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WULFF SHAPES AND A CHARACTERIZATION OF SIMPLICES 
VIA A BEZOUT TYPE INEQUALITY

CHRISTOS SAROGLOU, IVAN SOPRUNOV, AND ARTEM ZVAVITCH

Abstract. Inspired by a fundamental theorem of Bernstein, Kushnirenko, and 
Khovanskii we study the following Bezout type inequality for mixed volumes

We show that the above inequality characterizes simplices, i.e. if K is a convex body 
satisfying the inequality for all convex bodies L1,..., Ln ⊂ Rn , then A must be 
an n-dimensional simplex. The main idea of the proof is to study perturbations 
given by Wulff shapes. In particular, we prove a new theorem on differentiability 
of the support function of the Wulff shape, which is of independent interest.

In addition, we study the Bezout inequality for mixed volumes introduced in 
[SZ]. We introduce the class of weakly decomposable convex bodies which is strictly 
larger than the set of all polytopes that are non-simplices. We show that the Bezout 
inequality in [SZ] characterizes weakly indecomposable convex bodies.

1. Introduction

One of the fundamental results in the theory of Newton polytopes is the Bernstein- 
Kushnirenko-Khovanskii theorem which expresses algebraic-geometric information 
such as the degree of an algebraic variety and intersection numbers in terms of convex- 
geometric invariants such as volumes and mixed volumes [B, Kh, Ku]. There are many 
consequences and applications of this beautiful relation in both algebraic and convex 
geometry (see [KaKh] and references therein). Among them is a recent geometric in
equality, called the Bezout inequality for mixed volumes, first introduced in [SZ]. The 
name comes from interpreting the classical Bezout inequality in algebraic geometry in 
terms of the mixed volumes with the help of the Bernstein-Kushnirenko-Khovanskii 
result. In the present paper we study another inequality of this type: For any convex 
bodies L1, . . . ,Ln in Rn and any n-simplex K one has

Here Vn(K) denotes the n-dimensional Euclidean volume and V(K1, . . . , Kn) de
notes the n-dimensional mixed volume of bodies K1, . . . ,Kn. We write K[m] to 
indicate that the body K is repeated m times in the expression for the mixed vol
ume.
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The inequality (1.1) has a direct proof based on the monotonicity of the mixed 
volume presented in Section 4. We also give an algebraic-geometric interpretation of 
(1.1) at the end of this section. Our main result is that (1.1), in fact, characterizes 
n-simplices in the class of all convex bodies in Rn. In other words, the only convex 
body K ⊂ Rn which satisfies (1.1) for all convex bodies L1, . . . ,Ln is the n-simplex. 
It turns out that a slightly stronger statement is true.

Theorem 1.1. Let K be a convex body in Rn. Then K satisfies

for all convex bodies L1, . . ., Ln-1 in Rn if and only if K is an n-simplex.

The question of characterization of n-simplices has played an essential role in a 
number of major results of modern convex geometry, including Ball’s reverse isoperi- 
metric inequality [Ba] and Zhang’s projection inequality [Zh]. Also simplices are 
conjecturally the extreme bodies for several open problems. For example, a variant 
of Bourgain’s slicing conjecture [Bol, Bo2] characterizes simplices as convex bod
ies with a maximal isotropic constant. The Mahler conjecture states that simplices 
have the minimal volume product among all convex bodies. We refer the reader to 
[Ma1, Ma2, RZ, Sch] and [Kl] for connections between the slicing problem, the Mahler 
conjecture, and characterizations of simplices. To the best of the authors’ knowledge, 
(1.1) and (1.2) are the first characterizations of simplices via an inequality rather than 
an equality, as presented in the above mentioned classical results and open problems.

Let us briefly describe the method of the proof of Theorem 1.1. The “if’ part 
follows from (1.1). For the “only if’ part, if K is a polytope, the claim follows from 
the result of [SSZ], as we show in Section 4.1. In the remaining case, we observe 
that the problem can actually be seen as an extremal (variational) problem. Indeed, 
assume that K satisfies (1.2) for all convex bodies L1, . . . ,Ln-1 ⊂ Rn. Let Kt be a 
convex perturbation of K where t ∈ (-δ,δ), for some small δ > 0, and K0 = K. 
Then the function

F(t) := V(Kt, M, K[n - 2])Vn(K) - V(Kt, K[n - 1])V(M, K[n - 1])

is non-positive in (-δ,δ) and equals 0 at t = 0, where M is any compact convex 
set, independent of t. To arrive at a contradiction, one needs to construct Kt and 
M such that the right derivative of F at t = 0 (if it exists) is strictly positive. The 
main idea is to use a more general construction for the perturbation body Kt than 
the one used in [SSZ]. Namely, given a continuous function f : Sn-1 → R, define Kt 
as

where hκ is the support function of K.
The above construction goes back to Aleksandrov’s 1938 paper [All] (see also 

[A12, Sch]) and utilizes the notion of the Wulff shape. This notion was introduced 
by G. Wulff [Wu] who studied the equilibrium shape of a droplet or a crystal of 
fixed volume. In the recent years Wulff shapes have been widely used in the study 
of extremal problems of convex bodies. We refer to [BLYZ1, BLYZ2, KM, HLYZ, 
HuLYZ, Lu, Sa, SW] for recent results or [Ga, Sch, Se] for expository work on the



subject. A core lemma of Aleksandrov [Sch, Lemma 7.5.3] (see also (3) below) provides 
a differentiability property of the volume of Kt. In our main result in Section 3 we 
prove a differentiability property of hκt (Theorem 3.5):

SK-almost everywhere on Sn-1, where Sκ is the surface area measure of K. This 
can be thought of as a local version of Aleksandrov’s lemma.

There is a close relationship between (1.1) and the Bezout inequality for mixed 
volumes studied in [SZ, SSZ]. Recall that it says that

A more general version of this inequality is discussed in Section 5. Observe that (1.1) 
implies (1.3). It was conjectured in [SZ] that (1.3) characterizes simplices in the class 
of all convex bodies. This conjecture was confirmed in [SSZ] for the class of convex 
n-polytopes. Although the general case remains open, the results of this paper pro
vide additional information regarding the conjecture, which we collect in Section 5. 
For example, Theorem 1.1 gives an affirmative answer to the conjecture when n = 3. 
Furthermore, in Section 5 we introduce the notion of weakly decomposable bodies 
generalizing the classical notion of decomposable bodies. The class of weakly decom
posable bodies is quite large; we show that it is strictly larger than the set of all 
polytopes that are non-simplices. In fact, we currently do not have examples of con
vex bodies which are not weakly decomposable, besides simplices. We show that if 
K satisfies (1.3) for any L1,L2 in Rn then K cannot be weakly decomposable, see 
Theorem 5.7.

Theorem 1.1 shows that the inequality (1.1) may not hold when K is not an 
//-simplex. Thus, one can ask if (1.1) can be relaxed so that it holds for arbitrary 
L1, . . . ,Ln and K in Rn. In Section 6 we prove that

for all convex sets L1, . . . ,Ln and K in Rn and show that this inequality cannot be 
improved. In addition, we discuss isomorphic versions of (1.2) and (1.3).

We now turn to an algebraic-geometric interpretation of (1.1). Recall that the New
ton polytope of a polynomial f ∈ C[t1, . . . , tn] is the convex hull in Rn of the exponent 
vectors appearing in f. Fix 1 ≤ r ≤ n. A polynomial system f1(t) = ∙ ∙ ∙ = fr(t) = 0 
for t ∈ (C\{0})n with generic coefficients and fixed Newton polytopes Pχ,... ,Pr de
fines an (n -r)-dimensional algebraic set X in (C\{0})n. We may assume that each 
Pi intersects every coordinate hyperplane Xi = 0, as translations of the Newton poly
topes do not change the set X. By definition, the degree deg X of X is the number 
of intersection points of X with a generic affine subspace of dimension r. According 
to the Bernstein-Kushnirenko-Khovanskii theorem, this number can be computed as

where Δ = conv{0,e1, . . . ,en} is the standard n-simplex (the Newton polytope of 
a linear polynomial). Here e1, . . . , en denote the standard basis vectors in Rn. In 
particular, when r = 1, X is a hypersurface and deg X coincides with the degree of



the polynomial defining X. When r = n. X consists of isolated points whose number 
equals deg X.

Now the algebraic-geometric interpretation of (1.1) is as follows. Let X be the 
hypersurface defined by f1(t) = 0 and Y be defined by a polynomial system 
f2(t) = ∙ ∙ ∙ = fn(t) = 0 in (C \{0})n. As before we assume that the Newton poly
topes P1, . . . ,Pn are fixed and the coefficients of the fi are generic. Then deg X = 
n!F(P1, ∆[n - 1]), degY = n!V(P2, . . . ,Pn,Δ), and deg(X ∩ Y) = n!V(P1, . . . , Pn). 
Also note that Vn(Δ) = l∕n!. The inequality (1.1) then turns into a classical Bezout 
inequality

2. Preliminaries

2.1. Basic definitions. In this section we introduce notation and collect basic facts 
from classical theory of convex bodies that we use in the paper. As a general reference 
on the theory we use R. Schneider’s book “Convex bodies: the Brunn-Minkowski 
theory” [Sch].

We write {x,y} for the inner product of x and y in Rn. Next, Sn-1 denotes the 
(n - 1)-dimensional unit sphere in Rn and B(x, δ) denotes the closed Euclidean ball 
of radius δ > 0 centered at x∈Rn. A spherical cap U(u,r) of radius r > 0 centered 
at u ∈ Sn-1 is the intersection Sn-1 ∩ B(u,r).

For A ⊂ Rn its dimension dim A is the dimension of the smallest affine subspace 
of Rn containing A. A convex body is a convex compact set with non-empty interior. 
Note that convex bodies in Rn are n-dimensional. A (convex) polytope is the convex 
hull of a finite set of points. An n-dimensional polytope is called an n -polytope for 
short. An n-simplex is the convex hull of n + 1 affinely independent points in Rn .

For a convex body K the function hκ : Sn-1 → R, hκ(u) = max{(x, u} ∣ x ∈ K} 
is the support function of K. For every convex body K we write Ku to denote the 
face corresponding to an outer normal vector u E Sn-1, i.e.

see, for instance, Proposition 8.4 of [F] and examples therein.

for any Borel Ω ⊂ Sn-1. Here Hn-1(∙) stands for the (n - 1)-dimensional Hausdorff 
measure.

Let Vn(K) be the Euclidean volume of K ⊂ Rn. We will often use the classical 
formula connecting the volume of a convex body, the support function, and the surface 
area measure:

If Ω is a subset of Sn-1 define the inverse spherical image τ(K, Ω) of Ω with respect 
to K by

The surface area measure Sκ(∙) of K is a measure on Sn-1 such that



The Minkowski sum of two sets A, L C Rn is defined as K + L = {x + y : x ∈ 
K and y ∈ L}. A classical theorem of Minkowski says that if K1,K2,. . . ,Kn are
convex compact sets in Rn and λ1, . . . , λn ≥ 0, then Vn(λ1K1 + λ2K2 + λnKn)
is a homogeneous polynomial in λ1, . . . , λn of degree n. The coefficient of λ1 ∙ ∙ ∙ λn 
is called the mixed volume of Aχ,..., Kn and is denoted by V(K1, . . . , Kn). We will 
also write V(K1[m1], . . . ,  Kr[mr]) for the mixed volume of K1, . . . ,Kr where each
Ki is repeated mi times and m1+∙ ∙ ∙ + mr = n. We summarize the main properties
of the mixed volume below:

• V(K, . . . ,K) = V(K[n]) = Vn(K);
• the mixed volume is symmetric in K1, . . . , Kn;
• the mixed volume is multilinear: For any λ, μ ≥ 0

V(λK + μL, K2, . . . ,Kn) = λV(K, K2, . . . , Kn) + μV(L, K2, . . . , Kn);
• the mixed volume is translation invariant: For any a ∈ Rn

V(K1 + a, K2, . . . Kn= V(K1, K2, . . . , κn);

• the mixed volume is monotone: If K ⊂ L then
V(K, K2, . . . ,Kn ≤ v(L,K2, . . . , Kn.)

We will need the following classical inequalities for the mixed volumes: The 
Minkowski First inequality

and the Aleksandrov-Fenchel inequality

Let S(K1, . . . , Kn-1, ∙) be the mixed area measure for bodies K1, . . . , Kn-1 defined 
by

for any compact convex set L. In particular,

and

The identity (2.4) implies that the invariance properties of mixed volumes are in
herited by mixed area measures. More specifically, S(K1,..., Kn-1,∙) is translation 
invariant, symmetric, and multilinear with respect to K1, . . . ,Kn-1. We also note 
that if the Ki are polytopes the mixed area measure S(K1, . . . , Kn-1,∙) has finite 
support and for every u ∈ Sn-1 we have

where V(Ku1, . . . ,Kun-1) is the (n - 1)-dimensional mixed volume of the faces Kui 
translated the the subspace orthogonal to u, see [Sch, Sec 5.1]. We will need a slightly 
more general statement.



Lemma 2.1. Let K1, . . . ,Kn-1 be convex bodies in Rn. Then

Proof. We use an alternative definition of the mixed area measure given in [Sch, 
(5.21), page 281]:

By the definition of the surface area measure

where as before (Ki1 + ∙ ∙ ∙ + Kik)u denotes the face of Ki1 +∙ ∙ ∙+ Kik corresponding
to u. Note that (Ki1 + ∙ ∙ ∙ + Kik)u = Kui1 + ∙ ∙ ∙ + Kuik. Therefore,

The right hand side of the above equation is the well-known formula for the mixed 
volume V(Ku1, . . . , Kun_1), see [Sch, Lemma 5.1.4]. □

Finally, we will need the following formula relating the mixed volumes and projec
tions, which is a particular case of [Sch, Theorem 5.3.1]. For u ∈ Sn-1 the orthogonal 
projection of a set A ⊂ Rn onto the subspace u┴ orthogonal to u is denoted by 
A∣u┴ . Let I = [0,u] be a unit segment for some u ∈ Sn-1 and K2, . . . ,Kn convex 
bodies in Rn. Then

where in the right-hand side is the (n -1) -dimensional mixed volume of convex bodies 
in the orthogonal subspace u┴.

3. Differentiation of Wulff Shapes.

The notion of the Wulff shape is the main tool in constructing the perturbation 
Kt . We refer to Section 7.5 of [Sch] for details. We start with the definition of the 
Wulff shape and several properties that we need later.

Definition 3.1. Consider a non-negative function g : Sn-1 → R. The Wulff shape 
W (g) of g is defined as

Note that when g is the support function hK of a convex body K then W(hK) = 
K.

Proposition 3.2. Consider non-negative functions g1,g2 : Sn-1 → R and λ ∈ (0,1). 
Then



Proof. Indeed consider x ∈ W(g1) and y ∈ W(g2). Then 

{x,u} ≤ <g1(u) and {x,u} ≤ g2(u)

for all u ∈ Sn-1. Thus

for all u ∈ Sn-1, which completes the proof. □

Consider a convex body K ⊂ Rn, containing the origin in its interior. Given a 
continuous function f : Sn-1 →R. we define the perturbation Kt(f) of K as

where t ∈ (a, b) such that hK(u) + tf(u) > 0 for all u ∈ Sn-1. Note that Kt(f) is 
also a convex body containing the origin in its interior. To shorten our notation we 
write Kt instead of Kt(f) when it is clear what function f is being considered.

The following proposition shows that the support function of the perturbation Kt 
is concave with respect to t.

Proposition 3.3. The support function hKt(u) is concave with respect to t E (a,b) 
for all u ∈ Sn-1.

Proof. Consider λ ∈ [0,1] and t,s ∈ (a, b). Then, using Proposition 3.2, we get

Aleksandrov’s lemma [Sch, Lemma 7.5.3] states that if h : Sn-1 → (0, ∞) and 
f : Sn-1 → R are continuous functions, then

In particular, when h = hK one has

Aleksandrov’s lemma (3.2) follows from the following fact (see the proof of Lemma 
7.5.3 in [Sch]), which is going to be crucial for the proof of Theorem 3.5 below.

Proposition 3.4. Let h : Sn-1 → (0, ∞) and f : Sn-1 → R be continuous functions. 
Then,

In particular, when h = hK



Now we go back to the support function hKt(u). By concavity established in Propo
sition 3.3, the one-sided derivatives of hκt(u) exist at every t. In particular, for t = 0 
we have the following theorem.

Theorem 3.5.

SK -almost everywhere onSn-1. 

Proof. We need to show that

Sκ-almost everywhere on Sn-1. Indeed, it follows from the definition of the Wulff 
shape that

for all u ∈ Sn-1. Assume that there is a set of positive SK-measure where we have a 
strict inequality, then

On the other hand, Proposition 3.4, together with the Dominating Convergence the
orem gives

which gives a contradiction. We use similar logic to prove the second part of (3.3). □

Remark 3.6. In view of Theorem 3.5, one might ask if dhKt(u)/dt∣t=0 = f(u) holds
for all u ∈ Sn-1. We note that the answer to this question is negative, in general.
Indeed, let K = conv{0, e1,e2} be the standard triangle in R2. Let f : S1 → [0,1]
be a continuous function such that f(e2) = 1 and f is zero outside of a small
neighborhood of e2. Then Kt = K, for t ≥ 0 and thus limt→0+ hKt -hκ/t = 0. Moreover,

if — 1 < t < 0 then hKt(e1) ≤ 1 + t and thus limt→0- hKt (e2)-hK(e2)/t  > 1 Therefore, the

derivative dhKt(e2)/dt∣t=0 does not exist.



4. Proof of Theorem 1.1

We begin with the “if’ part of the statement. Let K be an n-simplex and 
L1, . . . , Ln convex bodies in Rn. Then

Indeed, since this inequality is invariant under dilations and translations of L1 we 
may assume that L1 is contained in K and intersects every facet of K. Then, by 
(2.5), we have

where {u0, . . . ,un} is the set of the outer unit normals to the facets of K. But 
hLi(ui) = hK(ui) since L1 ⊂ K and it intersects each facet of K. Therefore, the last 
expression in (4.2) equals Vn(K). Now (4.2) follows from the monotonicity property 
of the mixed volume,

Finally, we note that (1.2) is a particular case of (4.1).
To prove the “only if” part we treat the following three cases separately: (1) K is

a polytope, (2) K has an infinite number of facets, and (3) K has a finite number 
of facets but is not a polytope. Then Theorem 1.1 follows from Theorems 4.1, 4.2, 
and 4.4 below.

4.1. The case of polytopes. Suppose K is a polytope which satisfies

for any bodies L1, . . . , Ln-1. In particular, when L3 = ∙ ∙ ∙ = Ln-1 = K we obtain

Now the fact that K is an n-simplex follows from [SSZ, Theorem 3.4] which we 
formulate next.

Theorem 4.1. Let K be an n-polytope in R". Suppose (4∙4) holds for all convex 
bodies L1 and L2 in Rn. Then K is a simplex.

Theorem 4.1 follows also from the results about weakly decomposable convex bodies 
in Section 5 below.

4.2. K has an infinite number of facets. The following result implies Theo
rem 1.1 in this case.

Theorem 4.2. Let K be a convex body in Rn with infinitely many facets. Then there 
exist convex bodies L1 and L2 in Rn such that the inequality

is false.



Proof. Since K has infinitely many facets, for any ε > 0, there exists a facet Ku ⊂ K 
such that Vn-1(Ku) < ε, otherwise the surface area of K would be infinite which 
contradicts the definition of a convex body. Set ε0 = Vn-1(Ku) ≤ ε. Since K has 
non-empty interior it contains a ball of radius δ > 0, independent of ε0. Cut this 
ball in half by a hyperplane orthogonal to u and let M be the half whose facet has 
outer normal u. Furthermore, let Kt = Kt(f) be a perturbation as in (3.1) for some 
continuous f : Sn-1 → [0,1] and t ∈ (-a, a) which we choose below.

Now assume (4.5) holds for any L1,L2∙ Put L1 = Kt and L2 = M and consider 
the function

F(t) = V(Kt, M, K[n - 2])Vn(K) - V(Kt, K[n - 1])V(M, K[n - 1]).
Then F(0) = 0 and F(f) < 0 on (-a,a). Our goal is to show that for small enough ε 
the right-sided derivative of F(t) at t = 0 is positive, which provides a contradiction. 
We deal with each summand in the definition of F(t) separately. Using (2.4) we get

where the last equality follows from and (2.6) and Theorem 3.5 (note that since 
,SK({u}) = ε0 > 0, the derivative of hKt(u) at t = 0 exists). Setting f(u) = 1 and 
using the Minkowski inequality (2.2) for the mixed volume V(Mu, Ku[n — 2]) we get

for some C1 > 0, independent of ε0.
Now we turn to the second summand in F(t). This is straightforward from Propo

sition 3.4:

We can choose f to be positive on the facet Ku and zero outside. Then the integral 
above equals C2ε0 for some C2 > 0, independent of ε0∙ Combining (4.6) and (4.7) 
we obtain



for small enough ε0 and, consequently, for small enough ε. This completes the proof 
of the theorem. □

4.3. K has finitely many facets and is not a polytope. Although the methods 
in this case are similar to the ones used in the previous case, the proof is more involved.

Let supp(SK) be the support of the measure SK, i.e. the largest (closed) subset 
of Sn-1 for which every open neighborhood of every point of the set has positive 
measure. We start with the following observation.

Proposition 4.3. Let K be a convex body in Rn which satisfies

(4.8) V(L1, L2, K[n - 2])Vn(K) < V(L1, K[n - 1])V(L2, K[n - 1])
for all L1,L2. Then dim Ku > 0 for every u ∈ supp(SK).

Proof. The proof is similar to the one of [SSZ, Theorem 4.1]. Assume there exists 
u ∈ supp(SK) such that Ku = {y}. for some y E ∂K. For ε > 0 define the truncated 
body

Since Ku = {y}, it follows that there exist v ∈ Sn-1 and ε > 0 such that the 
projections of K and Kε are the same:

A proof of this statement can be found in the proof of [SSZ, Theorem 4.1].
Let L1 = [0, v] and L2 = Kε. Then, from (2.7) and (4.9), we get 
V(L1,L2,K[n-2]) = 1/n(Kε∣v┴, K∣v┴ - 2]) = 1/n V(K∣v┴) = V(L1, K[n - 1]).

Therefore, it suffices to show that Vn(K) > V(L2,K[n — 1]); this will contradict our 
assumption (4.8). Note that hκε ≤ hκ and

by (2.1) and (2.5). Therefore it is enough to show that there exists a Borel set Ω C 
Sn-1, such that SK(Ω) > 0 and hK(v) > hκε(v), for all v ∈ Ω. To this end we claim 
the following.

Claim. There exists an open set U ⊆ Sn-1, such that U contains u and τ( K, U) ⊆ 
K \ Kε. To see this, assume that this is not the case. Then, there is a sequence 
of open spherical caps Un = U(u,rN) of radii rn →0, as N → ∞, such that 
t(K,Un) contains a point xN∈ Kε. This implies that there exists uN∈ Un such 
that uN∈ Kun . Since uN → u, by compactness there exists x ∈ ∂K ∩Kε, such that 
x ∈ Ku. This contradicts our assumption Ku = {y}, since x ≠ y as y ∉ Kε.

An immediate reformulation of the previous claim states that there exists an open 
set U in Sn-1 containing u, such that Kv ⊆ K \ Kε, for all v ∈ U. In other words, 
hκ(v) > hκε(v) for all v∈ U. However, since u ∈ supp(SK), we have SK(A) > 0, 
which completes the proof. □

Suppose K satisfies the conditions of Proposition 4.3. Then we can choose an open 
subset U ⊆ Sn-1 satisfying the following three conditions:

(i) V = U ∩supp(SK) ≠ ∅ (and, hence, SK(V) > 0),



(ii) V contains no normals to facets of K,
(iii) there exists l > 0 such that for any u ∈ V the face Ku contains a segment 

of length at least £.
Indeed, we can ensure (i) and (ii) are satisfied since we can exclude the finite set of 
unit normals to the facets of K from the support of SK. For part (iii), choose V' 
satisfying (i) and (ii) and consider the sequence of subsets

Vl = { u ∈ V' : Ku contains a segment of length at least l∕i}, i ∈ N.
By Proposition 4.3, Vi is nonempty for i large enough and ∪i>1Vi = V'. Therefore, 
there exists m ≥ 1 such that Vm has positive SK-measure. Put l = 1/m and
V = Vm.

Our next step is to construct a sequence of perturbations Kt(fN) for certain func
tions fN. We begin by constructing a nested sequence Un ⊂ U of spherical caps 
centered at points of V.

Let U1 = U(u0,p1) ⊂ U for some u0 ∈ V and p1 > 0. Consider a continuous 
function f1 : Sn-1 → [0,1] such that f1 is zero on Sn-1 \ U1, positive on U1, and
takes values at least 1/2 on U'1 : = U(u0,p1/2). By Theorem 3.5 there exists u1 ∈ U'1 ∩V 
such that hκt(f1) has derivative equal to f1(u1). Define U2 = U(u1,p2) ⊂ U1 where 
P2 ≤ p1/2 and continue the process. We obtain a sequence of spherical caps Un = 
U(un-1,Pn) with centers at uN-1 ∈ V and radii pN → 0, as N→ → ∞. and a 
sequence of functions fn : Sn-1 → [0,1] satisfying:

(a) fn is positive on Un,
(b) fn is zero on Sn-1 \Un,
(c) d/dt hKt(fN)∣t=0 = fN(UN) ≥ 1/2∙

We are ready for the main result in the case when K is not a polytope and has at 
most finitely many facets.

Theorem 4.4. Let K be a convex body in Rn with finitely many facets which is not a 
polytope. Then there exist convex bodies L1, . . . ,Ln-1 in Rn such that the inequality

is false.

Proof. Suppose K satisfies (4.10) for all L1,. . . ,Ln-1. In particular, it satisfies the 
conditions of Proposition 4.3 and, hence, there exist a set V ⊂ Sn^1, a sequence of 
points uN ∈ V, and perturbations Kt,N = Kt(fN) as constructed above. Choose a 
ball B of radius δ > 0 contained in K and cut it in half by a hyperplane orthogonal 
to uN . Let Mn be the half of B whose facet has outer normal uN∙ We set L1 = Kt N 
and Li = Mn for 2 ≤ i ≤ n - 1. Then (4.10) produces

For every N ≥ 1, define the function
(4.12) FN(t) = V(Kt,N,MN[n-2],K)Vn(K)-V(Kt,N,K[n-1])V(MN[n-2]K,K).

Note that FN(0) = 0 and if (4.11) holds then FN(t) ≤ 0 for all t ∈ (-a,a). As in 
the proof of Theorem 4.2 we show that for N large enough the right-sided derivative 
of Fn(t) at t = 0 is positive, which gives a contradiction.



For the first summand in F(t) we have

where the last equality follows Lemma 2.1. We claim that the mixed volume is 
bounded below by a positive constant C independent of N:

Indeed, by condition (iii) in the definition of U, the face Kun contains a segment I of 
length at least l > 0. Also, by construction, the facet MNun is an (n - 1)-dimensional 
disc Dδ of radius ∂ > 0. Thus,

Therefore, for the first summand of FN(t) we have

The last equality follows from Theorem 3.5 and the last inequality follows from con
dition (c) in the definition of fN ■

For the second summand of FN(t) we use Proposition 3.4 as before:

Bringing the two summands together we obtain

Recall that fN is bounded and vanishes outside of a spherical cap of radius pn→ 0. 
By choosing N large enough we can ensure that the integral of fN is smaller than any 
given number. On the other hand, V(Mn[n - 2],K,K) < Vn(K) since MN ⊂ K, for 
any N ≥ 1. Therefore, it is enough to take N large enough so ∫ fN(x)dSκ(x) <

S"~1
∏C∕2 to obtain

This completes the proof of the theorem. □



5. Weakly decomposable convex bodies

In this section we discuss the impact of the results of Section 4 on the conjec
ture about the Bezout inequality for mixed volumes formulated in [SZ]. Recall this 
conjecture:

Conjecture 5.1. Fix an integer 2 < r < n and let K ⊂ Rn be a convex body 
satisfying the Bezout inequality

for all convex bodies L1, . . . ,Lr in Rn . Then K is an n-simplex.

We then introduce a class of weakly decomposable convex bodies which generalizes 
the classical notion of decomposable bodies. We show that every polytope which is not 
a simplex is weakly decomposable and there are many weakly decomposable bodies 
which are not polytopes. Our main result of this section (Theorem 5.7) asserts that 
a convex body K satisfying (5.1) for all convex bodies L1, . . . ,Lr cannot be weakly 
decomposable, which improves the result of [SZ, Theorem 3.3].

5.1. Impact of results of Section 4 on Conjecture 5.1. The special case of the 
inequality (5.1) with r = 2 was already considered in the introduction, see (1.3). As 
we mentioned there, (1.1) implies (1.3). In fact, (1.1) implies (5.1) for any 2 ≤ r ≤ n. 
Indeed, (5.1) with r = n can be obtained from (1.1) by successive iterations. Clearly 
the case of r = n implies all the other cases.

Next, observe that if Conjecture 5.1 is true for r = 2 then it is true for any 
2 ≤ r ≤ n. In dimension three the conjecture (with r = 2) says that if a convex body 
K c R3 satisfies
(5.2) V(L1,L2, K)V3(K) ≤ V(L1, K, K)V(L2, K, K)
for any convex bodies L1,L2 in R3 then K is a 3-simplex. This is precisely the 
statement of Theorem 1.1 with n = 3. Therefore, Conjecture 5.1 is true in the three- 
dimensional case. In the general case, the results of Theorem 4.1, Proposition 4.3, and 
Theorem 4.2 provide with the following new information regarding Conjecture 5.1.

Corollary 5.2. Let K ⊂ Rn for n ≥ 4 be a convex body which is not a polytope 
and which satisfies (5.1) for all convex bodies L1, . . . ,Lr in Rn. Then K has at most 
finitely many facets and for every u in the support of the surface area measure Sκ, 
the face Ku is positive dimensional.

5.2. Weakly decomposable bodies. Recall that a convex body is called decom
posable if K = L + M, for some compact convex sets L, M which are not homothetic 
to K. It was shown in [SZ] that decomposable convex bodies do not satisfy the Bezout 
inequality (5.1) for any 2 < r < n. We generalize the definition of decomposability 
as follows.

Definition 5.3. A convex body A in Rn is called weakly decomposable if there exists 
a convex set M, not homothetic to A, such that the surface area measure Sk+m of 
A + M is absolutely continuous with respect to the surface area measure SK of K. 
A convex body which is not weakly decomposable is called weakly indecomposable.



The following proposition justifies the terminology.
Proposition 5.4. Every decomposable convex body is weakly decomposable.

To prove this we need the following lemma.
Lemma 5.5. Let M and L be compact convex sets in Rn. Then

ii) Sl+m is absolutely continuous with respect to Sl if and only if the mixed 
area measure S(M[r],L[n - r], ∙) is absolutely continuous with respect to Sl 
for all 0 < r < n.

Proof. Part i) is an immediate consequence of the invariance properties of mixed 
area measures mentioned in Section 2 (see also [Sch, (5.18)]) and part ii) follows 
immediately from part i). □

Proof of Proposition 5.4. Let K = L + M be a decomposable convex body. To see 
that it is weakly decomposable, notice that by part i) of Lemma 5.5

which is absolutely continuous with respect to

There are many convex bodies that are not decomposable. For example, every 
polytope whose 2-dimensional faces are simplices is indecomposable, see [Sch, Corol
lary 3.2.17]. The class of weakly decomposable bodies, however, is much larger than 
that of decomposable bodies. The next proposition shows that it includes all convex 
polytopes.
Proposition 5.6. The only weakly indecomposable polytopes are simplices.

Proof. In [SSZ, Lemma 3.1], we showed that if K is a polytope which is not a simplex, 
then there exists a convex body M not homothetic to K (obtained from K by moving 
a facet of K along the direction of its outer normal) such that S(K[r], M[n — r], ∙) 
is absolutely continuous with respect to SK, for all 0 ≤ r < n. Combing this result 
with Lemma 5.5, we obtain the required statement. □

The following theorem, which is the main result of this section, is a generalization 
of both facts that decomposable convex bodies and polytopes that are not simplices 
do not satisfy the Bezout inequality (5.1) for any 2 ≤ r ≤ n, see Theorem 4.1 and 
[SZ, Theorem 3.3].
Theorem 5.7. Let K ⊂ Rn be a convex body satisfying



for all convex bodies L1, . . . ,Lr in Rn, where 2 ≤ r ≤ n. Then K is weakly inde
composable.

Proof. It is enough to prove the theorem when r = 2 as the general case follows from 
it. Assume that K satisfies

for all L1, L2 and there exists a convex body M such that Sk+m is absolutely 
continuous with respect to Sκ ⋅ We need to show that M is homothetic to K. The 
proof combines Theorem 3.5 and the argument in the proof of [SSZ, Lemma 3.3].

We use induction to show that

holds for 0 < r < n, where λ = V(M,K[n — l]) ∕Vn(K). The case r = 0 is trivial. 
Assume (5.5) holds for all 0 ≤ r ≤ m. We need to show that (5.5) holds for r = m+l. 
First, we claim that for any convex body L we have

(5.6) V(L, M[m + 1], K[n - m - 2]) < λm+1V(L,K[n - 1]),

with equality when L = K. If m = 0, the claim follows immediately from our 
assumption (5.4). Therefore we may assume m ≥ 1. By (5.5) with r = m, for any 
convex body L we have

Applying the Aleksandrov-Fenchel inequality (2.3) to (5.7), we obtain

√V(L, M[m + l],K[n - 2 - m])V(L, M[m - l],K[n - m]) ≤ λmV(L, K[n - 1]).

Then, applying (5.5) with r = m - 1 to the second factor in the left-hand side of the 
above inequality, we obtain (5.6). Furthermore, if L = K, (5.7) produces

Thus there is equality in (5.6) when L = K.
Next, for a continuous function f : Sn-1 → R and sufficiently small ∣t∣, define

F(t) = V(Kt, M[m + 1], K[n - m - 2]) - λm+1V(Kt, K[n - 1]),

where Kt = Kt(f) as in (3.1). By assumption and Lemma 5.5, the mixed area measure 
S(M[m + 1], K[n - r - 2], ∙) is absolutely continuous with respect to SK. Therefore, 
by Theorem 3.5, F(t) is differentiable at t = 0 with

Since F(0) = 0 and F(t) ≤ 0 for small ∣t∣, it follows that F'(0) = 0 or equivalently,

But f is arbitrary, which implies that



and, hence, (5.5) holds for r = m + 1. Finally, using (5.5) with r = n - 1 we see that 
Sm is proportional to SK. Therefore, by Minkowski’s Uniqueness Theorem (see [Sch, 
Theorem 8.1.1]) M is homothetic to K, as required. □

In light of Proposition 5.6 it seems plausible that the only weakly indecomposable 
convex bodies are simplices. Then Theorem 5.7 would imply that Conjecture 5.1 is 
true. In fact, one can construct many weakly decomposable convex bodies that are 
not convex polytopes. For example, one can start with a polytope and fix one of its 
facets. Then any convex body which coincides with the polytope in a neighborhood 
of the fixed facet will be weakly decomposable, as the same argument as in the 
proof of Proposition 5.6 applies. Still a complete description of the class of weakly 
decomposable bodies is open.

6. Isomorphic versions of inequalities (1.1) and (1.2).

As follows from Theorem 1.1, the inequality (1.1) may not hold when K is not an 
n-simplex. It is natural to ask if (1.1) can be relaxed so that it holds for arbitrary 
convex sets L1, . . . ,Ln and K in Rn . It turns out that such an inequality is obtained 
by introducing the constant n in the right-hand side:

To show this, we follow the idea of Jian Xiao who used Diskant’s inequality to prove 
that for any convex bodies K, L in Rn one has

up to a translation, see [Xi, Section 3.1]. Then, (6.1) follows from (6.2) by the mono
tonicity of the mixed volume.

The inequality (6.1) is, in fact, sharp. For example, one can take L1 to be a unit 
segment L1 = [0, u] for some u ∈ Sn-1 and K to be a cylinder K = L1 × K' for 
some (n — 1)-dimensional convex body K' in the orthogonal hyperplane u┴ . Then 
Vn(K) = Vn-1(K') = nV(L1,K[n - 1]) by (2.7). Choose any (n - 1)-dimensional 
convex bodies L2, . . . , Ln in u┴ . From the monotonicity of the mixed volume we see 
that V(L2 ∙ ∙ ∙ ,Ln, K') = 0 as all of the sets are contained in some (n -1) -dimensional 
ball. Now, since K = L1 + K', by the linearity and symmetry properties

which provides equality in (6.1). Note that both sides of the equality are positive. 
Thus, one can use an approximation argument to show that the constant n in (6.1) 
cannot be improved for the class of convex bodies as well.

Next we turn to an isomorphic version of (1.2). From (6.1) we have

However, we do not expect this inequality to be sharp. Although we do not have a 
better estimate in general, we can show that for any zonoids L1, . . . , Ln-1 and any 
K in Rn one has



and in this class the inequality is sharp. (See [Sch, p. 191] for the definition of zonoids.) 
Indeed, similar to the proof of [SZ, Theorem 5.6], it is enough to show that (6.4) holds 
when L1, . . . , Ln-1 are orthogonal segments. This is a particular case of the Loomis- 
Whitney type inequalities in [AAGJV, Theorem 1.7] (see also [FGM, GHP]). Note 
that (6.4) becomes equality, for example, when L1 = [0, e1],..., Ln-2 = [0, en-1] and 
K = conv{K',en}, where K' is the unit (n — 1)-dimensional cube in en┴.

An isomorphic version of (5.1) was first studied in [SZ]. It was shown that there 
exists a constant cn,r > 0 such that

holds for arbitrary convex bodies Lχ, . . . ,Lr and K in Rn, see [SZ, Theorem 5.7]. 
Since then, several new results on estimating the constant cn,r have been obtained, 
see [AFO, BGL, Xi]. Moreover, a generalization of (6.5) also appeared in [Xi]. In 
particular, [BGL, Theorem 1.5] provides an isomorphic version of inequality (1.3)

This inequality becomes equality, for example, when L1 — [0, e1], L2 = [0, e2], and 
K = conv{K', e3, . . . , en}, where K' is the unit square in the span of {e1,e2}.
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