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EFFECT OF SURFACE OXIDATION ON THE MECHANICS OF CARBON

NANOTUBE LADEN INTERFACES

WILLIAM DANIEL IVANCIC

ABSTRACT

Single and multi-walled carbon nanotubes (SWCNT & MWCNT) have been studied

over the past three decades because of their excellent properties, including their mechanical

strength and large electrical and thermal conductivities. Incorporating CNTs into phases 

necessary for use in consumer or industrial products has been challenging because of strong 

attractive interactions, heterogeneity, and lack of separation techniques for these 

nanomaterials. Moreover, there are further challenges incorporating CNTs into multiphase 

materials because of the many remaining open questions regarding the properties of an 

interface with CNTs adsorbed or nearby. In the present work, the mechanics and 

microstructure of a water/air interface laden with industrial grade MWCNTs was studied. 

Specifically, the properties of an interface laden with MWCNTs that were systematically 

modified via oxidation in nitric acid were measured. The duration of oxidation was varied, 

and the surface pressure of the nanotube laden interfaces was measured via a Langmuir- 

Blodgett trough and microbalance. The elasticity and film relaxation times for MWCNTs 

with varying extents of oxidation were measured and compared. Data suggests that film 

elasticity increased with increased surface oxidation. However, these measurements also 

revealed that elasticity increased with compression number, suggesting that surface 

oxidation may have had only an indirect effect on elasticity. Additionally, MWCNT films 

were observed with an optical microscope and SEM. Micrographs showed evidence of 

buckling in the films at low modification times. These data together suggest that the films
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densify at higher modification times, pulling together due to capillary interactions brought

on by stronger adsorption to the interface.
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CHAPTER I

INTRODUCTION

Rising interest in the production of advanced materials has driven research in the field 

of colloidal and nanomaterials over the past few decades [1]. Creating films, foams, 

emulsions, and other multiphase materials with colloidal particles is an active area of 

research because these materials are regularly used in applications across many industries 

[2]. Generally, foams and emulsions are stabilized by surfactant, which is a small molecule 

having both hydrophilic “water-loving” and hydrophobic “water-hating” moieties. 

Although surfactant is a robust and regularly used molecule in consumer products and 

industrial processes, multiphase materials stabilized by surfactant often suffer from 

stability issues because of the dynamic adsorption/desorption process to/from an interface. 

As surfactant desorbs from an interface, multiphase materials, such as foams or emulsions, 

will ripen and destabilize. However, foams and emulsions stabilized by colloidal particles 

have been shown to possess much longer periods of stability than their surfactant stabilized 

counterparts [3, 4] because solid particles do not easily desorb from an interface.

Foams stabilized by silica nanoparticles were produced in my preliminary work by 

agitating vials filled with particles and a solution of ethanol and water (see Fig. 1). My
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results showed that the interaction between particle chemistry and solution composition

determines the wettability of the particle to the interface. In this case, the hydrophobic silica

particles surround water droplets and prevent them from coalescence with other droplets at

low ethanol concentration in the aqueous phase. As the ethanol concentration increased,

the phase transitioned to a foam, as it became more favorable for the particles to pin at the

interface between air and the aqueous phase. Finally, at high ethanol concentrations, the

silica particles suspended in the solution, since the particles' affinity for the solution

increased as the amount of water in the phase decreased.

Figure 1: Silica particle stabilized multiphase materials. Ethanol and water mixtures with

silica particles. Phase transition is evident from liquid marbles to foam to suspension both

macroscopically (top) and microscopically (bottom).
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The ease with which silica nanoparticle stabilized foams were produced is not 

necessarily repeated for other nanomaterials, such as industrial grade multi-walled carbon 

nanotubes. Carbon nanotubes are very small, extremely strong, thermally and electrically 

conductive particles [5]. They are shaped like hollow tubes with walls that are one atomic 

layer thick [5]. There are two broad families of carbon nanotubes (CNTs): single-walled

carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs

are one individual tube of carbon molecules with diameters on the order of 1 nm [5].

MWCNTs are concentric cylinders of carbon molecules that vary in the number of layers

of tubes. Their diameters range from 2 to 100 nm [5]. In addition, their lengths are much 

larger than their widths. Their properties would prove very useful in a macro-material, and 

they have been used as fillers for polymer composite materials for this reason [6]. Naively 

repeating the foaming steps for silica stabilized nanoparticle foams failed to produce foams 

stabilized by MWCNTs. In response to the need for creating multiphase materials 

stabilized by MWCNTs, the interfacial properties of an air/water interface laden with 

carbon nanotubes were studied.

The hypothesis driving the work described herein was: Surface oxidation of industrial

grade MWCNT will alter the adsorption properties and resulting film elasticity of a

MWCNT laden water/air interface. The work conducted to test this hypothesis sought to

understand how CNTs adsorb to an interface and how these dynamics translate to the

carbon nanotube microstructure at the air/water interface. Experiments were designed to

monitor the difference between each sample once several samples of CNTs with varying

degrees of oxidation had been produced. Interfacial properties like surface pressure and
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elasticity were measured by spreading the samples onto an air and water interface in a

Langmuir-Blodgett trough and probing the interface.

The main conclusions from this thesis were:

• Film buckling under the stress of compression is more prevalent in films comprised

of CNTs with low modification times.

• As the duration of modification increases, the nanotubes adsorb to the interface

more strongly, inducing capillary attractions between themselves.

• The CNT films become denser and stiffer with increasing modification due to the

capillary interactions drawing them together.
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CHAPTER II

LITERATURE REVIEW and THEORY

2.1 Colloidal particles at fluid/fluid interfaces

Colloidal particles vary in characteristic size from 0.01 μm to 10 μm. These particles 

are regularly found in consumer products, industrial processes, and advanced materials. 

Some examples of industries where colloidal particles play crucial roles are in the food, 

cosmetics, and petroleum industries. Food emulsions are often stabilized by protein [7] and 

emulsions in cosmetic products are often stabilized by colloidal particles [8]. Oil recovery 

is aided by the formation of ultra-stable Pickering emulsions using nanoparticles as the 

stabilizing agents [9]. Colloidal particles have often been integrated into multiphase 

materials that have fluid/fluid interfaces. For instance, emulsions (aqueous/oil) or foams 

(aqueous/air) regularly include some solid colloidal scale particles. These particles will 

often pin to an interface depending on the particle surface chemistry and the interface at 

which the particle finds itself [10]. Interfaces laden with colloidal particles may become 

more stable [3, 4]. This has led to further research into the mechanics of these particle laden 

interfaces and the multiphase materials produced with colloidal particles.
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Multiphase materials like emulsions and foams require some stabilizing agent in them

to prevent the collapse of the material due to lamellae or bubble coalescence. These

materials are commonly stabilized by surface active agents (surfactants). Surfactants are

molecules containing a hydrophilic head group and a hydrophobic tail group. The

hydrophilic head group favors the water phase of the foam or emulsion, while the

hydrophobic tail group favors the non-water phase [11]. These molecules will often adsorb

and desorb to and from the interfaces in these emulsions and foams, moving into and out

of the bulk fluid. As the emulsions or foams move toward equilibrium, the lamellae or 

bubbles coalesce until all of the phases separate [12].

Solid stabilized foams and emulsions, often called “Pickering” emulsions and foams are 

stabilized by the pinning of colloidal particles to interfaces in the material to prevent 

coalescence. The interfaces in Pickering emulsions and foams tend to be much more stable 

than their surfactant stabilized counterparts. Coalescence due to desorption of particles 

from the interface is mitigated because it is energetically favorable for particles with 

appropriate surface chemistries to pin at the interface. The surface chemistry of the particle 

affects the contact angle, a measure of wettability of the particles. It becomes more difficult 

to remove particles from the interface as they increase in size and as their contact angle 

approaches 90o (see Fig. 2). Therefore, foams and emulsions stabilized by colloidal 

particles remain stable for long time scales, months to years long [3].
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Figure 2: Reproduced from a proposal by Dr. Christopher Wirth. (A) is a colloidal 

particle pinned at an interface. (B) is a graph showing the energy required to detach a 

particle from an interface as a function of particle size and contract angle.

The wettability of a solid particle is central to determining whether or not the particles

will pin to an interface. The contact angle is the angle, θ, made between the normal to the 

solid and liquid surfaces measured through the water [13] (see Fig. 3). For particles at an 

air and water interface, the contact angle can be visualized as follows:

Figure 3: Schematic of particles at an interface with different contact angles. Left: 

Hydrophobic particle. Center: Particle of mixed hydrophobic and hydrophilic surface 

chemistry. Right: Hydrophilic particle.
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The chemistry of the particles at the interface help determine the contact angle. For

example, for a particle pinning at an air/water or oil/water interface, a hydrophobic particle 

will have a contact angle greater than 90o, and will have a greater affinity for the air or oil 

phase, whereas a hydrophilic particle will have a contact angle less than 90o, and a greater 

affinity for the water phase. A highly hydrophilic particle will tend to suspend in the

aqueous phase, while a highly hydrophobic particle will tend to suspend in the oil phase 

(or sit on top of the interface for air). Thus, a particle with a very large (>150 o) or very 

small (<30 o) contact angle is unlikely to pin to the interface due to their strong affinities 

for their respective phases. However, a particle that has both hydrophilic and hydrophobic 

tendencies will have a contact angle closer to 90o, increasing its likelihood to pin to the 

interface. Modifying the surface chemistry of a particle can therefor affect its ability to pin 

to an interface. Functionalization of particles by adding chemical groups to its surface is a 

common way to change the hydrophilic or hydrophobic tendencies of the particles, or even 

make them reactive [14].

In addition to surface chemistry, particle shape can also be tuned to achieve variation in 

particle adsorption properties. Anisotropic particles that pin to an interface will likely 

deform the interface, inducing aggregation of the particles. Particles pinned at an interface 

are drawn together by capillary interactions because the surface tries to minimize 

interfacial deformation [13]. Anisotropic particles create an excess in surface area when 

they deform the interfaces they pin to. In order to decrease that excess area, the particles 

are drawn to their closest neighbors, forming aggregates or assemblies [15]. This 

phenomena is often used to form special assemblies of anisotropic particles via self

assembly, like assemblies of colloidal cylinders or ellipsoids [15].

8



Figure 4: At left are colloidal spheres. No capillary attraction occurs between them. At

right are ellipsoidal particles. Aggregation occurs here due to capillary interactions.

One example of an anisotropic particle is that of a carbon nanotube. As noted above, 

carbon nanotubes exhibit remarkable tensile strength and thermal and electrical 

conductivity properties [5, 16]. Implementing them in advanced material applications is a 

challenge however, due to the strong Van der Waals attractions these particles experience 

[17]. CNTs tend to flocculate because of these attractions, making it difficult to disperse 

them in liquids. In addition, CNTs are hydrophobic [18], adding an additional challenge to 

dispersing them in water. To combat flocculation and hydrophobicity, the surface 

chemistry can be altered by adding functional groups to the particle surface. Oxidation is a 

commonly used functionalization technique to modify CNTs because it adds polar groups 

to the surface, making the tubes more soluble in polar media [19]. Oxidation adds 

carboxylic groups to the surface of CNTs, adding some hydrophilic tendencies to the 

particles, and inducing electrostatic repulsion [20]. Although the dispersability of CNTs 

has been evaluated in the bulk for varying surface chemistries [21], little work has been
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done identifying how these modifications impact the adsorption properties of CNTs to 

fluid/fluid interfaces. Further, as noted above, the surface chemistry of a particle will 

dramatically impact the adsorption energy of a solid particle to an interface.

2.2 Mechanics of interfacial films

A fluid-fluid interface is formed when two immiscible fluids meet. If this boundary

remains clean, that is unpopulated by other molecules or particles, then the interface can 

be characterized by a single value for the surface tension at fixed temperature and pressure 

[22]. The surface tension of an interface is defined thermodynamically as the following

[13]:

σ = (∂F/∂A)T,V,eq (1)

where o is the surface tension, F is the Hemholtz Free Energy of the system, and A is the

surface area. The subscript T, V, eq means that the system is at constant temperature and

volume and that the system is in full internal equilibrium. One can physically understand 

the surface tension by picturing an interface. The figure below depicts an imaginary patch 

of a liquid surface, ABCD. The film exerts force on itself across the line MM'. If we 

consider the tension at the point P such that the line MM' passes through the point P, we

can define the surface tension as the force along the line divided by the line's length.

10



Figure 5: Example liquid surface ABCD is divided along the line MM' which passes 

through the point P [13].

We can define the surface tension by the following equation [13]:

σ = (dF/dl) (2)

where g is the surface tension, F is the force across the line, and l is the length of the line.

Once the interface becomes populated with molecules or particles that bridge the 

boundary between the two phases, the surface tension is not necessarily the value of the 

clean interface. Moreover, for certain systems, the value of the surface tension does not 

necessarily describe (in entirety) all the stresses at an interface [22]. In the 19th century, 

J.W. Gibbs showed that molecules and particles that pin to interfaces form microstructures 

that have a non-negligible effect on the interfacial properties due to the stresses they induce 

[23].
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Investigating the relevant stresses of interfaces laden with particles can be accomplished

by using the previously mentioned Langmuir-Blodgett trough. Langmuir-Blodgett troughs

are devices that are used to measure interfacial properties. They are often used to assemble

monolayers of anisotropic particles at interfaces, like nanorods, nanotubes, or nanosheets

[24-26]. A liquid, usually water, is poured into the trough, with a surrounding gas, usually 

air, present. Onto the liquid surface, substances are placed between two movable barriers. 

The barriers can be closed to compress the film at the interface, thereby increasing the 

surface concentration of whatever substance is between the barriers. This device can be 

used to facilitate surface pressure measurements, particle depositions onto solid substrates, 

and scalable production of thin films [27]. Deposition of particles by the Langmuir-Blodgett

technique onto a solid substrate is accomplished by dipping a substrate into the trough 

before placing particles at the interface, then withdrawing the substrate out through the 

particle laden interface [28]. The particles deposit onto the substrate as follows:

Figure 6: Schematic of a substrate being withdrawn from an interface with particles 

depositing onto it via the Langmuir method.
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A Langmuir-Blodgett trough, a micro balance, and a Wilhelmy plate can be utilized for 

measuring surface pressure of a liquid/gas interface. The surface pressure is equal to the

difference in surface tension between the “clean” interface, with no particles or molecules

pinned there, and the “dirty” interface, laden with particles or molecules. It can be given

by the following equation [29]:

Π = σ0 — σ (3)

where n is the surface pressure, σ0 is the surface tension of the “clean” interface, and o is

the surface tension of the “dirty” interface.

The Gibbs Elasticity is a measure of how well an interface can resist distortion. It is 

given by the equation [13]:

(4)

where EG is the Gibbs Elasticity, o is the surface tension, and A is the trough area. In

experiments with a Langmuir-Blodgett trough and micro-balance, the surface pressure is 

recorded, not the surface tension. Decreases in the surface tension cause equivalent 

increases in the surface pressure. Therefore, the equation for Gibbs Elasticity can be 

rewritten in terms of surface pressure by replacing the change in the surface tension with 

the negative change in the surface pressure:

(5)

where n is the surface pressure as defined by equation (3).
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The surface pressure of the interface is measured via the Langmuir-Blodgett trough in

conjunction with a microbalance and Wilhelmy plate or rod. The surface pressure relates

to the surface tension of the interface as prescribed in equation (3), wherein the surface

pressure is equal to the difference between the surface tension of the clean interface and

the surface tension of the interface laden with the foreign substance. When measuring

surface pressure in this way, one must consider that the film will respond to the

compressions. Changing the concentration of particles at the interface by compression

affects the surface tension thermodynamically, but the physical compression affects the 

film mechanically. Therefore, the observed change in surface pressure due to a 

compression on a Langmuir-Blodgett trough is a combined effect of thermodynamics and 

microstructural stresses. In order to observe each part of this effect, stepwise compressions 

can be performed, allowing time for the film to relax after compressions. The initial spike 

in surface pressure during compression is a superposition of the microstructural and 

thermodynamic stresses, and comparing the new steady state surface pressure to the pre

compression surface pressure reveals the thermodynamic contribution (see Fig.7) [30, 31]. 

Surface pressure data plotted against the changing trough area yields graphs that can be 

used to determine the elasticity of the film, an important property for the stabilization of 

multiphase materials.
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Figure 7: Mendoza, A. J., et al. “Particle Laden Fluid Interfaces: Dynamics and 

Interfacial Rheology” Advances in Colloid and Interface Science (2014). This figure 

represents a typical step compression experiment.

An example of work done on carbon based molecules at an interface is done by Diego

Pradilla et al [32]. This work was to investigate the interfacial properties of Asphaltene

molecules at an air/water and an water/oil interface [32]. Surface pressure isotherms were

recorded by utilizing a Langmuir-Blodgett trough, and they were used to determine film
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phase behavior and film elasticity. In addition, a technique called pendant drop analysis

was used for surface tension measurement [32]. Using the data from their experiments,

they were able to conclude that there was some aggregation occurring at both the air/water

and water/oil interfaces. A work more closely associated with my own is that of Anson Ma

et al [33]. This work investigates the difference between the behavior of carbon nanotubes

that have been functionalized and carbon nanotubes with no functionalization at an

air/water interface [33]. They found that aggregation was more prevalent in non-

functionalized tubes, and that the functionalized CNTs formed aligned films under high 

compressions, resembling 3D liquid crystal structures [33]. My work builds upon this 

previous work by taking an in depth look into varying degrees of functionalization of 

industrial grade, multi-walled carbon nanotubes, and how these different tubes behave at 

an air/water interface. The film microstructures are observed with both optical microscopy 

and scanning electron microscopy to bolster recorded data with some physical meaning. 

Film elasticity is determined for all samples to understand the effect of varying degrees of 

oxidation on elasticity. Finally, a physical explanation of how the degrees of oxidation 

affect the films properties and microstructure, supported by the collected data, is given.
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CHAPTER III

EXPERIMENTAL PROCEDURE AND INSTRUMENTATION

3.1 Procedure for preparation of CNT samples

Nitric acid is commonly used as an oxidative acid in the modification of carbon 

nanotubes [34]. This is usually performed to purify CNTs, exfoliate the tubes, or make 

them more soluble in water [19]. To study the effect of oxidation on the interfacial 

properties of MWCNTs from NanoLabs, samples of CNTs that had undergone oxidation 

for different durations had to be prepared. Figures 8 and 9 show the experimental 

apparatus. A hot water bath was prepared at 60.0oC, monitored by a thermocouple in the 

bath. The bath was situated on a Fisher Scientific Isotemp hot plate with magnetic stir bar 

capabilities. A 250 mL double-necked round bottom flask was placed into the bath, and 

filled with ~200 mL of nitric acid. A glass condenser was fitted to the vertical neck of the 

flask, and supported by a clamp attached to a ring stand sitting next to the hot plate. A 

magnetic stir bar was added to the nitric acid through the angled neck of the flask, and the 

stirring mechanism was switched on.
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Figure 9: Photograph of the apparatus used to modify MWCNTs via oxidation in nitric

acid.

1.0 grams of MWCNTs are added to the flask through the angled neck of the flask. A 

glass stopper then plugs the angled neck of the flask. Once the MWCNTs were added, a 

timer was started. After ~40 minutes, 1 hour, 2 hours, 4 hours, and 6 hours, ~20 mL of 

the nitric acid and CNT mixture was removed through the angled neck of the flask with a 

glass pipet, and delivered into a glass vacuum filter. Ultra-pure water was used to wash 

the CNTs in the filter, and remove excess nitric acid until a neutral pH was detected in 

the filter by Micro Essential Lab Hydrion pH paper. Ultra-pure (UP) water is filtered and 

purified with UV radiation by a Thermo Scientific MicroPure apparatus, until a resistivity
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of 18.20 mΩ*cm is measured. The wet, oxidized nanotubes were placed into scintillation 

vials without caps to dry in the Fisher Scientific Isotemp oven.

Samples of between 0.099 and 0.113 wt% CNTs (see Table 4 in Appendix A) in a 50 

volume % isopropyl alcohol and 50 volume % ultra-pure water mixture were created by 

mixing equal volumes of IPA and UP water, then measuring out ~10 grams of the 

mixture into a scintillation vial, and adding ~0.01 grams of CNTs. After the components 

were all present in the vial, they were mixed via tip sonication with a Fisher Scientific 

Sonic Dismembrator for 5 minutes at 50% power. The vials were then capped and stored 

for later use. Before any sample was used, it was sonicated in a Fisher Scientific 

Ultrasonic Bath for ~2 minutes to break up any flocculation that may have occurred while 

it was not being used.

3.2 Procedure for measurement of surface pressure versus area

A NIMA Technology Langmuir-Blodgett Trough was utilized to measure the surface 

pressure at a CNT laden, water and air interface.
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Figure 10: A NIMA Langmuir-Blodgett trough with a MWCNT laden interface. Reading 

the surface pressure is a microbalance and Platinum rod of diameter 0.020 inches.

After thorough washing of the trough and barriers with ethanol and acetone, and 

several rinses with ultra-pure water the trough was filled with 70.0 mL of UP water, and 

the barriers were coupled to the belt and placed at the interface such that the area between 

them was 75 cm2. The NIMA software was booted up, and the micro-processor interface 

which connects the trough and sensors to the computer through serial cables was powered 

on. Attached to the processor is a microbalance used to measure the surface pressure via 

the Wilhelmy plate method. In lieu of a paper Wilhelmy plate, a 0.020-inch diameter 

platinum wire was utilized. The wire was lightly rinsed in ethanol, then fired with a 

Bunsen burner for 15 to 20 seconds. The clean wire was then hung from the
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microbalance. Before lowering the wire into the clean water interface, the pressure 

reading on the computer screen was zeroed. To make sure the wire was properly cleaned, 

and that the interface is clean, the wire is then dipped into the water, and the pressure 

reading is checked against the tabulated value for surface tension of water at ambient 

temperature, between 71.20 and 72.75 mN/m [35]. If it reads a value close to the surface

pressure of clean water at the ambient temperature, +/- 1 mN/m the reading is zeroed. If it 

is not, the trough is rinsed again, and the wire is washed and fired again until the surface 

pressure for clean water is with 1 mN/m of the accepted value. Keep in mind that the 

accepted value for the surface pressure of water in this case should be about -72 mN/m 

because the device is subtracting the surface tension of water from the zeroed surface 

tension measured before the platinum wire was dipped into the interface. Next, 300 μL. of 

CNT in IPA and UP water suspension was placed dropwise at the interface between the 

barriers. Drops were placed in all different areas of the interface to ensure that the film 

was as uniform as possible. Data acquisition was initiated, and the barriers were 

compressed such that the area decreased at a rate of 7 cm2/min. This is because the trough 

width is 7 cm, thus the barriers move laterally at a rate of 1 cm/min relative to one 

another. The barriers compress and expand at this speed for 3 cycles. The data recorded 

was the surface pressure as measured by the microbalance versus the change in trough 

area as recorded by the trough's barrier positions. Because the mechanical compressions 

of the barriers are not perfectly identical for each experiment, the total number of data 

points varies slightly from experiment to experiment.
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3.3 Procedure for stepwise compressions

Stepwise compressions were performed to identify and separate contributions to the 

surface stress. Steady state surface pressures for each incremental change in trough area 

would show how the film responds thermodynamically to the increases in surface

concentration. The sharp increases in surface pressure just after the compression ends

indicates the film's response to the stress on compression. The new steady state surface

pressure after compression and relaxation compared to the steady state surface pressure

before compression yields the thermodynamic response of the interface. These responses

give insight into the dynamics of the film in both stressed and relaxed states. The trough

was set up the same way as previous experiments, but this time, after beginning data

acquisition and spreading of CNTs on the interface, the barriers were compressed from

75 cm2 to 70 cm2, and allowed to relax for 30 minutes. After this relaxation, another

compression increment of 5 cm2 was performed with another thirty-minute relaxation

period, and so on until a trough area of 25 cm2 was reached and the final thirty minutes

were allowed for relaxation. This procedure was performed for all samples of varying

degree of oxidation.

The trough was set up in the same manner as the stepwise procedure to study the 

relaxation time for a total film relaxation, with the barriers at 75 cm2 and CNTs spread on 

the interface. Once data acquisition was started, the barriers were closed to 70 cm2. Then, 

the film was allowed to relax overnight.
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3.4 Procedure for optical microscopy imaging

A custom, 3D printed trough with identical dimensions in terms of length, width, and 

depth as the NIMA trough, but designed to fit onto the optical microscope stage under the 

objectives was designed. After testing the trough to ensure it was water-tight, it was

implemented to view the CNT laden air/water interface with an optical microscope. The

trough was printed with a Makerbot 3D printer.

Figure 11: 3D CAD drawing of the printed trough using the online CAD program

Onshape.

24



Figure 12: The 3D printed trough designed to fit into the microscope stage under the 

microscope objectives. The Teflon coated barriers used for film compression are 

borrowed from the NIMA trough.

Snapshots and videos were recorded using CellSense dimensions software in 

conjunction with an Olympus optical microscope and mounted Hamamatsu Orca R2 

digital camera. The barriers from the NIMA tough were used with this trough to 

compress the interface. The barriers were moved by hand to marked locations on the 

trough corresponding to 5 cm2 incremental changes in trough area. Snapshots were taken 

at each area from ~75 cm2 to ~25 cm2.

3.5 Procedure for SEM imaging

The films can be more closely observed via a Scanning Electron Microscope by

depositing the CNT film from the air/water interface onto a silicon substrate from
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University Wafer. First, the silicon wafer is dipped into the clean water surface on the

Langmuir-Blodgett trough. Then, the CNTs are added to the interface. Finally, the 

barriers are compressed to desired trough areas, at which point the dipped substrate is 

withdrawn, and the trough is cleaned and reset. This is repeated until depositions have 

been done for each desired trough area. The substrates are then observed via the SEM to

look closely at the microstructure.

3.6 Procedure for Electrophoretic Mobility measurement

Electrophoresis is the movement of particles suspended in a motionless liquid due to an 

imposed electric field [36]. This phenomenon can be observed using a device to apply an

electric field and measure the velocity of particles moving in the liquid. This observed

velocity is called the electrophoretic mobility. The presence of chemical groups on the

nanotubes' surfaces can be confirmed by measuring electrophoretic mobility for the

different modification times. The concentration of tubes has to be small for the Zetasizer

to effectively measure electrophoretic mobility, so the ~0.1 wt% CNT mixtures were

diluted into ~0.01 wt% mixtures by adding 1.0 grams of the ~0.1 wt% mixture to 9.0 grams

of ~50 vol% isopropyl alcohol in water solution. The tip sonicator is used for 5 minutes at

50% amplitude just as it is used for making the ~0.1 wt% CNT mixtures. Next, the samples

are placed in a centrifuge to pull out much of the tubes, leaving behind a translucent grey

liquid comprised of isopropyl alcohol, water, and a very small concentration of CNTs.

Using a 3 mL syringe, 1.0 mL of the liquid is pushed into a Malvern Zeta cell, and placed

in the Zetasizer. Set up the Zetasizer program to measure zeta potential, and start the

measurement. Export the data for electrophoretic mobility.

26



To ensure the presence of surface groups on the MWCNTs, electrophoresis was utilized

to determine if the tubes of different modification times had varying electronegativity. With

the use of a Malvern Zetasizer, the electrophoretic mobility for samples of each

modification time was determined. A more negative mobility indicates a higher

concentration of carboxyl groups present. Therefore, longer modification times should

have more negative electrophoretic mobilities than shorter modification durations.

Figure 13: Electrophoretic ability of MWCNT samples plotted against those samples

corresponding modification times.

Indeed, the trend for electrophoretic mobility is that the longer the tubes were modified 

for, the more negative their mobility was. This provides evidence that functional groups 

are present in varying degrees on the surfaces of the CNTs, corresponding to the

modification times.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Introduction

This section contains the discussion of acquired data and results from the performed

experiments. Once the multi-walled carbon nanotubes (MWCNTs) were oxidized for

different durations and sorted accordingly, they were used for several experiments to 

compare how each sample responded to compression at an air/water interface. In addition, 

coarse particle size and structure, as well as microstructure of the films was observed 

through optical microscopy and scanning electron microscopy.

4.2 Imaging with Scanning Electron Microscopy

Initially, Scanning Electron Microscopy (SEM) was utilized to determine if surface 

oxidation had a significant effect on structure of individual MWCNT particles. MWCNT 

films were deposited onto silicon wafers by submerging the substrate into the air/water 

interface before placing particles at the interface. Then, withdrawing the substrate from the 

interface after the film had been compressed to a desired area (see Fig. 6). Two films were 

deposited for each sample; one at the smallest area considered for these experiments, 25
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cm2, and the other near the critical areas, defined later, for the specific films, 35cm2 for any 

modified tubes, and 40 cm2 for unmodified tubes.

Figure 14: Scanning Electron Microscopy images of MWCNT films compressed to their

critical areas. CNTs are modified for different durations as follows: a) No modification b)

~40 minutes c) ~1 hour d) ~2 hours e) ~4 hours f) ~6 hours.
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Figure 15: Scanning Electron Microscopy images of MWCNT films compressed to 25 

cm2. CNTs are modified for different durations as follows: a) No modification b) ~40 

minutes c) ~1 hour d) ~2 hours e) ~4 hours f) ~6 hours.

The SEM micrographs shown in Figures 14 & 15 show the industrial grade MWCNT 

films were heterogeneous, with most particles grouped with others in bundles. In addition, 

individual MWCNTs were not observed to be physically altered by the oxidation process. 

Bundling in these samples likely originated from the strong Van der Waals attraction 

between MWCNTs in addition to capillary attraction during SEM sample preparation. 

Particles deposited on a substrate and dispersed in an evaporating fluid will experience 

capillary attraction when the fluid level reaches the particles. As will be described later in 

this document, particles that locally deform an interface will experience attraction to
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minimize that local deformation (i.e. minimize the energy associated with that

deformation).

Figures 14 & 15 also reveal the microstructure of the deposited film. Small patches of 

alignment appear in the images, though there does not appear to be a correlation between 

the patchy alignment and trough area or modification time. Layers of tubes appear in the 

microstructure instead of a single monolayer. The layers are not discreet. The tubes dip in

and out of other layers, weaving tangles of tubes that overlap in different places. This

makes determining the thickness of the films in terms of number of layers difficult.

4.3 Film formation, densification, and mechanics of the MWCNT film

Surface pressure versus trough area data was collected to understand the interfacial 

properties of the films spread on the air/water interfaces. Three-cycle compressions of 

MWCNT films of varying degrees of oxidation were performed on a Langmuir-Blodgett 

trough. The surface pressure was recorded via a micro balance and Pt wire, and plotted 

against the trough area.
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Figure 16: Surface Pressure vs trough area data for the initial compression cycle for 

unmodified MWCNTs at the interface of air and water at room temperature. The 

numbering on the graph corresponds to the numbers beneath the trough schematics, 

indicating the state of the trough at the indicated places on the graph.

Figure 16 shows the surface pressure as a function of area. At point (1), the MWCNTs

were initially spread evenly over the trough's area between the barriers. The material filled

the available area at this initial state. Next, the barriers were closed to initiate the first

compression. The surface pressure increased monotonically as the surface concentration of

MWCNTs increased. The slope of the surface pressure vs. area has a steady slope because
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the film is in constant contact with the barriers. Point (2) is the location of minimum surface

area and maximum surface concentration of MWCNTs. At (2), the motion of the barriers

reverses, allowing the film to expand as the barriers expand to increase the available

interfacial area. The steep slope at the beginning of the expansion moving from position

(2) to position (3) occurred while the film was in contact with the barriers. At position (3)

in Fig.16 the film detaches itself from the barriers as they expand at the critical area, Ac

(see Fig. 17). The slope of surface pressure vs. ln(A) was flat once the interfacial area

increased beyond the critical area because the film was no long attached to the barriers, 

thereby relieving any compressive strain felt by the film.

Figure 17: Schematic drawing depicts the barriers expanding, and the film detaching 

from the barriers at the critical area, Ac.
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Figure 18: Surface Pressure vs trough area data for the second compression cycle for

unmodified MWCNTs at the interface of air and water at room temperature.

The compression part of the subsequent cycles does not have the steady slope as in the 

initial cycle since the film has detached from the barriers. This is due to the film not 

springing back to its original state of full trough coverage after the first cycle. The new 

initial state for the second and third cycles of compression is the same as the final state of 

the first compression. It is indicated as position (1) in Fig. 18. The shallow slopes between 

positions (1) and (2) and between positions (4) and (5) in Fig. 18 occur when the film is 

not in contact with the barriers, and the steep slopes between positions (2) and (3) and 

between positions (3) and (4) in Fig. 18 are when the film is in contact with the barriers.
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Figure 19: Surface Pressure vs trough area data for all three compression cycles for

unmodified MWCNTs at the interface of air and water at room temperature.

Figure 19 depicts the surface pressure vs area data for a full three-cycle compression 

experiment. Results summarized above show a strong relationship between critical area 

and surface pressure. The critical area for each sample is summarized Table 1. Note that 

the critical area corresponds to a critical surface concentration. The surface concentration 

increased as the trough area decreased and the film was compressed. The surface 

concentration r is given by:

F = mCNT/ATrough (6)

where mCNT is the mass of carbon nanotubes added to the interface and ATrough is the 

trough area. The mass of CNTs added to the interface can be calculated for each sample 

from the density of the mixture of IPA, water, and CNTs, the exact weight percent of CNTs 

in the mixture, and the volume of mixture added to the interface. The critical compression
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ratio is then the equal to the quotient of the critical and initial surface concentrations, which

is equal to the quotient of the initial and critical trough area:

Γc— = critical compression ratio (7)Γo

where Γc is the critical surface concentration and Γo is the initial surface concentration. The

critical compression ratio indicates the extent of densification within the film; a larger value

of Γc corresponds to a denser film. The critical compression ratio will have a minimum

value of 1 because the critical area could not have been > 1 in the experiments described

herein.

mod time (hrs) Critical area (cm2)
0 40.02
0 45.07
0.6667 38.05
0.6667 38.54
1 39.69
1 38.54
2 35.55
2 34.92
4 32.43
4 34.43
6 32.50
6 32.76

Table 1.
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Figure 20: The critical compression ratio is plotted on the y-axis against modification

time plotted on the x-axis. The data for critical area is taken from the room temperature

data points in table 1.

Figure 20 shows the critical compression ratio plotted as a function of modification 

time. Recall that the critical area was defined on the expansion cycle. Data summarized in 

Figure 20 shows that the critical compression ratio increased with increasing modification 

time, implying that densification of the film increased with increasing oxidation.
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4.4 Elastic Response of Interface

The value of the slope of the surface pressure vs ln(A) can be used to calculate the 

Gibbs elasticity of the MWCNT laden interface. Elasticity is an important property for the 

stability of multiphase materials. The x-axis was placed in a natural log scale so that the 

slope would be in the correct for to calculate the elasticity via equation (5).

Figure 21: Surface Pressure vs the natural log of the trough area data for all three 

compression cycles for unmodified MWCNTs at the interface of air and water at room 

temperature. The slopes of the graph during expansion are highlighted by different colors.
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Figure 22: The slopes during expansion are isolated here, and trendlines and equations

are assigned to each of them.

Figure 21 shows each compression of the surface pressure measurements for 

unmodified MWCNTs. Three cycles of compressions were performed for each 

modification time. As noted earlier, the steep slopes associated with each compression 

cycle at small values of ln(A) correspond to the dilatation of the flocculated film of

MWCNTs. The slope can be expressed as which is equivalent to -Eg according to

equation (5). The sections of the data from which the slopes would be determined were 

isolated from the rest of the data, and a linear trendline was plotted via Microsoft Excel 

(see Fig. 22). Repeating this process for each sample of different modification duration 

yields different slopes. Each slope is recorded in Table 2 below. Gibbs Elasticity is 

calculated by multiplying the slopes by -1. They are tabulated below in Table 2.
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EGibbs:
Mod t (hrs) Cycle 1 (mN/m) Cycle 2 (mN/m) Cycle 3 (mN/m)

0 63.73 87.47 92.35

0.66667 73.60 89.19 98.40

1 60.00 74.78 85.86

2 88.40 99.71 112.92

4 83.11 97.16 112.29

6 93.38 108.91 133.25

Table 2.

Figure 23: The film elasticity for four trials of compressions, two at room temperature 

and two temperature controlled experiments at 25oC, is plotted on the y-axis against the 

duration of modification in hours on the x-axis.
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The trend in Figure 23 shows that the Gibbs elasticity tends to increase as the oxidation

time increases. Therefore, with increasing oxidation duration the films become both denser

and more stiff. The denser packing of the films with longer modification times may

contribute to the higher elasticities observed for these films. The relationship between film

densification and elasticity is more evident when plotting the elasticity against the critical

compression ratio (see Fig. 24). High critical compression ratios correspond to lower

critical areas.

Figure 24: Gibbs Elasticity plotted as a function of the critical compression ratio.

Elasticity tends to increase as the critical compression increases.

The Gibbs elasticity increases with a corresponding increase in critical compression 

ratio further supporting the idea that a denser film is also a stiffer film. In addition, this 

elasticity increases with each subsequent cycle of compression. This implies that the
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action of compressing the film aids in the densification of the films and causes higher

Gibbs elasticities.

4.5 Optical Microscopy image analysis

A 3D printed replica of the Langmuir-Blodgett trough used for surface pressure 

measurements was utilized for viewing the microstructure under an optical microscope. It 

was printed with the same length, width, and depth as the original trough, but thin enough

to fit beneath the microscope objectives, and fit snuggly into the microscope stage. Films

comprised of unmodified tubes and tubes of two-hour and six-hour oxidation times were

used for this image analysis. Snapshots were taken in the second cycle of compression for 

the films, therefore the range of areas worth comparing is from 40 cm2 down to 25 cm2, as 

40 cm2 is near the films' critical areas at which most films detached from the barriers during 

expansion in the first cycle (see Fig. 16 position (3)).
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Figure 25: Unmodified CNT film at different stages of compression. Trough areas: a) 40 

cm2 b) 35 cm2 c) 30 cm2 d) 25 cm2.

Figure 25 shows the progression of the film microstructure under increasing 

compression. Trough area decreases steadily from image a to image d.
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Figure 26:CNT films of various modification durations at a trough area of 25 cm2. 

Modification durations: a) Unmodified b) 2 hours c) 6 hours.

Some images taken at low trough areas (maximum compression) contain sections of the 

image that are out of focus (see Fig. 25 (d) and Fig. 26 (a) and (b)). These sections indicate 

buckling in the film [37]. Figure 26 shows that buckling in the film is more prevalent in

films with low modification durations since there are more sections out of focus for the

unmodified film than the 2 hour modified film, and more out of focus sections in the 2 hour

modified film than the 6 hour modified film. This agrees with the critical area and Gibbs

elasticity data. The denser, stiffer films are more difficult to deform. Therefore, buckling

occurs less frequently in films with longer modification times.

4.6 Stepwise compressions and total film relaxations

The surface pressure changes due to the thermodynamic changes brought on by

changing surface concentration, and by the microstructural surface stresses imposed by the

physical compression action. Investigation of these individual components of the surface

stress is accomplished through step compressions with allotted time between compressions
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for the film to relax to a steady state. The steady state values between compressions would

be used to get the true surface pressure isotherm, since the effect on the surface pressure in

that scenario would depend only on the thermodynamic change due to changing surface

concentration of particles.

Figure 27: Stepwise compression of a film of unmodified MWCNTs. Every 1800 seconds 

(30 minutes), a step down of 5 cm2 in trough area would occur.

Figure 27 shows the surface pressure vs time data for compressions performed in 5cm2 

increments with 30 minutes between compression steps. These stepwise compressions 

were performed for each modification time. The difference in the steady state surface 

pressures from one compression to the next is the thermodynamic component of the stress. 

The initial spike in surface pressure is due to the physical microstructural surface stresses. 

Interfacial rheology experiments can be used to further analyze these responses, but that is 

beyond the scope of this work. Unfortunately, the 30 minutes allocations between
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compression steps did not allow enough time for the film to relax such that the surface 

pressure reached a new equilibrium steady state value.

To find the timescale at which the film has relaxed fully, compressions were performed 

with a single 5 cm2 change and allowed to sit until the surface pressure value no longer 

changed.

Figure 28: A semi-log plot of a film of unmodified MWCNTs compressed from 75 cm2 

to 70 cm2 and allowed to relax overnight.

Figure 28 shows surface pressure vs time data for a single 5 cm2 compression followed 

by a long relaxation. The extended time scale was still not enough to allow for a new 

equilibrium surface pressure. The effect of evaporation of the subphase eventually causes 

the platinum wire to pull out of the interface, and end the experiment before a steady 

surface pressure is recorded. Nevertheless, the long relaxation data can be used to predict 

what would happen if the film was able to relax to a new steady state.

46



Figure 29: Scaled surface pressure plotted against time for long-scale relaxation time 

measurement. The more shallow the slope, the longer the relaxation time or the higher the 

eventual equilibrium surface pressure.

Figure 29 compares the long relaxation data for each modification time. The data for 

each modification time can be more easily compared by dividing the surface pressure 

values of each run by their respective maximum surface pressures after compression such 

that all the relaxations start at a scaled surface pressure of 1 mN/m. One of two effects can 

be inferred from the slopes in the graph (see Fig. 29). Longer relaxation times may be 

indicated by the shallower slopes for the higher modification times on the graph below. 

Alternatively, higher equilibrium surface pressures may be indicated by the shallower 

slopes. Either or both effects are possible. Therefore, with increasing oxidation durations, 

the relaxation times and/or the equilibrium surface pressures increase.
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4.7 Isothermal surface pressure versus area measurements

To gauge the effect of temperature on surface pressure measurements, isothermal 

measurements were conducted by using a Polystat water circulation system in conjunction 

with a NIMA Langmuir-Blodgett trough. The room temperature in the lab would vary 

slightly, so each sample of varying modification time was tested in isothermal conditions 

at 20oC for one trial each, 25oC for two trials each, and 30oC for one trial each. Calibration 

of the water circulation bath such that the desired trough temperature would be maintained

was performed by monitoring the tough temperature and changing the setpoint temperature

of the circulation bath. An equation yielding trough temperature as a function of bath

temperature was acquired, and utilized to determine the optimal settings for the

compressions.
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Trough temperature was monitored with an AMPROBE temperature probe during the

calibration and the compressions. Bath temperature was monitored by the circulation

device itself.

Compression cycles were performed in the same manner as the room temperature 

experiments with the addition of the temperature regulating apparatus. The elasticity was 

calculated for all surface pressure isotherms in the same manner as the room temperature 

surface pressure measurements. Results may be tainted due to convection in the trough due 

to the temperature gradient induced by the heated or cooled water circulating through the 

trough's innards. Convection in the subphase could cause excess stresses in the film and at

(8)



the interface, adding an additional level of complexity in determining the behavior of the

CNT films at the interface.

Figure 30: Gibbs Elasticity plotted vs modification time for trials performed at 20 oC.

Figure 31: Gibbs Elasticity plotted vs modification time for trials performed at 25 oC.
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Figure 32: Gibbs Elasticity plotted vs modification time for trials performed at 30 oC.

Figure 33: The black rings represent CNTs in cross-section sitting at an air/water

interface.
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In Figure 33, the unmodified tubes sit atop the interface without causing deformation

of the surface because of their hydrophobic nature. With a lack of affinity for the water

phase, the unmodified tubes are more at home in the air phase. The modified tubes are

more hydrophilic due to the polar groups added to their surfaces during oxidation.

Therefore, the modified tubes adsorb more strongly to the interface, deforming it as they

come into contact with both phases of the interface. The deformation arises from the

anisotropy in the shape of the particles, causing an excess in surface area of the interface

and raising the surface energy. To minimize the excess surface area and the surface energy, 

the particles aggregate via capillary attractions such that the deformations due to their 

presence at the interface are pushed to the outsides of the film that is formed. Therefore, 

the longer modification times cause more capillary attractions forming denser films with 

lower critical areas. This agrees with the elasticity data. Comparing the data, the denser 

films are also the stiffest films. These films would be more difficult to deform. This is 

supported further by the optical microscopy data, since film buckling is more prevalent at 

low modification durations. Buckling in the films is less prevalent as the modification time 

increased because the more modified films were denser and had higher Gibbs elasticities 

than the unmodified or slightly modified tubes.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Particle stabilized interfaces have a variety of applications across several fields. The 

particles employed to stabilize interfaces can pass their properties to the larger material 

they find themselves stabilizing. Carbon nanotubes are worthwhile particles to investigate 

therefore, due to their tensile, thermal, and electrical properties. Unfortunately, little is 

known about their interfacial properties.

To investigate the interfacial properties of CNTs at an air/water interface, surface 

pressure versus trough area data for compressions on a Langmuir-Blodgett trough was 

collected and analyzed. In addition, imaging of the interface under optical microscopy and 

SEM helped characterize the film microstructures formed. SEM imaging showed that, 

while some alignment occurs in the films, it does not seem to be affected by the 

modification in any significant way at the durations studied. In addition, the tubes were not 

observably altered in length or diameter by the modification. Surface pressure data was 

recorded via three-cycle compressions. The critical area of the films appeared to be affected 

by the modification time, such that the critical area was smaller at longer modification 

times. From the slopes of the surface pressure vs ln(A) graphs, the film elasticity could be
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determined. The elasticity tended to increase with a corresponding increase in the duration

of modification of the MWCNTs. The elasticity also increased with each subsequent cycle

of compression on the trough, indicating a change in film structure with each subsequent

compression. Imaging the films with optical microscopy yielded evidence of film buckling

at low trough areas. In addition, the buckling was more prevalent in films with low

modification times.

To understand the physical response of the system to stress, stepwise compressions were

performed. The initial change in surface pressure represented the microstructural response

of the films to the stress of compression. The thermodynamic effect on the surface pressure

could not be determined because the film did not relax to a steady state surface pressure in 

the time allotted between compressions. Longer durations of relaxation were implemented 

to attempt to reach an equilibrium surface pressure. For the long relaxation compressions, 

the films still did not relax to a constant surface pressure before the wire pulled out of the 

interface due to evaporation of the subphase. However, extrapolating the data shows three 

possible outcomes. Either the relaxation times generally were longer with increasing 

modification duration, that the thermodynamic response was likely more pronounced for 

films with higher modification times, or a combination of these effects.

The contributions of this thesis are as follows:

• For films with little or no modification, buckling of the film is evident under

compression, and this effect is mitigated for the longer modification times. In addition, film

densification occurs for longer modification durations as evidenced by the smaller critical

area for those films.
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• The elasticity of the films increased with increasing modification time. We believe

this is a consequence of the densification of the films that have been modified for longer 

durations.

• At the interface, longer duration modified tubes have enhanced capillary attractions

to one another, while tubes with little to no modification sit atop the interface without

deforming the interface as much. This physical understanding of the behaviors of the

carbon nanotubes at the interface of air and water is supported by the all the data collected.

In future works, compressions should be performed such that the spreading agent, in 

this case isopropyl alcohol, is evaporated or otherwise removed from the interface. 

Evaporation of isopropyl alcohol during compressions causes a decrease in surface 

pressure with time for a little more than an hour. In addition, the effect that isopropyl 

alcohol has on the wetting of the tubes should be assessed, as both subphase and surface 

chemistry interactions have an effect on the wettability of the particles to the interface.
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APPENDIX A.

(Additional Tables)

Temp (oC) mod time (hrs) Critical area (cm2)
room 0 40.02
room 0 45.07
20 0 35.67
25 0 42.36
25 0 45.67
30 0 36.59
room 0.6667 38.05
room 0.6667 38.54
20 0.6667 33.96
25 0.6667 39.06
25 0.6667 38.10
30 0.6667 33.02
room 1 39.69
room 1 38.54
20 1 33.44
25 1 38.25
25 1 44.23
30 1 31.83
room 2 35.55
room 2 34.92
20 2 39.11
25 2 39.19
25 2 36.54
30 2 37.50
room 4 32.43
room 4 34.43
20 4 33.52
25 4 36.41
25 4 35.83
30 4 33.39
room 6 32.50
room 6 32.76
20 6 32.01
25 6 33.21
25 6 34.77
30 6 30.73

Table 3.
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mod time (h) weight mix (IPA+H2O)(g) weight CNTs (g) wt%

0 9.9983 0.0102 0.101913

0 9.9963 0.01 0.099937

0.667 9.9752 0.0113 0.113153

0.667 9.9955 0.0105 0.104937

1 10.001 0.0105 0.104879

1 9.9955 0.0107 0.106934

2 9.991 0.0109 0.108979

2 9.9981 0.0113 0.112894

4 9.9891 0.0107 0.107002

4 9.9895 0.0109 0.108996

6 9.9989 0.0111 0.110889

6 9.9991 0.011 0.109889

Table 4.
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APPENDIX B.

(Surface Pressure vs ln(A) graphs)

Room Temperature:

Unmodified:

Figure 34.
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Figure 35.

40 minutes:
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Figure 37.

1 hour:
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Figure 38.

Figure 39.

2 hours:
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Figure 40.

Figure 41.

4 hour:
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Figure 42.

Figure 43.

6 hour:
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Figure 44.

Figure 45.

20oC Temperature control:

Unmodified:
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Figure 48.
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Figure 50.

6 hour:
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25oC Temperature control:
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Figure 54.
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Figure 56.
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Figure 62.

Figure 63.
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Figure 68.
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APPENDIX C.

(Elasticity Data)

Room Temperature:

Figure 70.

20oC:
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APPENDIX D

(Optical Microscopy)
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Figure 74.

35 cm2:

82



Figure 75.

30 cm2:

83



Figure 76.

25 cm2:

84



Figure 77.

2-hour modification:

40 cm2:

85



Figure 78.

35 cm2:

86



Figure 79.

30 cm2:

87



Figure 80.

25 cm2:

88



Figure 81.

6-hour modification:
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APPENDIX E.

(SEM Images)

Unmodified:
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Figure 87.
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Figure 89.
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Figure 91.
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Figure 92.
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Figure 93.

4-hour modification:
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Figure 94.
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Figure 95.

6-hour modification:
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Figure 96.
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APPENDIX F.

(Step Compressions)

Figure 98.

Figure 99.
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Figure 100.

Figure 101.
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Figure 102.

Figure 103.
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APPENDIX G.

(Long relaxation durations)

Figure 104.

Figure 105.
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