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CHARACTERIZATION OF SIMPLICES VIA THE BEZOUT 
INEQUALITY FOR MIXED VOLUMES

CHRISTOS SAROGLOU, IVAN SOPRUNOV, AND ARTEM ZVAVITCH

Abstract. We consider the following Bezout inequality for mixed volumes:

It was shown previously that the inequality is true for any n-dimensional simplex Δ 
and any convex bodies K1,..., Kr in Rn. It was conjectured that simplices are the 
only convex bodies for which the inequality holds for arbitrary bodies K1,..., Kr 
in R". In this paper we prove that this is indeed the case if we assume that Δ is 
a convex polytope. Thus the Bezout inequality characterizes simplices in the class 
of convex n-polytopes. In addition, we show that if a body Δ satisfies the Bezout 
inequality for all bodies K1,..., Kr then the boundary of Δ cannot have strict 
points. In particular, it cannot have points with positive Gaussian curvature.

1. Introduction

It was noticed in [SZ] that the classical Bezout inequality in algebraic geometry 
[F, Sec. 8.4] together with the Bernstein-Kushnirenko-Khovanskii bound [B, Ku, Kh] 
produces a new inequality involving mixed volumes of convex bodies:

Here Δ is an n-dimensional simplex and K1,..., Kr are arbitrary convex bodies 
in Rn. Throughout the paper Vn(K) denotes the n-dimensional Euclidean volume 
of a body K and V(K1,..., Kn) denotes the n-dimensional mixed volume of bodies 
K1,...,Kn. Furthermore, K[m,] indicates that the body K is repeated m times in 
the expression for the mixed volume.

In [SZ] it was conjectured that the Bezout inequality characterizes simplices, that 
is if Δ is a convex body such that (1.1) holds for all convex bodies K1,..., Kr then 
Δ is necessarily a simplex (see [SZ, Conjecture 1.2]). It was proved that Δ has to be 
indecomposable (see [SZ, Theorem 3.3]) which, in particular, confirms the conjecture 
in dimension n = 2. In the present paper we prove this conjecture for the class of 
convex polytopes.
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Theorem 1.1. Fix 2 ≤ r ≤ n. Let Δ be a convex n-dimensional polytope in Rn 
satisfying (1.1) for all convex bodies K1,...,Kr in Rn. Then Δ is a simplex.

Although the above theorem covers a most natural class of convex bodies, in full 
generality the conjecture remains open. Going outside of the class of polytopes we 
show that if a convex body Δ satisfies (1.1) for all convex bodies K1,...,Kr in Rn 
then Δ cannot have strict points. We say a boundary point x ∈ K is a strict point if 
x does not belong to any segment contained in the boundary of K.

Theorem 1.2. Fix 2 ≤ r ≤ n. Let Δ be an n-dimensional convex body in Rn 
satisfying (1.1) for all convex bodies K1,,..,Kr in Rn. Then Δ does not contain 
any strict points.

In particular, we see that Δ cannot have points with positive Gaussian curvature.
Let us say a few words about the idea behind the proofs of Theorems 1.1 and 1.2. 

First, note that it is enough to prove the theorems in the case of r = 2 as this implies 
the general statement. Thus we are going to restate (1.1) for r = 2 as follows 
(1.2) V(L,M,K[n -2])Vn(K) <V(L,K[n- 1])V(M,K[n -1]),
where L and M are convex bodies and K is a polytope. The fact that there is 
equality in (1.2) when L = K allows us to see this as a variational problem, by fixing 
an appropriate body ΛL and using an appropriate deformation L = Kt of K. In the 
case of Theorem 1.1, Kt is obtained from K by moving one of its facets along the 
direction of its normal unit vector. In the case of Theorem 1.2, Kt is obtained from 
K by cutting out a small cup in a neighborhood of a strict point.

2. Preliminaries

In this section we collect basic definitions and set up notation. As a general reference 
on the theory of convex sets and mixed volumes we use R. Schneider’s book “Convex 
bodies: the Brunn-Minkowski theory” [Sch].

A conυex body is a non-empty convex compact set. A (convex) polytope is the convex 
hull of a finite set of points. An n-dimensional polytope is called an n-polytope for 
short. For x,y ∈ Rn we write {x, y} for the inner product of x and y. We use Sn-1 to 
denote the (n-1) -dimensional unit sphere and B(x, δ) to denote the closed Euclidean 
ball of radius δ > 0 centered at x ∈ Rn.

For a convex body K the function hκ : Sn-1 → R, hk(u) = max{(x,u} ∣ x ∈ K} 
is the support function of K. For every u ∈ Sn-1 we write Hk(u) to denote the 
supporting hyperplane for K with outer normal u

Hκ(u) = {x∈Rn : {x,u} = hK(u)}.
Furthermore, we use Ku to denote the face K ∩ HK (u) of K.

Let β be a subset of the boundary ∂K of a convex body K. The spherical image 
σ(K,β) of β with respect to K is defined by

σ(K,β) = {u ∈ Sn-1 : ∃x ∈ β, such that {x,u} = hκ(u)}.
If Ω is a subset of Sn-1 define the inverse spherical image τ(K, Ω) of Ω with respect 
to K by



The surface area measure S(K, ∙) of K (viewed as a measure on Sn-1) is defined 
as

S(K, Ω) = Hn-1 (τ(K, Ω)), for Ω a Borel subset of Sn-1.
Here Ηn-1(∙) stands for the (n - 1)-dimensional Hausdorff measure.

Let V(K1,... ,Kn) denote the n-dimensional mixed volume of n convex bodies
K1,...,Kn in Rn. We write V(K1[m1],..., Kr[mr]) for the mixed volume of the 
bodies K1,..., Kr where each Ki is repeated mi times and m1 + ∙ ∙ ∙ + mr = n. In 
particular, V(K[n]) = Vn(K), the n-dimensional Euclidean volume of K.

Let S(K1,..., Kn-1, ∙) be the mixed area measure for bodies K1,..., Kn-1 defined 
by

V(L,K1,...,Kn-1) = 1/n ∫Sn-1 hLdS(K1,... ,Kn-1,∙)

for any compact convex set L. In particular, when the Ki are polytopes the mixed 
area measure S(K1,..., Kn-1, ∙) has finite support and for every u ∈ Sn-1 we have
(2.1)      (K1,...,Kn-1,u) =V(Ku1,...,Kun-1),

where V(Ku1,... ,Kun-1) is the (n — 1)-dimensional mixed volume of the faces Kui 
translated the the subspace orthogonal to u, see [Sch, Sec 5.1].

Finally, for u ∈ Sn-1 the orthogonal projection of a set A ⊂ Rn onto the subspace 
u┴ orthogonal to u is denoted by A∣u┴.

3. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. As mentioned in the introduction, 
it is enough to prove it for r = 2 in which case we write the Bezout inequality as

(3.1) V(L, M, K[n - 2])Vn(K) < V(L, K[n - 1])V(M, K[n - 1]).

We assume that L, M are arbitrary convex bodies and K is a polytope in Rn.
We need to set up additional notation. Let K be defined by inequalities

where uj are the outer normals to the facets of K (in some fixed order) and N is 
the number of facets of K. Denote by Kt,i the polytope obtained by moving the i-th 
facet of K by t, that is

By abuse of notation we let Kt denote Kt,n.

Lemma 3.1. Let K and Kt be as above. Then there exists δ = δ(K) such that the 
following supports are equal

supp S(Kt[r], K[n - 1 - r], ∙) = supp S(K, ∙) 

for any 0 ≤ r ≤ n - 1 and any t ∈ (-δ, δ).



Proof. By (2.1) it is enough to show that V(Ktu[r], Ku[n - 1 - r]) = 0 if and only if 
Vn-1(Ku) = 0, that is Ku is not a facet of K. Indeed, by choosing δ small enough 
we can ensure that Kt has the same facet normals as K and so dim Kut = n - 1 
whenever Ku is a facet of K. In this case V(Kut[r], Ku[n - 1 - r]) >0.

Conversely, assume Ku is a face of K of dimension less than n — 1. As before, for 
small enough t the face Kut also has dimension less than n - 1. First, suppose Ku 
is not contained in the moving facet F = K ∩ Hk(un). Then hκ(u) = hκt(u) and 
so Ku⊆ Kut for t ≥ 0 and Ku ⊇ Ktu for t < 0. Then, by the monotonicity of the 
mixed volume, if t > 0 then

and so V(Kut[r], Ku[n - 1 - r]) = 0. The case t < 0 is similar.
Now suppose Ku is contained in the moving facet F. Then Ku ⊆ Hk(u)∩Hk(un)

and Kut ⊆ Hκt(u) ∩ Hκt(uN). This shows that Ku and Kut are contained in two 
affine (n — 2)-dimensional subspaces which are translates of the same linear subspace 
of dimension n — 2. Therefore, for any collection of line segments (L1,...,Ln-1), 
where Li ⊂ Kut for 1 ≤ i ≤ r and Li ⊂ Ku for r + l≤i≤n-1, the Li have 
linearly dependent directions. The latter implies that V(Kut[r], Ku[n - 1 - r]) = 0 by 
[Sch, Theorem 5.1.7].

□

Proposition 3.2. Let K,P be n-polytopes with the following properties:
(1) supp S(P, ∙) = supp S(K, ∙),
(2) there exists a constant λ > 0 such that V(L, P[n - 1]) ≤ λV(L, K[n — 1]) for 

all convex bodies L,
(3) V(K,P[n-l]) =λVn(K).

Then,
S(P,∙) = λS(K,∙) .

Proof. As before, let {u1,... ,un} be the outer normals to the facets of K. By as
sumption (1) they are the outer normals to the facets of P as well. Fix 1 ≤ i ≤ N 
and let L = Ks,i be the polytope obtained from K by moving its i-th facet by a 
small number s ∈ (-δi, δi) as in Lemma 3.1.

By assumption (2), for any s ∈ (-δi,δi) we have
V(Ks,i,P[n - 1]) ≤ λV(Ks,i,K[n - 1]).

Consider the function
F(s) = λV(Ks,i,K[n - 1]) - V( Ks,i, P[n- 1]).

Then F(s) ≥ 0 and F(0) = 0. Below we show that P(s) is, in fact, linear on (-δi, δi). 
But then P(s) is identically zero on (-δi,δi), which implies that
(3.2) V(Ks,i, P[n - 1]) = λV(Ks,i, K[n - 1])
for all s ∈ (-δi, δi). We claim that this also implies that
(3.3) S(P,ui) = λS(K,ui),
and since i is chosen arbitrarily and the supports of the two measures are equal, the 
statement of the proposition follows.



Now we show that P(s) is linear and then prove that (3.2) implies (3.3). Since the 
polytopes P and K have the same set of facet normals {u1,... ,un}, we obtain:

Similarly,

(3.5) nV(Ks,i, K[n - 1]) = nVn(K) + sVn-1(Kui)

Substituting (3.4) and (3.5) into the definition of P(s) and using assumption (3), we 
see that F(s) = λs for some λ, that is F(s) is linear.

It remains to show that (3.2) implies (3.3). Since F(s) is identically zero we have 
λ = 0, which translates to

Vn-1(pui) = λVn-1(κui)

But that is precisely what (3.3) is stating, which completes the proof of the proposi
tion.

□

Lemma 3.3. Let K be an n-polytope satisfying (3.1) for all bodies L and for all 
M = Kt where t ∈ (-δ,δ) as in Lemma 3.1. Then

for all 0 ≤ r ≤ n — 1 and all t ∈ (-δ, δ).

Proof. For 0 ≤ r ≤ n - 1, set Pr to be the polytope whose surface area measure 
equals S(Kt[r], K[n - r — 1], ∙) and let λ := V(Kt, K[n - l])∕Vn(K). For each r the 
existence and uniqueness of Pr is ensured by the Minkowski Existence and Uniqueness 
Theorem (see [Sch, Sections 7.1, 7.2]). We need to prove that

(3.6) S(Pr,-) = λrS(K,.), r = 0,1,...,n-1.

Note that by Lemma 3.1, we have:

(3.7) supp S(Pr, ∙) = suppS'(K, ∙), r = 1,...,n-1.

We prove (3.6) by induction on r. The case r = 0 is trivial. For the case r = 1 
we apply Proposition 3.2 with P = P1. Indeed, by our assumption, (3.1) is satisfied 
for M = Kt and becomes equality when L = K. Thus the conditions (l)-(3) of 
Proposition 3.2 hold and so S(Pχ,∙) = λS(K, ∙), as required.

Now assume (3.6) holds for 1 < m < r - 1. This is equivalent to the following:

(3.8) V(L,Pm[n-l]) = λmV(L,K[n-l]),



for all convex bodies L and 1 ≤ m ≤ r - 1. Next fix a convex body L ⊂ Rn and 
apply the Aleksandrov-Fenchel inequality

V(L, Pr-1[n - 1])2 = V(L, Kt[r - l],K[n - r])2 
= V(K,Kt,Kt[r - 2],K[n -r-1],L)2
≥ V(K, K, Kt[r - 2],K[n - r - 1], L)V(Kt, Kt, Kt[r - 2],K[n -r-1],L)
= V(L, Kt[r - 2],K[n -r + 1])V(L, Kt[r],K[n - r - 1])
= V(L,Pr-2[n - 1])V(L,Pr[n-1]) ,

which, by (3.8) with m = r — 2 and m = r - 1, gives

λ2(r-1)V(L, K[n - 1])2 ≥ λr-2V(L, K[n - 1])V(L, Pr[n - 1]).

Thus

(3.9) V(L,Pr[n - 1]) < λrV(K,Pr[n - 1]).

Furthermore, using (3.8) for m = r — 1, we get:

Now, as in the case of r = 1, (3.7), (3.9), (3.10) together with Proposition 3.2, show 
that S(Pr, ∙) = λrS(K, ∙), which completes the proof of the lemma. □

Now we are ready to prove the main theorem which implies Theorem 1.1.

Theorem 3.4. Let K be an n-polytope in Rn. Suppose that

(3.11) V(L, M, K[n - 2])Vn(K) ≤ V(L, K[n - 1])V(M, K[n - 1])

holds for all convex bodies L and M in Rn. Then K is a simplex.

Proof. Let Kt be the polytope obtained by moving one of the facets of K for t small 
enough. Then Lemma 3.3 with r = n - 1 implies that the surface area measures of 
Kt and K are proportional, and hence, Kt is homothetic to K.

We may assume that one of the vertices of K not lying on the moving facet is at 
the origin, so Kt = λK for some λ ≠ 1. For every vertex v in K, λv must be a 
vertex of λK. Therefore, the origin is the only vertex of K not lying on the moving 
facet. In other words, K is the cone over the moving facet. But since the facet was 
chosen arbitrarily, for every vertex v the polytope K is the convex hull of v and the 
facet not containing v. This implies that K is a simplex. □



4. Proof of Theorem 1.2

Recall that a boundary point y ∈ ∂K is strict if it does not belong to any segment 
contained in ∂K. Note that points with positive Gaussian curvature and, more gen
erally, regular exposed points are strict points (see [Sch] for the definitions). Clearly 
the boundary of a polytope does not contain any strict points, but there are other 
convex bodies having this property (for example, a cylinder).

As before it is enough to prove Theorem 1.2 in the case of r = 2. It follows from 
the theorem below.

Theorem 4.1. Let K be a convex body whose boundary contains at least one strict
point. Then there exist convex bodies L and M such that

(4.1) V(L, M, K[n - 2∖)Vn(K) > V(L, K[n - 1])V(M, K[n - 1]).

Proof. First let us fix some notation. For a > 0 and u ∈ Sn-1, define the closed 
half-spaces:

Ha+ (u) = {x ∈ Rn : {x, u} ≥ a} and Ha-(u) = {x ∈ Rn : {x, u} < a}.
Also set Ha(u) := Ha+(u) ∩Ha-(u). With this notation, the supporting hyperplane of 
K whose unit normal vector is u, can be written as Hhκ(u)(u).

Let y be a strict point of ∂K and u be a normal vector of K at y. Choose 
υ ∈ Sn-1, such that y∣υ┴ ∈ relint(K∣v┴), where relint(K∣v┴) denotes the relative 
interior of the body K∣υ┴ in υ┴. We claim that there exists ε > 0, such that

(4∙2) (K ∩ HhK(u)-∈(u)) │v┴ = κ│v┴

To see this, assume that (4.2) is not true for all ε > 0. This means that for any ε > 0, 
there exists a point xε ∈ ∂K, such that ∈ ∂(K│v┴) and xε ∈ H+hκ(u)-∈(u). Let
x0 be an accumulation point of the set {xε : ε > 0}. Then, by compactness, x0 ∈ ∂K, 
x0∣v┴ ∈ ∂(K│v┴), and x0 ∈ Hhκ(u)(u) (because x0∈H+hk(u)(u) and x0 ∈ K). Note
that, since x0│ v┴ ∈ ∂(K∣v┴) and y∣v┴ ∈ relint(K∣v┴), we have x0 ≠ y. It follows that 
the segment [x0, y] is contained in a supporting hyperplane of K, thus [x0, y] ⊆ ∂K, 
which contradicts the assumption that y is strict. Hence, (4.2) holds for some ε > 0.

Next, set Kε := K ∩ H-hκ(u)-ε(u). Clearly, hKε ≤ hκ ∙ We claim that there exists 
an open subset β ⊂ ∂K \ ∂Kε, such that y ∈ β and

(4.3) hKε(u) < hκ(u), for all u ∈ σ(K,β).
Suppose not. Then for any δ-neighborhood βδ = (∂K \∂Kε) ∩ B(y,δ) of y there 
exists a unit vector uδ ∈ σ(K,βδ) such that hκ(uδ) = hKε(uδ). In other words, there 
exist points yδ ∈ βg and xδ ∈ ∂Kε lying in the same hyperplane Hκ(uδ). But then, 
by compactness, there exist a point x ∈ ∂Kε and a unit vector u, which is normal 
for K at y and at a;. This shows again that the points y and x of K lie in the 
same supporting hyperplane HK(u), thus [y,x] is a boundary segment of K, which 
contradicts our assumption. Therefore, (4.3) holds for some open set β ⊂ ∂K \ ∂Kε.

Note, furthermore, that τ(K, σ(K, β)) ⊇ β, thus Hn-1 (τ(K, σ(K, β))) > 0, which 
shows that

(4.4) S(K, σ(K, β)) > 0.



Now we are ready to exhibit examples of compact convex sets L and M satisfying
(4.1) . Set L = [-v,v] and M = Kε. Then, by (5.3.23) in [Sch, p. 294] and applying
(4.2) we obtain

V(L, M, K[n - 2]) = V(Kε∣v┴, K│v┴ [n - 2]) = Vn-1(K│v┴) = V(L, K[n - 1]).
On the other hand, by (4.3) and (4.4), we have:

V(M,K[n-1]) = V(Kε,K[n-1]) = 1/n ∫Sn-1 hκεdS(K,.)

< 1/n ∫Sn-1 hκdS(K,∙) = Vn(K). 

This shows that
V(L, M, K[n - 2])Vn(K) > V(L, K[n - 1])V(M, K[n - 1]), 

as asserted. □

Remark 4.2. One might ask the following: If K is a convex body whose boundary 
contains at least one strict point x, is it true that ∂K has an open neighborhood 
that does not contain any line segments, i.e. K is strictly convex in a neighborhood 
of x ? If yes, this would simplify the proof of Theorem 4.1 considerably. The following 
simple 3-dimensional example shows, however, that this is not the case. Take K equal 
to

Then the origin is a strict point of the boundary of K, but no neighborhood of the 
origin is strictly convex.
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