energy intake late 1.00 .0040 2.0022 .0103
Allantoic CORT .74 2.0043 2.0088 .0001
Allantoic T .59 2.0090 2.0134 2.0046
Allantoic CORT # energy intake late .19 2.0045 2.0110 .0020
Allantoic T # energy intake late .04 .0010 2.0062 .0083
Hatch date .00 2.0028 2.0087 .0031
Sex .00 2.0048 2.0164 .0068

Maximum CORT (day 20):
Energy intake late .68 2.1200 2.2136 2.0264
Total baseline CORT (day 15) .14 .0979 .0025 .1934
Allantoic CORT .12 2.0548 2.1938 .0841
Allantoic T .09 2.0867 2.2251 .0518
Allantoic CORT # energy intake late .07 .0685 2.0324 .1693
Allantoic T # energy intake late .04 2.0426 2.1415 .0564
Total baseline CORT (day 20) .04 2.0241 2.1745 .1264
Total baseline CORT (day 10) .03 .0618 2.0400 .1636
Sex .02 2.0422 2.2489 .1644
Hatch date .02 2.0093 2.1150 .0964
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revealed by postnatal challenges. First, the ability of allantoic
steroids to explain variation in baseline CORT grew stronger
after the transition from ad lib. food intake to controlled diets
(tables 2, 6); second, the effect of allantoic steroids on baseline
free CORT was stronger in the most energetically restricted
treatment group (fig. 3). Despite the small sample size, these
results suggest that some effects of the prenatal environment
would not be apparent in all postnatal environments and, in the
case of baseline CORT, some prenatal influences on phenotype
may manifest only in response to challenges.
Glucocorticoids are generally involved in regulating be-

havioral and physiological traits associated with maintaining
energy balance (Kitaysky et al. 2001b, 2003; Lynn et al. 2003;
Loiseau et al. 2008; Schultner et al. 2013a, 2013b) and have
specifically been shown to respond to short-terms changes in
food availability in adult murres (Barrett et al. 2015). Thus, it
is not surprising that the imposition of energetic restriction
increased adrenocortical activity in chicks. Though experi-
mental diets were well within the range of food intake reported
for free-living common murre chicks (Benowitz-Fredericks
and Kitaysky 2006), the transition from ad lib. food intake to
controlled diets induced an increase in baseline total CORT
after 5 d (tables 2, 3). After 10 d, both total and free baseline
CORT were elevated in all groups except for the least restricted
(fig. 2), suggesting that despite the lack of a true ad lib. control
group, 353 kJ/d did not compromise energy balance of 20-d-old
chicks sufficiently to induce an adrenocortical response. The lack
of change in hypothalamo-pitutary adrenal (HPA) function in this
group (table 5) provided useful confirmation that changes in the
more restricted groups were due to treatment and not age.

Responsiveness to Acute Stressors.We found no strong evidence
that maximum CORT at day 20 was affected by the prenatal
environment. Maximum CORT in response to a standardized
stressor (a key component of the acute adrenocortical response,
or glucocorticoid reactivity) has been generally interpreted as a

reflection of an animal’s ability to shift resource allocation
toward self-maintenance (Landys et al. 2006; Breuner et al.
2008). Studies in seabirds have provided compelling evidence
that, at least in some species, maximum CORT reflects recent
(on the scale of days to weeks) stress, specifically as induced by
aspects of the environment that reflect food intake (Kitaysky
et al. 2010). These findings in seabirds corroborate biomedical
studies using rats that demonstrate that recent stress facilitates
upregulated glucocorticoid responsiveness (Dallman et al. 1992;
Bhatnagar and Vining 2003). Because we measured maximum
CORT at only day 20 and cannot compare to levels before the
imposition of restricted diets, we cannot rule out the possibility
that the prenatal environment might affect maximum CORT in
the absence of postnatal challenges. However, based on the lack
of explanatory power for either allantoic steroids themselves or
their interaction with energy intake (which we would expect to
find—with stronger relationships in more restricted groups—if
severity of restriction overrode prenatal effects on maximum
CORT), the effect of energy restriction appears to override any
potential prenatal effects and seems to be the strongest predictor
of adrenal response to acute stress of capture and handling.

Fledging

In free-living murres, there is an extended period of parental
care postfledging, and the act of fledging is triggered by an
interaction between parents and chicks, with adults in the nest
or from the water below vocally encouraging chicks to jump
(Ainley et al. 2002). Thus, our measure of fledging age re-
flects only the chicks’ contribution to this transition. No chick
fledged before day 26; however, we did not provide oppor-
tunity to fledge until day 20, whereas with the encouragement
of their parents, free-living chicks fledge as early as day 16.
Thus, we cannot exclude the possibility that chicks that would
have fledged early were thwarted, and the fledging ages we ob-
served reflect a revised fledging age for some chicks. However,

Table 3 (Continued )

Response and parameter
Relative

importance Estimate Lower CI Upper CI

Fledging age:
Energy intake late .75 1.1271 .2847 1.9695
Allantoic T .27 2.7198 21.5561 .1166
Allantoic CORT .21 .1711 21.0764 1.4186
Allantoic T # energy intake late .15 .3859 2.8135 1.5853
Free baseline CORT (day 20) .10 2.9511 21.7800 2.1222
Allantoic CORT # energy intake late .09 2.9229 21.7587 2.0870
Total baseline CORT (day 20) .08 .9644 2.3139 2.2428
Maximum CORT (day 20) .01 2.5040 21.4143 .4064
Energy intake early .01 2.3027 21.2322 .6268
Hatch date .01 2.0923 21.0315 .8469
Sex .01 .0167 21.8280 1.8614

Note. Relative variable importance was calculated as the sum of weights of Akaike information criterion corrected for finite sample sizes over all models
containing the parameter of interest.
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given that average fledging age in the wild ranges from 20 to
24 d (Uttley et al. 1994; Cameron-McMillian et al. 2006) and
chicks in this study jumped multiple nights in a row after their
first jump, it seems plausible that our data reflect first fledging
attempts.
We found that an assortment of pre- and postnatal factors

contributed to explaining fledging age, with higher energy
intake and allantoic CORT associated with later fledging and
higher baseline plasma CORT and exposure to higher embryonic
T associated with earlier fledging (table 4). Because fledging is
a single event, the presence and nature of interactions between
energy intake and allantoic steroids are the only vehicles with
which to assess our hypotheses. While an interaction between
allantoic T and intake is present among the top models (table 2),
it does not yield clear support for either hypothesis because there
is no evidence that the strength of the relationship is related
linearly to severity of restriction.

Although there are no studies directly investigating the role
of prenatal steroid exposure on fledging age in seabirds, many
studies have found that a combination of energy intake and
baseline CORT affects fledging age of seabird chicks. For
example, in thin-billed prions and storm petrels, CORT levels
increase before fledging, while Laysan albatross chicks with
higher free CORT fledge sooner and parental feeding rates
often decrease as fledging approaches (Quillfeldt et al. 2007;
Kozlowski et al. 2010; Sprague and Breuner 2010). Thus, it
appears that the presence of sufficient food and low CORT in
the least restricted group contributed to an extended nestling
stage (fig. 4; table 4).

Allantoic Steroids as Indicators of the Prenatal Environment

Relatively little research has been conducted to elucidate fac-
tors determining the steroid content of allantoic waste from
bird eggs. Levels of allantoic steroids reflect the interaction be-
tween genotype (in this case, both maternal and chick) and en-
vironment. Though we are not able to control for the genetic
contribution to allantoic steroid levels in this study, they are
likely to reflect variation in the prenatal environment generated
by a combination of maternal steroid deposition into eggs and
endogenous production by embryos (Benowitz-Fredericks et al.
2005). Because CORT is not highly heritable in birds (though
maximum CORT is substantially more heritable than baseline;
Jenkins et al. 2014; Homberger et al. 2015), variation in allan-
toic CORT levels likely reflects variation in the prenatal envi-
ronment, both from maternal CORT deposition into eggs and
from embryonic adrenals, which are active at a baseline level in
ovo and capable of responding to prenatal stressors by elevating
CORT (Wise and Frye 1973). In contrast, though there is active
embryonic gonadal steroidogenesis (Bruggemanet al. 2002), there
is little information about how the prenatal environment, includ-
ing yolk T levels, might affect variation in embryonic androgen
production. Though we use levels of allantoic steroids as proxy
for an unspecified aspect of prenatal experience in this study
and cannot distinguish maternal from embryonic contributions,
some of our findings are consistent with other studies, suggesting
that our measures of steroids in allantoic waste reflect develop-
mental hormone exposure in relevant ways. For instance, the
association between high allantoic CORT and high free baseline
CORT at day 20 in the most restricted chicks is similar to stud-
ies showing that elevation of maternal CORT enhances HPA
activity in quail chicks (Hayward and Wingfield 2004) and that
elevated yolk CORT generated sustained CORT elevation in re-
sponse to an acute stressor in chickens (Haussmann et al. 2012).
However, it is in contrast to the marked suppression of HPA
function by exogenously elevated yolk CORT in starlings (Love
and Williams 2008). The differences in consequences of prenatal
CORT exposure among studies may reflect differences in life-
history strategies among avian species (Love andWilliams 2008)
ormay reflect differences in postnatal environments, as described
here. Elevated yolk androgens can alter avian adrenal function,
but the direction of the effect appears to be mixed. For example,
elevated yolk androgens increased circulating CORT in kestrel

Figure 3. Allantoic corticosterone (CORT) and free baseline CORT
before and after implementation of restricted diets. a, There were no
significant relationships between allantoic CORT and free baseline
CORT at day 10 posthatch. b, At day 20 posthatch, after 10 d of
controlled diets, a treatment by allantoic CORT interaction (table 2)
was evident—only the most energy-restricted chicks showed a sig-
nificant positive relationship between allantoic CORT levels and free
baseline CORT levels (indicated by solid line).
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chicks (Sockman and Schwabl 2001) but appeared to decrease
fecal CORT in response to isolation in quail chicks (Daisley et al.
2005).

Adaptive Maternal Effects?

We did not have a strong basis on which to base a priori
predictions about the ability of postnatal food availability to
differentially override or reveal the effects of allantoic CORT
versus T. Thus, interpretations of our data in the context of
fitness can be made only speculatively. If, however, we assume
that elevated allantoic steroids reflect differences in maternal
steroid allocation to eggs and if the relationships between al-
lantoic steroids and phenotype are causal, we can speculate that
maternally deposited yolk CORT in murres may serve to facil-
itate acquisition of food from parents by increasing chick adrenal
activity. Free-living adult commonmurres elevate plasma CORT
in response to reduced food availability (Kitaysky et al. 2007;
Barrett et al. 2015) and therefore may also elevate yolk CORT
in low-food environments (Hayward and Wingfield 2004). In
the wild, parents provision chicks that have experimentally ele-
vated CORT at higher rates than control chicks (A. Kitaysky,

unpublished data). Similarly, in another seabird species, black-
leggedkittiwakes (Rissa tridactyla), experimentally elevatedCORT
in chicks promoted begging behavior, and parents responded
by increasing feeding (Kitaysky et al. 2001b). Thus, our results
suggest the possibility that developmental exposure to elevated
CORT may not alter adrenocortical function when food is not
limited (postnatal override; no relationship between allantoic
CORT and plasma CORT before restriction) but may make
energy-limited chicks better able to respond to food shortages by
elevating CORT to secure resources from their parents and by
remaining in the nest longer (postnatal reveal; table 4). Similarly,
if allantoic T were to directly reflect yolk T, our data suggest that
the deposition of more T into eggs, potentially a reflection of
maternal effects aimed at synchrony of fledging as an antipred-
atory tactic in colonial-breeding common murres (Benowitz-
Fredericks et al. 2005, 2006), may dampen adrenal responsive-
ness of chicks to food shortages and reduce their time in the nest
(table 4). Both causes of variation in allantoic steroids and fit-
ness implications of variation in HPA function remain specula-
tive, and CORT data from adult murres at the same colony from
which these eggs were collected suggest that it was a relatively
moderate year in terms of food availability (Kitaysky et al. 2007).
However, similar to the scenarios described above (particularly

Table 4: Slopes for parameters in top models from model selection (table 2) for baseline corticosterone (CORT; total and free),
maximum stress-induced CORT (total), and fledging age following imposition of controlled diets (at day 10 posthatch)

Trait and model rank Parameter b SE Lower CL Upper CL

Total baseline CORT
(day 15):

1 Energy intake 2.5679 .1841 2.9518 2.1839
Total baseline CORT

(day 20):
1 Energy intake 2.5378 .1885 2.9311 2.1446
2 Energy intake 2.6035 .1768 2.9750 2.2321
2 Allantoic CORT .3809 .1898 2.0179 .7797
2 Allantoic T 2.3484 .1900 2.7475 .0507

Free baseline CORT
(day 20):

1 Energy intake 2.7293 .1489 21.0422 2.4164
1 Allantoic CORT .4033 .1599 .0674 .7392
1 Allantoic T 2.3451 .1600 2.6813 2.0089
2 Energy intake 2.6620 .1676 21.0116 2.3124

Maximum CORT
(day 20):

1 Energy intake 2.5120 .1921 2.9126 2.1113
2 Total baseline CORT (day 15) .5143 .1918 .1143 .9143

Fledging age:
1 Energy intake .5655 .1844 .1807 .9502
3 Energy intake .5264 .1811 .1459 .9069
3 Allantoic CORT .0720 .1945 2.3365 .4806
3 Allantoic T 2.3466 .1946 2.7555 .0622
4 Free baseline CORT (day 20) 2.4719 .1971 2.8831 2.0606
5 Total baseline CORT (day 20) 2.3523 .2093 2.7888 .0843

Note. Standard errors (SEs) and confidence limits (CLs; 5%–95%) are also shown.
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with CORT), future studies could integrate postnatal override/
reveal with the maternal/offspring match-mismatch hypothesis
(Love and Williams 2008; Sheriff and Love 2013). In this con-
text, maternal effects manifest and are valuable when prenatal
and postnatal conditions align but may be costly and therefore
overridden by the postnatal environment when they do not.

Other Tests of Postnatal Override and Postnatal Reveal

Several studies have manipulated both prenatal environments
and postnatal environments in birds. Love and Williams
(2008) and Marasco et al. (2012) assessed pre- and postnatal
contributions to adrenocortical function by experimentally ma-
nipulating both prenatal stress and postnatal stress for birds
and assessing adrenocortical function. Interestingly, Love and
Williams (2008) essentially found no interaction between pre-
natal stressors and postnatal stressors, with a dose of prenatal
CORT (designed to bring the average level of CORT in eggs
from 15.5 to 28.3 ng/g) completely overriding postnatal expe-
rience in starlings (Sturnus vulgaris), while Marasco et al. (2012)
found strong evidence of postnatal override in determining in-
teractions between the prenatal environments and postnatal
environments in Japanese quail. At 22 d posthatch, there was
no effect of prenatal treatment with 8.5 ng of CORT (1.8 times
the standard deviation), but chicks treated with CORT post-
natally showed similar patterns of adrenocortical activity re-
gardless of prenatal treatment. At day 64 posthatch, an effect
of prenatal environment appeared—prenatally treated chicks
showed enhanced adrenocortical function but only if they were
not also treated postnatally (Marasco et al. 2012). Another ex-
periment that manipulated both prenatal environments and
postnatal environments in partridges found that for the same
aspect of the environment (predictability of food), postnatal
treatments overrode prenatal (parental) treatments for some
phenotypic traits (oxidative stress, immunity) but prenatal treat-
ment overrode postnatal treatment for others (adrenocortical
function; Homberger et al. 2013). Thus, it is probable that the
interactions among prenatal environment, postnatal environ-
ment, and ontogeny will vary both among species and with dif-
ferent combinations of environmental factors and phenotypic
traits.

Conclusion

Recently, Killen et al. (2013) described the inconsistent rela-
tionships between physiology and behavior both across and
within taxa and proposed that the inconsistency is due to the
ability of environmental stressors to either amplify or atten-
uate the strength of the relationship between these traits.
Similarly, the postnatal environment may attenuate or amplify
phenotypic manifestations of the prenatal environment, po-
tentially generating a variety of seemingly contradictory re-
sponses to the same prenatal manipulations. We found that in
the common murre baseline adrenocortical function and the
decision of chicks to fledge are governed primarily by their
daily energy intake but that the prenatal environment can
contribute to variation in these aspects of phenotype in certain
postnatal contexts. Specifically, we found that some effects of
the prenatal environment are not always apparent but can be
revealed by postnatal challenges (table 6). Although this study
focused on prenatal steroids, food, and HPA function in

Table 6: Summary of the effects of daily energy intake and allantoic steroid concentrations on characteristics
of HPA function and fledging age in common murre chicks growing under ad lib. (day 0–10) versus
controlled (day 10–20) feeding conditions

Predictor variable (effect)

Trait Energy intake Allantoic CORT Allantoic T

Total baseline CORT (ad lib./controlled) ○/2 ○/1 ○/2
Free baseline CORT (ad lib./controlled) ○/2 ○/1 ○/2
Maximum CORT (controlled) 2 ○ ○
Fledging age (controlled) 1 1 2

Note. Directionality is based on slope estimates from top models as indicated in table 4. Open circle p no effect; plus sign p positive;
negative sign p negative. CORT p corticosterone; T p testosterone.

Figure 4. Fledging age of captive common murre chicks was best
explained by daily energy intake. Chicks consuming more energy
fledged at an older age than those consuming less.
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murres, postnatal override and postnatal reveal can provide a
general framework for investigating the interactions between
the prenatal environment and the postnatal environment. The
degree to which relationships can be generalized or predicted
across combinations of pre- and postnatal environments, phe-
notypic traits, and study organisms remains to be determined.
However, our ability to anticipate fitness consequences of vari-
ation in pre- or postnatal environments is contingent on under-
standing the ability of the postnatal environment to alter the
manifestation of prenatal effects.
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