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On dual toric complete intersection codes

Pinar Celebi Demirarslan, Ivan Soprunov

1. Introduction

In this paper we consider a class of evaluation codes called toric complete intersec­
tion codes. They were introduced in [14] and are a natural generalization of evaluation 
codes on complete intersections in the projective space, previously studied by Duursma,



Renteria, and Tapia-Recillas [7], Gold, Little, and Schenck [8], and Ballico and Fonta-
nari [1].

Fix an integer l ≥ 1. A toric complete intersection code Cs,a is constructed by evalu­
ating l-variate Laurent polynomials supported in a given lattice polytope A at the set S 
of common zeroes of l Laurent polynomials with given Newton polytopes P1,...,Pl. 
In [14], the second author proved general bounds for the minimum distance of such 
codes in terms of A and the Pi. The goal of this paper is to study duality for toric 
complete intersection codes. In particular, we give conditions on A and P1,... ,Pl when 
the code Cs,A is quasi-self-dual, see Theorem 3.3.

When l = 2 we give a combinatorial formula for the dimension of Cs,a, thus reducing 
the above mentioned conditions to purely combinatorial ones (see Theorem 4.5). We 
show how restrictive this condition is when the polytopes Pi are similar. In fact, in 
this case a quasi-self-dual code Cs,a exists if and only if the Pi are GL(2, Z)-equivalent 
to an integer multiple of one of 16 polygons as in Proposition 4.6. On the other hand, 
Theorem 4.9 provides a much less restrictive framework for constructing the polytopes A 
and P1, P2 which produce quasi-self-dual codes Cs,,A  .

The paper concludes with an algorithm for finding dual and quasi-self-dual toric com­
plete intersection codes, and provides with a list of examples over the finite field of 16 
elements.

2. Preliminaries

2.1. Dual codes

To set our notation we start with basic definitions about dual codes, following Ref. [15]. 
Throughout the paper, Fq denotes a finite field of q elements and Fq* its multiplicative 
group of non-zero elements. A linear code C over Fq of block length n, dimension k, and 
minimum distance d is referred to as an [n, k, d]q-code.

Fix a vector y ∈ (Fq*)n. It defines a y-dot product on Fnq given by (u∙v)y = ∑ni=1 yiuivj.
If y = (1,..., 1), it is the standard dot product. Define

It is easy to see that C┴y is equivalent to C┴. In fact, yC┴y = C┴ in the above notation.

Definition 2.1. A code C is called quasi-self-dual with respect to y ∈ (Fq*)n if C = C┴y. 
If y = (1,1,..., 1), we say C is self-dual. A code equivalent to a self-dual code is called 
isodual.

Clearly, if C is a quasi-self-dual code with respect to y = (x21,..., x2n). for some .xi ∈ Fq*, 
then xC is a self-dual code. In particular, if char(Fq) = 2, then any quasi-self-dual code 
is isodual.



2.2. Toric complete intersection codes

Recall the definition of a toric complete intersection code following Ref. [14]. Let K be 
a field, K be its algebraic closure, and K* = K ∖ {0}. We use standard terminology and 
notation from the theory of Newton polytopes. An element f of the Laurent polynomial 
ring K[t+-1,..., tl+-1] is a finite sum

The convex hull of the finite set A ⊂ Zl is called the Newton polytope of f and will be 
denoted by P(f).

For any set A ⊂ Rl let Az = A ∩ Zl denote the set of lattice points in A. By a slight 
abuse of notation we use either ∣Az∣ or ∣A∣z to denote the cardinality of the set Az.

All polytopes considered in this paper are assumed to be lattice polytopes, i.e. convex 
hulls of finitely many points in Zl. A polytope of dimension l will be called an l-polytope, 
for short.

The point-wise sum of two polytopes P + Q = {p + q∈Rl∣p∈P, q ∈ Q} is called 
the Minkowski sum. Recall that any polytope (in fact, any convex body) P is uniquely 
determined by its support function lp defined by

We will need the following basic properties of the support function: (1) lp+Q = lp + lq 
and (2) P C Q if and only if lp (ν) < lq(v) for every v in Rl.

We denote the Euclidean l-dimensional volume of P by Vl(P), or simply by V(P) 
when the dimension is clear. We use V(P1,..., Pl) to denote the normalized mixed volume 
of l lattice polytopes P1,..., Pl. By definition,

where PI = ∑iεI Pi. The mixed volume V(P1,..., Pl) is non-negative, multilinear with 
respect to Minkowski addition, and coincides with l!Vl(P) when Pi = P for every 1 ≤ 
i < l. More about the mixed volume can be found in [4, Chapter 4].

Now fix a finite subset S = {p1,... ,pn} of the algebraic torus (K*)l and a finite­
dimensional subspace £ of K[t1±1,... ,tl±1].

Definition 2.2. Define the evaluation map

The image of evS is called the evaluation code corresponding to S and L. We will denote 
this code by CS,L∙



Clearly, Cs,L, is a linear code over K of block length n.
Toric complete intersection codes are special evaluation codes when S is the solution 

set of a Laurent polynomial system satisfying some assumptions. Here is the precise 
definition.

Definition 2.3. Fix a collection of l-polytopes P1,.. .,Pl in Rl and consider l Laurent 
polynomials f1,..., fl over K with Newton polytopes P1,... ,Pl such that the solution 
set S of the system f1 = ∙ ∙ ∙ = fl = 0 in (K*)l satisfies the following:

(1) ∣s∣ = V(P1,...,Pl),
(2) the set S consists of K-rational points i.e. S ⊂ (K*)l.

Then S is called a toric complete intersection over IK.

Remark 2.4. In general, the set S is the intersection of l hypersurfaces in a toric variety 
associated with the polytope P. According to the Bernstein-Kushnirenko-Khovanskii 
bound [3,11], if S consists of isolated points, its cardinality ∣S∣ cannot exceed the mixed 
volume V(P1,..., Pl). Moreover, the bound is attained for systems with generic coeffi­
cients (having the Pi fixed) in which case the hypersurfaces do not intersect outside of 
the torus (K*)l and the intersections are transversal. This is guaranteed by the assump­
tion (1). In particular, this implies that the local intersection multiplicities equal one, 
and the ideal f1, ‧ ‧ ‧, fl) is radical.

The following toric analog of the Euler-.Tacobi theorem by Khovanskii [9] is fundamen­
tal for our results about toric complete intersection codes and their duals. For a proof 
that works over arbitrary algebraically closed fields see [10, Section 14]. First we need 
a couple of definitions.

Definition 2.5. Let Po be the interior of P = P1 + ∙ ‧ ∙ + Pl. Fix any subset A of Po. It 
defines a space of Laurent polynomials over IK:

Definition 2.6. Let f1,...,fl ∈ K[t1±1,..., tl±1] be Laurent polynomials. The Laurent 
polynomial

is called the toric Jacobian of f1,..., fl.



Theorem 2.7. (See [9].) Let S be a toric complete intersection oυer K. Let P = P1+∙ ‧ ∙+Pl 
be the Minkowski sum and P° be its interior. Then for any h ∈ L(P°) we have

Note, since the local intersection multiplicities are equal to one, JTf(p) ≠ 0 for every 
p ∈ S, and the above sum makes sense. In fact, the above sum represents the global 
residue, which is the sum of local (Grothendieck) residues over the solution set S. For 
a connection between residue theory in toric varieties and higher-dimensional evaluation 
codes we refer to [14, Section 2.3] and the references therein.

Definition 2.8. Let S be toric complete intersection over K. Let A ⊂ P° and let L(A) 
be the corresponding polynomial space. The evaluation code CS,L(a) is called a toric 
complete intersection code, denoted simply by CS,a‧

In [14] the second author gave lower bounds for the minimum distance of toric com­
plete intersection codes. It turns out that the bound is significantly better if the solution 
set S satisfies an extra assumption of “generic position”. We formulate it below.

Definition 2.9. Let Q be a polytope in Rl .A subset S C (K*)l is said to be in Q-generic 
position if for any subset T C S of size ∣Qz∣ the evaluation map evT : £(Q) → is
an isomorphism.

In other words, S is in Q-generic position if for any collection T of size ∖│Qz│∖ there is 
a polynomial h ∈ L(Q) which takes the zero value at all but the last point of T. For 
example, when Q = Δl is the standard /'-simplex, i.e. the convex hull of {0, e1,..., el}, 
where {e1,..., el} is the standard basis for Rl. this means that no l + 1 points of S lie 
on a hyperplane.

Here is the lower bound on the minimum distance for toric complete intersection 
codes.

Theorem 2.10. (See [14].) Let S be a toric complete intersection in Q-generic position. 
Let A be any set such that A + mQ ⊂ P° up to a lattice translation, for some m > 0. 
Then

3. Results in arbitrary dimension £

We begin this section with an immediate result about evaluation codes when S is 
Q-generic and A = Q.



Theorem 3.1. Let S ⊂ (K*)l be any subset in Q-generic position for some l-polytope Q. 
Then the evaluation code Cs,q is an MDS code.

Proof. Denote C := CS,q. We need to show that C is an [n,k,n — k + l]q-code where 
k = dim(C) and n = ∣S∣. (Here and everywhere in the paper dim denotes the dimension 
of a vector space over K.) First, we show that k = ∣Qz∣. Consider the evaluation map

By definition C = Im(evS). Since dim L(Q) = ∣Qz∣, it is enough to show that evS is 
injective. If f ∈ Ker(evS) then f ∈ Ker(evT) for any subset T ⊂ S of size ∣Qz∣. By 
Definition 2.9, evT is an isomorphism, so Ker(evT) is trivial. Therefore f = 0.

Now we show that d(C) = n — k + 1. By before, Ker(evT) is trivial for any T C S of 
size ∣Qz∣. Therefore any non-zero f ∈ L(Q) can have at most ∣Qz∣ — 1 zeroes in S. In 
other words, the image of f under evS has weight at least n — ∣Qz∣ + 1. This shows that 
d(C) > n — k + 1. On the other hand, by the Singleton bound d(C) < n — k + 1. This 
proves that C is an [n,k,n — k + l]ρ-code. □

Corollary 3.2. The dual code CS,Q┴y is an MDS code.

This follows from the fact that C┴y, is equivalent to C┴ and that the dual of an 
MDS-code is also MDS.

The following theorem relates the toric complete intersection codes defined by A ⊂ P° 
and B C P° which satisfy A + B ⊂ P°.

Theorem 3.3. Let S be a toric complete intersection. Let A, B be subsets of P° such that 
A + B ⊂ P°. If dim(CS,B) = ∣S∣ — dim(CS,A), then there exists y ∈ (K*)n such that

In particular, if∣S∣ is even, 2A ⊂ Po , and dim(CSιA) = P∣∕2 then CS,A is quasi-self-dual.

Proof. Let S = {p1,... ,pn}. First, for any h = fg, where f ∈ £(A) and g ∈ L(B), we 
have h ∈ L (A + B) ⊂ L(Po). By Theorem 2.7,

This implies that evS(f) and evS(g) are y-orthogonal where y = ( 1/JTf(p1) ,..., 1/JTf(pn)).

Hence CS,b is a subspace of C┴ys,a. On the other hand, dim(CS,B) = n — dim(CS,A) = 
dim(C┴yS,A), and the first statement follows.

For the second part, let B = A. Then, dim(CS,A) = dim(CS,B) = n∕2. By Defini­
tion 2.1, CS,a is a quasi-self-dual code. □



As an immediate consequence of the above theorem we obtain the following.

Corollary 3.4. Let char(K) = 2. If ∣S∣ is even, 2A ⊂ P°, and dim(CS,A) = ∣S,∣∕2 then 
CS,A is isodual.

Our ultimate goal is to give a description of the polytopes P1,...,Pl and the set A such 
that generic systems produce quasi-self-dual codes. For this we need a way to compute 
the dimension dim (CS,A)∙ According to Definition 2.2, this amounts to computing the 
dimension of the kernel of the evaluation map,

Let J = {f1,... ,fd} be radical. Then polynomials in Ker(evS) are, in fact, elements of 
£(A) ∩ J. In other words, one has to compute an analog of the Hilbert function for the 
ideal J:

Although this can be done in some situation, there appears to be no simple formula for 
HilbJ(A) in general. We explore l = 2 case in the next section. Also, in [12] the authors 
give a formula for dim(CS,A) when the polynomials (f1,...,fl) give rise to a regular 
sequence (F1,..., Fl) in the homogeneous coordinate ring of a toric variety. We plan to 
return to this problem in the future.

4. Results in dimension £ = 2

In this section we concentrate on the case £ = 2. We reserve the word “polygon” for any 
convex polytope of dimension at most two. Let S ⊂ (K*)2 be a toric complete intersection 
defined by Laurent polynomial system f1 = f2 = 0 with lattice polygons P1, P2 as in 
Definition 2.3. As before, P° denotes the interior of P = P1 + P2, and V(P, Q) the 
normalized mixed volume (mixed area) of P and Q, i.e.

where V(P) is the Euclidean area of P. It is easy to check that V(P, Q) = 0 if and only 
if either one of the polygons is a point or P, Q are parallel segments.

Our goal is to give a description of lattice polygons P1, P2 for which there exists A 
satisfying

Then, CS,A is quasi-self-dual, by Theorem 3.3.



In Theorem 4.5 below we give a general geometric condition on P1, P2, and A that 
guarantees that CS,A is quasi-self-dual. Then we look at special cases (Proposition 4.6, 
Theorem 4.9) when we can construct P1, P2, and A explicitly.

Intuitively, A has to be just a bit “smaller” than the “average” of P1 and P2. Although 
we have the Minkowski addition on the space of lattice polygons, there is no subtraction, 
in general. To resolve this, we introduce the following analog of difference of (convex) 
sets.

Let A, B be subsets of Rd. Define

It is easy to show that A — B is convex if A is convex. Also (A — B) + B ⊂ A, but not 
equal to A, in general. Rather, it is the largest subset in A that has B as a Minkowski 
summand.

Now we are ready to give a combinatorial formula for dim(CS,A)∙ We begin with a few 
lemmas.

Lemma 4.1. Let A C R2. Then V = {f1} ∩ £(A) is a subspace of £(A) with a basis
B = {f1ta │a ϵ (A- P1)Z}.

Proof. The fact that V ⊂ £(A) is a subspace is straightforward. Denote R = A — P1. To 
show that B is linearlv independent, suppose

Then f1(ΣaϵRz λata) = 0 in £(A). Since £(A) is a subset of K[t1±1, t2±1], it has no zero 
divisors. Thus, ∑λata = 0, which implies that λa = 0, and so B is linearly indepen­
dent.

To show B spans V, note that any g ∈ V can be written as g = hf1 ∈ £(A). We 
have P(g) ⊂ A and P(g) = P(h) + P1. Thus P(h) ⊂ A — P1 = R. In particular, every 
monomial in h has exponent lying in Rz, i.e. h = ∑aϵRz λata. This shows that g is 
a linear combination of elements in B. □

Lemma 4.2. Let f1 be absolutely irreducible and A a lattice polygon. If V(P1,A) < 
V(P1,P2) then

Proof. One inclusion {f1}∩ £(A) ⊂ {f1, f2}∩£(A) is obvious. For the other one, consider 
f ∈ {f1,f2} ∩ £(A). Clearly, f vanishes at points in S. Now, the system f1 = f = 0 
has at least ∣S∣ = V(P1,P2) > V (P1, A) solutions. On the other hand, f ∈ £(A) implies
P(f) ⊂ A, hence, by the Bernstein-Kushnirenko theorem, f and f1 must have a common



component. Since f1 is absolutely irreducible, f1 divides f. Therefore, f ∈ {f1} ∩£(A). 
This implies {f1,f2} ∩ £(A) ⊂ {f1} ∩ £(A), and the statement follows. □

Proposition 4.3. Let S be a toric complete intersection over K and suppose f1 is absolutely 
irreducible. Let A be a lattice polygon such that V(P1,A) < V(P1,P2). Then

dim(CS,A) = ∣A∣Z - │A - P1∣Z.

Proof. By (3.1) we have dim(CS,A) = ∣AZ∣ — dimKer(eυS). Since {f1,f2} is radical, it 
implies that Ker(evS) = {f1,f2} ∩ £(A). The latter equals {f1} ∩ £(A), by Lemma 4.2. 
The result now follows from Lemma 4.1. □

Remark 4.4. Note that A = P1 corresponds to A — P1 = (0,0), the origin. In this case, 
dim(CS,A) = ∣A∣Z — 1. If A does not contain any lattice translate of P1 then A — P1 is 
empty and dim(CS,A) = ∣A∣Z.

Now Proposition 4.3 and Theorem 3.3 provide the following geometric criterion.

Theorem 4.5. Let S be a toric complete intersection over K and suppose f1 is absolutely 
irreducible. Let A be a lattice polygon such that

i. v(p1,a)< V(p1,p2),
ii. 2A ⊂ (P1 + P2)°,

iii. ∣A∣Z -∣A-P1∣Z = V(P1,P2)∕2.

Then CS,A is a quasi-self-dual toric complete intersection code.

To make our result more explicit we analyze the geometric conditions of Theorem 4.5 
in some special cases. First we consider the so-called unmixed case, when P1 and P2 are 
integer dilates of the same lattice polygon Q. In other words, P1 = m1Q and P2 = m2Q, 
for some positive integers mi. Choose A = aQ for some positive integer a. Then the 
conditions in Theorem 4.5 become

a < m2, 2a < m1 + m2, and │aQ│Z — │(a — m1)Q│Z = m1m2 V (Q). (4.2)

We have the following result.

Proposition 4.6. Let P1 = m1Q, P2 = m2Q, and A = aQ for some lattice polygon Q 
and positive integers m1, m2, and a. Suppose (4.2) holds. Then only the following three 
cases are possible.

(1) Q is GL(2, Z)-equivalent to the standard 2-simplex, a = (m1 +m2 — 3)∕2, and a ∈ N;



Fig. 1. The sixteen GL(2, Z)-classes of Fano polygons.

Fig. 2. The set of coefficients of Ehrhart polynomials.
(2) Q is GL(2,Z)-equivalent to either the triangle with vertices {0, 2e1,e2} or the stan­

dard square, a = (m1 + m2 — 2)∕2, and a ∈ N;
(3) Q is GL(2,Z)-equivalent to one of the sixteen Fano polygons in Fig. 1, a = (m1 + 

m2 — 1)∕2, and a ∈ N.

Proof. According to Pick’s formula ∣αQ∣z = a2V(Q) + a/2∣∂Q∣z +1, where ∂Q denotes the 
boundary of Q. This is the Ehrhart polynomial of Q. Fig. 2 depicts the set of all (c1, C2)



(marked with dots) which are possible coefficients of Ehrhart polynomials, i.e. for which 
there exists a lattice polygon Q with c1 = 1/2∣∂Q∣z and C2 = V(Q), see [2].

These points (c1,c2) have integer or half-integer coordinates and consist of points 
lying either in the shaded region or on the line c2 = c1 — 1 with the exception of a single 
point (9/2, 9/2).

First, assume a > m1. Applying Pick’s formula to ∣aQ∣z and ∣(a — m1∣)Q∣z and sim­
plifying, we see that the equation in (4.2) is equivalent to

It follows from Fig. 2 that the only lines λc2 = c1 with λ ∈ N that intersect the set 
of possible coefficients are 3c2 = c1, 2c2 = c1, and c2 = c1, labeled by l1, l2, and l3, 
respectively.

In the first case, c1 = 3/2, c2= 1/2, which corresponds to Q being GL(2, Z)-equivalent
to the standard 2-simplex. In this case a = (m1 + m2 — 3)∕2 and it has to be a pos­
itive integer. In the second case, c1 = 2, c2 = 1, which corresponds to Q being 
GL(2, Z)-equivalent to either the triangle with vertices {0,2e1,e2} or the standard 
square. Here a = (m1 + m2 — 2)∕2, and we must have a ∈ N. Finally, c2 = c1 cor­
responds to lattice polygons with exactly one interior lattice point. These are Fano 
polygons and there are exactly sixteen classes of them up to GL(2,Z) equivalence. In 
this case a = (m1 + m2 — 1)∕2, and a must be in N.

Now assume a < m1. In this case dim(CS,A) = ∣AZ∣ by Remark 4.4, and the equation 
in (4.2) becomes ∣aQ∣z = m1m2V(Q). Again, by using Pick’s formula one can show that 
this is equivalent to the line (m1m2 — a2)c2 = ac1 + 1 having a non-trivial intersection 
with the set of lattice points in Fig. 2, which is impossible if 1 ≤ a < m1. This completes 
the proof of the theorem. □

Remark 4.7. We point out that the last three polygons in the bottom row in Fig. 1 are, 
in fact, particular cases of (2) when both m1 and m2 are even, and (3) when both m1 
and m2 are multiples of three.

Combining the results of Theorem 2.10, Theorem 4.5, and Proposition 4.6 we obtain 
the following.

Corollary 4.8. Let S be a toric complete intersection over K in Q-generic position and 
assume f1 is absolutely irreducible. Let P1 = m1Q, P2 = m2Q and A = aQ be as (1), 
(2) or (3) in Proposition 4.6. Then CS,A is quasi-self-dual with parameters

respectively.



We note that the polygons m1Q, m2Q, for 1 < m1 < m2, satisfy the geometric condi­
tions in [14, Theorems 4.1 and 4.3] which implies that systems f1 = f2 = 0 with Newton 
polygons m1Q, m,2Q and generic coefficients in K produce quasi-self-dual codes CS,A

Our next situation is more general. Here we only assume that P1 is a Minkowski 
summand of A, and A is a Minkowski summand of P2∙ In other words,

for some lattice polygons R1, R2 (we allow R1 to be a point or a lattice segment). 
Recall that lp(v) denotes the support function of P. Also, by Fan(P) we mean the set

of primitive lattice vectors (i.e. whose entries are coprime) that are the outer normals to 
the edges of P.

Theorem 4.9. Let A = P1 + R1 and P2 = A + R2 for some lattice polygons P1, R1, 
and R2. Then i-iii in Theorem 4.5 hold if and only if R1 ⊏ Ro2 and lr2(v) = lr1(v) + 1 
for all v ∈ Fan(P1).

Proof. The condition 2A C (P1+P2)° written in terms of the support functions translates 
to l2A(v) < lp1+P2(v) for all v ∈ R2∙ By properties of the support function this is 
equivalent to lr1(v) < lr2(v) for all u∈R2, which means R1 ⊏ Ro2.

Next we look at condition iii:

Applying Pick’s formula and linearity of the mixed volume, we can rewrite the left 
hand side as follows.

where we used an obvious relation ∣∂(P1+∙R1)∣z = ∣∂P1 ∣z+∣∂R1 ∣z. Now (4.3) is equivalent 
to

There is an “inductive” formula for computing the mixed volume [4, Chapter 4]. It can 
be adapted to the lattice situation. In dimension two it states the following. Let P 
be a lattice polygon and Lv be the lattice length of the edge of P corresponding to 
υ ∈ Fan(P). Then for any lattice polygon R

Note that when all lr(v) equal one, the above sum is just ∣∂P1∣z∙ Therefore, (4.4) is 
equivalent to



On the other hand, we have lr1(v) < lr2(v) for all v ∈ R2, by condition ii. In partic­
ular, lr1(v) + 1 ≤ lR2(f) for υ ϵ Fan(P1), as lRi(v) takes integer values for these v. 
Therefore (4.5) holds if and only if

Finally, the condition V(P1,A) < V(P1,P2) is the same as V(P1,R2) > 0, which is 
true since P1 is 2-dimensional and R2 is not just a point, otherwise R1 ⊏ Ro2 would be 
false. □

Remark 4.10. In fact, we can restate the condition in Theorem 4.9 as follows:

For this it is enough to only assume that P1 is a Minkowski summand of A. This justifies 
what we said previously that A has to be a bit smaller than the average of P1 and P2. 
However, this condition is not as convenient for constructing examples as the one in 
Theorem 4.9.

5. Algorithm and examples

In this section we present some examples of toric complete intersection codes il­
lustrating constructions from the previous sections. All our examples were produced 
using MAGMA algebra system [5]. Our method is a rather straightforward random 
search for toric complete intersections. The algorithm which we put below works well for 
small polygons P1. In all our examples we work over F16∙ More examples can be found 
in [6].

First we need a simple necessary condition for S to be a toric complete intersection.

Proposition 5.1. Let S be a toric complete intersection with Newton polygons P1, P2. 
Then the rank of the evaluation map evS satisfies

In particular, when P1 is a Minkowski summand of P2 we have

Proof. Let n = ∣S∣ = V(P1,P2) and consider the following sequence which is exact in 
the first two terms:



0 → Ker(evS) → £(Ρ2)→evS Κn

Clearly, {f1} ∩ £(P2) is a subspace of Ker(evS). On the other hand f2 lies in Ker(evS) 
and has no common factors with f1, so the inclusion is strict. Therefore, by Lemma 4.1, 
we have

and the first inequality follows.
Now if P2 = P1 + R for some lattice polygon R then applying Pick’s formula,

By the linearity of the mixed volume V(P1, P2) = V(P1, P1 + R) = 2V(P1) + V(P1, R), 
so we get

By Pick’s formula again, the expression in the parentheses on the right is ∣P1o ∣z. □

Below is the algorithm we use to produce examples of toric complete intersections S. 
The input is lattice polygons P1, P2, and Q if we wish S to be in Q-generic position. 
The output is S and the polynomials f1, f2·

Algorithm.

1. Choose a random absolutely irreducible Laurent polynomial f1 whose Newton poly­
tope is P1.

2. Find the K-rational points of f1 = 0.
3. Choose a subset S of n = V(P1, P2) of the points in Step 2 in Q-generic position.
4. Check whether the rank of the evaluation map evS : £(P2) → Kn satisfies the 

inequality in Proposition 5.1.
5. If yes, obtain f2 with Newton polytope P2 with coefficients from the matrix of the 

kernel of evS, stop. If no, go back to Step 3 (or Step 1).

A variation of this algorithm is to loop over all irreducible polynomials in Step 1 until 
a toric complete intersection is found. For q = 16 this is still feasible. This is why in 
most of our examples below f1 does not look “random”. In Step 3 we either run through 
all subsets of size n or sample 105 random subsets of size n, whichever is less, before we 
go back to Step 1.

Now we turn to examples. Our first two examples demonstrate the construction in 
Theorem 4.9, while the others come from polygons classified in Proposition 4.6. The



first example is written in full detail, the reader may easily reconstruct details in the 
subsequent examples in a similar manner.

Example 5.2. Our first example illustrates the construction of P1, P2 and A in Theo­
rem 4.9. We choose to be the vertical unit segment and R2 a parallelogram “around 
it”, as in Fig. 3. We put A = P1 + R1 and P2 = A + R2.

Geometrically, lR2(υ) = lR1(υ) + 1, for all υ ∈ Fan(P1), means the following. Draw 
lines parallel to the sides of P1 which are lattice distance one from R1. We obtain, 
strictly speaking, a rational polygon (presented by dotted lines in Fig. 3). Then the 
above condition means that R2 is inscribed in this rational polygon.

Let K = F16 with a primitive generator t. Consider the following system with Newton 
polygons P1, P2.

The solution set S consists of n = V(P1,P2) = 22 points in (F*16)2 and is a toric 
complete intersection.

By Proposition 4.3, dim(CS,A) = ∣A∣z — |R1∣z = 13 — 2 = 11 which, as predicted by The­
orem 4.9, is exactly half the length of the code. By Theorem 4.5, CS,A is an isodual code. 
According to MAGMA, its parameters are [22,11,10]. To find an equivalent self-dual 
code, first compute the vector y of local residues:



This determines the vector x such that xi2 = yi for 1 ≤ i < 22:

Finally, the code xCS,A is a self-dual code with parameters [22,11,10] over F16.
Next we look at some y-dual codes. Let P(1) denote the convex hull of the interior 

points of P = P1 + P2. Then we can decompose P(1) into Minkowski sum of two lattice 
polygons in several ways. They are depicted in Fig. 4. (Of course, there is also 2A = P(1), 
which we do not include in the figure.)

An easy application of Proposition 4.3 shows that the codes Cs,Ai and Cs,Bi have 
complementary dimensions. Therefore, by Theorem 3.3, they are y-dual codes. We list 
their parameters in a table below.

Polygons Parameters Properties of codes
A1 [22, 12, 9]
B1 [22, 10, 11] y-dual of Cs,A1A2 [22,9, 12]
b2 [22, 13, 8] y-dual of Cs,a2

A3 [22, 10, 11]
b3 [22,12, 9] y-dual of Cs,a3

A [22,11, 10] isodual code



Example 5.3. In our next example we consider rectangular boxes P1 = [0, 3] × [0,2] and 
P2 = [0, 7] × [0,4]. This is a particular case of Theorem 4.9. First we choose a system 
with these Newton polygons which defines a toric complete intersection S over F16 of 
size V(P1,P2) = 26:

Let P(1) be the convex hull of the interior lattice points of P, shifted to the origin, 
i.e. P(1) = [0,8] × [0,4]. Then, a shift of A = [0,4] × [0,2] defines an isodual code. We 
also try different subsets A and B such that A + B = P(1) Note that A + B = P(1) 
does not guarantee that CS,A and CS,B are y-dual since their dimensions might not be 
complementary. For example, if A = [0, 3] × [0,4] and B = [0,5] × {0} then A + B = p(1) 
However, dimCS,A = 20 — 3 = 17 and dimCS,B = 6, by Proposition 4.3. In the table 
below all the codes have best known parameters as confirmed in [13].

Polytopes Parameters Properties of codes(a) A = [0, 3] x [0, 3]
B = [0, 5] × [0, 1] [26, 14, 11][26, 12, 13] y-dual of CS,A(b) A = [0,4] x [0,2] [26, 13, 12] isodual code(c) A = [0, 2] x [0, 2]
B = [0, 6] × [0, 2] [26,9, 16][26,17,8] y-dual of CS,A(d) A = [0,3] × [0, 1]
B = [0, 2] × [0, 4] [26,8, 17][26, 18, 7] y-dual of CS,A

Next we construct dual and isodual toric complete intersection codes using polygons 
classified in Proposition 4.6.

Example 5.4. Let P1 = 2Q1 and P2 = 3Q1 where Q1 is the first Fano polygon as in Fig. 1 
and consider the following system with these Newton polygons.

Its solutions set 5 is a toric complete intersection of size n = 2V(Q1) ∙ 6 = 18. 
By Proposition 4.6, the code CS,A with A = 2Q1 is isodual. Now, notice that Q1 
and 3Q1 satisfy Q + 3Q ⊏ P°. In fact, the corresponding codes have complementary 
dimensions. Indeed, dim(CS,Q1) = ∣Q1∣z = 4, clearly. As for dim(CS,3Q1), Proposi­
tion 4.3 is not applicable since V(A,P2) < V(P1,P2) fails. But it’s clear here that



the kernel of the evaluation map eυS : £(3Q1) → F1816 has one more basis element, 
namely, P2 itself. Therefore, dim(CS,3Q1) = ∣3Q1│z ∣Q1∣z — 1 = 19 — 4 — 1 = 14. 
This justifies that Cs,q1 and Cs,3Q1 are y-dual. We record the corresponding parameters 
below.

Polygons Parameters Properties of codes(a) A = Q1
B = 3Q1 [18,4, 13][18, 14,4] y-dual of Cs,q1(b) A = 2Q1 [18,9,8] isodual code

Similarly, we obtain toric complete intersection for Q2, Q3, and Q4 (the polygons in 
the first row of Fig. 1). For P1 = 2Q2 and P2 = 3Q2 we take

f1 = x4 + x3y2 + x3y + x3 + x2y4 + t8x2y3 + t3x2y2 + x2y + x2 + xy2 

+ xy + x + 1 = 0,

f2 = t8x6 + t13x5y2 + t13x5y + x5 + x4y2 + t2x4y + t7.x4 + x3y6 + t13x3y3 + t14x3y2 

+ t13x3y + t2x3 + x2y2 + t2x2y + t7 x2 + t13ay2 + t13xy + x + t8 = 0.

The corresponding codes happen to have the same parameters for each i = 2,3,4 and 
are listed below.

Polygons Parameters Properties of codes(a) A = Qi
B = 3Qi

[24, 5,16][24,19,4] y-dual of Cs,Qi(b) A = 2Qi [24,12, 8] isodual code



Fig. 5. Here P1 is not a Minkowski summand of A.

Example 5.5. Our final example does not use the geometric construction of Theorem 4.9. 
The polygons are depicted in Fig. 5.

Clearly, P1 is not a Minkowski summand of A, but one can check that the equality 
of the support functions in Remark 4.10 still holds. The toric complete intersection S is 
defined over F16 by

The corresponding isodual code CS,A∖ has parameters [30,15,12].
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