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We previously observed thatmentalmanipulation of the pitch level or temporal organization ofmelodies results in
functional activation in the human intraparietal sulcus (IPS), a region also associated with visuospatial transforma-
tion and numerical calculation. Two outstanding questions about these musical transformations are whether pitch
and time depend on separate or common processing in IPS, and whether IPS recruitment in melodic tasks varies
depending upon the degree of transformation required (as it does in mental rotation). In the present study we
sought to answer these questions by applying functional magnetic resonance imaging while musicians performed
closelymatchedmental transposition (pitch transformation) andmelody reversal (temporal transformation) tasks.
A voxel-wise conjunction analysis showed that in individual subjects, both tasks activated overlapping regions in
bilateral IPS, suggesting that a common neural substrate subserves both types of mental transformation. Varying
themagnitude of mental pitch transposition resulted in variation of IPS BOLD signal in correlationwith themusical
key-distance of the transposition, but not with the pitch distance, indicating that the cognitive metric relevant for
this type of operation is an abstract one, well described bymusic-theoretic concepts. These findings support a gen-
eral role for the IPS in systematically transforming auditory stimulus representations in a nonspatial context.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Every day, we experiencemany stimuli originating in different senso-
ry contexts. In order to synthesize these inputs for coordinated percep-
tion and action, they often must be transformed in a way that shifts (or
discards) absolute values, while preserving the relevant internal/intrinsic
organization of the information. For example, visuospatial mental trans-
formations, including mental rotation, depend on a network including
the posterior parietal cortex (PPC) (reviewed in Jeannerod et al., 1995;
Zacks, 2008), an area of multimodal association cortex that receives
visual, auditory and tactile information, and is connected with frontal
working memory areas and motor planning centers (Frey et al., 2008;
Lewis and Van Essen, 2000).

People can also manipulate auditory information, such as when
imagining a spoken sentence in different voices, or a tune played with
different instruments. Musicians can execute complex auditory mental
manipulations, such as transposing a tune to a different key or imagin-
ing a piece after undergoing musical variations. Although auditory in-
formation is sent to the PPC (Lewis and Van Essen, 2000), little is
known about the region's role in transforming auditory representations,
especially outside of a spatial context. In two independent recent stud-
ies, we found that that two types of musical mental transformation,

temporal reversal and pitch transposition, each recruit PPC (Foster
and Zatorre, 2010a; Zatorre et al., 2010), despite being neither visual
nor spatial. These results suggested that a common neural substrate in
the intraparietal sulcus (IPS) may subserve systematic transformations
of auditory information.

However, merely observing similar activity is not sufficient to infer
common functionality. Our prior work did not use comparable stimuli
nor test the same participants, thus precluding direct comparison.
Here, we applied functional MRI while musicians performed matched
versions of the twomelodic transformation tasks (inwhich themelodic
materials were identical and only the transformation differed). The
BOLD signal of each individual was examined to determine whether
there was a spatial conjunction between activation on the two tasks.
We predicted that a common region of IPS would be recruited for tem-
poral and pitch transformation.

A second critical aspect here is to test whether IPS activity is specif-
ically linked tomental transformation ormanipulation, and not to other
aspects of the task, such as working memory. Key evidence that the IPS
is involved in transforming stimulus information during visual mental
rotation is that its activity scales as a function of extent of rotation
(Gogos et al., 2010). Thus, we predicted that the degree of musical
transposition would be associated with higher IPS activity.

Finally, examination of how IPS activation changes with the degree
of transposition allows us also to determine the underlying cognitive
metric uponwhich the transformation is effected.Musical transposition
may be thought of in terms of either pitch distance or key distance. The
pitch distance refers simply to the number of semitones bywhich notes
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are shifted. Key distance reflects the harmonic “closeness” of the origin
and destination keys (Krumhansl, 2004). Because key distance more
closely reflects how changes of key are conceived in music theory, we
predicted that key distance, rather than pitch distance, would better ex-
plain any transposition level-dependent IPS BOLD signal.

Methods

Subjects

We recruited 12 healthy, right-handed musicians (8 male; age
20–37, mean 25 years old). A detailed self-reported history of musical
training and other musical experience was obtained from each sub-
ject, including estimates of practice hours per week for each year or
phase of the participant's musical activities. This information was
used to calculate a cumulative measure of hours of musical practice
for each subject. Individuals had a minimum of 7 years of training
(mean 15 years) and cumulative hours of practice ranged from
6600 to 30,000 (mean 17,000 h). All participants gave their informed
consent. Ethical approval was granted by the Montreal Neurological
Institute Ethics Review Board.

Stimuli

Stimuli in the tasks consisted of 5-note diatonic melodies with
pitches between C4 and E7. The melodies were played with a piano
tone sampled from a Steinway Model-C grand piano (http://www.
pianosounds.com/) and rendered from MIDI files using TiMidity++
software (http://timidity.sourceforge.net/). All tones were 320 ms in
duration, equivalent to eighth notes at a tempo of 93.75 beats per
minute. Stimuli were presented binaurally via MRI-compatible head-
phones (MR Confon, Magdeburg, Germany).

Task conditions

During the functional MRI scans, subjects performed three same–
different auditory melodic discrimination conditions: Reversed melo-
dies, Transposed melodies and Control melodies (see example stimuli
in Fig. 1). A temporal reversal of a melody is known in music theory as
a “retrograde” version and is a device sometimes used in musical
composition (Randel and Apel, 1986). Transposition of melodies is
commonly used to accommodate a singer's vocal range or the concert
tuning of an instrument. In musical composition, melodies may be
transposed in an exact or altered form in order to create modulations,
harmonies and call-response patterns (Dowling and Harwood, 1986;
Randel and Apel, 1986).

Both transformation conditions required a comparison between a
sample and a transformed target. Subjects had already practiced these
tasks in our laboratory and achieved a minimum performance criterion
of 65% on each task. The conditions were presented in randomized
10-trial blocks totaling 40 trials each for the Reversed and Control con-
ditions, and 80 trials for the Transposed condition. Individual trials
consisted of two melody presentations. Subjects judged whether the
secondmelodywas an exact transformation of thefirstmelody, then in-
dicated their response with the left or right button of a computer
mouse. Subjects were instructed to make their response as soon as
they heard an alteration, or at the end of the second melody if they
heard no alteration. They received no feedback about their responses.
On half the trials, the pitch of a single note was changed by up to
+/− 4 semitones (median of 1 semitone). The change preserved the
melodic contour (the order of upward and downward pitch movement
in a melody without regard to magnitude).

Control
No transformation was made to the melodies, so that this was a

basic same/different discrimination. The position of the changed

note in the altered melodies varied among the last four notes of the
second sequence. This condition also served as the 0-level for our
parametric analyses of transposition key-distance and pitch-distance.

Reversed
The notes of the second melody were reversed in time, so that the

final note became the first. The position of the changed note in the al-
tered melodies (inexact reversals) varied among the last four notes of
the reversed sequence; i.e. the first note of the reversal was always
identical to the last note of the target, to avoid comparison of just
these two tones in immediate memory.

Transposed
The notes of the second melody were uniformly shifted higher in

pitch by 1, 3, 6, 7 or 12 semitones. The position of the changed note
in the altered melodies (inexact transpositions) varied between the
last two notes of the transposed sequence.

These pitch-distance intervals in the transposition condition
corresponded with the key-distance values shown in Table 1. The
key-distance index is based on a behavioral key proximitymetric devel-
oped by Krumhansl (1990). Krumhansl's subjects rated howwell differ-
ent probe pitches completed an “incomplete” musical scale sequence.
Put together, these measures formed a profile of the stability of pitches
within a given key context. Krumhansl's measure of interkey distance is
then arrived at by calculating the correlation of these pitch rating pro-
files between pairs of keys. This empirical determination of interkey re-
lationships closely replicates the “circle of fifths,” a concept used in
music theory to represent the harmonic closeness of keys (Krumhansl,
1990). To convert Krumhansl's correlations into a distance metric
more easily applicable to our data, we applied a transformation of
KD = (1 − KPC), where KD represents our key-distance index and
KPC is Krumhansl's key profile correlation for a given pair of keys.

These task conditions have origins in earlier studies in our laboratory,
and certain task parameters were changed in the current experiment so
that the conditions would be more closely matched. Changing these pa-
rameters permitted us to use identical melodic materials between the

Fig. 1. Examples of task stimuli and pattern alteration in the control, transposed and
reversed melody conditions. Asterisks indicate pattern alterations.
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three task conditions, such that they only differed in terms of the trans-
formation applied to the secondmelody in each stimulus pair. In the ear-
lier version of the reversal task (Zatorre et al., 2010), the melodies were
familiar tunes, and were also longer (5–8 notes); in the present reversal
task all melodies were novel and 5 notes in duration. In addition, the
baseline condition in the previous study consisted of randomly ordered
notes from the false reversal pattern, whereas in the current study the
baseline condition for both taskswas a same/differentmelody judgment.
In the earlier version of the transposition task (Foster and Zatorre,
2010a), melodies varied between 7 and 10 notes, and the transposition
intervalwas fixed at 4 semitones; in the present experiment all melodies
were 5 notes, and the transposition varied across 5 different intervals.

fMRI protocol

The subjects underwent functional imaging in a 3 Tesla Siemens
Magnetom Trio TIM with a 12-channel head coil. A 1 mm ×
1 mm × 1 mm high resolution T1 anatomical was acquired before the
two functional runs. For functional magnetic resonance imaging (fMRI),
an echo-planar imaging (EPI) T2*-weighted protocol with a voxel size
of 3 mm × 3 mm × 3 mm was used to measure blood oxygenation
level dependent (BOLD) signal. We used a sparse sampling (TR =
9.8 s) paradigm to minimize any BOLD effect or auditory masking due
to MRI scanning noise (Belin et al., 1999; Hall et al., 1999). Correction
for B1 receive field intensity variation was applied using the scanner's
“prescan normalize” feature. Motion correction of the EPI series was
performed in the scanner using a combination of prospective acquisition
correction (PACE) and offline post-processing.

A diagram of the stimulus and scan timing is found in Fig. 2. The
inter-stimulus interval was 1 s. Our intent was to image brain activity
associated with the process of transforming the secondmelody to com-
parewith the first. The timing of stimuli in our experiment ensured that
each fMRI scanwasmost sensitive to the BOLD response during the sec-
ond melody, assuming a delay to the hemodynamic response function
(HRF) peak of about 4 s (Belin et al., 1999). The interval between the
stimuli and the scanwas jittered by+/− 500 ms to optimize our ability
to capture the peak of the hemodynamic response.

Behavioral analysis

Subjects' accuracy in detecting altered melodies was assessed by
signal detection theory, using A, a corrected version by Zhang and
Mueller (2005) of the A′ and A″ non-parametric accuracy measures.
We chose to use a signal detection method so that the index would
not be affected by response bias. We chose a non-parametric index
because some subjects' hit rate on the control task was 1.0, a situation
in which the parametric d′ index is undefined. The A index improves
on the A′method by correctly calculating the average of the minimum
and maximum proper receiver operating characteristic (ROC) curves
that pass through a point defined by a given hit and false-alarm rate
(Zhang and Mueller, 2005). With the present data, we found that
the A index resulted in values very close to the A′ method (mean ab-
solute difference of 0.01, Pearson correlation coefficient of 0.999).

fMRI analyses

BOLD signal images were smoothed using a Gaussian kernel (5-mm
full width half-maximum). These data were statistically analyzed using
fmristat, a suite of Matlab functions that employ the general linear
model to analyze functional imaging data (Worsley et al., 2002). Each
subject run was fit to a linear model that accounted for stimulus condi-
tions set up in a design matrix corresponding to each acquisition, tem-
poral drift and temporally correlated errors. This yielded the effects,
standard deviations and t statistics for each run and for each contrast.
Task-related BOLD contrasts were performed using only images from
trials inwhich the subjectmade a correct response, to allow comparison
across tasks that differed in overall performance level. Before group sta-
tistical maps for each contrast of interest were generated, in-house soft-
ware was used to non-linearly transform each subject's anatomical and
functional images into standardized MNI/ICBM stereotaxic coordinate
space, using the non-linearly transformed, symmetric MNI/ICBM 152
template (Collins et al., 1994; Mazziotta et al., 2001; Talairach and
Tournoux, 1988).

Statistical thresholds for whole-brain analyses were calculated
based on random field theory (Worsley et al., 1996) using the
stat_threshold program from the fmristat suite; random field theory
corrects for multiple comparisons by taking into acount correlations
among nearby voxels due to spatial smoothness in the data (e.g.,
from the Gaussian blurring kernel). For individual within-subject
analyses, a whole-brain corrected P b 0.05 threshold of t > 4.97 was
used; for group contrasts, this threshold was t > 5.42.

For effects predicted in the IPS region identified in our previous
studies (Foster and Zatorre, 2010a; Zatorre et al., 2010), we applied an
uncorrected threshold of P b 0.005: for within-subject analyses, this
corresponded to a threshold of t > 2.61 (140 degrees of freedom),
and for group analyses, this corresponded to t > 2.63 (100 degrees of
freedom).

Conjunctions within the IPS region were performed by taking the
voxel-wise minimum t value across conjoined analyses. The conjunc-
tion results were then tested against the “conjunction null hypothesis”,

Table 1
Correspondence of pitch distance and key distance values for
the transposition levels that were tested. A pitch distance of
0 represents no transposition; this case was tested by the con-
trol task. A pitch distance of 12 denotes an octave transposi-
tion, which is equivalent to 0 change in key distance. Key
distance is computed based on empirical perceptual data
from Krumhansl (1990).

Pitch distance Key distance

0 0.000
1 1.500
3 1.105
6 1.683
7 0.409
12 0.000

Fig. 2. Timeline of events during each fMRI trial. The target auditory pattern is followed by a comparison pattern that is an exact transformation (or in the control condition, iden-
tical melody), or an altered transformation of the target, and listeners make an exact/altered judgment. Participants are instructed to respond as soon as they hear an alteration, or
immediately following the second melody if they hear no alteration.
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which entailed using the same critical t-value determined for single
analyses (as above) to determine whether there was significant neural
activity across all the conjoined conditions (Nichols et al., 2005).

Results

Behavioral

Subject performance varied significantly among the conditions
(Fig. 3A, P b 0.001, F(2,22) = 30.95, ANOVA). The differences in overall
performance presumably reflect different levels of difficulty depending
on the nature of themental transformation required in each task. Perfor-
mance on the Transposed condition varied significantly depending on
the transposition level (P b 0.001, F(5,55) = 7.31, ANOVA). Fig. 3B
shows subject accuracy on each transposition level, plotted separately

based on the pitch distance and key distance of the transposition. Across
subjects, key distance was significantly correlated with discrimination
accuracy, whereas there was no correlation between pitch distance and
accuracy (key distance, Pearson r = −0.46, P b 0.0001; pitch distance,
r = 0.05, P = 0.66).

Task-related BOLD signal

Contrasting the Reversed condition with the Control task revealed
significant bilateral clusters of BOLD signal increase in the predicted
area of anterior IPS (Fig. 4B; Table 2). Other clusters of significant in-
crease were found in the supplementary motor area. No other areas
met the significance threshold at the whole-brain level.

For the Transposed task, contrasting with the Control task revealed
significant bilateral clusters of BOLD signal increase in the predicted

BA

Fig. 3. Behavioral performance on the control, transposed, and reversedmelody conditions. Accuracywas calculated using A, a non-parametric signal detection index (Zhang andMueller,
2005). Error bars represent standard error of the mean. (A) Mean performance across subjects on each task. Asterisks mark significant differences at P b 0.01. (B) Transposition
level-dependent accuracy across subjects. Accuracy was calculated at each transposition level, and is plotted separately vs. the key-distance index (left) and pitch distance (right). The
data point for 0 key distance in the left plot includes data fromboth the 0 and 12pitch distances (refer to Table 1 for the relationship betweenkey distance and pitch distance). The Pearson
correlation between distance and accuracy is indicated on each plot.

A B C D E

Fig. 4. BOLD activity related to mental melody transformation. (A) and (E) show results previously obtained for mental reversal (panel A; from Zatorre et al., 2010) and mental transpo-
sition (panel E; from Foster and Zatorre, 2010a). (B) and (D) showBOLD signal increases from the present study in IPS formelody judgments whenmental reversal ormental pitch trans-
position are required. The baseline condition in both cases is a matchedmelody judgment that does not require any mental transformation. Panel (C) shows the average of 10 individual
per-subject conjunctions between the reversal and transposition conditions. These conjunctionswere calculated as the voxel-wiseminimum t value between the reversed-minus-control
and transposed-minus-control contrasts in each subject.
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area of anterior IPS (Fig. 4D; Table 2 lists the most highly significant
peaks that were more than 15 mm apart). No clusters were significant
in non-predicted brain areas.

In order to test whether regions of IPS are activated in common be-
tween the mental Reversal and Transposition, we first selected those
subjectswhohad significant IPS activation in both of themental transfor-
mation conditions (contrasting with the Control task). The 10 subjects
meeting this criterion were then included in a per-subject conjunction
analysis between the task contrasts. (The aim of the individual conjunc-
tion analyseswas to exclude the possibility that each person has spatially
distinct areas of activity in the two tasks, that when averaged across sub-
jects then appear to overlap.) Nine of the 10 subjects yielded a significant
conjunction in IPS (Fig. 5).We then performed a group average across all

of the individual conjunction analyses to determine if the conjunction re-
sults were spatially consistent across individuals. This analysis revealed
significant effects in bilateral IPS (Fig. 4C; Table 2). Outside the IPS, the
most consistent activations in both conditions were found in pre-SMA
(significant in the Reversed condition; Table 2) and in bilateral inferior
frontal sulcus adjacent to BA 44/45 (not significant). Shading is used in
Figs. 5 and 6 to indicate that only effectswithin the IPS can be interpreted
at the a priori statistical threshold.

BOLD signal related to transposition magnitude

In a previous study, we found that activation of the right IPS positively
correlated with individual performance on the Transposed task on a
subject-by-subject basis (Foster andZatorre, 2010a). In the current exper-
iment wewanted to test whether IPS recruitment varies with the level of
melodic transpositionwithin subjects. We examined this question in two
ways: first, by testing for BOLD signal covariationwith the empirically de-
termined difficulty of five different melodic transposition levels; and sec-
ond, by examining BOLD signal correspondence with two musically
relevant parameters of transposition: pitch distance and key distance.

In order to find difficulty-related effects, we took the overall accuracy
at each transposition level (pooling trials across all subjects) and
performed a BOLD correlation analysis in all 12 subjects to test whether
greater difficulty (calculated via 1—accuracy) on the task is associated
with greater activation in the IPS. Only BOLD values from correct trials
were used; this was essential to ensure that any detected effects
represented correct mental transformation across all difficulty levels.
We found several significant peaks in the BOLD-difficulty correlation in
bilateral IPS (Fig. 6A; Table 3).

To test for a relationship between BOLD signal and both key- and
pitch-distance, we performed a trial-wise parametric analysis of the
Transposed task using data from all 12 subjects, in which both the
key distance and pitch distance of the transposition intervalwere entered
as separate parameters in the regression analysis. The zero-transposition
level (i.e. the control condition) was included so that we could dissociate
the key distance and pitch distance parameters (therewas no correlation

Table 2
Coordinates of the most significant peak BOLD increases in the Reversed condition
(top), Transposed condition (middle), and the average of subject conjunctions be-
tween Reversed and Transposed (bottom). All coordinates are listed as mm in MNI
(ICBM-152) space. Significance: (**) indicates P b 0.0001 (uncorrected) in a priori re-
gions (intraparietal sulcus), and (***) indicates P b 0.05 (corrected) anywhere in the
brain. When peaks were closer than 15 mm only the most significant peak is reported.

Analysis Region x y z T Sig.

Reversed > Control Intraparietal sulcus 38 −78 38 4.72 **
Intraparietal sulcus −38 −78 36 4.13 **
Intraparietal sulcus 24 −66 50 4.70 **
Intraparietal sulcus −30 −52 44 4.68 **
Intraparietal sulcus −44 −46 56 4.36 **
Intraparietal sulcus 44 −42 52 5.48 ***
Pre-supplementary
motor area

−4 20 56 5.71 ***

Transposed > Control Intraparietal sulcus −32 −58 50 4.29 **
Intraparietal sulcus −50 −44 58 4.38 **
Intraparietal sulcus 42 −44 58 3.95 **

Conjunction (Rev > Ctrl,
Transp > Ctrl)

Intraparietal sulcus −30 −58 50 4.56 **
Intraparietal sulcus 44 −46 56 4.56 **
Pre-supplementary
motor area

0 30 42 5.05 **

Fig. 5. Individual subject BOLD activity showing overlap of effect between mental reversal and mental transposition of melodies within IPS. Of the 10 subjects who had significant
activation on the two tasks, 9 showed a significant conjunction in IPS in one or both hemispheres. Where subjects had a significant conjunction in both hemispheres they are shown
together, otherwise only the relevant hemisphere is shown. Shaded areas are non-IPS regions that fall outside of the analyses.
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between the two: Pearson's r = −0.30, P = 0.56, n = 6). No effect of
pitch distance was seen in the IPS. In contrast, for key distance, several
peaks around t ~ −3 were found in the right IPS at locations similar to
those found in the transposition difficulty analysis (Fig. 6B; Table 3).

Outside the IPS region, we found effects having similar T values in
left middle temporal gyrus, right precentral gyrus, left inferior frontal
sulcus and left supplementary area in the BOLD-difficulty analysis, and

in left superior parietal lobule in the key distance analysis; however,
only effects within the IPS can be interpreted at the a priori statistical
threshold.

Given the similarity of IPS activation effects among all 4 of the above
analyses, we performed a final conjunction of the task analyses across all
subjects to determine whether transposition level-dependent activation
overlaps with task-related activation on the reversed and transposed
tasks.We found a significant conjunction among the 4 results in bilateral
IPS (Fig. 6C; Table 3).

Discussion

Our goal was to determine whether mental reversal of melodic se-
quences, a manipulation of temporal order, engages similar parietal
regions as mental transposition, a manipulation of pitch height. Com-
paring each condition to the same control task, we found activation in
bilateral intraparietal sulcus (IPS) for both types of mental transfor-
mation (Fig. 4). A voxel-wise conjunction analysis found common
foci for reversal and transposition within nine of the ten subjects
who exhibited significant activation on both tasks (Fig. 5). The
within-subject conjunction analyses confirmed that voxel-wise over-
lap in IPS activation between transformation tasks is not an artifact of
subject averaging. BOLD signal variation across transposition trials
was explained by the key-wise (musical) distance of the transposi-
tion interval, but not by the pitch-distance.

A B C

Fig. 6. Transposition level-related effects and overall conjunction of mental-transformation related BOLD activity in IPS. Shaded areas are non-IPS regions that fall outside of the
analyses. (A) IPS BOLD signal correlation with transposition task difficulty (1—accuracy) across 5 levels of pitch transposition (B) IPS BOLD signal correlation with transposition
key-distance for the same 5 levels of pitch transposition (see Methods for a description of the key-distance index). (C) 4-way conjunction between the mental reversal task contrast
(Fig. 4B), mental transposition contrast (Fig. 4D), transposition difficulty correlation (Fig. 6A), and transposition key-distance correlation (Fig. 6B) analyses. The voxel-wise conjunc-
tion demonstrates that the transposition-level dependent effects overlap with the common area of IPS activation for mental reversal and transposition shown in Fig. 4C.

Table 3
Coordinates of the most significant peak BOLD signal correlation with transposition dif-
ficulty (top), transposition key-distance (middle), and a 4-way conjunction between
BOLD activation in the reversal task, activation in the transposition task, correlation
with transposition difficulty, and transposition key-distance (bottom). All coordinates
are listed as mm in MNI (ICBM-152) space. Significance: (*) indicates P b 0.005
(uncorrected) in a priori predicted regions (intraparietal sulcus) for the 4-way con-
junction, and (**) indicates P b 0.0001 (uncorrected) in a priori regions (intraparietal
sulcus). When peaks were closer than 15 mm only the most significant peak is
reported.

Analysis Region x y z t Sig.

Correlation with transposition
difficulty

Intraparietal
sulcus

38 −62 46 3.95 **

Correlation with transposition
key distance

Intraparietal
sulcus

32 −60 42 3.89 **

Conjunction
(Rev > Ctrl, Transp > Ctrl,
Transp Difficulty, Transp Key)

Intraparietal
sulcus

−32 −60 56 2.82 *

40 −50 48 2.69 *
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Convergence of results

Although both involve musical sequences, the two types of mental
transformation are quite different. In transposition, the pitch of each
tone is changed by a constant musical interval. In reversal, the pitches
are not altered, but their order is changed. Given these differences, an al-
ternative hypothesis, that the two operations might engage IPS but in
spatially distinct subregions, would also have been reasonable. Electro-
physiological studies of transformational operations (e.g., visuomotor
planning or orientation judgment) in the macaque suggest that the IPS
exhibits regional heterogeneity in input modality, cell tuning patterns,
and task recruitment (Grefkes and Fink, 2005). Spatial distinctions with-
in IPS have also been reported in human fMRI data as a function of task
demands (Culham and Kanwisher, 2001). Given this, it is likely that
some IPS recruitment is particular to either temporal (reversal) or
pitch (transposition) transformation,whereas a subset of activity, as sup-
ported by the conjunction analysis, serves common aspects of the tasks.
We would also note that with the present data we can only say that the
two tasks recruit common IPS areas within the limits of resolution im-
posed by fMRI. Thus, the possibility that these tasks engage adjacent
IPS areas cannot be discounted. However, the close spatial proximity
across tasks most likely does reflect some common operation within
the IPS.

As shown in Fig. 4, these findings correspond closely with our previ-
ous studies ofmentalmelody reversal (Zatorre et al., 2010) andmelodic
transposition (Foster and Zatorre, 2010a). However, in those studies,
the materials used were quite different in terms of melody duration, fa-
miliarity, and timbre; here the conditions were matched by using iden-
tical materials for both tasks. That the overall pattern of IPS activation
remains the same under the different conditions in three studies sup-
ports the conclusion that a mental transformation operation is indeed
reflected in increased IPS activation. In another previous study (Foster
and Zatorre, 2010b) we found that proficiency on the transposedmelo-
dy task is associated with greater cortical thickness and gray matter
concentration in IPS. The location of this anatomical effect lies very
close to the current functional findings. Taken together, the four data
sets converge to indicate that functional and structural properties of
the IPS are implicated in these auditory transformations.

The role of the IPS in transforming information

The pattern of IPS activation during mental melody transformation
is similar to activations reported for other types of mental transforma-
tion, such as visual mental rotation, quantitative calculation, and
visually-guided manual tasks (e.g. Alivisatos and Petrides, 1997; Frey
et al., 2005; Harris et al., 2000; Ischebeck et al., 2006; Kong et al.,
2005). In neuroimaging studies ofmental rotation, the IPS is consistent-
ly recruited (e.g. Alivisatos and Petrides, 1997; Gogos et al., 2010; Harris
et al., 2000; Jordan et al., 2001), and lesions of PPC are also known to im-
pair mental rotation ability (Ditunno and Mann, 1990; Mehta and
Newcombe, 1991). Parametric variation of rotation angle results in
greater IPS activation for larger angles (Gogos et al., 2010). The bilateral
regions of IPS activation reported for mental rotation are close to areas
activated during mental melody transformation, suggesting that trans-
formation of melodic sequences, albeit not explicitly spatial, may en-
gage the same or similar neural networks as those involved in visual
transformations.

Dual-stream models of auditory and visual processing consider the
PPC an important stage in the “dorsal stream,” connecting lower-level
sensory regions with motor response regions (Goodale and Milner,
1992; Rauschecker and Tian, 2000). Several regions of IPS have been de-
fined for visuomotor processes in themonkey based on functional roles
in actions such as eye saccades, reaching and grasping (Cohen and
Andersen, 2002; Culham and Kanwisher, 2001; Grefkes and Fink,
2005). In humans, the importance of IPS for visuomotor control has
been demonstrated in paradigms such as joystick control of on-screen

objects, pantomimed grasping of objects, and pointing to objects in
varying locations (Chaminade and Decety, 2002; Simon et al., 2002).

There is controversy, however, about whether the auditory dorsal
stream is intrinsically spatial in nature (Belin and Zatorre, 2000;
Rauschecker and Scott, 2009; Warren et al., 2005). A recent
reformulation of the auditory dual-stream model (Rauschecker and
Scott, 2009) incorporates the theory of internal models (Kawato, 1999)
to account for both spatial and non-spatial roles for the dorsal stream.
One implication of this view is that the dorsal stream may be better de-
fined by the types of operations it performs upon information rather
than the types of information represented per se (Belin and Zatorre,
2000). Our data help to clarify this theoretical question. We do not
claim that there is a specialized area within IPS for musical manipula-
tions per se. Rather, although some degree of regional specialization is
evident within human IPS, the overlap in task-related activation indi-
cates that common task demands, such as transformation, may be
performed in a modality-independent manner. The PPC receives multi-
ple sensory inputs (Frey et al., 2008; Schroeder and Foxe, 2002), so the
IPS is well suited for general manipulations of represented information.
Therefore, our findings are consistent with the view that the IPS has
the capacity to systematically transform auditory, visual and tactile rep-
resentations, even when the information is not explicitly spatial in
nature.

The IPS also has an important role inmental calculation such as sub-
traction and multiplication (Delazer et al., 2003; Ischebeck et al., 2006;
Kong et al., 2005). Similar to angle-dependent activation inmental rota-
tion, calculations involving larger quantities result in greater activation
of IPS (Stanescu-Cosson et al., 2000). Therefore one property of parietal
transformation operations is that more difficult manipulations result in
greater IPS activity. In accord with these findings, we observed that
more difficult levels of transposition resulted in greater IPS recruitment
(Fig. 6) in the present study; note that this effectwas seenwhen analyz-
ing only data from correct trials, indicating that the pattern reflects de-
gree of mental transformation, rather than some non-specific effect of
task success.

IPS activation is often seen in attentionally demanding auditory
tasks (e.g., Binder et al., 1997; Pugh et al., 1996), so it is important to dis-
tinguish more general difficulty- or attention-related effects vs. activa-
tion related to specific aspects of the task such as transformation.
Although the control task in the present study does not permit us to
make this distinction, we found in a previous study that IPS activation
duringmental transposition is not explained by a general effect of diffi-
culty (Foster and Zatorre, 2010a). Briefly, several auditory pattern dis-
crimination tasks were matched in structure and task instructions,
differing only in whether participants had to discern an alteration in
pitch, time or phoneme syllable. Additionally, only one of the tasks in-
volved mental transformation (pitch transposition). BOLD signal in IPS
was related to task performance in the pitch transposition condition
only. When we looked at how BOLD signal varied within each subject
based on task difficulty itself, BOLD signal was not greater in IPS for
the task each subject individually found most difficult. Thus, rather
than being related to a more general aspect of difficulty in such tasks,
i.e. detecting alterations in sound patterns, these previous data suggest
that IPS activation is linked to something specific about the transposi-
tion task. The present results provide further support for the interpreta-
tion that IPS activation during mental transposition reflects the
difficulty of the mental transformation operation per se.

The mental representation of transposition

Varying the transposition interval resulted in differences in per-
formance accuracy (Fig. 3) as well BOLD signal level in bilateral IPS
(Fig. 6). The covariation of IPS activation with transposition difficulty
provides further evidence that recruitment of this region is directly
related to mental transposition. Examining the relationship between
IPS activation and transposition level can also help to understand
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the frame of reference or cognitive metric upon which the mental
transposition operates. The simplest model would be that mental
transposition proceeds as a function of the pitch interval; this model
predicts greater IPS recruitment for larger pitch distances. Consider-
ing that tonotopy is a ubiquitous feature of auditory functional orga-
nization, if pitch relationships followed this principle they would be
organized in a monotonic fashion, such that pitch transformations
would map onto brain activity according to the distance between
the fundamental frequencies of the relevant tones. An alternative,
more in keeping with music cognition (Dowling and Harwood,
1986) and music-theoretic models (Krumhansl, 2004), is that trans-
position depends on harmonic relationships between keys. According
to this model (see Table 1), the cognitive “distance” between two
melodies would depend on the number of shared tones in their un-
derlying musical scales, a concept described in music theory by the
so-called circle of fifths. Thus, melodies that are transposed, for exam-
ple, by seven semitones (corresponding to the interval of a fifth) are
considered closely related because they share many scale tones (e.g.
the keys of C and G), whereas two melodies at a smaller distance,
such as one semitone, are distantly related because they share few
scale tones (e.g. the scales of C and C#). This key-distance model
would predict greater IPS recruitment for transpositions between
more harmonically dissimilar keys, the metric for which can be em-
pirically derived from perceptual data (Krumhansl, 1990).

We did not observe any significant correlation of IPS BOLD signal
with pitch distance; in contrast the key-distance parameter produced
strong correlations in left and right IPS (Fig. 6B). Moreover, these
peaks were in essentially the same locations as the transposition
difficulty-related peaks (Fig. 6A). Therefore, mental transposition ap-
pears to rely upon key-centered coordinate frames, where transfor-
mation to more distant keys is more difficult because it is less
harmonically related, and hence requires additional processing in
IPS. This imaging result is consistent with behavioral performance
on the transposition task, where accuracy across different transposi-
tion levels was more highly correlated with key distance than pitch
distance (Fig. 3). These findings demonstrate that an abstract concept
derived initially from music theory—key distance—has a physical in-
stantiation in neural operations carried out within the IPS.

Whereas the relevant dimension for mental transposition seems
to be key distance, in the reversal condition the transformation is
upon time, i.e. the temporal order of notes. Hence our results show
that the IPS is involved in manipulating melodic information based
upon both temporal and more abstract, cognitively based frames of
reference. The temporal dimension is present in auditory representa-
tions from early stages of processing; however, it is unknown where
pitch sequences become transformed into key-centered representa-
tions. Processing of some higher-level auditory features occurs in re-
gions adjacent to core auditory cortex, and this is believed to include
contour extraction and local (note-wise) interval processing (Stewart
et al., 2008; Zatorre, 1985). However, given the well-known role of
PPC in visuomotor and visuospatial transformations across different
reference frames, it seems more likely that the IPS is involved as
part of an interactive network including feedforward and feedback
loops to sensory cortical areas (Rauschecker and Scott, 2009).

Conclusions

We show the specific involvement of IPS in transforming melodic
information for both temporal and pitch-based transformations. This pat-
tern of results bears a strong similarity to visuospatial transformation-
related activation, both in terms of the anatomical location and the
dependence of activation level upon transformation level. These find-
ings therefore support an interpretation of dorsal stream processing in
terms of the type of operations it performs rather than the nature of
the information represented, and show that such operations can be
performed over abstract cognitive frames of reference.
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