Cleveland State University EngagedScholarship@CSU

Chemistry Faculty Publications

Chemistry Department

1-31-2003

Synthesis and Potential Antimetastatic Activity of Monovalent and Divalent β-D-Galactopyranosyl-(1→4)-2-Acetamido-2-Deoxy-D-Glucopyranosides

Qin Li

Peking University

Bin Su

Cleveland State University, B.SU@csuohio.edu

Hui Li

Peking University

Xiang Bao Meng

Peking University

Meng Shen Cai

Peking University

For the within a the first of the control of the co

Part of the Chemistry Commons

How does access to this work benefit you? Let us know!

Recommended Citation

Li, Qin; Su, Bin; Li, Hui; Meng, Xiang Bao; Cai, Meng Shen; Li, Zhong Jun; Zhou, Rou Li; and Suo, Ta Lin, "Synthesis and Potential Antimetastatic Activity of Monovalent and Divalent β-D-Galactopyranosyl-(1->4)-2-Acetamido-2-Deoxy-D-Glucopyranosides" (2003). Chemistry Faculty Publications. 419.

https://engagedscholarship.csuohio.edu/scichem_facpub/419

This Article is brought to you for free and open access by the Chemistry Department at EngagedScholarship@CSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Authors Qin Li, Bin Su, Hui Li, Xiang Bao Meng, Meng Shen Cai, Zhong Jun Li, Rou Li Zhou, and Ta Lin Suo	

Synthesis and potential antimetastatic activity of monovalent and divalent β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy-D-glucopyranosides

Qing Li, Bin Su, Hui Li, Xiang-Bao Meng, Meng-Shen Cai, Zhong-Jun Li, Rou-Li Zhou, Ta-Lin Suo

Introduction

The repeating unit carbohydrate moiety of laminin, N-acetyllactosamine, might play a role in the prevention of tumor metastasis. A precursor of N-acetyllactosamine, 2,3,4,6-tetra-O-acetyl- β -D-galacto-pyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy-D-glucopyranosyl nitrate was first prepared and purified, and then used as the starting material in a synthesis of N-acetyllactosamine and its derivatives.

Results and discussion

2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy-D-glucopyranosyl nitrate (1)⁶ was treated with NaNO₂ and H₂O in 1,4-dioxane for 10 h at 80 °C to give hemiacetal 2,⁷ which then reacted with CCl₃CN and 1,8-diazabicyclo[5,4,0]undec7-ene (DBU) in dry CH₂Cl₂ for 3 h at 0 °C to give the imidate 3. Imidate 3 reacted with the spacer-arm aglycons in CH₂Cl₂ at room temperature with Me₃SiOTf as

promoter to afford the β -glycosides (5 or 6) in yields of 65–70%. Treating 1 with LiBr² afforded bromide 4, which then reacted in the presence of tetrabutyl ammonium bromide (Bu₄NBr)^{8–10} with the spacer-arm aglycons to give the α -glycosides (7 or 8) in yields of 38–42% (Scheme 1).

When imidate 3 reacted with 5 or 6 in the presence of Me₃SiOTf, the asymmetric divalent glycosides (9 and 10) were mainly obtained. On the other hand, BF₃·OEt₂, a weaker promoter than Me₃SiOTf, when used in the reaction of 3 and 5 or 6 gave the symmetric divalent glycosides (11 and 12) of β -configuration selectively. The α -symmetric divalent glycosides (13 and 14) were obtained selectively when 7 or 8 reacted with 3 in the presence of Me₃SiOTf, but asymmetric divalent glycosides 9 or 10 were obtained when BF₃·OEt₂ was used in these reactions (Scheme 2).

Treating the azides 5-14 with thioacetic acid^{11,12} for 30 h at room temperature gave the corresponding acetamides 15-24 in yields of 48-80%, and these were deprotected to give the target compounds 25-34 in yields of 93-98% (Scheme 3).

The potential antimetastatic activity of compounds 25–34 was determined by measurements of inhibitory effects on cancer-cell attachment, spreading, and migra-

Scheme 2.

tion to the LN-1 coated substrate, as well as invasion through Matrigel. The results are shown in Tables 1 and 2.

The inhibitory effects on cancer-cell attachment and spreading were determined by the conventional acidic phosphaotase method.¹³

The data from Table 1 indicate that the tested compounds had some inhibitory effect at 7 mM for the monovalent glycosides and 3.5 mM for the divalent glycosides, and compounds 26, 33, 34 had significant inhibitory effects on cancer-cell attachment and spreading.

The results from Table 2 indicate that compound 26 is capable of inhibiting human hepatocellular carcinoma cell migration and invasion.

Cancer-cell attachment, spreading, migration, and invasion constitute metastasis-associated cell behavior. Certain synthetic lactosamine derivatives here showed some potential for inhibiting cancer-cell metastasis-associated behavior. It is therefore proposed that these *N*-acetyllactosamine derivatives, in an appropriate structure, might be developed as an anti-metastatic therapeutics.

Experimental

General methods

Optical rotations were recorded using an Optical Activity AA-10R type polarimeter. NMR spectra were

recorded with Bruker ARX-400, Varian VRX300, or Varian VRX500 spectrometers, with CDCl₃, CD₃OD, and D₂O as solvents. Elemental analyses were performed with a Perkin–Elmer 240C instrument. Mass spectra were recorded with an IBI-MDS Sciexciex Qstar type of mass spectrometer. Purity of the products was verified by TLC on Silica Gel GF₂₅₄. Column chromatography was performed on Silica Gel H₆₀.

3.2. 2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranosyl-(1 → 4)-3,6-di-*O*-acetyl-2-azido-2-deoxy-D-glucopyranosyl trichloroacetimidate (3)

Compound 1 (3 g) was dissolved in 1,4-dioxane (50 mL), and then water (15 mL) and NaNO₂ (4 g) were added. The mixture was heated at 80 °C for 10 h with stirring, and then concentrated, and 50 mL of CHCl₃

Table 1 Cancer-cell attachment and spreading on LN-1 substrate

Entry	Cancer-cell attachment rate (%) ^a
Laminin + BSA(control)	100
Laminin + BSA + LacNAc	82.6
Laminin + BSA + compound 25	70.3
Laminin + BSA + compound 26	57.6 ^b
Laminin + BSA + compound 27	96.8
Laminin + BSA + compound 28	89.4
Laminin + BSA + compound 29	76.5
Laminin + BSA + compound 30	81.0
Laminin + BSA + compound 31	101
Laminin + BSA + compound 32	99.0
Laminin + BSA + compound 33	53.5 b
Laminin + BSA + compound 34	55.7 b

^a At concentration 2 (7 mM for monovalent glycosides and 3.5 mM for divalent glucosides).

Table 2 Migration of BEL-7402 human hepatocellular carcinoma cells and invasion analysis ^a

	Number of migrating cells	Number of invading cells
In the absence of compound 26	35 ± 2.33	26.67 ± 4.19
In the presence of compound 26	13.6 ± 1.46 ^b	9.8 ± 1.86 ^b

^a Experimental method see Ref. 14.

was added. The organic layer was washed with water, dried, and concentrated. The crude product was purified by chromatography (1:1 petroleum ether (60–90 °C)–EtOAc) to give **2** (2.4 g) as colorless syrup in 85% yield. Compound **2** (1 g) was dissolved in anhydrous CH₂Cl₂ (12 mL), and then CCl₃CN (1 mL) and DBU (0.2 mL) were added. The solution was stirred for 3 h at 0 °C, concentrated, and the crude product purified by chromatography [1:1 petroleum ether (60–90 °C)–EtOAc] to afford **3** (1 g) as a yellow syrup in yield of 81%.

5-Hydroxy-3-oxapentyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- β -D-glucopyranoside (5)

To a solution of 3 (0.5 g, 0.65 mmol) and diethylene glycol (0.5 mL) in dry CH_2Cl_2 (10 mL), Me_3SiOTf was added and the mixture was stirred at room temperature for 16 h. The mixture was then diluted with CH_2Cl_2 (20 mL) and washed with water, dried (Na_2SO_4) and evap-

orated under diminished pressure. The resulting oily brown residue was purified by flash chromatography with 2:5 petroleum ether (60-90 °C)-EtOAc as eluent to afford 0.32 g of 5 as a colorless syrup, yield 70%; $[\alpha]_{D}^{25} + 32.0^{\circ} (c \ 0.5, \text{CHCl}_{3}); ^{1}\text{H NMR (CDCl}_{3}): \delta 5.35$ (dd, 1 H, H-4'), 5.09 (dd, 1 H, H-2'), 4.99 (dd, 1 H, H-3), 4.94 (dd, 1 H, H-3'), 4.46 (d, 1 H, $J_{1,2}$ 8.08 Hz, H-1), 4.44 (d, 1 H, $J_{1', 2'}$ 7.84 Hz, H-1'), 4.51, 4.18–4.06 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.03-3.80 (m, 3 H, H-4, 5, H-5'), 3.74-3.58 (m, 8 H, CH₂O), 3.10 (dd, 1 H, H-2), 2.17–1.96 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR $(CDCl_3)$: δ 170.3–168.9 (6 C, CH_3CO), 102.1 (C-1), 100.9 (C-1'), 75.9 (C-4), 72.8 (CH₂O), 72.4 (CH₂O), 71.8 (C-3), 71.0 (C-3'), 70.7 (C-5), 70.1 (CH₂O), 69.5 (C-5'), 69.1 (C-2'), 66.6 (C-4'), 63.9 (C-2), 61.8 (C-6), 61.7 (CH₂O), 60.8 (C-6'), 20.8–20.5 (6 C, CH₃CO). Anal. Calcd for C₂₈H₄₁N₃O₁₈: C, 47.53; H, 5.84; N, 5.94. Found: C, 47.17; H, 5.59; N, 5.49.

8-Hydroxy-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- β -D-glucopyranoside (6)

Compound 6 was prepared as described for the preparation of 5 and the crude product was purified by chromatography with 2:7 petroleum ether (60-90 °C)-EtOAc as eluent. A colorless syrup was obtained in 65% yield; $[\alpha]_D^{25} + 23.7^{\circ}$ (c 1.35, CHCl₃). ¹H NMR $(CDCl_3)$: δ 5.33 (dd, 1 H, H-4'), 5.09 (dd, 1 H, H-2'), 5.00 (dd, 1 H, H-3), 4.94 (dd, 1 H, H-3'), 4.50 (d, 1 H, $J_{1/2}$ 8.06 Hz, H-1), 4.44 (d, 1 H, $J_{1/2}$ 7.84 Hz, H-1'), 4.47, 4.15-3.82 (m, 6 H, H-5, H-5', H-6a, 6b, H-6a', 6b'), 3.41 (dd, 1 H, H-2), 3.73–3.59 (m, 13 H, H-4, CH_2O), 2.15–1.95 (6s, 18 H, $6 \times CH_3CO$); ¹³C NMR (CDCl₃): δ 170.3–169.0 (6 C, CH₃CO), 101.9 (C-1), 100.9 (C-1'), 76.0 (C-4), 72.6 (CH₂O), 72.4 (CH₂O), 71.9 (C-3), 71.0 (C-3'), 70.7 (C-5), 70.5 (CH₂O), 70.3 (CH₂O), 69.1 (C-5'), 69.0 (C-2'), 67.7 (CH₂O), 66.7 (C-4'), 63.9 (C-2), 61.9 (C-6), 61.6 (CH₂O), 60.8 (C-6'), 20.9–20.5 (6 C, CH₃CO). Anal. Calcd for C₃₀H₄₅N₃O₁₉: C, 47.94; H, 6.03; N, 5.59. Found: C, 47.57; H, 5.88; N, 5.31.

5-Hydroxy-3-oxapentyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- α -D-glucopyranoside (7)

Compound 1 (1 g) was dissolved in anhydrous CH₃CN (10 mL), and then LiBr (1 g) and 4 Å molecular sieves (2 g) were added. The mixture was stirred for 6 h at room temperature, the sieves were filtered off and the filtrate concentrated to give 4 (0.8 g) as a yellow syrup.² To a solution of 4 and diethylene glycol (1 mL) in dry CH₂Cl₂ (15 mL), were added Bu₄NBr (0.5 g) and 4 Å molecular sieves (1 g), and the mixture was stirred at room temperature for 24 h, the mixture was then

^b These compounds showed a significant inhibitory effect.

^b P < 0.01 versus control group.

diluted with CH₂Cl₂ (30 mL) and washed with water, dried (Na₂SO₄), and evaporated under diminished pressure. The resulting oily brown residue was purified by flash chromatography with 2:5 petroleum ether (60– 90 °C)-EtOAc as eluent and 0.32 g of 7 was obtained as a colorless syrup. The total yield of two steps was 38%; $[\alpha]_D^{25} + 61.9^{\circ}$ (c 1.55, CHCl₃); ¹H NMR (CDCl₃): δ 5.46 (dd, 1 H, H-3), 5.36 (dd, 1 H, H-4'), 5.12 (dd, 1 H, H-2'), 5.02 (d, 1 H, $J_{1,2}$ 3.40 Hz, H-1), 4.97 (dd, 1 H, H-3'), 4.48 (d, 1 H, $J_{1', 2'}$ 7.96 Hz, H-1'), 4.44, 4.19–4.09 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.06-3.83 (m, 3 H, H-4, 5, H-5'), 3.74–3.59 (m, 8 H, CH₂O), 3.13 (dd, 1 H, H-2), 2.18-1.96 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.4–169.2 (6 C, CH₃CO), 101.2 (C-1'), 98.0 (C-1), 76.5 (C-4), 72.6 (CH₂O), 71.0 (C-3'), 70.6 (C-5), 70.1 (CH₂O), 70.0 (C-3), 69.1 (C-2'), 68.5 (C-5'), 67.7 (CH₂O), 66.6 (C-4'), 62.0 (C-6), 61.8 (CH₂O), 61.1 (C-6'), 60.8 (C-2), 20.9–20.5 (6 C, CH₃CO). Anal. Calcd for C₂₈H₄₁N₃O₁₈: C, 47.53; H, 5.84; N, 5.94. Found: C, 47.70; H, 6.05; N, 5.51.

8-Hydroxy-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- α -D-glucopyranoside (8)

Compound 8 was prepared as described for the preparation of 7 and the crude product was purified by chromatography with 2:7 petroleum ether (60–90 °C)– EtOAc as eluent to afford a colorless syrup in 42% yield; $[\alpha]_D^{25} + 80.0^{\circ}$ (c 1.40, CHCl₃); ¹H NMR (CDCl₃): δ 5.49 (dd, 1 H, H-3), 5.36 (dd, 1 H, H-4'), 5.12 (dd, 1 H, H-2'), 5.04 (d, 1 H, $J_{1,2}$ 3.52 Hz, H-1), 4.96 (dd, 1 H, H-3'), 4.49 (d, 1 H, $J_{1', 2'}$ 7.88 Hz, H-1'), 4.47, 4.17–3.88 (m, 6 H, H-5, H-5', H-6a, 6b, H-6a', 6b'), 3.75-3.60 (m, 13 H, H-4, CH₂O), 3.10 (dd, 1 H, H-2), 2.17–1.97 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.4–169.2 (6 C, CH₃CO), 101.2 (C-1'), 98.1 (C-1), 76.5 (C-4), 72.5 (CH₂O), 71.1 (C-3'), 70.8 (C-5), 70.6 (CH₂O), 70.1 (C-3), 70.4 (CH₂O), 69.9 (CH₂O), 69.2 (C-2'), 68.4 (C-5'), 67.7 (CH₂O), 66.6 (C-4'), 62.0 (C-6), 61.8 (CH₂O), 61.0 (C-6'), 60.8 (C-2), 21.0-20.52 (6 C, CH₃CO). Anal. Calcd for C₃₀H₄₅N₃O₁₉: C, 47.94; H, 6.03; N, 5.59. Found: C, 47.76; H, 6.18; N, 5.80.

1-[2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- β -D-glucopyranosyloxy-5-[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- α -D-glucopyranosyloxy-3-oxapentane (9)

A mixture of 3 (0.5 g, 0.65 mmol) and 5 (0.3 g, 0.42 mmol) in dry CH_2Cl_2 (15 mL) in the presence of powered molecular sieves 4 Å (1 g) was cooled to -20 °C and Me_3SiOTf (0.1 mL) was added dropwise with stirring. The mixture was kept for 1 h at -20 to 0 °C and 24 h at room temperature, then the mixture

was filtered and filtrate was washed with aqueous NaHCO₃ and water, dried (Na₂SO₄) and concentrated. The residue was subjected to chromatography on silica gel [4:5 petroleum ether (60–90 °C)–EtOAc] to give 9 (0.24 g) as a colorless syrup in 43% yield; $[\alpha]_D^{25} + 57.1^{\circ}$ (c 0.63, CHCl₃); ¹H NMR (CDCl₃): δ 5.47 (dd, 1 H, H_{α} -3), 5.35 (dd, 2 H, H_{α} -4', H_{β} -4'), 5.11–5.07 (m, 2 H, H_{α} -2', H_{β} -2'), 5.05 (d, 1 H, $J_{1, 2}$ 3.54 Hz, H_{α} -1), 4.98– 4.95 (m, 3 H, H_{β}-3, H_{α}-3', H_{β}-3'), 4.49 (d, 1 H, $J_{1,2}$ 7.99 Hz, 1 H, H_{β}-1), 4.47 (d, 2H, $J_{1', 2'}$ 7.90 Hz, H_{α}-1', H_{β}-1'), 4.45, 4.18–4.08 (m, 8 H, H_{α} -6a, 6b, H_{α} -6a', 6b', H_{β} -6a, 6b, H_{β} -6a', 6b'), 3.98–3.76 (m, 6 H, H_{α} -4, 5, H_{α} -5', H_{β} -4, 5, H_{β} -5'), 3.75–3.65 (m, 8 H, CH₂O), 3.45 (dd, 1 H, H_{β} -2), 3.12 (dd, 1 H, H_{α} -2), 2.17–1.96 (12s, 36 H, $12 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.2–168.9 (12 C, CH₃CO), 101.9 (C_{β}-1), 101.1 (C_{α}-1'), 100.9 (C_{β}-1'), 97.8 (C_{α} -1), 76.5 (C_{α} -4), 75.9 (C_{β} -4), 72.6 (CH_2O), 71.9 $(C_{\beta}-3)$, 71.0, 70.9 (2 C, $C_{\alpha}-3'$, $C_{\beta}-3'$), 70.7, 70.6 (2 C, C_{α} -5', C_{β} -5'), 70.5 (CH₂O), 70.2 (C_{α} -3), 70.1 (CH₂O), 69.3, 69.1 (2 C, C_{α} -2', C_{β} -2'), 69.1, 68.4 (2 C, C_{α} -5, C_{B} -5), 67.4 (CH₂O), 66.6, 66.5 (2C, C_{α} -4', C_{B} -4'), 63.9 $(C_{\beta}-2)$, 61.9, 61.8 (2 C, C_{α} -6, C_{β} -6), 61.0, 60.8 (2 C, C_{α} -6', C_{β} -6'), 60.7 (C_{α} -2), 20.9–20.4 (12 C, $CH_{3}CO$). Anal. Calcd for $C_{52}H_{72}N_6O_{33}$: C, 47.49; H, 5.56; N, 6.12. Found: C, 47.19; H, 5.49; N, 5.81.

$1\text{-}[2,3,4,6\text{-}Tetra-O-acetyl-β-D$-galactopyranosyl- <math display="inline">(1\rightarrow 4)\text{-}3,6\text{-}di\text{-}O$-acetyl-$2$-azido-$2$-deoxy-$\beta$-D$-glucopyranosyloxy-8-[2,3,4,6$-tetra-$O$-acetyl-$\beta$-D$-galactopyranosyl- <math display="inline">(1\rightarrow 4)\text{-}3,6\text{-}di\text{-}O$-acetyl-$2$-azido-$2$-deoxy-$\alpha$-D$-glucopyranosyloxy-3-dioxaoctane (10)$

Compound 10 was prepared as described for the preparation of 9. The crude product was purified by chromatography with 2:3 petroleum ether (60-90 °C)-EtOAc to afford a colorless syrup in 40% yield; $[\alpha]_D^{25}$ $+66.1^{\circ}$ (c 2.48, CHCl₃); ¹H NMR (CDCl₃): δ 5.47 (dd, 1 H, H_{α} -3), 5.35 (dd, 2 H, H_{α} -4', H_{β} -4'), 5.10–5.09 (m, 2 H, H_{α} -2', H_{β} -2'), 5.04 (d, 1 H, $J_{1, 2}$ 3.35 Hz, H_{α} -1), 4.96-4.94 (m, 3 H, H_{\beta}-3, H_{\alpha}-3', H_{\beta}-3'), 4.49 (d, 1 H, J_{1} , 2 7.96 Hz, 1 H, H_{β}-1), 4.47 (d, 2 H, $J_{1', 2'}$ 7.90 Hz, H_{α}-1', H_{B} -1'), 4.45, 4.17–4.07 (m, 8 H, H_{α} -6a, 6b, H_{α} -6a', 6b', H_{B} -6a, 6b, H_{B} -6a', 6b'), 3.98–3.72 (m, 6 H, H_{α} -4, 5, H_{α} -5', H_{β} -4, 5, H_{β} -5'), 3.72–3.67 (m, 12 H, CH₂O), 3.42 $(dd, 1 H, H_{\beta}-2), 3.11 (dd, 1 H, H_{\alpha}-2), 2.18-1.97 (12s, 36)$ H, $12 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.3–168.9 (12 C, CH₃CO), 102.0 (C_{β}-1), 101.1 (C_{α}-1'), 100.9 (C_{β}-1'), 98.1 (C_{α} -1), 76.5 (C_{α} -4), 76.0 (C_{β} -4), 72.7 (CH_2O), 72.6 (CH₂O), 71.9 (C_{β}-3), 71.0, 70.9 (2 C, C_{α}-3', C_{β}-3'), 70.7, 70.3 (2 C, C_{α} -5', C_{β} -5'), 70.2 (CH₂O), 70.1 (C_{α} -3), 70.0 (CH₂O), 69.4 (CH₂O), 69.3, 69.1 (2 C, C_{α} -2', C_{6} -2'), 69.0, 68.4 (2 C, C_{α} -5, C_{6} -5), 67.7 (CH₂O), 66.6, 66.5 (2 C, C_{α} -4', C_{β} -4'), 63.9 (C_{β} -2), 61.9, 61.0 (2 C, C_{α} -6, C_{β} -6), 60.8, 60.7 (2 C, C_{α} -6', C_{β} -6'), 60.6 (C_{α} -2), 20.9–20.4 (12 C, CH₃CO). Anal. Calcd for C₅₄H₇₆N₆O₃₄: C, 47.93; H, 5.66; N, 6.21. Found: C, 47.73; H, 5.84; N, 5.92.

3-Oxapent-1,5-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- β -D-glucopyranoside] (11)

A mixture of 3 (0.5 g, 0.65 mmol) and 5 (0.3 g, 0.42) mmol) in dry CH₂Cl₂ (15 mL) in the presence of powered molecular sieves 4 Å (1 g) was cooled to 0 °C and BF₃·OEt₂ (0.2 mL) was added dropwise with stirring. The mixture was kept for 1 h at -20 to 0 °C and 24 h at room temperature, then the mixture was filtered and filtrate was washed with aqueous sodium bicarbonate and water, dried (Na₂SO₄) and concentrated. The residue was subjected to chromatography on silica gel [4:5 petroleum ether (60-90 °C)-EtOAc] to give 11 (0.15 g) as a colorless syrup (27%); $[\alpha]_D^{25} + 17.9^{\circ}$ (c 2.68, CHCl₃); 1 H NMR (CDCl₃): δ 5.36 (dd, 1 H, H-4'), 5.12 (dd, 1 H, H-2'), 4.98 (dd, 1 H, H-3), 4.95 (dd, 1 H, H-3'), 4.50 (d, 1 H, $J_{1,2}$ 8.00 Hz, H-1), 4.47 (d, 1 H, $J_{1'}$ 2' 8.00 Hz, 1 H, H-1'), 4.45, 4.20-4.05 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.01-3.81 (m, 3 H, H-4, 5, H-5'), 3.74-3.69 (m, 4 H, CH₂O), 3.43 (dd, 1 H, H-2), 2.17-1.98 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.3–168.9 (6 C, CH₃CO), 102.1 (C-1), 100.9 (C-1'), 76.0 (C-4), 72.9 (CH₂O), 72.0 (C-3), 70.8 (C-3'), 70.5 (C-5'), 70.2 (CH₂O), 69.4 (C-5), 69.2 (C-2'), 66.8 (C-4'), 64.0 (C-2), 62.0 (C-6), 60.9 (C-6'), 20.9-20.4 (6 C, CH₃CO). Anal. Calcd for C₅₂H₇₂N₆O₃₃: C, 47.49; H, 5.56; N, 6.12. Found: C, 47.70; H, 5.65; N, 6.36.

3,6-Dioxaoct-1,8-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-azido-2-deoxy- β -D-glucopyranoside] (12)

Compound 12 was prepared as described for the preparation of 11. The crude product was purified by chromatography with 2:3 petroleum ether (60-90 °C)-EtOAc to afford a colorless syrup in 30% yield of; $[\alpha]_D^{25}$ $+8.9^{\circ}$ (c 2.25, CHCl₃); ¹H NMR (CDCl₃): δ 5.36 (dd, 1 H, H-4'), 5.09 (dd, 1 H, H-2'), 4.97 (dd, 1 H, H-3), 4.94 (dd, 1 H, H-3'), 4.48 (d, 1 H, J_{1, 2} 8.06 Hz, H-1), 4.44 (d, 1 H, $J_{1', 2'}$ 8.00 Hz, H-1'), 4.42, 4.20–4.06 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.02-3.81 (m, 3 H, H-4, 5, H-5'), 3.75–3.65 (m, 6 H, CH₂O), 3.42 (dd, 1 H, H-2), 2.18–1.98 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.3–169.0 (6 C, CH₃CO), 102.1 (C-1), 101.0 (C-1'), 76.0 (C-4), 72.6 (CH₂O), 71.8 (C-3), 71.0 (C-3'), 70.7 (C-5'), 70.3 (CH₂O), 70.0 (CH₂O), 69.4 (C-5), 69.0 (C-2'), 66.6 (C-4'), 63.9 (C-2), 61.9 (C-6), 60.8 (C-6'), 20.9-20.5 (6 C, CH₃CO). Anal. Calcd for C₅₄H₇₆N₆O₃₄: C, 47.93; H, 5.66; N, 6.21. Found: C, 48.00; H, 5.74; N, 6.18.

3-Oxapent-1,5-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-3,6-di-O-acetyl-2-azido-2-deoxy- α -D-glucopyranoside] (13)

A mixture of 3 (0.5 g, 0.65 mmol) and 7 (0.3 g, 0.42) mmol) in dry CH₂Cl₂ (15 mL) in the presence of powered molecular sieves 4 Å (1 g) was cooled to -20 °C and Me₃SiOTf (0.1 mL) was added dropwise with stirring. The mixture was kept for 1 h at -20 to 0 °C and 24 h at room temperature, then the mixture was filtered and the filtrate was washed with aqueous NaHCO₃ and water, dried (Na₂SO₄) and concentrated. The residue was subjected to chromatography on silica gel [4:5 petroleum ether (60-90 °C)-EtOAc] to give 13 (0.23 g) as a colorless syrup (41%); $[\alpha]_D^{25} + 52.2^{\circ}$ (c 1.15, CHCl₃); ¹H NMR (CDCl₃): δ 5.47 (dd, 1 H, H-3), 5.36 (dd, 1 H, H-4'), 5.11 (dd, 1 H, H-2'), 5.04 (d, 1 H, J_{1, 2} 3.50 Hz, H-1), 4.96 (dd, 1 H, H-3'), 4.48 (d, 1 H, $J_{1',2'}$ 7.50 Hz, 1 H, H-1'), 4.44, 4.21–4.04 (m, 4 H, H-6a, 6b, H-6a', 6b'), 3.99–3.82 (m, 3 H, H-4, 5, H-5'), 3.76–3.69 (m, 4 H, CH₂O), 3.10 (dd, 1 H, H-2), 2.17–1.97 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.2–169.0 (6 C, CH₃CO), 101.1 (C-1'), 98.1 (C-1), 76.6 (C-4), 71.1 (C-3'), 70.7 (C-5'), 70.4 (CH₂O), 70.2 (C-3), 69.2 (C-2'), 68.6 (C-5), 67.6 (CH₂O), 66.7 (C-4'), 62.0 (C-6), 61.1 (C-6'), 60.8 (C-2), 20.8-20.5 (6 C, CH₃CO). Anal. Calcd for $C_{52}H_{72}N_6O_{33}$: C, 47.49; H, 5.56; N, 6.12. Found: C, 47.23; H, 5.83; N, 6.34.

3,6-Dioxaoct-1,8-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O- acetyl-2-azido-2-deoxy- α -D-glucopyranoside] (14)

Compound 14 was prepared as described for the preparation of 13. The crude product was purified by chromatography with 2:3 petroleum ether (60-90 °C)-EtOAc to afford a colorless syrup in 39% yield; $[\alpha]_D^{25}$ $+65.4^{\circ}$ (c 1.04, CHCl₃); ¹H NMR (CDCl₃): δ 5.46 (dd, 1 H, H-3), 5.36 (dd, 1 H, H-4'), 5.11 (dd, 1 H, H-2'), 5.03 (d, 1 H, $J_{1,2}$ 3.30 Hz, H-1), 4.95 (dd, 1 H, H-3'), 4.48 (d, 1 H, $J_{1', 2'}$ 7.50 Hz, H-1'), 4.43, 4.20–4.07 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.03-3.83 (m, 3 H, H-4, 5, H-5'), 3.76–3.65 (m, 6 H, CH_2O), 3.13 (dd, 1 H, H-2), 2.16-1.97 (6s, 18 H, $6 \times \text{CH}_3\text{CO}$); ¹³C NMR (CDCl₃): δ 170.3–169.0 (6 C, CH₃CO), 101.1 (C-1'), 98.1 (C-1), 76.6 (C-4), 71.1 (C-3'), 70.7 (C-5'), 70.2 (C-3), 70.1 (CH₂O), 69.5 (CH₂O), 69.3 (C-2'), 68.5 (C-5), 67.8 (CH₂O), 66.8 (C-4'), 62.0 (C-6), 60.9 (C-6'), 60.8 (C-2), 20.9-20.4 (6 C, CH_3CO). Anal. Calcd for C₅₄H₇₆N₆O₃₄: C, 47.93; H, 5.66; N, 6.21. Found: C, 47.79; H, 5.56; N, 5.92.

5-Hydroxy-3-oxapentyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranoside (15)

A solution of 5 (0.2 g) in thioacetic acid (3 mL) was stirred at room temperature for 36 h, then concentrated. The residue was eluted from a column of silica gel with 50:1 CHCl₃-MeOH to give 15 as a colorless syrup (0.16 g, 80%); $[\alpha]_D^{25}$ – 12.8° (c 0.94, CHCl₃); ¹H NMR¹ H NMR (CDCl₃): δ 6.72 (d, 1 H, NH), 5.36 (dd, 1 H, H-4'), 5.11 (dd, 1 H, H-2'), 5.05 (dd, 1 H, H-3), 4.97 (dd, 1 H, H-3'), 4.73 (d, 1 H, $J_{1,2}$ 7.86 Hz, H-1), 4.50 (d, 1 H, $J_{1',2'}$ 7.89 Hz, H-1'), 4.46, 4.15–4.11 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.08 (dd, 1 H, H-2), 3.90 (m, 1 H, H-5), 3.88 (m, 1 H, H-5'), 3.80 (m, 1 H, H-4), 3.77-3.60 (m, 8 H, CH₂O), 2.15-1.97 (7s, 21 H, 6 × CH₃CO, CH₃CONH); 13 C NMR (CDCl₃): δ 170.6– 169.3 (7 C, $6 \times COCH_3$, CONH), 101.5 (C-1), 101.0 (C-1'), 75.8 (C-4), 72.8 (-CH₂O-), 72.7 (C-3), 72.2 (CH₂O), 71.1 (CH₂O), 70.8 (C-3'), 70.7 (C-5'), 69.1 (C-2'), 68.5 (C-5), 66.6 (C-4'), 62.5 (C-6), 61.7 (CH₂O), 60.7 (C-6'), 53.1 (C-2), 23.0 (CH₃CONH), 20.8–20.4 (6 C, CH_3CO). Anal. Calcd for $C_{30}H_{45}NO_{19}$: C, 49.79; H, 6.27; N, 1.94. Found: C, 49.43; H, 6.19; N, 1.76.

8-Hydroxy-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetam-ido-2-deoxy- β -D-glucopyranoside (16)

Compound 16 was prepared as described for the preparation of 15. The crude product was purified by chromatography with 40:1 CHCl₃-MeOH to afford a colorless syrup in 72% yield; $[\alpha]_D^{25} - 11.1^{\circ}$ (c 0.72, CHCl₃); ¹H NMR (CDCl₃): δ 6.86 (d, 1 H, NH), 5.34 (d, 1 H, H-4'), 5.10 (dd, 1 H, H-2'), 5.03 (d, 1 H, H-3), 4.96 (dd, 1 H, H-3'), 4.69 (d, 1 H, J_{1, 2} 8.10 Hz, H-1), 4.49 (d, 1 H, $J_{1', 2'}$ 7.80 Hz, H-1'), 4.46, 4.11–4.09 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.07 (dd, 1 H, H-2), 3.89 (m, 1 H, H-5), 3.87 (m, 1 H, H-5'), 3.82 (m, 1 H, H-4), 3.76-3.61 (m, 12 H, CH₂O), 2.14-1.97 (7s, 21 H, $6 \times \text{CH}_3\text{CO}$, $\text{C}H_3\text{CONH}$); ^{13}C NMR (CDCl₃): δ 171.2 (NHCO), 170.6–169.2 (6 C, COCH₃), 101.8 (C-1), 100.9 (C-1'), 76.2 (C-4), 73.8 (CH₂O), 72.4 (C-3), 71.5 (CH₂O), 70.9 (C-3'), 70.7 (C-5'), 70.5 (CH₂O), 70.1 (CH₂O), 69.2 (C-2'), 68.4 (C-5), 67.1 (CH₂O), 66.7 (C-4'), 62.4 (C-6), 61.2 (CH₂O), 60.8 (C-6'), 53.6 (C-2), 23.0 (CH₃CONH), 20.8–20.3 (6 C, CH₃CO). Anal. Calcd for C₃₂H₄₉NO₂₀: C, 50.06; H, 6.43; N, 1.82. Found: C, 49.89; H, 6.51; N, 1.69.

5-Hydroxy-3-oxapentyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- α -D-glucopyranoside (17)

Compound 17 was prepared as described for the preparation of 15. The crude product was purified by chro-

matography with 40:1 CHCl₃-MeOH to afford a colorless syrup in 75% yield; $[\alpha]_D^{25} + 62.3^{\circ}$ (c 1.22, CHCl₃); ¹H NMR (CDCl₃): δ 6.39 (d, 1 H, NH), 5.35 (dd, 1 H, H-4'), 5.25 (dd, 1 H, H-3), 5.13 (dd, 1 H, H-2'), 4.97 (dd, 1 H, H-3'), 4.83 (d, 1 H, $J_{1,2}$ 3.44 Hz, H-1), 4.52 (d, 1 H, $J_{1', 2'}$ 7.89 Hz, H-1'), 4.24 (dd, 1 H, H-2), 4.47, 4.12-4.06 (m, 4 H, H-6a, 6b, H-6a', 6b'), 3.94 (m, 1 H, H-5), 3.90 (m, 1 H, H-5'), 3.79 (m, 1 H, H-4), 3.77-3.62 (m, 8 H, CH₂O), 2.15-1.95 (7s, 21 H, $6 \times \text{CH}_3\text{CO}$, $\text{C}H_3\text{CONH}$); ¹³C NMR (CDCl₃): δ 171.1 (CONH), 170.5–169.3 (6 C, COCH₃), 101.2 (C-1'), 97.3 (C-1), 76.3 (C-4), 72.6 (CH₂O), 71.5 (C-3), 70.9 (C-3'), 70.6 (C-5'), 69.7 (CH₂O), 69.2 (C-2'), 68.6 (C-5), 67.4 (CH₂O), 66.6 (C-4'), 62.0 (C-6), 61.5 (CH₂O), 60.7 (C-6'), 52.0 (C-2), 23.0 (CH₃CONH), 20.9–20.4 (6 C, CH_3CO). Anal. Calcd for $C_{30}H_{45}NO_{19}$: C, 49.79; H, 6.27; N, 1.94. Found: C, 49.36; H, 6.01; N, 1.89.

8-Hydroxy-3,6-dioxaoctyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetam-ido-2-deoxy- α -D-glucopyranoside (18)

Compound 18 was prepared as described for the preparation of 15. The crude product was purified by chromatography with 40:1 CHCl₃-MeOH to afford a colorless syrup in 70% yield; $[\alpha]_D^{25} + 50.8^{\circ}$ (c 0.63, CHCl₃); ¹H NMR (CDCl₃): δ 7.32 (d, 1 H, NH), 5.34 (d, 1 H, H-4'), 5.27 (d, 1 H, H-3), 5.13 (dd, 1 H, H-2'), 4.96 (dd, 1 H, H-3'), 4.76 (d, 1 H, $J_{1,2}$ 3.30 Hz, H-1), 4.54 (d, 1 H, $J_{1',2'}$ 7.80 Hz, H-1'), 4.47, 4.12–4.07 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.29 (dd, 1 H, H-2), 3.90 (m, 1 H, H-5), 3.88 (m, 1 H, H-5'), 3.81 (m, 1 H, H-4), 3.77-3.62 (m, 12 H, CH₂O), 2.15-1.95 (7s, 21 H, $6 \times \text{CH}_3\text{CO}$, $\text{C}H_3\text{CONH}$); ^{13}C NMR (CDCl₃): δ 170.6-169.2 (7C, $6 \times COCH_3$, NHCO), 101.1 (C-1'), 97.4 (C-1), 76.6 (C-4), 72.7 (CH₂O), 71.6 (C-3), 71.0 (C-3'), 70.9 (CH₂O), 70.6 (C-5'), 70.3 (CH₂O), 69.9 (CH₂O), 69.3 (C-2'), 68.5 (C-5), 66.8 (CH₂O), 66.6 (C-4'), 62.0 (C-6), 61.8 (CH₂O), 60.7 (C-6'), 51.7 (C-2), 22.8 (CH₃CONH), 20.8–20.4 (6 C, CH₃CO). Anal. Calcd for C₃₂H₄₉NO₂₀: C, 50.06; H, 6.43; N, 1.82. Found: C, 50.03; H, 6.11; N, 1.71.

1-[2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-3,6-di-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranosyloxy-5-[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-3,6-di-O-acetyl-2-acetamido-2-deoxy- α -D-glucopyranosyloxy-3-oxapentane (19)

A solution of **9** (0.25 g) in thioacetic acid (3 mL) was stirred for 50 h at room temperature, then concentrated. The residue was eluted from a column of silica gel with 40:1 CHCl₃–MeOH to give **19** as a colorless syrup (0.15 g, 59%); $[\alpha]_D^{25} + 38.5^{\circ}$ (c 0.52, CHCl₃); ¹H NMR (CDCl₃): δ 6.48, 6.35 (d, 2 H, NH $_{\alpha}$, NH $_{\beta}$), 5.36 (dd, 2 H, H $_{\alpha}$ -4', H $_{\beta}$ -4'), 5.22 (dd, 1 H, H $_{\alpha}$ -3), 5.12–5.10

 $(m, 2 H, H_{\alpha}-2', H_{\beta}-2'), 5.07 (1 H, H_{\beta}-3), 4.96-4.94 (m,$ 2H, H_{α} -3', H_{β} -3'), 4.83 (d, 1 H, $J_{1, 2}$ 4.00 Hz, H_{α} -1), 4.71 (d, 1 H, $J_{1,2}$ 8.50 Hz, 1 H, H_{8} -1), 4.58 (d, 1 H, $J_{1,2}$ 8.00 Hz, 1 H, H_{α} -1'), 4.52 (d, 1 H, $J_{1', 2'}$ 8.00 Hz, 1 H, H_{β} -1'), 4.50, 4.11–4.08 (m, 8 H, H_{α} -6a, 6b, H_{α} -6a', 6b', H_{β} -6a, 6b, H_{β} -6a', 6b'), 4.27 (dd, 1 H, H_{α} -2), 4.07 (dd, 1 H, H_{β}-2), 3.91–3.79 (m, 6 H, H_{α}-4, 5, H_{α}-5', H_{β}-4, 5, H₆-5'), 3.76-3.56 (m, 8 H, CH₂O), 2.19-1.96 (14s, 42 H, $CH_{3\alpha}CONH$, $CH_{3\beta}CONH$, $12 \times CH_3CO$); ¹³C NMR (CDCl₃): δ 171.0, 170.8 (2 C, CH₃CO_{α}NH, CH_3CO_8NH), 170.5–169.2 (12 C, CH_3CO), 101.2 (C_{α} -1'), 101.0 (C_{β} -1), 100.0 (C_{β} -1'), 97.3 (C_{α} -1), 76.3 (C_{α} -4), 76.0 (C_{β} -4), 72.7 (C_{β} -3), 72.5 (CH_2O), 71.8 (C_{α} -3), 71.2, 70.9 (2 C, C_{α} -3', C_{β} -3'), 70.8, 70.6 (2 C, C_{α} -5', C_{β} -5'), 70.5 (CH₂O), 69.3 (CH₂O), 69.2, 69.0 (2 C, C_{α} -2', C_{B} -2'), 69.1, 68.2 (2 C, C_{α} -5, C_{B} -5), 67.6 (CH₂O), 66.5, 66.2 (2 C, C_{α} -4', C_{β} -4'), 62.1, 61.8 (2 C, C_{α} -6, C_{β} -6), 60.7, 60.5 (2 C, C_{α} -6', C_{β} -6'), 52.7, 52.4 (2 C, C_{α} -2, C_{β} -2), 23.2, 22.9 (2 C, CH_3CONH), 20.9–20.5 (12 C, CH_3CO). Anal. Calcd for $C_{56}H_{80}N_2O_{35}$: C, 50.15; H, 6.01; N, 2.09. Found: C, 50.08; H, 5.80; N, 1.92.

1-[2,3,4,6-Tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranosyloxy-8-[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetamido-2-deoxy- α -D-glucopyranosyloxy-3-dioxaoctane (20)

Compound 20 was prepared as described for the preparation of 19. The crude product was purified by chromatography with 35:1 CHCl₃-MeOH to afford a colorless syrup in 56% yield; $[\alpha]_D^{25} + 13.5^{\circ}$ (c 0.89, CHCl₃); ¹H NMR (CDCl₃): δ 6.60, 6.51 (d, 2 H, NH_{α}, NH_B), 5.36 (dd, 2 H, H_{α} -4', H_B -4'), 5.23 (dd, 1 H, H_{α} -3), 5.13–5.11 (m, 2 H, H_{α} -2', H_{β} -2'), 5.05 (1 H, H_{β} -3), 4.97-4.95 (m, 2 H, H_{α} -3', H_{β} -3'), 4.80 (d, 1 H, $J_{1, 2}$ 3.50 Hz, H_{α}-1), 4.66 (d, 1 H, $J_{1, 2}$ 8.00 Hz, H_{β}-1), 4.51 (d, 2H, $J_{1', 2'}$ 8.00 Hz, H_{α} -1', H_{β} -1'), 4.45, 4.12–4.10 (m, 8 H, H_{α} -6a, 6b, H_{α} -6a', 6b', H_{β} -6a, 6b, H_{β} -6a', 6b'), 4.27 (dd, 1 H, H_{α} -2), 4.07 (dd, 1 H, H_{β} -2), 3.93–3.78 (m, 6 H, H_{α} -4, 5, H_{α} -5', H_{β} -4, 5, H_{β} -5'), 3.77–3.62 (m, 12 H, CH_2O), 2.16–1.96 (14s, 42 H, $CH_{3\alpha}CONH$, $CH_{3B}CONH$, $12 \times CH_3CO$); ¹³C NMR (CDCl₃): δ 170.9-169.2 (14 C, $CH_3CO_{\alpha}NH$, $CH_3CO_{\beta}NH$, $12 \times$ CH_3CO), 101.5 (C_{α} -1'), 101.2 (C_{β} -1), 101.1 (C_{β} -1'), 97.5 $(C_{\alpha}-1)$, 76.3 $(C_{\alpha}-4)$, 76.2 $(C_{\beta}-4)$, 73.1 $(CH_{2}O)$, 72.6 $(C_{6}-3)$, 72.5 $(CH_{2}O)$, 71.5 $(C_{\alpha}-3)$, 71.1, 71.0 $(2 C, C_{\alpha}-3)$, C_{β} -3'), 70.9, 70.6 (2 C, C_{α} -5', C_{β} -5'), 70.9 (CH₂O), 70.5 (CH_2O) , 69.9 (CH_2O) , 69.2, 69.0 (2 C, C_{α} -2', C_{β} -2'), 68.5 (2 C, C_{α} -5, C_{β} -5), 67.2 (CH₂O), 66.5, 66.4 (2 C, C_{α} -4', C_{β} -4'), 62.2, 61.9 (2 C, C_{α} -6, C_{β} -6), 60.7, 60.5 (2 C, C_{α} -6', C_{β} -6'), 53.3, 51.7 (2 C, C_{α} -2, C_{β} -2), 23.1, 23.0 (2 C, $C_{\alpha}H_3$ CONH, $C_{\beta}H_3$ CONH), 20.9–20.5 (12 C, CH_3CO). Anal. Calcd for $C_{58}H_{84}N_2O_{36}$: C, 50.29; H, 6.11; N, 2.02. Found: C, 50.46; H, 6.39; N, 1.85.

3-Oxapent-1,5-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl-(1 \rightarrow 4)-3,6-di-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranoside] (21)

Compound 21 was prepared as described for the preparation of 19. The crude product was purified by chromatography with 35:1 CHCl₃-MeOH to afford a colorless syrup in 50% yield; $[\alpha]_D^{25} + 5.3^{\circ}$ (c 2.28, CHCl₃); ¹H NMR (CDCl₃): δ 6.81 (d, 1 H, NH), 5.36 (d, 1 H, H-4'), 5.15 (dd, 1 H, H-2'), 5.07 (dd, 1 H, H-3), 4.98 (dd, 1 H, H-3'), 4.77 (d, 1 H, $J_{1, 2}$ 8.00 Hz, H-1), 4.54 (d, 1 H, $J_{1',2'}$ 7.25 Hz, H-1'), 4.45, 4.16–4.07 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.06 (dd, 1 H, H-2), 3.91 (m, 1 H, H-5), 3.86 (m, 1 H, H-5'), 3.82 (m, 1 H, H-4), 3.78-3.60 (m, 4 H, CH₂O), 2.19-1.95 (7s, 21 H, $6 \times$ CH₃CO, NHCOCH₃); 13 C NMR (CDCl₃): δ 171.0– 169.2 (7 C, $6 \times COCH_3$, NHCOCH₃), 101.5 (C-1), 101.1 (C-1'), 75.9 (C-4), 72.9 (CH₂O), 72.7 (C-3), 70.8 (C-3'), 70.6 (C-5'), 69.2 (C-2'), 68.4 (C-5), 67.5 (CH₂O), 66.5 (C-4'), 62.1 (C-6), 60.7 (C-6'), 52.7 (C-2), 22.9 (CH₃CONH), 20.9-20.5 (6 C, CH₃CO). Anal. Calcd for C₅₆H₈₀N₂O₃₅: C, 50.15; H, 6.01; N, 2.09. Found: C, 49.89; H, 6.26; N, 1.85.

3,6-Dioxaoct-1,8-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- β -D-glucopyranoside] (22)

Compound 22 was prepared as described for the preparation of 19. The crude product was purified by chromatography with 35:1 CHCl₃-MeOH to afford a colorless syrup in 52% yield; $[\alpha]_D^{25} + 8.2^{\circ}$ (c 0.98, CHCl₃); ¹H NMR (CDCl₃): δ 6.55 (d, 1 H, NH), 5.35 (d, 1 H, H-4'), 5.11 (dd, 1 H, H-2'), 5.04 (dd, 1 H, H-3), 4.96 (dd, 1 H, H-3'), 4.66 (d, 1 H, J_{1, 2} 8.00 Hz, H-1), 4.50 (d, 1 H, $J_{1', 2'}$ 8.00 Hz, H-1'), 4.48, 4.13–4.07 (m, 4 H, H-6a, 6b, H-6a', 6b), 4.04 (m, 1 H, H-2), 3.91 (m, 1 H, H-5), 3.86 (m, 1 H, H-5'), 3.83 (m, 1 H, H-4), 3.78-3.62 (m, 6 H, CH₂O), 2.17-1.97 (7s, 21 H, 6 × CH₃CO, CH₃CONH); 13 C NMR (CDCl₃): δ 171.1 (NHCOCH₃), 170.4–169.2 (6 C, COCH₃), 101.5 (C-1), 101.2 (C-1'), 76.2 (C-4), 73.1 (CH₂O), 72.8 (C-3), 71.0 (C-3'), 70.6 (C-5'), 70.5 (CH₂O), 69.4 (CH₂O), 69.3 (C-2'), 68.5 (C-5), 66.7 (C-4'), 62.4 (C-6), 60.8 (C-6'), 53.3 (C-2), 23.0 (CH₃CONH), 20.8–20.4 (6 C, CH₃CO). Anal. Calcd for C₅₈H₈₄N₂O₃₆: C, 50.29; H, 6.11; N, 2.02. Found: C, 50.54; H, 6.16; N, 1.71.

3-Oxapent-1,5-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- α -D-glucopyranoside] (23)

Compound 23 was prepared as described for the preparation of 19. The crude product was purified by chromatography with 35:1 CHCl₃-MeOH to afford a colorless syrup in 48% yield; $[\alpha]_D^{25} + 50.5^{\circ}$ (c 1.03,

CHCl₃); ¹H NMR (CDCl₃): δ 6.40 (d, 1 H, NH), 5.35 (d, 1 H, H-4'), 5.24 (dd, 1 H, H-3), 5.12 (dd, 1 H, H-2'), 4.96 (dd, 1 H, H-3'), 4.84 (d, 1 H, $J_{1, 2}$ 3.25 Hz, H-1), 4.52 (d, 1 H, $J_{1', 2'}$ 7.50 Hz, H-1'), 4.46, 4.13–4.07 (m, 4 H, H-6a, 6b, H-6a', 6b'), 4.26 (dd, 1 H, H-2), 3.90 (m, 1 H, H-5), 3.87 (m, 1 H, H-5'), 3.80 (m, 1 H, H-4), 3.77–3.64 (m, 4 H, CH₂O), 2.15–1.97 (7s, 21 H, 6 × CH₃CO, NHCOC*H*₃); ¹³C NMR (CDCl₃): δ 170.9–169.1 (7 C, 6 × COCH₃, NHCOCH₃), 101.3 (C-1'), 97.3 (C-1), 76.4 (C-4), 71.4 (C-3), 71.0 (C-3'), 70.7 (C-5'), 70.0 (CH₂O), 69.3 (C-2'), 68.7 (C-5), 67.1 (CH₂O), 66.7 (C-4'), 61.9 (C-6), 60.8 (C-6'), 52.0 (C-2), 23.0 (CH₃CONH), 20.9–20.4 (6 C, CH₃CO). Anal. Calcd for C₅₆H₈₀N₂O₃₅: C, 50.15; H, 6.01; N, 2.09. Found: C, 50.08; H, 5.80; N, 1.83.

3,6-Dioxaoct-1,8-diyl bis[2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-acetyl-2-acetamido-2-deoxy- α -D-glucopyranoside] (24)

Compound 24 was prepared as described for the preparation of 19. The crude product was purified by chromatography with 35:1 CHCl₃-MeOH to afford a colorless syrup in 50% yield; $[\alpha]_D^{25} + 34.3^{\circ}$ (c 1.75, CHCl₃); ¹H NMR (CDCl₃): δ 6.30 (d, 1 H, NH), 5.35 (d, 1 H, H-4'), 5.25 (dd, 1 H, H-3), 5.11 (dd, 1 H, H-2'), 4.98 (dd, 1 H, H-3'), 4.80 (d, 1 H, J_{1, 2} 3.50 Hz, H-1), 4.52 (d, 1 H, $J_{1', 2'}$ 8.00 Hz, H-1'), 4.46, 4.13–4.09 (m, 4 H, H-6a, 6b, H-6a', 6b), 4.26 (m, 1 H, H-2), 3.95 (m, 1 H, H-5), 3.88 (m, 1 H, H-5'), 3.82 (m, 1 H, H-4), 3.77-3.62 (m, 6 H, CH₂O), 2.15-1.96 (7s, 21 H, 6 × CH₃CO, CH₃CONH); 13 C NMR (CDCl₃): δ 170.9– 169.2 (7 C, 6 × COCH₃, NHCOCH₃), 101.3 (C-1'), 97.4 (C-1), 76.4 (C-4), 71.5 (C-3), 71.0 (C-3'), 70.5 (C-5'), 70.4 (CH₂O), 69.9 (CH₂O), 69.1 (C-2'), 68.4 (C-5), 67.4 (CH₂O), 66.5 (C-4'), 61.9 (C-6), 60.6 (C-6'), 51.8 (C-2), 23.0 (CH₃CONH), 20.9-20.5 (6 C, CH₃CO). Anal. Calcd for $C_{58}H_{84}N_2O_{36}$: C, 50.29; H, 6.11; N, 2.02. Found: C, 50.44; H, 6.35; N, 1.76.

5-Hydroxy-3-oxapentyl β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranoside (25)

A catalytic amount of sodium was added to a solution of compound **15** (0.1 g) in methanol (5 mL). The mixture was stirred at room temperature for 12 h, then neutralized with H⁺ cation exchange resin. The solution was filtered and concentrated and the residue was dissolved in 10 mL water and freeze-dried to give **25** as a white solid (0.062 g, 95%); $[\alpha]_{\rm D}^{25}$ – 83.9° (c 0.62, H₂O); ¹H NMR (D₂O): δ 4.64 (d, 1 H, $J_{1, 2}$ 8.10 Hz, H-1), 4.52 (d, 1 H, $J_{1', 2'}$ 7.50 Hz, H-1'), 4.06–3.69 (m, 20 H, H-2, 3, 4, 5, 6a, 6b, H-2', 3', 4', 5', 6a', 6b', CH₂O), 2.09 (s, 3 H, NHCOC H_3); ¹³C NMR (D₂O): δ 171.5 (NHCO), 99.9 (C-1'), 98.0 (C-1), 75.6 (C-4), 72.4, 71.8, 69.6, 69.5, 68.8, 68.0, 66.6, 66.0, 57.4 (9 C, C-3,

C-5, C-2′, C-3′, C-5′, CH₂O), 65.6 (C-4′), 58.0 (C-6), 57.2 (C-6′), 52.1 (C-2), 19.2 (CH₃CONH). ESI-TOFF-MS: m/z 472.2 [M + 1]⁺.

8-Hydroxy-3,6-dioxaoctyl β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucopyranoside (26)

Compound **26** was prepared as described for the preparation of **25**. The yield was 97%; $[\alpha]_D^{25} - 105.3^\circ$ (c 0.76, H₂O); ¹H NMR (D₂O): δ 4.58 (d, 1 H, $J_{1, 2}$ 7.80 Hz, H-1), 4.46 (d, 1 H, $J_{1', 2'}$ 7.50 Hz, H-1'), 3.96–3.64 (m, 24 H, H-2, 3, 4, 5, 6a, 6b, H-2', 3', 4', 5', 6a', 6b', CH₂O), 2.03 (s, 3 H, NHCOC H_3); ¹³C NMR (D₂O): δ 171.2 (NHCO), 99.3 (C-1'), 97.5 (C-1), 75.7 (C-4), 72.7, 72.0, 70.7, 69.8, 68.5, 68.0, 66.6, 66.3, 64.9, 57.8, 57.3 (11 C, C-3, C-5, C-2', C-3', C-5', CH₂O), 64.9 (C-4'), 57.8 (C-6), 57.1 (C-6'), 52.3 (C-2), 19.7 (CH₃CONH). ESI-TOFF-MS: m/z 516.2 [M + 1]⁺.

5-Hydroxy-3-oxapentyl β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- α -D-glucopyranoside (27)

Compound **27** was prepared as described for the preparation of **25**. The yield was 96%; $[\alpha]_D^{25} + 70.6^{\circ}$ (c 0.68, H₂O); ¹H NMR (CD₃OD): δ 4.82 (d, 1 H, $J_{1, 2}$ 3.60 Hz, H-1), 4.36 (d, 1 H, $J_{1', 2'}$ 7.50 Hz, H-1'), 3.93–3.60 (m, 18 H, H-2, 3, 4, 5, 6a, 6b, H-4', 5', 6a', 6b', CH₂O), 3.57 (dd, 1 H, H-2'), 3.50 (dd, 1 H, H-3'), 1.98 (s, 3 H, NHCOC H_3); ¹³C NMR (CD₃OD): δ 173.6 (NHCO), 105.2 (C-1'), 98.6 (C-1), 81.5 (C-4), 77.1 (C-5'), 74.9 (C-3'), 73.6, 72.3, 71.2, 71.1, 70.3, 62.2 (6 C, C-3, C-5, CH₂O), 72.6 (C-2'), 68.2 (C-4'), 62.5 (C-6), 62.0 (C-6'), 54.9 (C-2), 22.6 (CH₃CONH). ESI-TOFF-MS: m/z 472.2 [M+1]⁺.

8-Hydroxy-3,6-dioxaoctyl β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- α -D-glucopyranoside (28)

Compound **28** was prepared as described for the preparation of **25**. The yield was 98%; $[\alpha]_D^{25} + 64.9^\circ$ (c 0.37, H_2O); 1H NMR (CD₃OD): δ 4.81 (d, 1 H, $J_{1,2}$ 3.30 Hz, H-1), 4.37 (d, 1 H, $J_{1',2'}$ 7.80 Hz, H-1'), 3.98–3.62 (m, 22 H, H-2, 3, 4, 5, 6a, 6b, H-4', 5', 6a', 6b', CH₂O), 3.56 (dd, 1 H, H-2'), 3.50 (dd, 1 H, H-3'), 1.98 (s, 3 H, NHCOC H_3); 13 C NMR (CD₃OD): δ 173.6 (NHCO), 105.1 (C-1'), 98.6 (C-1), 81.4 (C-4), 77.1 (C-5'), 74.9 (C-3'), 73.7, 72.3, 71.6, 71.4, 71.2, 71.1, 70.3, 62.2 (8 C, C-3, C-5, CH₂O), 72.6 (C-2'), 68.1 (C-4'), 62.5 (C-6), 62.0 (C-6'), 54.9 (C-2), 22.6 (CH_3 CONH). ESI-TOFF-MS: m/z 516.2 [M + 1]⁺.

1-[β -D-Galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranosyloxy-5-[β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- α -D-glucopyranosyloxy]-3-oxapentane (29)

Compound 29 was prepared as described for the prepa-

ration of **25**. The yield was 97%; $[\alpha]_D^{25} + 31.8^{\circ}$ (c 0.63, H_2O); ¹H NMR (D_2O): δ 4.82 (d, 1 H, $J_{1,2}$ 3.50 Hz, H_{α} -1), 4.52 (d, 1 H, $J_{1, 2}$ 8.00 Hz, H_{β} -1), 4.41 (d, 2 H, $J_{1', 2'}$ 7.50 Hz, H_{α} -1', H_{β} -1'), 3.94–3.65 (m, 28 H, H_{α} -2, 3, 4, 5, 6a, 6b, H_{α} -4', 5', 6a', 6b', H_{β} -2, 3, 4, 5, 6a, 6b, H_{β} -4', 5', 6a', 6b', CH_2O), 3.61 (dd, 2 H, H_{α} -2', H_{β} -2'), 3.48 (dd, 2 H, H_{α} -3', H_{β} -3'), 1.98 (s, 6 H, 2× NHCOC H_3); ¹³C NMR (D₂O): δ 175.0, 174.9 (2 C, NHCO), 103.4 (C_{α} -1'), 103.2 (C_{β} -1'), 101.6 (C_{β} -1), 97.4 $(C_{\alpha}-1)$, 79.2, 78.9 (2 C, $C_{\alpha}-4$, $C_{\beta}-4$), 75.9, 75.3 (2 C, C_{α} -5', C_{β} -5'), 73.3, 73.0 (2 C, C_{α} -3', C_{β} -3'), 71.5, 71.2 (2 C, C_{α} -2', C_{β} -2'), 70.4, 70.3, 70.2, 69.6, 69.5, 67.4 (6 C, C_{α} -3, C_{β} -3, C_{α} -5, C_{β} -5, $CH_{2}O$), 69.1, 68.9 (2 C, C_{α} -4', C_{β} -4'), 61.6, 60.6 (2 C, C_{α} -6, C_{β} -6), 60.4, 60.3 (2 C, C_{α} -6', C_{β} -6'), 55.6, 53.7 (2 °C, C_{α} -2, C_{β} -2), 22.7, 22.4 (2 C, CH₃CONH). ESI-TOFF-MS: m/z 837.3 [M + 1]⁺.

1-[β -D-Galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranosyloxy-8-[β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- α -D-glucopyranosyloxy]-3,6-dioxaoctane (30)

Compound 30 was prepared as described for the preparation of **25**. The yield was 98%; $[\alpha]_D^{25} + 30.3^{\circ}$ (c 0.66, H_2O); ¹H NMR (D_2O): δ 4.83 (d, 1 H, $J_{1, 2}$ 3.30 Hz, H_{α} -1), 4.53 (d, 1 H, $J_{1, 2}$ 8.00 Hz, H_{β} -1), 4.41 (d, 2 H, $J_{1', 2'}$ 7.50 Hz, H_{α} -1', H_{β} -1'), 3.94–3.65 (m, 28 H, H_{α} -2, 3, 4, 5, 6a, 6b, H_{α} -4', 5', 6a', 6b', H_{β} -2, 3, 4, 5, 6a, 6b, H_{β} -4', 5', 6a', 6b', CH_2O), 3.62 (dd, 2 H, H_{α} -2', H_{β} -2'), 3.49 (dd, 2 H, H_{α} -3', H_{β} -3'), 1.98 (s, 6 H, 2× NHCOC H_3); ¹³C NMR (D₂O): δ 175.1, 174.9 (2 C, NHCO), 103.4 (C_{α} -1'), 103.2 (C_{β} -1'), 101.6 (C_{β} -1), 97.4 $(C_{\alpha}$ -1), 79.2, 78.9 (2 C, C_{α} -4, C_{β} -4), 75.9, 75.3 (2 C, C_{α} -5', C_{β} -5'), 73.3, 73.0 (2 C, C_{α} -3', C_{β} -3'), 71.5, 71.2 (2 C, C_{α} -2', C_{β} -2'), 70.4, 70.2, 70.1, 69.6, 69.5, 67.3, 67.1 (7 C, C_{α} -3, C_{β} -3, C_{α} -5, C_{β} -5, $CH_{2}O$), 69.1, 68.9 (2 C, C_{α} -4', C_{β} -4'), 61.6, 60.6 (2 C, C_{α} -6, C_{β} -6), 60.4, 60.2 (2 C, C_{α} -6', C_{β} -6'), 55.6, 53.7 (2 C, C_{α} -2, C_{β} -2), 22.7, 22.5 (2 C, CH_3CONH). ESI-TOFF-MS: m/z 881.4 [M + 1]⁺.

3-Oxapent-1,5-diyl bis(β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranoside) (31)

Compound **31** was prepared as described for the preparation of **25**. The yield was 94%; $[\alpha]_D^{25} + 26.7^\circ$ (c 1.20, H₂O); ¹H NMR (CD₃OD): δ 4.51 (d, 1 H, $J_{1, 2}$ 8.00 Hz, H-1), 4.38 (d, 1 H, $J_{1, 2}$, 7.50 Hz, H-1'), 3.97–3.48 (m, 16 H, H-2, 3, 4, 5, 6a, 6b, H-2', 3', 4', 5', 6a', 6b', CH₂O), 2.02 (s, 3 H, NHCOC H_3); ¹³C NMR (CD₃OD): δ 174.0 (NHCO), 105.1 (C-1'), 102.6 (C-1), 81.6 (C-4), 77.2 (C-5'), 74.9 (C-3'), 72.6 (C-2'), 72.3, 71.5, 71.2, 70.4 (4 C, C-3, C-5, CH₂O), 68.2 (C-4'), 62.5 (C-6), 62.0 (C-6'), 55.1 (C-2), 22.5 (CH₃CONH). ESI-TOFF-MS: m/z 837.3 [M + 1]⁺.

3,6-Dioxaoct-1,8-diyl bis[β -D-galactopyranosyl-(1 \rightarrow 4)-2-acetamido-2-deoxy- β -D-glucopyranoside] (32)

Compound **32** was prepared as described for the preparation of **25**. The yield was 98%; $[\alpha]_D^{25} + 21.7^\circ$ (c 0.92, H₂O); ¹H NMR (CD₃OD): δ 4.53 (d, 1 H, $J_{1,2}$ 8.00 Hz, H-1), 4.39 (d, 1 H, $J_{1',2'}$ 7.50 Hz, H-1'), 3.96–3.54 (m, 18 H, H-2, 3, 4, 5, 6a, 6b, H-2', 3', 4', 5', 6a', 6b', CH₂O), 1.99 (s, 3 H, NHCOC H_3); ¹³C NMR (CD₃OD): δ 174.2 (NHCO), 104.8 (C-1'), 102.6 (C-1), 81.0 (C-4), 76.9 (C-5'), 74.5 (C-3'), 72.5 (C-2'), 72.2, 71.4, 71.1, 70.1, 69.9 (5 C, C-3, C-5, CH₂O), 68.1 (C-4'), 62.4 (C-6), 61.8 (C-6'), 56.6 (C-2), 23.2 (CH_3 CONH). ESITOFF-MS: m/z 903.3 [M + Na]⁺.

3-Oxapent-1,5-diyl bis[β-D-galactopyranosyl-(1 → 4)-2-acetamido-2-deoxy-α-D-glucopyranoside] (33)

Compound **33** was prepared as described for the preparation of **25**. The yield was 95%; $[\alpha]_D^{25} + 38.7^{\circ}$ (c 1.24, H₂O); ¹H NMR (CD₃OD): δ 4.85 (d, 1 H, $J_{1,2}$ 3.50 Hz, H-1), 4.39 (d, 1 H, $J_{1',2'}$ 7.50 Hz, H-1'), 3.97–3.68 (m, 14 H, H-2, 3, 4, 5, 6a, 6b, H-4', 5', 6a', 6b', CH₂O), 3.62 (dd, 1 H, H-2'), 3.54 (dd, 1 H, H-3'), 2.01 (s, 3 H, NHCOC H_3); ¹³C NMR (CD₃OD): δ 174.0 (NHCO), 104.9 (C-1'), 98.5 (C-1), 81.2 (C-4), 77.0 (C-5'), 74.7 (C-3'), 72.6 (C-2'), 72.2, 71.3, 71.0, 70.2 (4 C, C-3, C-5, CH₂O), 68.1 (C-4'), 62.4 (C-6), 61.8 (C-6'), 54.8 (C-2), 22.8 (CH_3 CONH). ESI-TOFF-MS: m/z 859.3 [M + Na]⁺.

3,6-Dioxaoct-1,8-diyl bis[β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- α -D-glucopyranoside] (34)

Compound **34** was prepared as described for the preparation of **25**. The yield was 93%; $[\alpha]_D^{25} + 55.8^\circ$ (c 0.86, H₂O); ¹H NMR (CD₃OD): δ 4.84 (d, 1 H, $J_{1,2}$ 3.50 Hz, H-1), 4.37 (d, 1 H, $J_{1',2'}$ 7.50 Hz, H-1'), 3.97–3.63 (m, 16 H, H-2, 3, 4, 5, 6a, 6b, H-4', 5', 6a', 6b', CH₂O), 3.55 (dd, 1 H, H-2'), 3.49 (dd, 1 H, H-3'), 1.99 (s, 3 H, NHCOC H_3); ¹³C NMR (CD₃OD): δ 173.5 (NHCO), 105.2 (C-1'), 98.7 (C-1), 81.5 (C-4), 77.2 (C-5'), 75.0 (C-3'), 72.7 (C-2'), 72.3, 71.6, 71.4, 71.2, 70.4 (5 C, C-3, C-5, CH₂O), 68.2 (C-4'), 62.5 (C-6), 62.0 (C-6'), 55.0 (C-2), 22.7 (CH₃CONH). ESI-TOFF-MS: m/z 881.4 [M + 1]⁺.

Acknowledgements

This project was supported by the National Natural Science Foundation of PR China (NSFC) and a grant from the Ministry of Science and Technology of PR China.

References

- (a) Arumugham, R. G.; Hsieh, T. C.-Y.; Tanzer, M. L.; Laine, R. A. *Biochim. Biophys. Acta* 1986, 883, 112–126;
 (b) Yasuro, S.; Yukio, H.; Hanae, K.; Naoto, S. *Glycobiology* 1997, 7, 1201–1208.
- Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244–1251.
- Paulsen, H.; Lorentzen, J. P. Carbohydr. Res. 1984, 133, C1–C4
- Arnap, J.; Lönngren, J. J. Chem. Soc. Perkin Trans. 1 1981, 2070–2074.
- 5. Li, Q.; Li, H.; Cai, M. S.; Li, Z. J.; Zhou, R. L. *Tetrahedron: Asymmetry* **1999**, *10*, 2675–2683.
- Li, Q.; Li, H.; Su, B.; Meng, X. B.; Cai, M. S.; Li, Z. J. J Peking Univ. (Health Sci.) 2001, 33, 270–273.

- 7. Kinzy, W.; Schmidt, R. R. Carbohydr. Res. 1987, 164, 265–276.
- Lemieux, R. U.; Driguez, H. J. Am. Chem. Soc. 1975, 97, 4063–4068.
- Lemieux, R. U.; Driguez, H. J. Am. Chem. Soc. 1975, 97, 4069–4075.
- 10. Lonn, H. Carbohydr. Res. 1985, 139, 105-113.
- 11. Rosen, T.; Lico, I. M.; Chu, D. T. W. *J. Org. Chem.* **1988**, *53*, 1580–1582.
- 12. Jacquient, J.-C. Carbohydr. Res. 1990, 199, 153-181.
- 13. Chen, X. Q.; Yang, X. O.; Pan, G. Z.; Zhu, F. *Aizheng* **1998**, *17*, 477–478.
- (a) Albini, A.; Iwamoto, Y.; Kleinmen, H. K.; Martin, G. R.; Aaronson, S. A.; Kozlowski, J. M.; McEwan, R. N. Cancer Res. 1987, 47, 3239–3245;
 - (b) Lu, Y. Y.; Zhou, R. L. Chin. J. Oncol. **2000**, 22, 287–289.