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DYNAMICS OF A THREE SPECIES COMPETITION MODEL

Yuan Lou

Daniel Munther

ABSTRACT. We investigate the dynamics of a three species competition model, 
in which all species have the same population dynamics but distinct dispersal 
strategies. Gejji et al. [15] introduced a general dispersal strategy for two 
species, termed as an ideal free pair in this paper, which can result in the ideal 
free distributions of two competing species at equilibrium. We show that if one 
of the three species adopts a dispersal strategy which produces the ideal free 
distribution, then none of the other two species can persist if they do not form 
an ideal free pair. We also show that if two species form an ideal free pair, then 
the third species in general can not invade. When none of the three species 
is adopting a dispersal strategy which can produce the ideal free distribution, 
we find some class of resource functions such that three species competing for 
the same resource can be ecologically permanent by using distinct dispersal 
strategies.

1. Introduction. Understanding the dynamics of interacting species has always 
been an important subject in population dynamics. For systems consisting of mul
tiple competing species, of great interest are issues that concern competitive exclu
sion and the coexistence of species. In recent years many studies have considered 
the role of spatial movement of organisms on the persistence of interacting species 
[6, 26, 27, 30, 32]. In this article we shall address the following question of Chris 
Cosner [9]: in a spatially heterogeneous environment, can three competing species 
with the same population dynamics coexist, via different dispersal strategies? In 
order to give some context for Cosner's question, we provide a brief review of previ
ous works on two competing species, starting with the work of Dockery et al. [12], 
in which they considered the following model for two competing species:
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Here u(x, t) and υ(x, t) account for the densities of two competing species at location 
x and time t, μ, v correspond to their random diffusion rates, and Δ := ΣNi= 1 a2/ax2i
denotes the Laplace operator in the Euclidean space RN . The function m(x) repre-
sents the intrinsic growth rate of both species at location x and is always assumed 
to be non-constant to reflect the spatial heterogeneity of the habitat (e.g., hetero
geneous spatial distribution of resources and predation rates). The habitat Ω is 
a bounded domain in RN with smooth boundary aΩ. The vector n denotes the 
outward unit normal vector on aΩ, and the boundary conditions in (1.1) mean that 
there is no net flux of population across the boundary.

Dockery et al. [12] showed that if both species disperse by random diffusion, 
then the slower diffusing species will drive the faster diffusing species to extinction. 
In terms of the persistence theory, this result implies that in a spatially varying 
but temporally constant environment, two competing species with the same popu
lation dynamics but different random diffusion rates cannot coexist. Hastings [19] 
suggested that environmental cues can have important effect on the evolution of dis
persal strategy for species. Following the work of Belgacem and Cosner [3], Cantrell 
et al. [7] extended model (1.1) by adding an advection term for species u as follows:

where α > 0 is the advection rate of species u, which measures the tendency of the 
species u to move upward along the gradient of rn. The following result is proved 
in [7]:

Theorem 1.1. [7] Suppose that m ∈ C2(Ω), lΏm > 0, the set of critical points 
of m has Lebesque measure zero, and m has at least one isolated global maximum. 
Then for every μ > 0 and v > 0, there exists some positive constant a* such that 
for a > a*, system (1.2) has at least one stable positive steady state.

Theorem 1.1 says that as long as species u has sufficiently large advection, both 
species can persist within the habitat. Cantrell et al. [7] suggested that such 
a coexistence result is possible because species u concentrates primarily on the 
local maxima of m, leaving enough resources in other locations for the species υ to 
utilize. Chen and Lou [10] demonstrated that for appropriate m with a unique local 
maximum in Ω, species u with large advection is concentrated at this maximum as 
a Gaussian distribution. When m has multiple local maxima, Lam and Ni [24] 
and Lam [22, 23] recently completely determined the profiles of all positive steady 
states of (1.2). These works illustrate a general mechanism for the coexistence of 
two competing species with the same population dynamics but different dispersal 
strategies.

In another closely related direction, Cantrell et al. [8] observed that the influence 
of spatial resource variability on the competition of species is linked to the fact that 
diffusion generally produces a mismatch between population density and the quality 
of the environment. Is it possible to find dispersal mechanisms that can produce a 
perfect match of the population density with the environment? To this end, they



generalized model (1.2) as

Here P(x), Q(x) ∈ C2(Ω) provide advective directions for the respective species 
as well as regulate their speeds in such directions. This generalization allows for 
the possibility that populations can “match environmental quality perfectly”. In 
particular, consider the single species equation for u in (1.3) (i.e. set v = 0), if 
P = ln m, then u* = m is always a positive steady state. Note that the net flux 
for species u satisfies Vu* — u*V(ln m) = 0 in Ω and the fitness of species u is 
equilibrated throughout Ω: m∕u* ≡ 1. A population exhibiting such a spatial 
distribution is said to have an ideal free distribution [13]. That is, the density of 
species u at any location x ∈ Ω is proportional to the habitat quality m(x). In this 
context, we shall refer P = ln m as an ideal free dispersal strategy. Furthermore, 
Cantrell et al. [8] demonstrated that selection favors this ideal free dispersal strategy 
as it can beat any other “nearby” strategy. In [8] they conjectured that the ideal 
free dispersal strategy should be a global evolutionary stable strategy. Averill et al. 
[1] recently proved this conjecture in the following result.

Theorem 1.2. [1] Suppose that m is a positive, non-constant function and m ∈ 
C2(Ω). If P = ln m and Q — In m is non-constant, then (m, 0) is a globally asymp
totically stable steady state of (1.3) among initial data that are nonnegative and not 
identically zero.

Theorem 1.2 says that if species u plays the ideal free strategy and species v does 
not play an ideal free dispersal strategy, then species u always drives v to extinction. 
This means that if one of P — ln m and Q — ln m is a constant function, then we 
cannot expect the coexistence of these two species. Is coexistence possible if neither 
P — ln m nor Q — ln m is constant? To address this question, we consider the case 
that P = ln m + αR and Q = ln m + βR, where R(x) ∈ C2(Ω) and α,β ∈ R. Note 
that α = 0 and β = 0 correspond to ideal free dispersal strategies for species u 
and υ, respectively. With such assumptions on P and Q, Cantrell et al. [8] showed 
that as long as αβ < 0, coexistence is always possible provided that μ = v, Ω is 
an interval and Rx ≠ 0 in Ω. Recently Averill et al. [1] generalized this result of 
Cantrell et al. as follows:

Theorem 1.3. [1] Suppose that P(x) = ln m + aP, Q(x) = ln m + βR and R ∈ 
C2(Ω) is non-constant. If αβ < 0, then system (1.3) has at least one stable positive 
steady state.

Note that in Theorem 1.3 neither species plays the ideal free dispersal strategy 
because α ≠ 0 and β ≠ 0. The spirit of Theorem 1.3 is the same as that of Theorem 
1.1. Consider Fig. 1. We call species υ in Fig. 1 a specialist as it pursues resources 
near the maxima of the resource function. In contrast, we call species u in Fig. 1 
a generalist since it also makes use of resources away from such maxima. Theorem 
1.3 demonstrates that generalist and specialist can persist together.

Can two generalists or two specialists coexist? If both species act as generalists or 
specialists, when the resource function is monotone, the following result of Cantrell 
et al. [8] suggests that they can not coexist. Let (u*,0) and (0, υ*) denote the two 
semi-trivial steady states of system (1.3).



FIGURE 1. Illustration of Theorem 1.3: R = ln m, Graphs of m = 
sin(2.1πx — π∕4) + 2 (black) and both species at equilibrium: u (red), υ 
(green), μ = v = 1, α = -0.5, β = 4.

Theorem 1.4. [8] Suppose that μ = v, P{x) = ln m + aR, Q(x) = ln m + βR., 
Ω = (0,1), and Rx ≠ 0 in [0,1]. If a < β < 0 or 0 < β < a, then (u*, 0) is unstable 
and (0, v*) is stable. Moreover, given any η > 0, there exists κ > 0 such that if 
either (i) α,β ϵ [-n, 0] and 0<β-α<κ or (ii) α, β ∈ [0, η] and -κ < β — a < 0, 
then (0,v*) is globally asymptotically stable.

Theorem 1.4 as well as results in [15] (Theorems 4, 7, 8 and numerical results 
there) indicate that when species use similar strategies (i.e. a and β are close to 
each other), system (1.3) generally exhibits competitive exclusion. Surprisingly, 
Theorem 1.4 fails for some non-monotone function It. For any function to > 0 in 
Ω, we place the following condition on R:
(Al) There exists some x0 ∈ Ω such that x0 is local maximum of R(x) and R(x0) < 
lΏm2R∕lΏm2.

Since lΏ m2R.∕lΏ m2 < maxΏ R, we see that x0 in assumption (Al) can not be 
a global maximum of R. This implies that any function R satisfying (A1) has at 
least two local maxima.

Theorem 1.5. [1] Suppose that R satisfies assumption (Al) and all critical points 
of R are non-degenerate. Assume P(x) = ln m + αR and Q(x) = ln m + βR. Then 
there exists some α0 > 0 such that for every a ∈ (O,α0), we can find some μ0 > 0 
such that if μ > μ0, then given any v> 0, both (u*,0) and (0,υ*) are unstable for 
sufficiently large β and system (1.3) has at least one stable positive steady state.

Theorem 1.5 demonstrates that for this new range of a and β both species act as 
specialists and they both can persist. While this seems to contradict the principle 
of competitive exclusion, as both species tend to purse locally the most favorable 
resources, Averill et al. [1] proposed that “if resource functions have two or more 
local maxima, the resident species at equilibrium may undermatch its resource 
at some local maximum of the resource, which makes it vulnerable to invasion by 
other species near such local maxima.” Numerical simulations in [15] have indicated 
that this in effect leads to the species with the larger advection concentrating at 
some local (but not the global) maximum while the species with less advection 
concentrates at the global maximum. Biologically, this can be regarded as niche 
differentiation or niche separation as each species carves out a niche near different



maximum of the resource. It seems a bit mysterious that it is the species with less 
advection, not the one with the larger advection, which concentrates at the global 
maximum of m.

To summarize the parameter ranges of α and β for the coexistence of two species, 
we see two possibilities:

1. for any resource J? ∈ C2(Ω), when aβ < 0 (generalist vs. specialist)
2. for R satisfying (Al), with α positive small and β sufficiently large (specialist 

vs. specialist).
It is an open problem whether two generalists can coexist with each other.

2. Main results. We now move into the three species realm. Can we establish 
results for three competing species similar to those for two species? For example, 
can two specialists and one generalist persist? If one of the species adopting ideal 
free dispersal strategy while other species do not, do we expect to see competitive 
exclusion? To address these questions, one serious mathematical difficulty immedi
ately emerges. It is well known that systems of three competing species, unlike the 
two species competition model, are not monotone dynamical systems. To overcome 
this difficulty, we rely on two different methods, namely, the Lyapunov functional 
method (for competition exclusion) and “practical persistence” (for permanence) 
as described in [5].

We consider the following three species model:

where species w has diffusion rate y > 0, and L(x) ∈ C2(Ω).
First, we aim to generalize Theorem 1.2 to (2.1). In view of Theorem 1.2, it is 

tempting to propose the following:
Conjecture. If P — ln m is constant, Q — ln m is non-constant, and L — ln m is 
non-constant, the steady state (m, 0,0) of system (2.1) is globally asymptotically 
stable for initial data that are non-negative and not identically zero.

It turns out that this conjecture is false. To see this, assume that P = ln m. Let 
r be any constant in (0,1) and let Q be any function satisfying (1 — r)to > eQ, and 
Q — ln to is non-constant in Ω. Set L = ln[(l — r)m — eQ], i.e., (1 — r)to = eQ + eL 
in Ω. Then (u,v,w) = (rm,eQ,eL) is always a positive steady state of (2.1). In 
particular, the steady state (m, 0,0) of system (2.1) cannot be globally stable. This 
example implies that the conjecture needs to be modified. In this connection, we 
first define an ideal free pair for species υ and w as follows:

Definition 2.1. We say that Q and L form an ideal free pair if there exist non-
negative constants τ and η such that τeQ(x)> + ηeL(x) = m(x) in Ω.

Note that if Q and L form an ideal fee pair, then (u, v, w) = (0, τeQ(x), neL(x) is 
a non-negative and non-trivial steady state of (2.1) such that m—u—v—w ≡ 0 in Ω. 
Furthermore, the net fluxes for both species v and w at this equilibrium are equal to 
zero. In other words, a consequence of an ideal free pair for two competing species 
is that the spatial distributions of both species at equilibrium are ideal free; See 
[15]. If one of the two coefficients τ and η is equal to zero, say τ = 0, then L — ln m



is equal to some constant. Hence, an ideal free pair is a natural generalization of 
the ideal free distribution from a single species to two species.

We now generalize Theorem 1.2 to system (2.1).

Theorem 2.2. Suppose that m is positive in Ω and non-constant, P — ln m is 
constant, and Q and L do not form an ideal free pair. Then u(x,t) → m(x), 
υ(x, t) → 0 and w(x, t) → 0 in L∞(Ω) as t → ∞.

Theorem 2.2 says that the species playing the ideal free dispersal strategy (i.e., 
P = ln m up to a constant) will be the sole winner as long as the other two species 
do not form an ideal free pair. Continuing along this line of thought, we ask: 
suppose that two species adopt an ideal free pair dispersal strategy, can a third 
species invade? The answer in general is no, as shown by the following result.

Theorem 2.3. Suppose that m is positive and non-constant, and P and Q form 
an ideal free pair such that τep(x) + neQ(x) = m(x) in Ω for some positive constants 
τ,η. If neither P and L nor Q and L form an ideal free pair, then (u,v,w) → 
(τeP(x), ηeQ(x), 0) in L∞(Ώ) as t → ∞.

Biologically, Theorem 2.3 implies that species w will be driven to extinction by 
species u and v.

Summarizing these results for three species, we see that under the hypotheses 
of Theorems 2.2 and 2.3, three species cannot coexist. For two species we see that 
one generalist and one specialist can always coexist, and for some non-monotone 
resource functions, two specialists can also coexist. Is it possible for two specialists 
and one generalist to coexist? Interestingly, we can show that this is possible. To 
this end, we consider the following three species model:

Here we only study the case that the third competitor w moves via random diffusion. 
For species u and v, we assume that R = ln m, so that P = ln m + αR and 
Q = ln m + βR become P = (1 + α)hiTO and Q = (1 + β) ln m, respectively. 
Replacing 1 + α and 1 + β with a and β, respectively, we obtain the advective 
strategies, P = αln m and Q = β ln m.

As R is now a function of to, our goal is to find resource functions to and move
ment parameters (μ, α, v, β, y) such that the permanence of three species is possible. 
In [6], Cantrell and Cosner describe permanence as “a qualitative criterion for ad
dressing the qualitative issue of whether a model for interacting biological species 
predicts the coexistence of all the species in question.” Practically, they say that 
“permanence in a model system for the densities of a collection of interacting species 
means the system possesses both an asymptotic ‘ceiling’ and a positive asymptotic 
‘floor’ on the densities of all the species in question, the ‘heights’ of which are in
dependent of the initial state of the system so long as each component is positive” 
[6]. Working from such a description, we utilize the following definition of ecological 
permanence as presented in [6].

Definition 2.4. The system (2.2) is ecologically permanent, if there exist numbers 
K,k > 0 with k < K such that if (u(x, t), v(x, t), w(x, t)) is a solution to (2.2)



with nonnegative and not identically zero initial data, then there is a T0 > 0 which 
depends only on the initial condition such that k < u(x,t) ≤ K, k < υ(x,t) < K, 
and k ≤ w(x, t) ≤ K for all x ∈ Ω and all t ≥ T0.

To establish the permanence of system (2.2), we rely on the following crucial 
assumption on m:
(A2) There exists some x0 ∈ Ω such that x0 is local maximum of m(x) and

We shall give some intuitive interpretation of (2.3) after the statement of the 
following result on the permanence of three competing species:

Theorem 2.5. Suppose that m > 0, to ∈ C2(Ω), all critical points of m are non-
degenerate, and it satisfies (A2). There exists some sufficiently large constant μ 
such that for any μ > μ, there exists some constant a. > 1 and close to 1 such that 
for every 1 < α < a and v, y > 0, there exists some sufficiently large constant β 
such that if β > β, system (2.2) is ecologically permanent. Furthermore, system 
(2.2) has at least one positive steady state.

From Theorem 1.3 we see that if α > 1, system (2.2) always has a steady state 
of the form (u, 0, w), where u and w are positive in Ω. In order for the species υ to 
invade when rare, since species υ has a strong tendency to concentrate at the local 
maxima of to, it is crucial that the growth rate of υ, given by m — u — w, is strictly 
positive at some local maximum of to. If the inequalities in (2.3) are violated at 
each local maximum of to, it might cause m — u — w to be negative at each local 
maximum of to and thus prevent the species υ to invade when rare. Biologically, 
species u and v both have an established niche as u concentrates near the global 
maximum of to and υ concentrates near some local maximum of to. Species w, on 
the other hand, has a more evenly spread distribution. In short, we may say that u 
pursues the “best” resource, v pursues the “second best” resource, and w goes after 
the “rest” of the resource (see Figure 2).

The rest of the paper is organized as follows: In Sect. 3 we establish Theorems 
2.2 and 2.3. Sections 4-6 are devoted to the proofs of the uniform lower bounds of 
three species, respectively, among which the lower bound of species v is the most 
technical and is thus postponed to Sect. 6. The proof of Theorem 2.5 will be 
completed in Sect. 7.

3. Competitive exclusion. We first briefly discuss the well-posedness of the 
reaction-diffusion-advection model (2.1). We rewrite (2.1) as

where u = ue-p, v = ve-Q and w = we-L in Ω. By the maximum principle 
for parabolic equations [28], if the initial data (u(x, 0), υ(x, 0), w(x, 0)) of (2.1) are 
nonnegative and not identically zero, then u(x, t),v(x, t),w(x, t) > 0 for every a: ∈ Ω 
and t > 0. Hence, u(x, t), υ(x, t),w(x, t) > 0 for every x ∈ Ω and t > 0. Similarly by 
the maximum principle we can show a priori that u, v, and w are uniformly bounded



FIGURE 2. Illustration of Theorem 2.5: Graphs of m = 3e -50 (x -2)2 + 
1.7e-40(x-.8)2 + .2 (black) and three species at equilibrium: u (red), v 
(green), w (blue), μ = 1000, v = 10, α = 4, β = 80, y = .05.

in L∞(Ω) norm for all t > 0. By the regularity theory of parabolic partial differential 
equations [14], u,υ, and w exist for all time and belong to C2,1(Ω × (0,∞)). Using 
the theory of analytic semi-groups and parabolic partial differential equations, we 
can recast system (2.1) as a dynamical system ∏[(u0, υ0. w0), t] defined on the space 
[C(Ω)]3, where ∏[(u0, υ0, w0), t] denotes the unique solution (u(x,t),υ(x,t),w(x,t)) 
to (2.1) such that (u(x, 0), υ(x, 0), w(x, 0)) = (u0,υ0,ιυ0) [6].

3.1. LaSalle’s invariance principle. Let (B,p) be a complete metric space and 
{S(t),t ≥ 0} : B → B be a dynamical system on B. For any x ϵ B, the positive 
trajectory of x is defined as 7(x) := {S,(t)x∣t ≥ 0}. We say that x is a ω-limit point of 
y(x0) if there exist tn > 0, tn → ∞ as n → ∞ such that limn→∞ p(S(tn)x0, x) = 0. 
We say that V is a Lyapunov functional on a set G in B if V is continuous in G 
(the closure of G) and for every x ∈ G,

We will make use of the following version of LaSalle’s invariance principle for 
infinite dimensional systems [17].

Theorem 3.1. Let V be a Lyapunov function in G, where G is a subset of B. 
Define M := {x∣x ∈ G,V(x) = 0}. Let M' be the maximal invariant subset of M
(i.e., M' is the union of all invariant subsets of M). Suppose that x0 ∈ G, y(x0) 
belongs to G and is contained in a compact subset of B. Then, the set of ω-limit 
points of x0 is contained in M' and ρ(S(t)x0, M') → 0 as t → ∞.



3.2. Proof of Theorem 2.2. Set B := [C(Ω)]3. For any (u,v,w) ∈ B with u > 0 
in Ω, define E : B → R as

We first establish some a priori estimates for positive solutions of (2.1).

Lemma 3.2. For any solution (u(x,t),υ(x,t),w(x,t)) of (2.1), if P — ln m is con- 
stant, then

Proof. Integrating the equations of u, υ, and w in Ω and then summing up the 
results, we get

Next,

Integrating by parts, we see that

Hence, we have our result.

Next we show that u has a positive uniform lower bound in Ω.

Lemma 3.3. There exists some positive constant C, depending only on m, Ω, N, 
││u(∙,θ)││L∞(Ω), ││v (∙,θ)││L∞(Ω), and ││w(∙,0)││l∞(ω), such that infΏ u(x, t) ≥ C for 
all t > 1.

Proof. By Lemma 3.2, E(u(x, t),v(x, t), w(x, t)) ≤ E(u(x, 0), υ(x, 0), w(x, 0)) for all 
t > 0. By the maximum principle, we know that u, υ, and w are strictly positive 
and also uniformly bounded above for any t ≥ 0 and x∈ Ω. Hence,

for some constant C1 and t ≥ 0. Therefore for any t ≥ 0,

Set u(x,t) = mψ(x,t). Then ψ satisfies

where c(x, t) = m - (u + v + w) is uniformly bounded for x and t ≥ 0. By Theorem 
2.5 in [21], we have that infx∈Ώ ψ(x,t) ≥  C2 supxϵΏ ψ(x, t) for t ≥ 1, where C2 
is a positive constant. Hence, infx∈Ώ u(x, t) > C3 supxϵΏ u(x, t) for t ≥ 1, where 
C3 = C2 minΏ m∣ maxΏ m. This together with (3.6) imply that minΏ u(x,t) ≥ C4 
for t > 1 and some constant C4 > 0. □



For any χ > 0, set G = {(u, v, w) ∈ B : u > 0 in Ω, E(u, υ, w) < E(m, 0, 0) + χ}. 
For any (u(x, 0), υ(x, 0), w(x, 0)) ∈ G, by Lemma 3.2, E(u(x, t),υ(x,t), w(x,t)) ≤ 
E(u(x, 0), υ(x, 0), w(x, 0)). Hence, (u(x, t), υ(x, t), w(x, t)) ∈ G for any t > 0. De- 
fine S(t)(u(x,0),v(x,0),w(x,0)) := (u(x,t),v(x,t),w(x,t)). Lemmas 3.2 and 3.3 
allow us to conclude that E is a Lyapunov function on G. Next, we establish that 
the largest invariant subset of M is a singleton.

Lemma 3.4. Suppose that m(x) is positive in Ω and non-constant, P — ln m, is 
constant, and Q and L do not form an ideal free pair. Then the largest invariant 
subset M' consists of only {(m, 0, 0)}.

Proof. Note that d/dt E(u(∙, t0),v(∙, t0), w(·, t0)) = 0 for some t0 if and only if u(x,t)/m(x) is
constant and m(x) = u(x,t0) + υ(x,t0) + w(x,t0) on Ω. Hence, M is given by M:= 
{(u,υ,w) ∈ G : u = κm, u + υ + w ≡ m} . Suppose that (u(x, 0), υ(x, 0), w(x, 0)) ∈ 
M'. Then, (u(x, t), υ(x, t), w(x, t)) ∈ M for every t > 0, i.e., u(x,t) = κ(t)m(x) 
and u(x, t) + v(x, t) + w(x, t) ≡ m(x). Since u(x, t) + v(x, t) + w(x, t) ≡ m(x), we 
see that (u, υ, w) satisfies

Substituting u(x,t) = κ(t)m(x) into the first equation of (3.8), by P = ln m we 
find k'(t) = 0. Hence, κ is a constant. It is easy to see that (υ(x, t), w(x, t)) → 
(c2eQ(x), c3eL(x)) as t → ∞ for some non-negative constants C2,C3. Passing to the 
limit in m(x) = u(x,t)+v(x,t)+w(x,t), we get C2eQ(x) +c3eL(x) = (1—κ)m)x). As Q 
and L do not form an ideal free pair, it must be the case that κ = 1 and c2 = c3 = 0. 
Therefore, u(x,t) = m(x). Since m(x) = u(x,t) + υ(x,t) + w(x,t) and v and w are 
non-negative, υ = w = 0. Thus, (u(x, t), υ(x, t), w(x, t)) = (m(x),0,0). □

Proof of Theorem 2.2. In order to apply Theorem 3.1, we need to show that the 
solution trajectories of (2.1) are pre-compact in B. Given any δ > 0, there exists 
constants τ ∈ (0,1) and C* > 0 such that

where ui, = u,v and w, respectively (See [29]). Since χ > 0 is arbitrary, Theorem 
2.2 thus follows from Theorem 3.1. □

3.3. Proof of Theorem 2.3. For any (u, v, w) ∈ B with u > 0 and υ > 0 in Ω, 
define

We first show that d/dt E ≤ 0 along solution trajectories.



Lemma 3.5. For any solution (u(x,f),υ(x,f),w(x,t)) of (2.1), if P and Q form 
an ideal free pair, then

Proof. Integrating the equations of u, v, and w and then summing gives

Next, using integration by parts, we see that

and

Combining equations (3.11), (3.12), and (3.13) and using the fact that P and Q 
form an ideal free pair, i.e., τep + ηeQ = m(x), we obtain the desired result. □ 

Next, we demonstrate that both u and υ have uniform positive lower bounds.

Lemma 3.6. There exists some positive constant D, depending only on m(x), 
P(x), Q(x), Ω, N, ││u(∙,0)││l∞(ω), ││υ(∙, 0)||L∞(ω), and ││w(; 0)||L∞(Ω), such that 
infΏ u(x,t) ≥ D for all t ≥ 1.

Proof. Lemma 3.5 implies that E(u(x, t), υ(x, t), w(x, t)) < E(u(x, 0), υ(x, 0), w(x, 0)) 
for all t > 0. By the maximum principle, we know that u, v, and w are uniformly 
bounded above, which means that

for some constant D1 and t ≥ 0. Again, since υ is uniformly bounded above,

for some constant D2. Now set u = ψep. Then ψ satisfies

where c(x,t) = ep[m-u-υ-w] is uniformly bounded for x and t > 0. By Theorem 
2.5 in [21], we have that infxϵΏ ψ(x,t) ≥ D3 supxϵΏ ψ(x, t) for t ≥ 1, where D3 is a 
positive constant. Hence, infxϵΏ u(x,t) ≥ D4 supxϵΏ u(x, t) for t ≥ 1, where D4 = 
D3 minΩ ep ∕ maxΏ ep. This together with (3.15) implies that minΩ u(x, t) ≥ D4 for 
t>l and some constant D4 >0. □

Lemma 3.7. There exists some positive constant D*, depending only on m(x), 
P(x), Q(x), Ω, N, ||u(·,0)||L∞(Ω), ∣∣v(∙, 0)||L∞(Ω), and ∣∣w(∙, 0)||L∞(Ω), such that 
infΩ v(x, t) ≥ D* for all t ≥ 1.

Proof. Similar to the proof of Lemma 3.6. □



Lemma 3.8. Suppose that m is positive and non-constant in Ω, (P, Q) form an 
ideal free pair such that τep(x) + ηeQ(x) = m(x) in Ω for some positive constants 
τ,η, and either P — ln m or Q — ln m is non-constant. Also suppose that (P, L) do 
not form an ideal free pair and (Q, L) do not form an ideal free pair. Then the 
largest invariant subset M' consists of only {(τep,ηeQ, 0)}.

Proof. Note that d/dt E(u(∙, t0), v(∙, t0), w(∙, t0)) = 0 for some t0 if and only if u(x, 
t0)e-p is constant, υ(x, t0)e-Q is constant and m(x) = u(x, t0)+v(x, t0)+w(x, t0) on 
Ω. Hence, the set M is given by M := {(u, v, w) ϵ G : u = τ1ep, υ = n1eQ,m ≡ u +v
+w}. Suppose that (u(x, 0), v(x, 0), w(x, 0)) ∈ M'. Then (u(x,t),v(x,t),w(x,t)) ∈ 

M, i.e. u(x,t) = t1(t)eP(x) , v(x,t) = η1(t)eQ(x) , m(x) = u(x,t) + v(x,t) + w(x,t). 
Substituting these equations into the equation for u we get t1(t) = 0, i.e., τ1 is a 
constant. Similarly, we see that n1 must also be a nonnegative constant. Because 
m(x) = u(x, t) + υ(x, i) + w(x, t) and w → c3eL for some non-negative constant C3 
as t → ∞, we have that m(x) = τ1ep + η1eQ + c3eL.

We aim to show that τ1 = τ, n1= n and c3 = 0. To do this, we first suppose that 
T1,η1,c3 > 0. Using the fact that τep + nep = m(x), we have

We claim that t1 ≠ τ and n1 ≠ η. First we show that t1 ≠ τ, arguing by 
contradiction. If not, suppose that t1 = τ. Then (n — n1)eQ = c3eL. Since 
(n — n1) must be positive as c3 > 0, eQ = c3 ∕(n — n1 )eL. Substituting this into 
τep + ηeQ = m(x), we have τep + nc3/(n-n1) eL = m(x). However, this contradicts 
our assumption that (P, L) do not form an ideal free pair. Thus, t1 ≠ τ. Similarly, 
we can show that n1 ≠ n.

By (3.17), we have

Substituting this expression into τep + neQ = m(x) yields

Since (Q, L) is not an ideal free pair, we have either τ-τι < 0 or (τn1-τ1n)(τ-τ1) < 
0. Note that τη1 — τ1η ≠ 0: if it is, then from (3.18) we see that (Q, L) is an ideal 
free pair. Therefore, there are two possibilities: (i) τ — t1 < 0 or (ii) τn1 — τ1η < 0 
and τ — t1 > 0.

Similarly, we have

Because (P, L) is not an ideal free pair, as above, we see that there are two possi
bilities: (iii) n — n1 < 0 or (iv) nt1 — η1t < 0 and n — n1 > 0.

In summary, we must rule out four cases:
Case 1: (i) and (iii) hold, τ — τ1 < 0 and n — n1 <0. From (3.17) we see this is 

not possible.
Case 2: (i) and (iv) hold, τ-t1 < 0, ητ1-n1τ < 0 and n —n1 > 0. But t-τ1 < 0 

and n — n1 >0, imply that nt1 > n1τ which is a contradiction.
Case 3: (ii) and (iii) hold. τη1 -τ1n < 0, τ-t1 >0 and n — n1 < 0. By τ-t1 > 0 

and η — n1 < 0, we see that tn1 — τ1n > 0, which is a contradiction.
Case 4: (ii) and (iv) hold. Again this is a contradiction since nt1 — n1t < 0 and 

tn1 — τ1η < 0 cannot hold simultaneously.



Thus, we see that at least one of τ1,η1 and c3 must be zero. If τ1 = 0, then 
because m(x) = τ1e p + n1eQ + c3eL we see that (Q,L) form an ideal free pair 
contrary to our assumptions. If n1 = 0, then we see that (P, L) form an ideal free 
pair which contradicts our assumptions. Therefore, it must be the case that C3 = 0, 
and both τι,n1 >0. With this in mind, (3.17) becomes (τ — τ1)ep + (n — η1)eQ = 0. 
Suppose that τ — t1 ≠ 0. Then we have ep = (n1 — n) ∕ (τ — τ1)eQ. Substituting 
the expression for ep into m(x) = τep + ηeQ, gives us m(x) = κ1eQ, where κ1 = 
τ(n1 - n)∕(t - t1) + n > 0. Thus, Q — ln m is a constant. This fact together with 
m(x) = τep + ηeQ implies that P — ln m is also constant. But this contradicts 
our assumptions on P and Q. Therefore, τ = t1. Similarly, we show that n = n1. 
Putting our results together gives us that u(x,t) = τep and υ(x,t) = ηeQ. Since 
m(x) = u(x,t) + υ(x,t) + w(x,i) and w(x, t) is nonnegative, w(x,t) = 0. Thus we 
have that (u(x, t), υ(x, t), w(x, t)) = (τep, ηeQ, 0). □

As in the proof of Theorem 2.2, the solution trajectories of (2.1) are pre-compact. 
Combining the lemmas in this subsection allows us to apply Theorem 3.1 and com
plete the proof of Theorem 2.3.

4. Lower bound for species w. The goal of this section is to establish

Theorem 4.1. Let w be the last component of any positive solution (u,v,w) of 
(2.2). Suppose that the set of critical points of m has Lebesgue measure zero. Then 
for any μ, v, y > 0 and any α > 1, there is some β1 such that for all β > β1 , we 
can find some δ1 > 0 such that for all x ∈ Ω, lim inft→o∞ w(x,t) > δ1.

Let u* denote the unique positive solution of

The existence and uniqueness of u* is well-known as we are assuming m > 0 on 
Ω [6]. Clearly, when a = 1, then u* = m. The following result illustrates some 
interesting properties of u* when α ≠ 1.

Lemma 4.2. Suppose that m is strictly positive in Ω and nonconstant. Then for 
every a > 1, ∫Ώu* < ∫, m; for every a ∈ [0,1), ∫ω u* > ∫ω m.

Proof. Rewrite the equation of u* as

(u*/mα) 1∕(α-1)Multiplying (4.2) by (u*/mα)1/a-1) and integrating the result in Ω we have



Hence,

We first claim that if α ≠ 1,

It suffices to show that u*∕mα is non-constant. We argue by contradiction. 
Suppose that u*∕mα is constant, then from (4.2), we see that u* = m. This implies 
that m∕mα is a constant. Since a ≠ 1 we must have that m is constant, which is a 
contradiction.

To complete the proof, we consider two cases:
Case 1. α > 1. For this case, (m - u*) [mα/(α-1) — (u*)α/(α-1)] ≥ 0 in Ω. This 

together with (4.3) and (4.4) imply that if a > 1, then ∫Ώ(m — u*) > 0.
Case 2. α < 1. For this case, (m — u*)[mα∕(α-1) — (u*)α∕(α-1)] ≤ 0 in Ω. This 

together with (4.3) and (4.4) imply that ∫Ώ(m — u*) < 0, as long as a < 1. □

Remark 1. For α = 0, it was shown in [25] that ∫Ώu* > ∫Ώm. Lemma 4.2 is a 
generalization of this earlier result.

Lemma 4.3. Let u be a positive solution of

Then u(x,t) → u*(x) uniformly as t → ∞, where u* satisfies (4.1).

Proof. See [6] for details. □

Similarly, we have the following result.

Lemma 4.4. Let v be a positive solution of

Then v(x,t) → υ*(x) uniformly as t → ∞, where v* is the unique positive steady 
state of (4.6).

Using Lemmas 4.3, 4.4, and comparison of solutions, we state the following in
equalities.

Corollary 1. Let (u,v,w) be any positive solution of (2.2). Then lim supt→∞ u(x, t) 
≤  u* and lim supt→∞ v(x,t) ≤ v*. In particular, for each β, there is a T := T(β) > 
0 such that if t ≥ T, u(x,t) ≤ u* + 1∕β and v(x,t) ≤ v* + 1∕ β on Ω.



Proof of Theorem 4.1. From (2.2) we see that w is a super-solution to the 
following equation:

where β > 0 will be chosen larger later. By Lemma 4.2, if we assume a > 1, then 
∫ω u* < ∫ω m. By Theorem 3.5 in [7] we see that as β —> ∞, ∫Ώ v* → 0. Hence, we 
can choose β > β1 such that

We claim w → w* uniformly as t → ∞, where w* is the unique positive solution 
of the equation

Since ∫Ώ(m — u* — v* — 2∕β) > 0, the zero steady state of (4.8) is unstable, thus 
w* exists for all y, and w → w* uniformly as t → ∞ [6]. By Corollary 1, w is 
super-solution of (4.7), that is, for all t ≥ T(β), w(x, t) ≥ w(x,t) on Ω. Finally, 
because w → w* uniformly, we can choose δ1 = minΏ w* to conclude that for all 
x ∈ Ω, lim inft→∞ w(x, t) ≥ δ1 > 0. □

5. Lower bound for species u. The goal of this section is to establish

Theorem 5.1. Suppose that m is positive and the set {x ∈ Ω : ∣Vm(x)∣ = 0} has 
Lebesgue measure zero. Let u be the first component of any positive solution (u, v, w) 
of (2.2). Then for any μ, v, and y > 0 and for any a > 1, there exists a β2 such 
that for all β > β2 , there is a δ2 > 0 such that for all x ∈ Ω, lim inft→∞ u(x, t) ≥ δ2

Proof. To show this, we consider the following equations of u and w (coming from 
(2.2)):

By Corollary 1, v(x,t) ≤ υ*(x) + 1/β for t ≥ T(β). Hence we see that

Thus we are led to consider the following system:

Put y = [u∕mα). Then (5.3) becomes



We first note that (5.4) is a strongly monotone dynamical system (by Theorem 
1.20 in [6] and the strong maximum principle). We claim that the semi-trivial steady 
state (0,w*) of (5.4) is unstable. Upon showing this, by the monotone dynamical 
system theory [20, 31], any solution with nonnegative initial data will either be 
attracted to (y*,0), where y* > 0 in Ω, or an order interval bounded above and 
below by positive equilibria of (5.4). In any case, there exists a δ > 0 such that for all 
x ∈ Ω and t > T2, where T2 depends on the initial conditions and β, y(x, t) ≥ δ > 0. 
Since y = u∕mα and infΏ mα > 0, there exists a δ2 >0 such that for all x ∈ Ω 
and t > T2, u(x,t) > δ2 . Since u(x,t) ≥ u(x,t) on Ω and for t > T2, we see that 
lim inft→∞ u(x, t) ≥ δ2 > 0∙

To show that (0, w*) is unstable, we consider the following eigenvalue problem:

where λ1 denotes the smallest eigenvalue of (5.5) and ψ is a positive eigenfunction 
associated to λ1. Dividing (5.5) by ψ and integrating the resulting equation over 
Ω, we obtain

Also note that w* satisfies

If we multiply (5.7) by (w*)α-1 and integrate the resulting equation over Ω we 
have that

Combining (5.6) and (5.8), we get

Since 7 > 0, α > 1, and w* > 0 on Ω, we notice that

where equality holds if and only if both w* and ψ are constant functions. Now 
notice that [mα — (w*)α](m — w*) ≥ 0 in Ω with equality if and only if m = w*. 
Hence ∫Ώ[mα — (w*)α](m — w*) = 0 if and only if m ≡ w* in Ω. We claim that 
∫Ώ[mα — (w*)α](m — w*) > 0. To see this, suppose that m ≡ w* in Ω. Then m must 
satisfy equation (5.7) and by the maximum principle, m ≡ constant in Ω. This is



a contradiction and thus ∫Ώ[mα - (w*)α](m — w*) > 0. By Theorem 3.5 in [7] we 
know that as β → ∞, ∫Ώv* → 0. Hence for large enough β,

From (5.11) we have that λ1 < 0, proving that (0,w*) is unstable. □

6. Lower bound for species υ. This is the most technical part of the paper. 
As we mentioned earlier, we work with non-monotone functions m that satisfy 
assumption (A2), looking for parameter values that cause species u to concentrate 
at the global maximum of m, species υ to concentrate at the local maximum of m 
at xo, and species w to pursue resources away from these maxima. However, for 
v to be able to concentrate at some x0 and persist, its growth rate (2.2) near x0 
needs to be positive. That is, we need m(x) — u(x) — w(x) > 0 in a neighborhood 
of x0, where (u, 0,w) is a steady state of the three species model (2.2) with u > 0 
and w > 0 in Ω. So we first seek to understand the structure of the solution set 
(u,w) as we vary the advection parameter α near α = 1.

6.1. Structure of positive steady states for two species model. Consider 
the following two species model (this is steady state problem for system (2.2) with 
υ = 0 and α = 1 + ϵ):

We note that for a > 1, there exists at least one steady state (u, w) of system 
(6.1) where both u and w are positive in Ω (see Theorem 1.4 in [1]). We also know 
that when α = 1 that (m, 0) is a solution of (6.1). Essentially, we will show that for 
α slightly larger than 1, system (6.1) has a unique branch of positive steady states 
bifurcating from (m, 0) at α = 1.

Let u = u/m1+ϵ Then (u, w) satisfies

Note that (6.2) can be written as

We begin by defining a map F : (—r,r) x Cn2,τ(Ω) x Cn2,τ(Ω) → Cτ(Ω) x Cτ(Ω) 
for some τ ∈ (0,1) and r > 0, where Cn2,t(Ω) = {f ∈ C2,τ(Ω) : ▼f n|aΏ = 0}, by



Now F(e, ue,0) = 0, where (ue,0) satisfies (6.3). In particular, note that u0 = 1, so 
F(0,1,0) = 0. Next define a map F with the same domain and target spaces as F 
but with formula

Then F(e, 0,0) = 0 for ϵ ∈ (—r, r) and we note that

Because we want to understand the solution structure of F(e,u, w) = 0 near 
(0,0,0), we make use of the following result from the bifurcation theory.

Theorem 6.1. [11] Suppose that F(e, 0) = 0 for all e∈R, dim Ker(Fy(ϵ0, 0)) = 
codim Range(Fy(ϵ0, 0)) = 1, F ∈ C2(V × U), where 0 ∈ U is an open set of a 
Banach space and ϵ0 ∈ V is an open set of R, Ker(Fy∣(ϵo 0)) = span {v0}, and 
Fyϵ(ϵo, 0)v0 ϵ Range(Fy(ϵ0, 0)). Then there is a non-trivial continuously differen
tiable curve through (∈0,0), {(e(s), x(s)) : s ∈ (—δ, δ), (ϵ(0), x(0)) = (∈0,0)}, such 
that F(ϵ(s), x(s)) = 0 for s ∈ (-δ,δ), and all solutions of(ϵ, x) = 0 in a neighbor
hood of(ϵ0,0) are on the trivial solution line or on the curve (e(s),x(s)).

We establish several lemmas which show that F as defined in (6.4) satisfies the 
hypotheses of Theorem 6.1. Differentiating F with respect to (u, w) and evaluating 
the derivative at (ϵ, 0,0) gives us

Recall u0 = 1 and let £ϵ = £ when ϵ = 0. Put X = Cn2,τ(Ω) x Cn2,τ(Ω). Given 
any vector (φ, ψ) ∈ X we have

Lemma 6.2. Aer(£) = span (φ, 1), where φ is the unique solution of

Proof. Let (φ,ψ) ∈ Ker(£). Then y∆ψ = 0 in Ω with ▼ψ n∣aΏ = 0. Hence, ψ≡ 
constant in Ω. Note that if ψ = 0 in Ω, then φ = 0 as well. To see this, we multiply 
the equation of φ by mφ and integrate by parts to obtain

This implies that φ ≡ 0 in Ω. Hence, 'ψ is a non-zero constant. Normalizing ψ, 
substituting it into the equation for φ (from the definition of £) and multiplying by 
m we have

μ▼ ∙ [m▼φ] — m2φ = m  in Ω, ∖▼φ ∙ n∣aΏ = 0. (6.7)
We claim that the operator S : Cn2,τ(Ω) → Ctn(Ω), defined by S(φ) = μ▼  

∣[m▼φ] — m2φ is invertible. To prove this, we note that the principal eigenvalue λ



of S satisfies μ▼  [m▼ϕ] — m2ϕ = -λϕ in Ω where ▼ϕ ∙ n∣aΏ = 0 and φ > 0 in Ω. 
Multiplying the equation of φ by φ and integrating by parts, we see that λ satisfies

Thus we have that λ > 0, indicating that S is invertible. Taking φ = S -1(m) we 
complete the proof. □

Lemma 6.3. Range(£) = {(f,g) ∈ Cτ(Ω) x Cτ(Ω) : ∫Ώg = 0} and hence is of co
dimension 1 in Cτ (Ω) × Cτ(Ω).

Proof. It is well-known that y∆ψ = g has a solution ψ ∈ W1,2(Ω) where ▼ψ∙n∣aΩ = 
0 if and only if ∫Ώ g = 0. By elliptic regularity and the Sobolev embedding theorem 
[16], we see that ψ ∈ C2,τ(Ω). Using a similar argument as in the proof of Lemma 
6.2, namely the invertibility of 5, we justify the existence of φ ∈ C2,τ(Ω), such that 
μ∆φ + μ▼ ln m▼φ — mφ — ψ = f in Ω with ▼φ ∙ n∣aΏ = 0. To see that Range(£) 
is of co-dimension 1, we note that (f, g) = (f, g - 1/∣Ώ∣ ∫ω g) + (0, 1/∣Ώ∣ ∫ω g). □

Note that by the implicit function theorem uϵ is a differentiable function of e 
near 0 (see Section 3.4 in [6]). Using this fact, we can justify the computation that

where u'ϵ = d/dϵ(uϵ). Evaluating at ϵ = 0, we have

Since the kernel of £ is spanned by one vector, we want to show that De£(φ,1) 
ϵ Range (£). Since

we want that

To check this integral, we first need an expression for u'0. Because u is a dif
ferentiable function of ϵ, we consider its first order expansion at 0, i.e., uϵ = 
1 + eu'0 + O(ϵ2). Plugging in such an expression into system (6.3) (here w = 0), we 
have that u'0 satisfies:

We have the following result.

Lemma 6.4. Let u1 denote the unique solution of

Suppose m is nonconstant. Then mu1 < 0.



Proof. We first show that ∫Ώmu1eu1 < 0. Notice that if we multiply (6.10) by 
eu1 ∕m and integrate the resulting equation in Ω, we see that

where the last inequality is strict since u1 — ln m is nonconstant as m is nonconstant. 
To complete the proof of the lemma, it suffices to show that ∫Ωmu1 ≤ ∫Ωmu1eu1. 
To this end, for every p ∈ R, define

Since h'(p) = ∫Ωmu21pu1 ≥ 0, we see that h(l) ≥ h(0). This completes the 
proof. □

We notice that u'0 = u1 — ln m. Hence, Lemma 6.4 gives us that

and we see that Dϵ£(φ, 1) ϵ Range(£), allowing us to use Theorem 6.1. We can 
then parameterize u, w, and e for small s by the following:

where both ψ and τ are at least of order s2. Recall that Ker(£) is spanned by (φ, 1). 
We claim that e and s are of the same order and sign. We proceed to show this by 
first expanding e(s) = λ(0) + sλ'(0) + O(s2) = sλ'(0) + O(s2) (here λ(0) = 0 since 
ϵ(0) = 0). Now we substitute the expressions in (6.11) and the expansion for e in 
terms of s, back into the equation F = 0 and calculate the first and second order 
terms in s. Doing so gives us the following equation in Ω

From (6.12) we have the following equation:

Thus if we integrate both sides of (6.13), letting s → 0 and using the fact that 
▼w  n∣aΩ = 0, we obtain

By Lemma 6.4 we see that the denominator of (6.14) must be negative. We claim 
that the numerator of (6.14) is negative as well.



Lemma 6.5. For any μ > 0, ∫Ω(mφ + 1) > 0.

Proof. To see this, recall that φ satisfies (6.5). If we multiply (6.5) by mφ and 
integrate the result in Ω, we have

So, we have that

where strict inequality holds as φ is nonconstant. □

By Lemmas 6.4 and 6.5 we see that both the numerator and the denominator of 
(6.14) must be negative. Hence, λ'(0) > 0 and for both s and e small,

Noticing that u = m1+ϵ(u + uϵ), we have demonstrated that we can parameterize 
the positive solution (u, w) of system (6.1) in terms of ϵ as follows:

Theorem 6.6. Let (u,w) be a positive solution pair of system (6.1). Then for 
sufficiently small e,

where Ʌ = l∕λ'(0).

The next two results establish the fact that for a slightly larger than 1, the 
only positive solutions (u, w) of (6.1) are on the solution branch bifurcating from 
(m, 0) as described by Theorem 6.1. This completes the global picture for positive 
solutions of (6.1) for α slightly larger than 1. In fact, (6.1) has no positive solutions 
for α ≤1 and close to 1.

Lemma 6.7. Consider a positive solution (u,w) to (6.1). Then limϵ→0+(u, w) = 
(m, 0).

Proof By elliptic regularity and the Sobolev embedding theorem, for 0 < e << 1, 
(u,w) is uniformly bounded in C2,τ(Ω) for some τ ∈ (0,1) [16]. If we let e → 0+, 
passing to a subsequence if necessary, then by the Ascoli-Arzela lemma, we see that 
(u,w) converges to (u,w) in C2(Ω), where (u,w) satisfies

By Theorem 2 of [1], we know that (6.17) has no strictly positive steady states, 
rather it has a two semi-trivial steady states (m, 0) and (0, w*). Thus (u, w) = (0,0), 
or (0, w*), or (m, 0).



Suppose that (u,w) = (0,0). Set u = u∕║it║∞. By elliptic regularity and the 
equation of u we see that u → u1 in C2(Ω) for some u1 ≥ 0 in Ω, which satisfies 
║u1║∞ = 1 and

Integrating both sides of equation (6.18) over Ω and using the boundary condi
tion, we see that

But this is a contradiction since m > 0 and u1 ≥ 0, u1 ≡ on Ω.
Now suppose (u, w) = (0, w*). Again we set u = u∕║u║∞ and see that by elliptic

regularity and the equation of u we see that u → u1 in C2(Ω) for some u1 ≥ 0 in 
Ω, which satisfies ║u1║∞ = 1 and

Since u1 ≥ 0,u1 ≠ 0, we see 0 is the principal eigenvalue for the eigenvalue 
problem

But this contradicts the result in Theorem 2 of [1] which says that the above ei
genvalue problem has a negative principal eigenvalue. Hence, we must have that 
(u,w) = (m, 0). □

Lemma 6.8. There exists ϵ0 > 0 such that for all e with 0 < ϵ < ∈0, (u*,w*) is the 
unique steady state of (6.1) and is linearly stable.

Proof. Note for suitably small e the uniqueness of (u*,w*) as the steady state of 
(6.1) follows from Lemma 6.7 and Theorem 6.1.

Consider the following system

Linearizing and then perturbing the above system about (u*,w*), we put u = 
u* + δϕe-ηt + O(δ2) and w = w* + δψe-ηt + O(δ2), substitute these expressions into 
(6.21), divide by δe-ηt and let δ → 0 to obtain the following eigenvalue problem

(6.22)
By Lemma 6.7, we know that when e = 0, u* = m, w* = 0, η = 0 (here 0 is the 

principal eigenvalue), φ = mφ (where φ satisfies (6.5)), and ψ = 1, after suitable 
scaling. Using the implicit function theorem, we know that the principal eigenvalue 
η and corresponding eigenfunctions φ and ψ are smooth functions of e (see Lemma 
3.3.1 of [2]). Hence, we can write η = 0 + ϵn1 + O(ϵ2), ϕ = mφ + emϕ1 + O(ϵ2), 
and ψ = 1 + eψχ + O(ϵ2), after suitable scaling. Recall that u* = m1+ϵ(u + uϵ).



Using this and the fact that s = eΛ, where Λ = l∕λ'(0) we can write u* = (m + 
ϵm ln m)(Λϵφ+l + eu'0) + O(ϵ2) and w* = eΛ + O(e2). Substituting these expansions 
into the second equation of (6.22) we obtain the following equation in Ω

Thus if we integrate both sides of (6.24), using the boundary condition and the 
definition of Λ,

Because n1 > 0, we conclude that for sufficiently small positive e, η > 0. □

6.2. Bounds on solutions of the three species system. Given a solution 
(u(x, t), υ(x,t),w(x, t)) of system (2.2), we aim to establish upper bounds on u(x, t) 
and w(x,t) in Ω  x (T, ∞) for some T which depends on the nonnegative, not iden
tically zero initial data of the solution (u, υ,w). The main result of this section 
is

Theorem 6.9. Let (u,v,w) be any positive solution of (2.2) with α = l + ϵ. Assume 
that the set {x ∈ Ω : ∣▼m(x)∣ = 0} has Lebesgue measure zero. Then there exists 
an ∈0 > 0 such that for every 0 < ϵ < ϵ0, there exists Γ such that for all β > Γ, 
there exists a T > 0 such that u(x,t) ≤ u*(x) + 1∕β and w(x,t) ≤ w*(x) + ∕β on 
Ω x (T, ∞), where (u*,w*) is the unique positive steady state of (6.1).

To establish this result, we make use of appropriate “sub/super” systems as 
follows.

Lemma 6.10. Consider the system

where v is the unique positive steady state of (4.6). Let (U*β , W*β) be a positive steady 
state of (6.26). Let ∈0 > 0 be as in Lemma 6.8. Then for all ϵ with 0 < ϵ < ϵ0, 
there exists β(ϵ) such that if β > β(ϵ), (u*β,W*β) is linearly stable.

Proof. We know that for each β > 0, the system linearized at (u*β w*β) has principal 
eigenfunctions (f, g) in C2(Ω) such that f and g are of opposite signs on Ω, ║f║2 L2 + 
║g║2L2 = 1 and

where η is the associated principal eigenvalue. By elliptic regularity and Sobolev 
embedding theorem [16], this sequence is uniformly bounded in C1,τ(Ω) for some



τ ∈ (0,1). Thus passing to a subsequence if necessary, we see that as β → ∞, (f,g) 
converges to a limit (f*,g*) in C1(Ω) where either f* ≥ 0 and g* ≤ 0 or f* ≤ 0 
and g* ≥ 0, ║f*║2L2 + ║g*║2L2 = 1, and

where (u*,w*) is as in Lemma 6.8. Note that for small enough positive ϵ, as 
β → ∞, (u*β,w*β) converges to (u*,w*) in C1(Ω). To see this notice that by elliptic 
regularity and Sobolev embedding theorem [16], a subsequence of (u*β, w*β) converges 
to (u*,w*) in C1(Ω). For sufficiently small positive ϵ, the positive steady state of 
(6.1) is uniquely determined by Lemma 6.8. Thus, we see that convergence is 
independent of the subsequence.

Now we establish the uniqueness of the limit (f*,g*). Since u*,w* > 0 in Ω, 
we must have that neither f* nor g* is zero in Ω. Thus, we see that the triple 
(f*,g*,η*) satisfies the eigenvalue problem in equation (6.22) and because f* and 
g* have opposite signs, η* must be the principal eigenvalue. Note η* is simple 
and since ║f*║2L2 + ║g*║2L2 = 1, it must be that the triple (f*,g*,η*) is uniquely 
determined. This proves that convergence is independent of the subsequence.

By Lemma 6.8, we know then that for 0 < ϵ < ϵ0, η* > 0. Hence for β > β(ϵ), 
the principal eigenvalue η associated to (uβ ,w*β) is positive. □

Lemma 6.11. Consider the system

where v* is the unique positive steady state of (4.6). Let (uβ, w*β) be a positive steady 
state of (6.29). Let ϵ0 > 0 be as in Lemma 6.8. Then for e with 0 < ϵ < ϵ0, there 
exists β(ϵ) such that if β > β(ϵ), (u*β,w*β) is linearly stable.

Proof. The proof is similar to that of Lemma 6.10. □

Lemma 6.12. Assume that the set {x ∈ Ω : ∣▼m(x)∣ = 0} has Lebesgue measure 
zero. There exists βs such that for all β > βs the semi-trivial steady states, (u*, 0) 
and (0,w*), of system (6.26) are unstable.

Proof. To show that (u*, 0) is unstable, we must show that the principal eigenvalue 
λ, satisfying the following eigenvalue problem, is negative:

Note that in equation (6.30) we can choose the principal eigenfunction φ so that 
ϕ > 0 in Ω. Dividing the equation of φ by φ, integrating the resulting equation over 
Ω and using the boundary conditions, we have



By the comparison principle, u* ≤ u*, where u* is the unique positive solution of 
(4.1). By Lemma 4.2, if α > 1, ∫ωu* < ∫Ωm. Hence, ∫Ωu* < ∫Ωm. This together 
with (6.31) implies that λ < 0 for all β.

Next, we want to prove that (0,w*) is unstable. The proof is almost identical 
to that of Theorem 5.1. Working through the corresponding eigenvalue problem 
for system (6.26), we finally arrive at the following expression for the principal 
eigenvalue λ:

As in the proof of Theorem 5.1, we cannot have m = w* in Ω. Thus, ∫Ω[m1+ϵ - 
(w*)1+ϵ](m — w*) > 0. Also, we know that as β → ∞, ∫Ω v* → 0 and l∕β → 0. 
Thus because ║m1+e║L∞ < ∞, there exists a βs such that if β > βs then right hand 
side of (6.32) will be positive. Hence, λ < 0, proving that (0,w*) is unstable. □

Lemma 6.13. Assume that the set {x ∈ Ω : ∣ ▼m(x) ∣ = 0} has Lebesgue measure 
zero. There exists βp such that for all β > βp the semi-trivial steady states, (u*,0) 
and (0,w*), of system (6.29) are unstable.

Proof. The proof is similar to that of the previous Lemma. □

Theorem 6.14. Assume that the set {x ∈ Ω : ∣▼m(x)∣ = 0} has Lebesgue measure 
zero. Let ϵ0 > 0 be as in Lemma 6.8. Then for all e with 0 < ϵ < ϵ0, there 
exists a Γϵ, such that for all β > Γϵ, both systems (6.26) and (6.29) have unique 
positive steady states, denoted as (u*β,w*β) and (u*β,w*β), respectively. Furthermore, 
as β → ∞, both u*β,w*β) and (u*β,w*β) converge to (u*,w*) in C1(Ω), where (u*,w*) 
is as in Lemma 6.8.

Proof. Let e ∈ (0,∈0). If β > β(ϵ), then by Lemma 6.10, any positive steady state 
(u*β,W*β) of (6.26) has a corresponding positive principal eigenvalue. This means 
that (u*β,W*β) is locally stable. From Lemma 6.12 we know that for β > βs, both 
semi-trivial steady states of system (6.26) are unstable. Thus because system (6.26) 
is strongly monotone, for β > max{β(ϵ), βs}, by the monotone dynamical system 
theory [31], system (6.26) must have only one positive steady state, denoted by 
(u*β,w*β), which is globally asymptotically stable.

Similarly, by Lemma 6.11, (u*β,w*β) has a corresponding positive principal eigen
value for β > β(ϵ). From Lemma 6.13 we have that for β > βp, both semi-trivial 
steady states of system (6.29) are unstable. Again, by the monotone dynamical sys
tem theory [31], since (6.29) is a strongly monotone system, for β > max{β(ϵ), βp}, 
system (6.29) has a unique positive steady state, denoted by (u*β,w*β), which is 
globally asymptotically stable.

Therefore, if we let Γϵ = max{βs, βp, β(ϵ), β(ϵ)}, then for β > Γϵ, both positive 
steady states are unique for their respective systems. Finally, we reference the 
proof of Lemma 6.10 for justification of the result that as β → ∞, both (u*β,w*β) 
and (u*β,W*β) converge to (u*,w*) in C1(Ω), where (u,w*) is as in Lemma 6.8. □

Corollary 2. Assume that the set {x ∈ Ω : ∣▼m(x)∣ = 0} has Lebesgue measure 
zero. For all ϵ with 0 < ϵ < ∈o, there exists Γ such that for all β > T, there exists a 
Tβ > 0 such that u(x,t) < u*(x) + 1∕β and w(x,t) < w*(x) + 1/β on Ω × (Tβ,∞). 
(Note: u comes from the solution pair (u,w) satisfying (6.29) and w comes from 
the solution pair (u,w) satisfying (6.26).)



Proof. Let e ∈ (0,∈0) and let β > Γϵ, Then from Theorem 6.14, is a
globally asymptotically stable positive steady state for system (6.26) and (u*β, w*β) 
is a globally asymptotically stable steady state for system (6.29). Thus for a solution 
(u,w) to system (6.26) with prescribed nonnegative initial data, there exists a Tw > 
0 such that if t > Tw ,w(x, t) ≤ w*β(x) + 1/(2β) in Ω. Similarly, for a solution (u, w) 
to system (6.29), there exists a Tu > 0 such that if t > Tu, u(x,t) ≤ u*β(x) + 1∕(2β) 
in Ω. By Theorem 6.14, as β → ∞, both (u*β,w*β) and (u*β,w*β) → (u*,w*) in 
C1(Ω). Hence, there exists Γ1 such that if β > Γ1, w*β(x) ≤ w* + 1∕(2β) in Ω 
and u*β(χ) ≤ u* + 1∕(2β) in Ω. Thus if we let β > Γ = max{Γϵ,Γ1} and then put 
Tβ = max{Tu,Tw}, we obtain our result. □

To prove Theorem 6.9, we simply apply Corollary 2 and u < u and w ≤ w on 
Ω × (T, ∞) for some T > 0.

6.3. A key estimate and instability of (u*,0, w*). We begin this section with 
a useful result concerning u'0 for large μ.

Lemma 6.15. The following holds:

where u'0 is the unique solution satisfying (6.9).

Proof Consider equation (6.9). If we let μ → ∞, then

uniformly in Ω. Thus,

It suffices to show that

Define f as

Then

where the numerator of f'(p) is positive by Holder’s inequality. Thus, f is a strictly 
increasing function of p and our result follows. □

The following version of Jensen’s inequality can be found in [18].

Lemma 6.16. [18] Let E be a measurable subset of  ℝN. Suppose that a < f < b, 
where a and b are in R, and that f is almost never equal to a and b; that p, the 
“weight function”, is finite and positive everywhere in E, and integrable over E. 
Further, suppose that φ"(t) is positive and finite for a <t <b. Then



whenever the right-hand, side exists and is finite. Also, note that equality holds when 
f is effectively constant.

Lemma 6.17. For m > 0, nonconstant and m ∈ C(Ω),

Proof. We apply Lemma 6.16 by choosing ϕ(t) = t ln t, p = m, f = m and E = 
Ω. □

Using the inequality in Lemma 6.17, we are now ready to establish our “key esti
mate” on the size of m(x0). As we discussed in section 6, this result is fundamental 
to establishing the instability of (u, 0, w) and the lower bound for υ.

Lemma 6.18. Suppose that m > 0, nonconstant and m ∈ C2(Ω). Furthermore, 
suppose that

for x0 ∈ Ω, where x0 is a local maximum of m. Then there exists some μ such that 
for all μ > μ, there exists an ϵ > 0 such that for all 0 < ϵ < ϵ,

where (u*,w*) is the unique positive steady state of (6.1) as shown by Lemma 6.8. 

Proof. Using our expansions (6.16), for 0 < ϵ < ϵ0,

which gives us

where Λ = l∕λ'(0) >0, B = Λ[mφ + 1] + [m ln m + u'0m]. Let μ → ∞. Then we 
know that φ → -∫Ωm/∫Ωm2 and u'0 → -∫Ωm2 ln m/∫Ω m2 . Hence, as μ → ∞

 



If we use our expression in (6.35) for Λ, then as μ → ∞

Note that by our assumption on to, at x0, m ln m ∫ω m2 — m ∫ω m2 ln m < 0. 
Also, by Lemma 6.15, we see that ∫Ω m2 ∫Ω to ln m — ∫Ω m ∫Ω m2 ln m < 0. Now if 
we want D > 0 (evaluated at x0), then rearranging the above expression for D gives 
us

Manipulating the above expression gives us that D(x0) > 0 is equivalent to

∫Ωm2/∫Ωm
Since > 0, (6.36) follows from assumption m(.x0) > ∫Ω m2/∫Ω m. Hence for large 

enough μ and small enough e, u* + w* — to < 0 at x0- □

Theorem 6.19. Suppose that m > 0, to ∈ C2(Ω), and all critical points of m are 
nondegenerate. Furthermore, suppose that

for some x0 ∈ Ω, where x0 is a local maximum of m. Then there exists μ > 0 
such that for all μ > μ, there exists e > 0 (from the previous Lemma) such that if 
1 < α < 1 + ϵ, for all γ > 0, v > 0, there exists a β(μ, ϵ, γ, v) such that for any



β > β the positive solution of F(ϵ, u, w) = 0 bifurcating from the trivial solution is 
unstable in the three species system (2.2). In other words, (u*,0,w*) is unstable. 

Proof. We consider the following eigenvalue problem:

where u* and w* satisfy (6.1) for 0 < ϵ < ϵ0. Set ζ = e -βln m ϕ. Then ζ satisfies

Simplifying the expression in (6.38), we see that ζ satisfies

Let λ* denote the principal eigenvalue of equation (6.37). Then from Theorem 
1 of [10], we have

where M denotes the set of local maxima of m. From Lemma 6.18, we know that 
for small enough ϵ, u*(x0) + w*(x0) - m(x0) < 0. Thus for large enough β, we see 
that λ* < 0. This completes the proof. □

6.4. Proof of lower bound for species υ.

Lemma 6.20. Consider the problem

(6.41)
Suppose that m satisfies assumption (A2) and that all critical points of m are non
degenerate. Then there exists μ > 0 such that for all μ > μ, there exists e > 0 such 
that for 0 < ϵ < ϵ and for all γ > 0, v > 0, there exists β := β(ϵ, μ, γ, v) such that if 
β > β, the zero steady state solution of (6.41) is unstable. (Note: ϵ > 0 and μ > 0 
are as in Theorem 6.19.)

Proof. To show that zero solution is unstable, we must show that the principle 
eigenvalue λ of the following eigenvalue problem is negative:

Note that we can choose φ, the corresponding eigenfunction of λ, to be positive 
in Ω. If we let φ = φ∣mβ, then (6.42) becomes

Expanding and simplifying (6.43), we have



Now let δι > 0 be any constant. Choose βι >> 1 such that 2/β ≤ δι for all β > βι∙ 
Consider the eigenvalue problem

where λl is the principal eigenvalue. By Theorem 1 of [10],

where M denotes the set of local maxima of m. Choosing

we see that by the choice of dl and Lemma 6.18,

Hence, λl < 0 for β >> 1. By the comparison principle, λl ≥ λ for β > βι. Therefore, 
for β ≥ βl, λ < 0. □

Finally, we can state and prove the lower bound result for species v.

Theorem 6.21. Let m satisfy assumption (A2). Assume that all the critical points 
of m are nondegenerate. Let v be the second component of any positive solution 
(u,v,w) of (2.2). Let μ > 0 be as in Theorem 6.19. Then for all μ> u, there exists 
0 < ϵ (where ϵ is as above and is less than ϵ0) such that for all 1 < α < 1 + ϵ, and 
for all γ > 0, v > 0, there exists an β3 = max{Γ,β} (where Γ is from Corollary 
2 and β is from Lemma 6.20), such that for all β > β3, there exists α δ3 > 0 such 
that for all x ∈ Ω, lim inft→∞ υ(x,t) ≥ δ3 > 0.

Proof. Comparing system (6.26) and system (6.29) to system (2.2) and using Corol
lary 2, we see that υ is a super solution to (6.41) for t > Tβ where Tβ is as in Corollary 
2. That is, for all x ∈ Ω and for all t > Tβ, v(x,f) > v(x,f). By Lemma 6.20, we 
know that zero is unstable for system (6.41) which implies that v(x,f) tends to a 
unique positive equilibrium of (6.41) as t → ∞. Hence we see that there exists a 
δ3 > 0 such that for all x ∈ Ω, lim inft→∞ υ(x,f) ≥ δ3 > 0. □

7. Permanence of three species. Putting the results of Theorems 4.1, 5.1, and 
6.21 together, we demonstrate that for appropriate parameters, any solution of (2.2), 
with nonnegative and not identically zero initial data, eventually has a positive lower 
bound which is independent of the initial conditions. More precisely, we have shown

Theorem 7.1. Suppose that m > 0, it satisfies assumption (A2), and all the critical 
points of m are nondegenerate. There exists μ > 0 (as in Theorem 6.19) such that 
for all μ > μ, there exists ϵ > 0 (where e is as in Theorem 6.21) such that for all 
1 < α < 1 + ϵ, and for all γ > 0, v > 0, there exists some β4 = max{β1,β2, β3} 
such that for all β > β4, there exists some k = min{δ1, δ2, δ3} > 0 such that for 
any solution (u,v,w) of (2.2) with nonnegative and not identically zero initial data, 
lim inft→∞ u(x, t), lim inft→∞ υ(x,t), lim inft→∞ w(x, t) ≥  k > 0, for all x ∈ Ω.

As the hard work has been completed, we turn to the upper bound result:



Lemma 7.2. Given any positive solution (u,v,w) of system (2.2), for m > 0 and 
nonconstant, if we let

where (u*,0, 0), (0, v*,0) and (0,0,w*) are the steady states of (2.2) when only one 
species is present. Then lim supt→∞ u(x, t), lim supt→∞ v(x,t), lim supt→∞ w(x,t) 
< K.

Proof. Let (u,υ,w) be a positive solution of (2.2). From Corollary 1 we know that 
lim supt→∞ u(x, t) ≤ u* and limsupt→∞(x, t) < υ* in Ω. Examining the single 
species equation for w, i.e. the equation for w in (2.2) when u = υ = 0, we obtain 
a similar result for w(x,t). That is, lim supt→∞ w(x, t) < w*. Putting these results 
together we complete the proof. □

In order to demonstrate that our permanence result implies the existence of 
a componentwise positive steady state for the three species model (2.2), we first 
rewrite (2.2) as follows

where u = um-a and v = um-β in Ω. Using the theory of analytic semi-groups 
and parabolic partial differential equations, we can recast system (7.1) as a semi- 
dynamical system ∏[(u0, υ0, w0), t] defined on the space [C(Ω)]3, where ∏[(u0,v0, 
w0),t] denotes the unique solution of (7.1) such that (u(x, 0), υ(x, 0), w(x, 0)) = 
(u0,υ0,w0) [6]. As we are interested in nonnegative solutions of (7.1), we restrict 
∏ to the cone V of [C(Ω)]3 where each of the components of an element of V are 
nonnegative. Note that V is a closed subspace of [C,(Ω)]3 and hence is a Banach 
space. Also, by the maximum principle [28], V has nonempty interior. Note that 
from Theorem 7.2 and reaction-diffusion system theory, ∏[(∙, ∙),t] : V → V for any 
t > 0 is compact.

For the remainder of this section, we fix m and parameters μ, α, v, β, y such that 
the hypotheses of Theorem 7.1 and Lemma 7.2 are satisfied. So, there exists positive 
numbers k and K, such that if (u, υ, w) is a solution of (2.2) with nonnegative initial 
data, there exists a T0 > 0 such that k<u<K,k<v<K, and k < w < K 
in Ω × [T0,∞). In light of system (7.1), we have k < umα < K, k < vmβ < K, 
and k < w < K in Ω × [T0, ∞). Because mα and mβ are bounded above and below 
by positive constants, there are positive constants b and B such that b <u <B. 
b < v < B, and b <w < B in Ω x [T0,∞).

Define W* = {f : f ∈ [C(Ω)]3,f = (f1,f2,f3) where b < fi < B in Ω}. Clearly, 
W* is a nonempty, open, bounded, and convex subset of [C(Ω)]3. Following [6], we 
note that the proof of the existence of a positive steady state for (7.1) and hence 
for (2.2) depends on showing that for any t > 0, ∏[∙,t] has a fixed point in W*. 
To show this, we rely on the Asymptotic Schauder Fixed Point Theorem which is 
stated as follows:

Theorem 7.3. [33] Let G be a nonempty bounded open convex set in a Banach 
space X. Let the operator A : X → X be compact and suppose for some prime 
p > 2 we have that Ak(G) C G where k = p,p + 1. Then A has a fixed point in G.



Consider the following result.

Lemma 7.4. Lett* > 0. There exists an integer n0 > 0 such that ∏[W* ,nt*] C W* 
for all n>n0.

Proof. See [6]. □

Note that Lemma 7.4 allows us to apply Theorem 7.3 to ∏ acting on W* and 
hence we have shown that for any t > 0, ∏[∙,t] has a fixed point in W*. It follows 
then that system (7.1) has a steady state in W* (see Lemma 3.7 in [4]). By definition 
of W* this steady state is positive in each component. It is clear then that system 
(2.2) also has a positive steady state. We summarize our result as follows:

Theorem 7.5. Under the assumptions of Theorem 7.1, (2.2) has a positive steady 
state (ue(x),ve(x),we(x)).

By Theorem 7.1, Lemma 7.2 and Theorem 7.5, the proof of Theorem 2.5 is 
complete.
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