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Theory of the observations made of high-order
rainbows from a single water droplet

James A. Lock

Over a dozen rainbows have been observed in a single water droplet. They appear as glare spots on the water
droplet which take on coloration at the appropriate rainbow angles. The appearance of rainbows as colored
glare spots in this situation is understood in terms of the caustics created in the vicinity of the droplet by the
refracting light rays. The angular positions of the glare spots are understood in terms of the Fourier
transform of the geometric scattering amplitude. The rainbow glare spots are also found to appear numeri-
cally in the Fourier transform of the Mie scattered fields. An additional glare spot produced by rays at
grazing incidence and not attributable to geometric optics also appears numerically in the Fourier trans-
formed Mie fields.

I. Introduction and Qualitative Treatment

Despite the occasional accounts of the observation
of the third-order rainbow,' it is commonly believed
that only the first- and second-order rainbows are
visible in the atmosphere.2 3 This belief is supported,
at least for spherical raindrops, by Mie scattering cal-
culations in which the first- and second-order rain-
bows along with their supernumeraries prominently
appear in the scattered intensity, but the third- and
fourth-order rainbows are buried in the forward hemi-
sphere diffracted and/or directly transmitted light.48

The situation is quite different for observations made
on a single water droplet where at least thirteen rain-
bows have been seen.9-11 The rainbows observed from
a single water droplet do not appear as arcs of color in
the sky but rather as glarelike spots of color on the
surface of the droplet itself. It is the purpose of this
paper to understand the formation of these rainbow
glare spots using Mie scattering theory and the results
of the complex angular momentum theory for high
frequency scattering.

In the Descartes ray tracing theory of the rainbow,
parallel rays of sunlight enter a water droplet and are
reflected within it a number of times before leaving the
droplet. The angular deviation of an incident ray
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caused by this refraction-multiple reflection-refrac-
tion process possesses a relative maximum or mini-
mum for one of the rays. This is known as the rainbow
ray, and its exit angle is the angle at which the rainbow
occurs in the Descartes theory. To one side of the
angle is a shadow region into which no rays emerge.
The superposition of the shadow regions associated
with the first- and second-order rainbows forms the
well-known Alexander's dark band. To the other side
of the rainbow angle is a lit region where the scattered
rays fold back over on themselves producing the super-
numerary interference pattern adjacent to the main
rainbow.

Tricker and Walker have observed and described
the appearance of a rainbow from single droplet of
water as the observer moves from the lit region on one
side of the rainbow angle to the shadow region on the
other side.12 They find that in the lit region far from
the rainbow angle there is a single white glare spot,
hereafter called Ra, seeming to originate on the rear
surface of the droplet. As the observer moves toward
the rainbow angle, Ra moves along the rear surface of
the droplet toward the edge. At some observer angle
another white glare spot, hereafter called Rb, appears
on the edge of the droplet. As the observer continues
toward the rainbow angle, Ra and Rb move toward each
other, Ra along the rear surface of the droplet and Rb
along the front surface. On moving through the rain-
bow angle, Ra and Rb merge and take on color, at first
blue, then green, yellow, orange, and finally red. As
the observer moves into the shadow region, the glare
spots disappear.

In addition, there are brighter glare spots on the
surface of the droplet due to rays directly reflecting
from the surface G and rays transmitted through the
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1-I Er(x,) = d#EMie(Oo + t) exp(-ikRxr/d), (1)
k

where EMie is the Mie scattered electric field, d is the
eye lens-retina separation, and

k = (27r)/X. (2)

This may be rewritten as the Fourier transform of the
Mie electric field incident on the eye lens convolved
with the Fourier transform of the lens's aperture func-
tion

Fig. 1. Observer's eye is a distance R from the water droplet of
radius a and is centered at the scattering angle 0o. The eye subtends
an angle O., and the coordinate on the retina a distance d behind the

eye lens is xr.

S(s) = fo if W:5 <./2,
10if I > O./2,

and takes the form

Er(p) = I daFs(a)FMie(P - a,00),

where

droplet and partially focused by it T. These brighter
glare spots often partially obscure the visibility of the
rainbow glare spots Ra and Rb. This partial obscuring
occurs for the third- and fourth-order rainbows and
has been credited as being one cause of their supposed
invisibility in the atmosphere.

These observations are qualitatively understood in
terms of the caustic surfaces formed in the neighbor-
hood of the droplet by the exiting light rays and in
terms of the focusing properties of the eye. Half of the
exiting rays in the lit region form a real caustic begin-
ning near the droplet surface and ending on the rain-
bow ray.13 The other half of the rays if traced back-
ward forms a virtual caustic beginning on the rear side
of the droplet and extending infinitely far back from it
with the extension of the rainbow ray as an asymptote.
Because the caustics are the envelopes of the virtual or
real intersection points of the light rays reaching the
observer in the lit region, points on the caustics act as
the virtual or real sources of the glare spots Ra and Rb.
As the observer moves through the lit region, the
source points move along the caustics. Since the caus-
tics begin on the droplet, the glare spots are usually
observed as being on or near the droplet as well. If the
observer is far enough into the lit region, rays from only
the virtual caustic reach him, and he sees only the Ra
glare spot. As he approaches the rainbow angle, both
caustics approach the same asymptote, and as a result
the sources of the two glare spots approach the same
line of sight.

To determine the role of the focusing properties of
the eye on the observation of high-order rainbows from
a droplet of water, consider the situation where the size
of the eye is small enough so that as the observer moves
from the lit region to the shadow region of a high-order
rainbow, the scattered light reaching him is approxi-
mately confined to a single plane. If the observer
stands at the scattering angle 00 a distance R from the
droplet of radius a, and the pupil of the eye subtends
an angle O as in Fig. 1, the electric field at a position xr
on the retina of a well-focused eye is

p = kRx,/d,

F.i(a) = d +) sinc0+ O ) p

Fmie(a,00) = | d4EMie(0 + ) exp(-iaet).

If the pupil subtends a large angle Ow as would be the
case when examining a single water droplet at a close
distance, F,(a) approaches a -function, and the ob-
served field becomes FMie(p,0o) only minimally blurred
by the wide pupil aperture. On the other hand, if the
observer is a great distance away from the water drop-
lets falling in a rain shower, Ow -> 0, the pupil diffrac-
tive effects spread and completely obscure the struc-
ture of FMie(p - a, 00), and the observed field becomes
proportional to EMie(O0O). Thus, when the observer is
far from the droplet, he sees the Mie scattered intensi-
ty. On the other hand, when he is close to the droplet,
he sees the square of the Fourier transform of the Mie
scattered electric field.

This may be applied to the situation when the ob-
server is standing in the supernumerary region of a
rainbow. As seen above, in this region there are two
effective light sources located on the real and virtual
caustics. Their interference pattern at the position of
the observer has a sinusoidal spatial periodicity. This
is the supernumerary interference pattern. Its spatial
variation is slow close to the rainbow and is rapid far
from the rainbow.5 14 The eye performs a Fourier
transform of the field incident on it and converts the
supernumerary interference pattern into its two com-
ponent spatial frequencies, widely separated far from
the rainbow and close together near the rainbow.
These two spatial frequencies are the glare spots, Ra
and Rb, the images of the effective sources on the
caustics. In this region the spatial distribution of the
observed glare spots is both the image of the effective
sources and the Fourier transform of the source's inter-
ference pattern at the eye lens.

The Fourier transforming property of the eye may
also provide a reason for the occasional reported obser-
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vation of the third-order rainbow in the atmosphere.
In the Mie scattered intensity, the third-order rainbow
signal is buried in the much stronger forward hemi-
sphere diffractive peak, which we can consider to be
noise. However, since the third-order rainbow signal
and the diffractive noise have different spatial period-
icities, they become separated in the Fourier domain.
This separation of the rainbow glare spots Ra and Rb
from the reflected and transmitted glare spots G and T
is the reason that higher-order rainbows are visible in a
single droplet of water and may contribute to their
possible visibility in a nearby rain shower.15

One can also relate these observations to the photo-
detector signals obtained in the operation of a polar
nephelometer.1 6 This device employs receiving optics
to focus the scattered light intensity obtained over a
certain angular interval onto a photocell. Parseval's
theorem for conservation of energy applied to the Fou-
rier transform pair f(x) and F(p)'7 gives

dp IF(p)12 - J dxlf(x)12

EdP =r E (8)

Because the photocell records only the signal integrat-
ed over its sensitive area and not the functional depen-
dence of the signal along the sensitive area, the photo-
cell signal is proportional to the Mie intensity
integrated over the angular extent of the receiving
optics independent of whether the detector is near or
far from the source of the scattered light.18

Fig. '2. Extra optical length of the transmitted ray ABCD with
respect to the central ray a'3'-y' is 2na COS02 2a cos0j, where a is the
droplet radius. This produces the phase retardation 2(n cos02-

cos01) with respect to the phase of the central ray.

in the absence of the sphere as is shown in Fig. 2. The
phase 'km(0) is given by21-23

-= -20 sin(0/2)
=213(mn cosO2 - cosO)

for m = 0,
for m 1,

where n is the index of refraction of the sphere,

= (27ra)/X,

(11)

(12)

and 01 and 02 are the angles of incidence and refraction
of the ray exiting in the 0 direction, which are related
by Snell's law:

n sin02 = sin0j. (13)

11. Glare Spots and the Complex Angular Momentum
Theory for High-Frequency Scattering

In the limit a/X >> 1, each partial wave of the Mie
infinite series expansion of the electric field scattered
from a sphere may itself be rewritten as an infinite
series of interactions of light rays with the surface of
the sphere. The double series may then be rearranged
as

EMie(O) = E E,(), (9)
m=O

where m + 1 is the number of times a light ray reflects
or refracts from the sphere surface. The m = 0 term
corresponds to direct reflection, m = 1 to transmission,
and m 2 2 to multiple reflections within the sphere
which produce rainbows. Each Em(O) term can be
converted from a sum over partial waves to an integral
over the impact parameter. Each resulting integrand
is dominated by a number of saddle points and poles in
the complex plane. The saddle point contributions to
the integrals correspond to geometric rays, and the
residue pole contributions correspond to diffractive
effects produced by surface waves.1920 The saddle
point contribution to Em(0) is of the form

E(g)(0) = Am(O) exp[i(m(0)], (10)

where Am(8) is the magnitude of the geometrical scat-
tering amplitude, and m(0) is its phase. This phase
represents the advance or retardation of the ray scat-
tered in the 0 direction with respect to the central ray

If a single water droplet is observed at a close dis-
tance, the contribution of the geometrical scattering
amplitude of order m to the field observed at the retina
is

E(m)( p dAm(00 + t)I r fo.~~s/2

X exp[io.(00 + t)] exp(-ipt). (14)

If the integrand is Taylor series expanded in the inter-
val 00-w 0/2 < 0< o + Ow/2, if Am(0) is slowly varying and
0,,, is small enough so that

F8 d3
0j m ( ) «1,

L8,I O I0o
(15)

then

E(m)(p) A(O ) exp[io(0 0)] I2 d[
O./2

X exp[im (00)t2/2] epli[O'M(00) PRIs (16)

or

IE(m)(p)12 = IAm(0)12 ;r sj bm(a) 2 +. (2[11OI
km(°O) [7r4m(0)]1/2 2 LrJ

<g X(00) P a0. i(°O) 1/2| 21Om - - "11/2 I
[7ro (00)]1 /2 2 L r J J

where

(17)
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1600 180°

forward scattering, the transmitted glare spot appears
at the center of the droplet. As the observer moves
toward the scattering angle at which the edge rays are
critically refracted within the droplet,

(25)

the location of the glare spot moves toward the other
edge of the droplet, p = P3. As can be seen in Fig. 3 for
the first rainbow, the glare spot R(') appears at the
center of the droplet in the backscattering geometry.
As O0 decreases, RI) moves toward the p = 3 edge of the
droplet. At the first rainbow critical angle,

00
Fig. 3. Spatial frequencies of the first-order rainbow glare spots
R(') and RW) as a function of the observation angle Oo. 0

c is the first
rainbow critical angle of Eq. (26), and OR is the first-order rainbow

angle of Eq. (28).

ct (40) = [d 0] I (18)

O(i) = 2r -4 sin4 ' 1 (26)

the other glare spot RW') appears at the p = fi edge. As
00 further decreases, the two glare spots approach each
other and merge at the spatial frequency

1 ( 4-n 2 )1/2# ' (27)

at the first-order rainbow angle,

and 6 (x) is the Fresnel integral

d(x) = f du exp(iiru 2/2). (19)
X

The contribution of the geometrical rays to the ob-
served field takes the form of a series of glare spots
centered on the retinal positions

Pm = k'm(0o) (20)

for m >Ž 0. The glare spots have the shapes of Fresnel
diffraction patterns, and their intensities are propor-
tional to Am(0o)12. By substituting Eq. (11) into Eq.
(20), the reflected glare spot has the spatial frequency

p =-A cos00 /2, (21)

and the transmitted and rainbow glare spots have the
spatial frequencies

Pm = 1 sinO1,

-) ir +2 sin(4 -n2)l/ 2 4 ( n2 )1/2 (28)

The behavior of the m 3 rainbow glare spots is
similar. Since in most conditions the total scattering
amplitude is dominated by the contribution provided
by the geometric ray amplitude, the observations made
on a single water droplet and the identification of the
glare spots seen on it provide an intuitive way to judge
which terms of Eq. (9) are most important in the ap-
proximation of the Mie scattered field at a given obser-
vation angle.

Ill. Glare Spots and Mie Scattering Theory

The Mie scattered fields and their Fourier trans-
forms were calculated for the parameters

a = 0.75 mm,

n = 1.343,

X = 0.42 ,um.

(22)

where 0 is related to the total deflection angle 0 by

0 = (m - 1)r + 20, - 2m sin-( ') * (23)
n 

For the transmitted ray, Eq. (23) is quadratic in sin0l
and may be solved to give

p1 = n13(sinOO/2)(n2 + 1 - 2n cosO,/2)"/2. (24)

For the various order rainbows, Eq. (23) must be solved
numerically. For the first-order rainbow and an index
of refraction of n = 1.343, the numerical solution to Eq.
(23) may be substituted into Eq. (22) to give the spatial
frequencies of the rainbow glare spots shown in Fig. 3.

These spatial frequencies behave in the expected
way. The reflected glare spot G appears at the edge of
the droplet, p = -f3, for the forward-scattering geome-
try. As the observer moves around the droplet toward
the backscattering geometry, the location of the glare
spot moves toward the center of the droplet, p = 0. At

(29)

(30)

The droplet radius is the same as that employed in the
experimental observations of Walker.9 At the red end
of the visible spectrum, the third- and fourth-order
rainbows nearly overlap. At the blue end, they are
separated by about 100. Since the purpose of this
calculation was to extract the third-order rainbow
from the directly transmitted light intensity and the
light reflected from the surface, the wavelength at the
blue end of the visible spectrum given in Eq. (31) was
employed. The angular interval

0. = 4.60 (32)

was chosen to ensure that Eq. (15) was satisfied and to
ensure that the diffractive effects of F 8(a) in Eq. (4)
were minimal.

The Mie intensity24 in the vicinity of the third-order
rainbow for initially unpolarized light is given in Fig. 4.
The Fourier transform spectra24 of IEr(p)12 for a num-
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Fig. 4. Logarithm of the Mie intensity as a function of scattering
angle in the vicinity of the third-order rainbow. A and OR corre-
spond to the Airy rainbow angle and the geometric rainbow angle,

respectively.
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Fig. 7. Magnitude squared of the Fourier transform of the Mie
electric field at the Airy rainbow angle 0o = 37.66°. According to the
geometrical model, G, R(3) and RV are predicted to be at -185.35,

-188.29, and -192.32 deg-', respectively.
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-210 -190 -170
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Fig. 5. Magnitude squared of the Fourier transform of the Mie
electric field as a function of spatial frequency for the observation
angle 0o = 22.40. The edge of the drop E is at-195.83 deg-1. G and
R(3) are predicted to be at -192.10 and -170.66 deg-', respectively.

r , i G 8O = 29.3° 

r 1, 
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Fig. 6. Magnitude squared of the Fourier transform of the Mie
electric field for 00 = 29.3 °. G, RMJ3 ), and RV are predicted to be at

-189.46, -177.24, and -195.66 deg-', respectively.

p (degrees- 1 )

Fig. 8. Magnitude squared of the Fourier transform of the Mie
electric field at 0 = 38.50. The lower limit of the angular interval of
Eq. (1) begins to approach the Airy angle, and as a result the R(3) and

RP) peaks begin to merge.

la
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L i G 89o = 39 .6 °
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E
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Fig. 9. Magnitude squared of the Fourier transform of the Mie
electric field at 0 = 39.60. The lower limit of the angular interval of
Eq. (1) is nearly at the Airy angle, and as a result the merging of R(3)

and R(3) peaks is complete.
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Fig. 10. Magnitude squared of the Fourier transform of the Mie
electric field at 0o = 40.20. The lower limit of the angular interval of
Eq. (1) is between the Airy angle and geometrical rainbow angle. As

a result, the rainbow peak loses strength.
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Fig. 11. Magnitude squared of the Fourier transform of the Mie
electric field at O0 = 40.8°. G is predicted to be at -183.55 deg-'.

ber of angles 00 in the vicinity of the third-order rain-
bow are given in Figs. 5-11. In each of these figures
the edge of the sphere E corresponds to the spatial
frequency p -195.83 deg-1 . The third rain-
bow critical angle is 0(3) = 25.00°. Thus for 00 = 22.4°,
Fig. 5 shows only the reflected glare spot G and the
single third rainbow glare spotRa3), while at 60 = 29.30,
Fig. 6 shows G and both R andRV3. The geometrical
third-order rainbow angle is R1 = 38.110, and the
distorted wavefront Airy theory predicts that it is
shifted down to A(3 = 37.66°. Figures 7-10 show the
Fourier transform spectra for the sequence of angles
37.66, 38.5, 39.6, and 40.20. Even though Fig. 7 is
centered at the Airy angle, the R(3) and RV3> peaks have
not merged since the Mie fields that contribute to this
spectrum extend over the interval 35.360 • 0 < 39.960,
and half of this angular interval is in advance of the
predicted merging. Figures 8-10 on the other hand
extend over the intervals 36.20 • 0 • 40.80, 37.30 < 0 •
41.90, and 37.9° • 0 S 42.50, respectively. In Figs. 8
and 9, since the lower end of the angular interval
approaches the Airy angle, the R(3) and RV peaks

p (degrees-')

Fig. 12. Magnitude squared of the Fourier transform of the Mie
electric field at O0 = 80.30. G, T, R(2), R(3), R(4 ) are the reflected,a a a
transmitted, and second, third, and fourth rainbow glare spots,
respectively. Jis the glare spot not attributable to geometric optics.

completely merge. Since the lower end of the angular
interval of Fig. 10 is between the Airy angle and the
geometric rainbow angle, the combined R(3) + RV peak
loses strength. Well past the rainbow angle in the
shadow region, Fig. 11 for 0 = 40.80 shows only the
reflected glare peak. Similar behaviors were found in
the vicinities of the first-order and second-order rain-
bows as well.

There is a curious feature of the Mie Fourier spectra
that appears only near the critical angle for the m = 1
transmitted ray or near the critical angles for the m > 2
rainbow rays. According to Eq. (25) for n = 1.343, the
critical angle for transmission occurs at 0(T) = 83.750.
The Fourier spectrum for 00 = 80.30, just to the lit side
of the critically refracted ray, is given in Fig. 12. In
this figure, the glare spots G, T, R(2), R , and R(4)
appear at the locations predicted by the geometrical
amplitude. The geometrical rays producing these
glare spots at 00 = 80.3° are indicated in Figs. 13 and 14.
In addition, a weak glare spot J that is unexplained in
terms of geometric optics occurs at the p =-fl edge of
the droplet in Fig. 12. It is found to occur only for
angles 0 near the critical angle. On deleting various
partial waves from the Mie series, it was found that this
nongeometrical peak, as well as the T glare spot which
it appears in conjunction with, is produced by the
partial waves corresponding to the rays which graze
the edge of the sphere. Similar nongeometrical peaks
were numerically found near the first-, second-, and
third-order rainbow critical angles as well. In every
case they occur on the side of the droplet opposite to
the corresponding critically refracted geometrical ray.
If the nongeometrical peak were the Fourier transform
of an appropriate scattering amplitude, the phase of
that amplitude would have been

¢knongeometric (0) =-23(mn cosO2 -cosO 1), (33)

representing a phase advance rather than the usual
phase delay associated with the m 2 1 refracting rays.
The path of such a phase advanced ray is shown in Fig.
15. However, the physical mechanism responsible for
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Fig.13. Geometric rays which produce G, TandR(2 at 0o = 80.30 in
Fig. 12.

/

p

Fig. 14. Geometric rays which produce R(3) and R(4) at Oo = 80.30 in
Fig. 12.

Fig. 15. Possible nongeometric critically refracted ray which pro-
duces the glare spot J in Fig. 12.

the J peak of Fig. 12 is presently unclear since the
nongeometric contribution to the scattering amplitude
in the complex angular momentum analysis, the first
and fourth quadrant residue poles, correspond to sur-
face waves circulating around the droplet in the same
sense as the grazing incident ray.2 5

IV. Conclusions

The Mie infinite series of partial waves is the exact
solution to the problem of the scattering of plane elec-
tromagnetic waves from a sphere. Being the exact
solution, all the scattering effects that can possibly
occur are hidden somewhere or another in the Mie
amplitude. The big problem has always been that it is
hard to extract information out of it since the Mie
series is not expressed in a simple or transparent form.
It is pleasing to see in this case that the experimental
observations on a single water droplet can be under-
stood by Fourier transforming the Mie fields. This
reflects the fact that if many signals, each with its own
periodicity, are superposed in the spatial domain, they
become separated in the Fourier domain. The com-
plex angular momentum theory used in conjunction
with the Mie results helps to determine the extent to
which the behavior of the glare spots is determined by
geometrical considerations and the extent to which
other considerations may contribute.
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This work was done by Alan D. Clarke of United Technologies
Corp. for Ames Research Center. Inquiries concerning rights for the
commercial use of this invention should be addressed to the Patent
Counsel, Ames Research Center. Refer to ARC-11585.

Portable slot-sizing tool
A portable milling tool consisting of an air-motor-driven cutter

held in an adjustable moving slide made possible the local removal of
chromium plating in a close-tolerance onsite remachining and sizing
of half-hole slots on longeron bridges (see Fig. 13). Sending the
bridges back to the manufacturer for rework would have been con-
siderably more expensive, in addition to introducing project delays.
An adaptation of the portable sizing tool could be useful for the field
modification of such large equipment as trucks, aircraft, and ships,
which are not easily returnable to factories. The tool is made from

commercially available parts, including an air motor capable of
variable speeds up to 900 rpm, a ball end mill, a revolving handle, two
miter gears, and a ball slide. The tool is clamped to the longeron-
bridge rail, and the cutter is lined up with a given slot, approximately
at the midpoint of the hole length. After the cutter is lowered to the
proper depth, the motor is turned on and the crank handle used to
move the cutter along the groove to remove the chromium, thereby
restoring the slot to its specified dimensions.

This work was done by Nelson T. Zuver of Rockwell International
Corp. for Johnson Space Center. Refer to MSC-21088.

Grips for lightweight tensile specimens
A set of grips has been developed for the tensile testing of light-

weight composite materials (Fig. 14). Resin-based fiber-reinforced
composite materials are more susceptible than metal specimens of
comparable cross section to bending and twisting during installation
and to slippage and deformation in the grip region. Even a small
degree of misalignment in the specimen during tensile testing can
affect the measured mechanical properties. The new grips mini-
mize specimen misalignment and reduce scatter in the data. The
gripping force is applied by driving hardened wedges against the end
tabs of the specimen. This double wedging action, actually a wedge
driven against another wedge, allows a greater force to be applied
over a larger area, thereby minimizing slippage and deformation in
the grip region. Alignment is maintained by assembling the grips
inside a backplate on a horizontal surface. This backplate keeps the
specimen from twisting and bending during installation. It is re-
moved only after the assembly has been put firmly in place on the
testing machine.

More than 75 specimens of 5 different lightweight materials, typi-
cally demonstrating fractures occurring evenly along the specimen

Fig. 13. This portable slot-sizing tool is shown being used to rema-
chine and size half-hole slots on a longeron bridge.

Fig. 14. Specimen is held by grips made of hardened wedges. The
assembly is screwed into a load cell in a tensile-testing machine.

continued on page 5325
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