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Tumour suppressor function of RNase L in a mouse model 

Wendy Liu , Shu-Ling Liang , Hongli Liu , Robert Silverman , Aimin Zhou 

Introduction 

Interferons (IFNs) are a family of cytokines participating in in 
nate immunity against a wide range of viruses and other 
microbial pathogens.1 IFNs also have anti tumour activities 
due to their anti proliferative, immunoregulatory and apopto 
tic properties.2 The effects of IFNs are largely mediated 
through proteins encoded by IFN stimulated genes (ISGs). 
One well studied ISG is RNase L, which is one of the key en 
zymes in the IFN induced 2 SA system. 3 The 2 SA system con 
sists of two types of enzymes: 2 SA synthetases and RNase L.4 

IFNs induce a family of 2 SA synthetase genes. The 2 SA syn 
thetases require double stranded RNA (dsRNA) for their activ 
ities. After activation by dsRNA which is frequently produced 
during viral infection, 2 SA synthetases convert ATP molecules 
to pyrophosphate (ppi) and a series of unique, 5' phosphory 
lated, 2' 5' linked oligoadenylates known as 2 SA with the gen 
era! formula ppp(A2'p5')nA (n ;;;, 2). 2 SA binds RNase L with 
high affinity, converting it from its inactive, monomeric state 
to a potent dimeric endoribonuclease, resulting in degradation 
of single stranded viral and cellular RNAs. The 2 SA system 
mediates host defence against certain types of viruses. The 



overexpression of RNase L in NIH 3T3 cells markedly enhances

the antiviral function of IFN, whereas the dominant negative

RNase L suppresses the antiviral activity of IFN in SVT2 cells.5,6

Mice containing homozygous disruption of the RNase L gene

succumbs to encephalomyocarditis (EMCV) infection more

rapidly than infected wild type mice.7 A broad range of viruses

including HIV 1, vaccinia virus, human parainfluenza virus 3,

vesicular stomatitis virus, and EMCV have shown to be inhib

ited in RNase L overexpressing cell lines.8

RNase L has been linked to apoptosis in response to viral

and non viral agents. RNase L null mice show enlarged thy

mus glands at early ages, suggesting that RNase L may be in

volved in T cell development. In situ assays for DNA

fragmentation on tissue sections from both the thymus and

spleen reveal a reduction in apoptosis in the untreated RNase

L / mice compared to the cognate wild type mice.7 The direct

activation of RNase L by introducing 2 5A into intact cells

leads to apoptosis, whereas a dominant negative RNase L de

creases the numbers of apoptotic cells generated by poliovi

rus infection, IFN and poly (I):poly (C) as well as

staurosporine treatments.9–11 A recent study revealed that

RNase L mediates virus induced apoptosis through activating

c Jun NH2 terminal kinase (JNK).12

The evidence has shown that RNase L plays a role in cancer

biology. The ARG462GLN variant of RNase L, which has an

attenuated enzymatic activity, is implicated in up to 13% of

prostate cancer cases. Individuals heterozygous for these

mutations exhibit a 150% increased risk of prostate cancer,

and homozygotes have greater than double of the risk, under

scoring the importance of inactivating RNase L in the etiology

of prostate cancer.13–16 The inhibitory effect of RNase L on tu

mour formation is believed to be due in part to its anti prolif

erative and pro apoptotic roles. However, no spontaneous

tumour formation has been observed in one year old RNase

L / mice. The effect of RNase L on tumourigenesis induced

by carcinogens is under investigation in our laboratory. Previ

ously we have reported that the overexpression of RNase L in

murine NIH 3T3 cells increased IFN anti proliferative func

tion.5 In this study, we have found that bone marrow cells defi

cient in RNase L grew significantly faster compared to wild

type cells in response to granulate macrophage colony stimu

lating factor (GM CSF), suggesting that RNase L regulates cell

proliferation stimulated by other growth factors. To determine

the direct impact of RNase L on tumour growth in the absence

of IFN induced proteins, we have stably expressed RNase L in

P 57 cells, an aggressive mouse fibrosarcoma cell line. To as

sess the effect of RNase L expression on the ability of p 57 cells

to form tumours, these cells were implanted in athymic mice.

Results showed that tumour formation was significantly de

layed and the tumours grew much slower in the group with

RNase L (P RL) compared to the control group (P Vec). Our find

ings suggest that RNase L plays a critical role in the inhibition

of fibrosarcoma growth in nude mice.

Materials and methods

Cell culture

RNase L+/+ and / mouse embryonic fibroblasts (MEF), P 57

cells (a gift from Dr. Chaoqun Wu, Fudan University), were

grown in DMEM (The Media Lab of the Central Cell Service,

Cleveland Clinic Foundation) supplemented with 10% foetal

bovine serum (Biosource) and antibiotics in a humidified

atmosphere of 5% CO2 at 37 �C. Mouse bone marrow cells iso

lated from RNase L+/+ and / mice were grown in RPMI 1640

supplemented with 10% foetal bovine serum and 10 ng/ml

murine GM CSF.

Overexpression of human RNase L in P-57 Cells

Murine fibrosarcoma cells (P 57) were transfected using Lipo

factamine reagent (Invitrogen), with a mammalian expres

sion vector, pcDNAneo (Invitrogen), inserted with or without

human RNase L cDNA. The cells were selected in the medium

containing G418 at 300 lg/ml. Twenty drug resistant clones

transfected with the human RNase L cDNA were isolated

and analysed for RNase L expression by Western blot analysis.

The clonal cell lines containing the vector with RNase L insert

or an empty vector are referred to as P RL and P Vec,

respectively.

Western blot analysis

Cells were harvested by washing twice with ice cold phos

phate buffered saline (PBS) and collected with a scraper. Cyto

plasmic extracts were prepared by the suspension of cell

pellets in NP 40 lysis buffer (10 mM Tris HCl, pH 8.0, 5 mM

Mg(OAc)2, 90 mM KCl, 0.2 mM PMSF, 100 U/ml aprotinin,

10 lg/ml leupeptin and 2% NP 40). After centrifugation at

10,000g in a microcentrifuge at 4 �C for 10 min, cell extracts

(100 lg per sample) were fractionated on SDS 10% polyacryl

amide gels and transferred to PVDF membranes (Millipore).

The membranes were blocked with 5% non fat milk in PBS

containing 0.02% sodium azide and 0.2% (v/v) Tween 20, and

incubated with a monoclonal antibody against human RNase

L for 1 h at room temperature. The membranes were then

washed with PBS containing 0.2% (v/v) Tween 20 and incu

bated with goat antimouse antibody conjugated with horse

radish peroxidase (Cell Signaling) for 1 h at room

temperature. After washing, RNase L was detected by a

chemiluminescence method according to the manufacturer’s

specification (Amersham).

Assay for cell proliferation

RNase L+/+ and / MEFs, P Vec and P RL cells (3 · 104) were

seeded in 6 well plates, and after 1 d, they were treated with

or without 1000 U/ml of murine IFN a (Biosource). Fresh IFN

was added again every other day. Viable cells were counted

by trypan blue dye exclusion assays daily. The proliferation

of RNase L+/+ and / bone marrow cells was determined

using the colorimetric CellTiter 96 aqueous Cell Proliferation

Assay according to the instruction provided by the manufac

turer (Promega). Briefly, cells (1 · 104 cells per well) were

grown in 96 wells plates in the presence of 10 ng murine

GM CSF. At various times of cell growth, 50 ll CellTiter 96

Aqueous reagent (40% v/v dilution in 1 · PBS) was added to

each well. Plates were incubated at 37 �C for 2 h, and absor

bance was measured at 490 nm with a 96 well plate reader

(Spectra Max 340; Molecular Devices).
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rule out clonal variation as the cause of the anti tumour ef

fect, we separately implanted groups of four mice with two

other clones of P RL cells. The tumour results obtained from

the different clones of P RL cells (data not shown) were simi

lar to that from the first clone used for the experiment, thus

eliminating clonal differences as the basis for the anti tu

mour activity of RNase L.

Microscopically, the P Vec tumours demonstrated a uni

form herringbone growth pattern consisting of spindle

shaped cells that varied little in size and shape and had

scant cytoplasm with indistinct cell borders (Fig. 5a). Inter

estingly, dramatic differences in morphology were observed

in P RL tumours (Fig. 5b), which had a less distinct fascicular

or herringbone pattern. The tumour cells were epithelioid

with large round and polygonal cells, open chromatin, and

prominent central nucleoi. They also showed prominent

pleomorphism with variable cell shape and nuclear size. This

morphologic difference resembled that of the cultured cells

(Fig. 3a).

P-RL tumour growth is due to suppression of RNase L
expression

It was possible that P RL tumours started to grow eventually

in the nude mice were due to the suppression of RNase L

expression by an unknown mechanism. To determine RNase

L level in the tumour cells, RNase L in P RL tumours was mea

sured by Western blot analysis in tumour extracts using a

monoclonal antibody to human RNase L. As shown, the

expression of RNase L was completely shut down in the P

RL tumours, suggesting that RNase L plays an important role

in the inhibition of tumour growth (Fig. 6).

Discussion

RNase L has been suggested to function as a tumour suppres

sor based on its roles in mediating apoptosis and anti prolif

erative activity of IFN.18 Our findings provide the first direct

evidence that RNase L is able to inhibit tumour growth

Fig. 3 – Morphology of P-RL and P-Vec cells. Photographs of the unstained cells at different growth stage (a) and colonies

formed in soft agar were taken (b) under Olympus CK·31 at 100· magnification. LD: low density; HD: high density.

206



207



produces an enhanced anti proliferative effect on MEFs,

RNase L is able to inhibit cell proliferation independent of

IFN (Fig. 1a). In addition, RNase L also regulates the growth

of bone marrow cells in the presence of GM CSF, suggesting

a broader role of RNase L in mediating cell proliferation

(Fig. 1b). Surprisingly, we found that the overexpression of

RNase L suppressed the tumour cell growth although there

was no significant difference between P RL and P Vec cells

in response to IFN (Fig. 2b). The expression of RNase L is cell

specific. The expression level of RNase L in certain cell types

such as B cells, lymphoblasts, myelobasts and monocytes is

about 20 30 fold higher than that in fibroblasts (our unpub

lished data). How these cells survive with the extremely high

level of RNase L remains to be investigated.

RNase L is believed to display its biological function

through regulating mRNA stability after IFN treatment. Ribo

somal and viral RNAs have been the first reported targets of

RNase L. Documented evidence has shown that RNase L plays

an important role in the stability of several gene products,

including IFN induced genes, such as ISG43, ISG1519 and

PKR20 in RNase L null cells; MyoD mRNA in myocytes21 and

mitochondrial mRNAs in H9 lymphocytes.22 However, in the

absence of viral infection, the sources of dsRNA and 2 5A to

activate 2 5A synthetase, and RNase L remain obscure. It is

possible that RNase L can indirectly regulate gene expression

through interacting with other proteins because RNase L con

tains structurally nine ankyrin repeats, a typical protein pro

tein interaction domain. Recently, Peltz’s group has

demonstrated that RNase L is indeed able to regulate gene

expression by interacting with another protein.23 They dis

covered that RNase L can interact with human translation ter

mination factor eRF3/GSPT1 to modulate the translation

termination process, resulting in regulating gene expression.

Their results outline a novel role for RNase L as a regulator of

translation.

The effect of RNase L on cell growth was not obvious when

cells were grown at a low density (Fig. 3a). However, when

cells grew at a high density, the morphological difference be

tween these two cell lines was dramatic. P Vec cells grew

more aggressively. Even though the cells have grown to con

fluence, P Vec cells continued to grow, and piled up to form

individual clones if fresh medium was provided. P RL cells

ceased growing after cells became confluent. These cells were

large and had a polygonal shape, probably due in part to the

altered cell morphology. Furthermore, anchorage indepen

dent growth in soft agar (Fig. 3b) is consistent with the obser

vation in tumour formation in nude mice (Fig. 4a). These

findings indicate a role of RNase L in suppressing tumour

growth. Surprisingly, no spontaneous tumour formation has

been observed in one year old RNase L / mice. Currently,

the effect of RNase on tumourigenesis induced by carcino

gens is under investigation in our laboratory. We are also

cross breeding RNase L / with P53 / mice to determine

whether P53 / mice deficient RNase L results in an increase

of spontaneous tumour formation.

The P Vec tumours showed typical fibrosarcoma histology

with fascicular, herringbone growth pattern and slender spin

dled cells. However, with the overexpression of RNase L, the

tumour cells demonstrated polymorphism with more epith

eloid cells. Since RNase L is involved in the regulating the acti

vation of the JNK pathway, which roles in the control of cell

motility and morphogenesis have been well established,24

overexpression of RNase L may affect JNK regulated cytoskel

etal molecules, and therefore cause the morphological alter

ation. Interestingly, increased single cell necrosis was

observed in P RL tumours. Whether the increased cell death

is due to the overexpression of RNase L promoting apoptosis

needs to be further investigated.9–11
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