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A transformation class for 
spatio-temporal survival data 
with a cure fraction

Sandra M Hurtado Rua and Dipak K Dey

Abstract
We propose a hierarchical Bayesian methodology to model spatially or spatio-temporal clustered survival 
data with possibility of cure. A flexible continuous transformation class of survival curves indexed by a 
single parameter is used. This transformation model is a larger class of models containing two special 
cases of the well-known existing models: the proportional hazard and the proportional odds models. The 
survival curve is modeled as a function of a baseline cumulative distribution function, cure rates, and 
spatio-temporal frailties. The cure rates are modeled through a covariate link specification and the spatial 
frailties are specified using a conditionally autoregressive model with time-varying parameters resulting in 
a spatio-temporal formulation. The likelihood function is formulated assuming that the single parameter 
controlling the transformation is unknown and full conditional distributions are derived. A model with a 
non-parametric baseline cumulative distribution function is implemented and a Markov chain Monte Carlo 
algorithm is specified to obtain the usual posterior estimates, smoothed by regional level maps of spatio-
temporal frailties and cure rates. Finally, we apply our methodology to melanoma cancer survival times for 
patients diagnosed in the state of New Jersey between 2000 and 2007, and with follow-up time until 2007.

I Introduction
Survival curves are modeled with a pre-specified functional form which is built on a set of
assumptions that are sometimes difficult to verify a priori. One of the most popular models in 
survival analysis is the Cox proportional hazard (PH) model,1’2 which assumes PHs across two 
sets of covariates. When the proportionality assumption does not hold, a generalized PH 
framework or a proportional odds (PO) model3 is usually considered. The generalized PH model



assumes that the proportional effect on the hazard function may be time varying, while the PO 
model adopts a time constant odds ratio between two sets of covariates.

Research addressing situations when the assumptions for the PH and PO models are violated 
exists in the literature.5,4 For example, a linear transformation is proposed by Cheng et al.5 Let T be 
the time to event, X the covariate vector, and β the corresponding regression parameter, then the 
linear transformation is given by equation (1), where ∕z(.) is a strictly increasing function and S(Zt∣X) 
the survival function of t given the covariate X. If ψ(y) — log[-log(y)], the linear transformation 
reduces to the PH model, and when ψ(y) = — logit (y), equation (1) corresponds to the PO model 

ψ{S{t│X)}=h(t) + βTX (1)

Model 1 assumes that all the subjects at risk will eventually experience the event of interest after a 
sufficiently long follow-up time. However, survival curves that flatten out at a value greater than 
zero are commonly observed in many areas including cancer survival times and epidemiological 
studies. A well-pronounced plateau is considered as evidence of the existence of a proportion of 
subjects for whom the event of interest will never occur. When analyzing time to event data, this 
proportion of patients is called cure rate. The most popular type of survival model incorporating this 
assumption is the mixture model.6 The mixture cure rate survival model formulates a population 
survival curve based on a latent random variable Y that controls the cure process, Y = 1 indicates 
cure with probability θ, otherwise y=0. Given T=0, T's are independently distributed f(t│X), with 
corresponding survival function S(t│X). Then, marginalizing over T, the population survival mixture 
model, Sp(t│X), is given by equation (2).

Sp(t∣X) = θ + (1-0)S(t│X) (2)

where θ is the cure fraction and S(t∣X) is a proper survival function for the susceptible individuals in 
the sense that limt→∞ S(t∣X) = 0. Cure rate modeling has been studied in both frequentist7-9 and 
Bayesian10-12 setups, and it has been extended in ways that facilitate biomedical interpretation of the 
cure process.11,12

Model 1 also assumes that the survival times are independent, but in many applications the 
independence assumption may not be satisfied. Dependent survival times arise from clustering 
effects. For example, in cancer research, observations within the same county and year of 
diagnosis may be correlated. A frailty or random effect model accounts for correlation. It 
formulates the nature of the underlaying dependence through a covariance specification and then 
the survival times are assumed to be independent conditionally on the unobserved frailty. Clayton13 
uses a gamma frailty survival model without covariates, although this frailty model incorporates 
heterogeneity among clusters, it does not consider spatial or temporal correlations. Although spatial 
frailty models have been mainly used in other contexts, such as disease mapping,14-16 Banerjee and 
Dey17 model survival data accounting for spatial correlation and have shown that misleading results 
could be obtained using traditional non-spatial models when data exhibit a spatial structure. 
Conditionally autoregressive (CAR) models are the most popular areal models in the spatial 
literature.18-20 Given a map, they model a correlation structure for the locations based on 
neighboring information.

It has been shown in the literature the need to model spatio-temporal clustered lifetime data with 
a flexible methodology, beyond the traditional cure rate PH model, yet there is not methodology 
that comprehensibility integrates all these assumptions. In this article, we propose a model for 
spatio-temporally arranged survival data that integrates cure rates and a flexible transformation.



We do not assume any proportionality of the survival curve, instead we use a single parameter based 
transformation on Sp(t│.). The benchmark PH and PO models are special cases of our 
transformation model. Here, Sp(t│.) is modeled as a function of a baseline cumulative distribution 
function (cdf), cure rates, and spatio-temporal frailties. The likelihood function is formulated 
assuming that the single parameter controlling the transformation is unknown (it needs to be 
estimated) and full conditional distributions are derived. A Markov chain Monte Carlo (MCMC) 
procedure is proposed for Bayesian estimation of the single parameter that controls the 
transformation, cure rates and spatio-temporal frailty parameters.

The format of this article is as follows. Section 2 introduces our transformation class of spatio-
temporal cure rate survival models and its properties. Section 3 describes the likelihood formulation, 
posterior properties and Bayesian modeling, including model diagnosis and the description of the 
MCMC technique used. Section 4 is dedicated to the Bayesian analysis of a melanoma cancer data 
set from the Surveillance, Epidemiology and End Results (SEER) database. Finally, conclusions and 
discussion points are presented in Section 5.

2 The model
2.1 Motivation and general formulation
Assume that the cure process for a particular subject is determined by N, the number of latent 
competing risks12 (i.e. carcinogenic cells left active after a treatment phase) and Y1, Y2,... Yn, the 
latent competing risks (i.e. the incubation times for each carcinogenic cell). Each N is assumed to 
have a probability mass function Pθ(N=n) and Y1, Y2,... Yn are assumed to be independent and 
identically distributed (iid) with common survival function S(y)- 1 - F0(y). The time to event, T, 
(i.e. time to death due to colon cancer) is defined by T= min{Yi , 0≤ i ≥N}, where P(Y0 = ∞) = 1. 
Assuming that N is independent of Yi Ai, the survival function for T is given by Sp(t) — 
∑∞n=0 P(Y1 > t, . . ., Yn > t∖N=n)Pθ(N=n), which reduces to

where Mθ(.) is the moment generating function of N│θ. For example, if N│θ ~ Poisson(θ), then 
Sp(t) = exp[-θF0(t)] which is the model proposed by Chen et al.12 Clearly, Sp(t) = exp[-θF0(t)] 
yields to a PH structure and the cure fraction is given by exp(0). There is also a mathematical 
relationship between models 3 and 2. Assuming that N=0 with probability θ and N=l with 
probability 1=0, model 3 reduces to the mixture cure rate model6 given by equation (2).

A more general transformation for Mθ(ln[l — F0(t)]) in equation (3) can be defined as

where ψ() is a known monotone decreasing function on [0, 1], F0(t) is a proper CDF such that 
F0(0) = 0 and F0(∞) = l, and θ is the parameter that models the cure fraction. Because Sp(∞) = 
ψ(θ) > 0, equation (4) is not a proper survival function and ψ(0) is the cure rate. Since ψ() is a 
monotone decreasing function on [0, 1], as θ→∞, the cure fraction ψ(θ)→0 while as 0→O, the 
cure fraction ψ(θ) → 1.

The corresponding population density and hazard functions are, respectively, given by



and hp() are not a proper probability density and a proper hazard functions, respectively, because 
Sp(∞) ≠ 0; however, hp() is integrable (l0∞ hp() < ∞). On the other hand, f0 and h() are a proper 
probability density and a proper hazard functions, respectively.

The transformation class of models given by equation (4) is a broader family of cure rate models, 
for example, consider a Box-Cox type of transformation10 indexed by a unique parameter α ϵ [0, ∞) 
like the one shown in equation (5). Note that limα→0(l + αx)-1/α = exp(-x), additionally when α =1, 
equation (5 ) has a PO structure model, while α=0 is a PH model. A transformation class of models 
given by equations (4) and (5) is a rich family of models beyond the traditional PO and PH models

The model defined by equations (4) and (5) is identifiable under the conditions listed in 
Theorem 2.1. Consider the class of models of the form: H — {Sp(t│z) =ψ[F(t)θ(z)], t<C; F(t)ϵF; 
0 < θ(z) < ∞Vz ∈ Z}, where ψ(.) is given by equation (5), C is the censoring time, Z the design space, 
and F={F(t) : F(t) a proper cumulative distribution on [0, +∞]}. Theorem 2.1 lists some 
conditions under which the proposed model is identifiable. The proof of Theorem 2.1 is given in 
Appendix 1.

Theorem 2.1 Assume that θ(z) = exp(<5 + βz), then

(1) If α is assumed to be known and F(t)≡ F(t│γ), where γ is a parameter or vector of parameters, the 
model Sp,(t∣z) — ψ[F(t)θ(z)], t<C is identifiable for all θ(z) (unspecified or specified by any link 
function}.

(2) If α is assumed to be known and F(t} is unspecified (i.e. modeled non-parametrically), the model 
Sp(t│z) — f[F(t)θ(z)], t <C is not identifiable unless δ = 0.

(3) If α > 0 is unknown and δ = 0, then the model Sp(t∣z) = ψ[F(t)θ(z)], t <C is identifiable for all F(t) 
(unspecified or parametrically specified).

2.2 Model extension for spatio-temporal clustered survival data
We extend the model given by equations (4) and (5) to a spatio-temporal clustered survival setting. 
Assume that there are njk subjects located at the jth region who were diagnosed in the kth year where 
j = 1,... ,J and k = 1,..., K. The observed response is tijk = min{Tijk, Cijk), where Tijk is the survival 
time for the ith subject located at the jth region who was diagnosed in the kth year for i = 1,..., njk 
and Cijk the censoring variable. Suppose we observe for the ijk individual a L × 1 vector of covariates 
Zijk and that the baseline CDF F0(.)≡F0j for j=1,...,J (i.e. the baseline CDF’s are spatially 
dependent).

Using the general class of transformation discussed in Section 2.1, the population survival curve 
with spatio-temporal frailties and cure rates is given by equation (6)

Sp(t│Zijk , Wjk) = ψ[F0j(t)θ(γ, Zijk) exp (wjk)] (6)

where ψ() is given by equation (5), wjk is the spatio-temporal frailty terms, and θ(γ, Zijk) is an 
increasing positive link function that models the cure fraction. Since Sp(∞) — ψ [θ(y, Zijk} exp 
(wjk)] and θ(γ, Z) is an increasing positive link function, we can interpret the role of the



regression coefficients in the cure fraction. A large negative regression coefficient leads to a small 
value of θ which implies a larger cure fraction when the covariates are positive.

When α = 0, the population survival function reduces to equation (7) which is an extension of the 
cure rate PH model12 to a spatio-temporal survival model with cure fraction. The cure fraction from 
equation (7) is given by Sp(∞) = exp [θ(y, Zijk) exp(wjk)] = [exp (θ(y, Zikj))]exp(Wjk)

Sp(t∣Xijk, Zijk, Wjk) = exp [-F0j(t)θ(γ, Zijk) exp (Wjk)] (7)

If α = 1, equation (6) reduces to equation (8) which is a spatio-temporal PO survival model with 
cure fraction where Sp(∞) = [l + θ(y, Zijk) exp (wjk)]-1

The parameters that control the cure process, 0(), and the spatio-temporal frailties, wjk, are 
modeled through a hierarchical specification. The cure rates are controlled by the positive 
increasing link function, θ(γ, Zijk). Although many link functions can be used, we model θ(γ, 
Zijk) as

θ(y, Zijk) = exp[ztijky] (9)

where γ-(γl,..., yL) (model without intercept). Some authors9 have worked with the exponential 
link function given by equation (9). One advantage of the exponential link is that it can be 
interpreted in the context of a canonical link for a Poisson regression model.12 We prove that a 
model with exponential link function is identifiable under different setups (Theorems 2.1 and 3.1).

To capture the spatio-temporal relationships, we introduced the random effects wjk in equation 6. 
Let us define Wk — (wlk, ..., wjk)' as the frailty for the kth year. In the absence of spatial correlation, 
the elements of Wk are modeled as iid random variables for all k. However, here, we allow 
{w1k,..., wjk} to be spatially correlated across the regions with a suitable prior specification for 
each k. Under the assumption of spatial correlation among regions, the distribution for the frailty 
for the kth year needs to reflect this structure. A popular choice is the CAR distribution.20 We 
assume that Wk have a CAR distribution with parameters (ξ,σ2k). To define this, consider that the 
J × 1 vector of spatial frailties for the kth year is assumed to have a multivariate normal distribution. 
Let M= {mjj'} be the adjacency matrix of the graph of the geographical region, i.e. let mjj' = 1, if the 
jth and j'th counties are neighbors and 0 otherwise. Define mj + — ∑b mjb, the number of neighbors 
for the/'th county and Dm - Diag{mj+}. Assume that 0 <ξ< 1 is a smoothing parameter, which can 
be viewed as a measure of spatial association in the sense that Cov(wjk, wj'k∣ξ, σ2 ) = ξσ. Now,
define ∑(ξ ,σ2k) = σ2k[Dm — ξM]-1, then

Wk∣ξ,σk2~NjX(0,Σ(ξ,σk2)) (10)

Furthermore, the vectors of spatial frailties Wk, for k=l,... K, are assumed to be correlated 
through a prior specification for σ2k.

In this section, we have derived a transformation class of cure rate models, listed its properties 
and extended to a spatio-temporal clustered survival setting. We also presented the conditions for 
the model to be identifiable. In the following section, we propose a Bayesian estimation 
methodology and study the properties of the posterior distribution.



3 Bayesian estimation
3.1 Likelihood, posterior distribution, and properties
Bayesian inference provides a viable alternative to jointly estimate the transformation parameter α, 
the spatio-temporal frailties wjk, and the cure rate related parameters γ. We fit the model in a 
Bayesian setting for right censored data as follows: Let δijk = 1I(tijk < Cijk), where 1I() is the 
indicator function. The observed data are given by D = {tijk, δijk, zijk, M}. The ijk contribution to 
the conditional likelihood function given Wκ is of the form Lijk(ψ, F0j, y∣ Wk, D) =

Since ψ'(x)/ψ(x) = -(1 +αx)-1 1I{α > 0}, equation (11) reduces to equation (12) for α∈(0, +∞). The 
likelihood construction for the case when a = 0 is given in Appendix 2.

We assume that the variables Tijk and Cijk are conditionally independent given zijk. We also 
assume that the observations in the same spatio-temporal cluster jk are dependent but 
exchangeable. Let F0 = (F01,∙ ∙ .,F0j), y = (y1,...,yL), and assume that 0 <ξ< 1, σk>0 Vk, all the 
priors are independent and that the prior of α is proper. Then, the joint posterior distribution of (α, 
y, Fo) based on D is given by

where π(a), π(y), and π(F0) are the priors of α, y, and F0, respectively, and [Wk ∣ξ, σ2k] given by equation 
(10). Prior to drawn inferences, we investigate the posterior properties of equation (13). The posterior 
propriety under an improper prior for γ established in Theorem 3.1 implies that under certain conditions 
for F0 the model is identifiable and the estimation of the regression coefficients γ that control the cure rates 
can contain little subjective information. The proof of Theorem 3.1 is given in Appendix 3.

Theorem 3.1: Suppose that Z* is an× L matrix with rows δijkztijk, n =Σijk n ijk ,d = Σijk δijk and π(y) 
∞ 1. Assume that (a) Z* is full rank, (b) π (a) is proper, (c) 0 < ξ < 1 and σk > 0Vk, and(d) the ratio 

f0j(t)/Foj(t) bounded for all j= 1,..., J and 0 <t <C, then the posterior (13) is proper.

Condition (a) of Theorem 3.1 is frequently required in many regression setups and commonly 
satisfied by many data sets. Condition (b) indicates that we need some prior information about 
the parameter α which can be easily elicited. Condition (c) ensures a CAR model for the spatio-
temporal frailties W. Finally, condition (d) is a more technical condition but not as restrictive as it 
seems. Some parametric specifications for F0 satisfy condition (d), for example, if the baseline CDF 
is based on the exponential (λ) model, F0(t) ≡ F0(t│λ), ∞ < λ < ∞. It can be shown that there exists a 
constant R>0 such that f0(t)/F0(t)= eλ exp{-eλt}/1 -exp {-eλt} < R Vt> ϵ> 0. Additionally, for a Weibull distribution 
with parameters (ζ, λ), it can be shown that ≤ Rmax{t-1}ξ which under a



proper hyperprior for ζ will led to a proper posterior under the conditions of Theorem 3.1. When F0 
is estimated non-parametrically, < R for some R > 0, for all j— 1,... ,7 and 0 < t < C guarantees 
a proper posterior even when π(y) ∞ 1, but note that the conditions are sufficient but not necessary.

3.2 Model implementation: an example
To implement model (11), we need to specify F0 and priors and hyperpriors. In this particular 
section, we describe a model implementation with a non-parametric model for Fo, and weakly 
informative but proper priors and hyperpriors for all the parameters.

We first turn our attention to the modeling of F0j(t). We model F0j(t) using a dense class of 
monotone transformations arising from mixture of beta distribution functions.21 Since any 
continuous density in [0, 1] can be approximated as a discrete mixture of beta densities,22 we 
consider the function J0j∙(t) =a0F0j(t)/a0F0j(t)+b0 which is increasing and maps [0, 1] into [0, 1], where a0 > 0 
and b0>0. Joj(t) can be modeled as a mixture of Beta(re, se) CDFs as follows J0j(t) = 
∑Ee=1 PejIB(J0j(t);re,se}, where ∑Ee=1 pej = 1; Vj, IB(.; re, se) denotes the incomplete beta function, 
and E,a0,b0,J0(t), re, and se are fixed. F0j(t) and f0j(t) are then defined by

The values of {(re, se)} are chosen such that the Beta(re, se) CDF’s have equally spaced means, and 
are centered around J0(t). J0(t) is chosen such that 70j(t) = a0F0j(t)/a0F0j=b0 and a suitable hyper-prior is
assigned to F0j(t). E, a0, and b0 are usually fixed.

The second modeling issue is the selection of the priors. We assume that y, p, and α are 
independent and their components are also independent a priori. Specifically, we take 
y ~ NL(0, σ2y IL), a normal distribution with mean zero and covariance matrix σy2 IL = Diag(σ2y), 
where Il is the identity L x L matrix, pj ~ D(1/E lE) Vj, a Dirichlet prior where 1E is the unit vector 
of size E. To facilitate the interpretability of the parameters that control the cure rate, we restrict 
the parameter α to [0, 1]. α is then assumed to have a prior beta distribution, α ~ β(aα, bα). The 
prior specification for each vector of frailties Wk is given by equation (10) and Wk│σ2k ,ξ, is assumed 
to be independent a prior Vk. The hyperpriors for σ2 = (σ2,... ,σ2K), and ξ are assumed to 
independent a prior, and their components are also independent, such that σ2K ~ Ig(aσ, bσ), Vk 
and ξ ~ B(aξ, bξ).

To implement a Gibbs sampler with Metropolis-Hastings steps, we need to obtain all the 
conditional densities for the parameters α, y, p, W, σ, and ξ. For j = l,.. .,J, k=Ι,...,Κ, the full 
conditional distribution functions are given as follows



where p(-J) represents all the vectors p(i), i ≠ j, and W(-k) all the vectors W(i), i ≠ k.
The proposed model (6) induces a flexible family of competing models for several modeling 

choices of F0j(t), α, and ξ; so, a model selection approach needs to be implemented. Model 
selection is a procedure to compare a class of competing models, and select the one that best fits 
the data. Our model selection is based on the conditional predictive ordinate (CPO) and deviance 
information criterion (DIC) measures.

The CPO23 is extensively used in the literature. Large values of CPOijk are indicators of a better 
fit. The sum of the logarithms of the pseudomarginal-likelihood (LPML) measures the goodness of 
fit and is given by LPML=∑ij,k log CPOijk, where large values indicate better fit. LPML is a well- 
defined statistics as long as the posterior density is proper, so it is possible to find it even when the 
prior distribution is improper. It is easy to compute from the MCMC samples and it is 
computationally stable. The DIC24 is a penalized likelihood criteria, such as the Akaike 
information criterion. The DIC is based on the posterior distribution of the deviance statistics 
and it is defined as DIC = Dev + pDev, where Dev is the posterior mean of the deviance and pDev 
a penalty term for model complexity and depends on the total number of model parameters.

4 Application
We illustrate our methodology with a melanoma cancer data set from the National Cancer Institute 
SEER database.25 The cohort extracted is a population of 10,337 subjects who were diagnosed with 
melanoma cancer in one of the counties of the state of New Jersey between 2000 and 2007 and had 
been undergoing treatment since diagnosis. In the state of New Jersey, hospitals, physicians, and 
laboratories located in all counties are required to report primary cancer cases along with clinical, 
temporal, and geographical variables. All the cases are followed annually and vital status is 
recorded. For deceased cases, the underlying cause of death is also included. One of the goals of 
New Jersey registry is to describe cancer patterns in the state to adopt programs and services that 
increase survival and identify risk factors. The lifetimes here are naturally clustered by region 
(counties) and year of diagnosis and inferences about survival curves and cure rates can be used 
by health care providers, public health officials, and administrators to adopt new programs, 
educational campaigns, and services.

All the subjects were diagnosed with only melanoma cancer and were followed up since diagnosis 
until December 2007. Subjects who have died due to melanoma cancer were considered failed and 
the rest (those who die due to other causes, drop out, or survive until the end of the study) were



considered censored. By the end of 2007, 1480 patients have died of melanoma cancer (14%) while 
the remaining were censored.

The variables considered in this analysis are lifetime in months since diagnosis, year of diagnosis, 
and county of residence while undergoing treatment (Table 1). Subjects who moved during the 
treatment phase were removed from the data set. The patient level covariates included were: 
gender, race (white, black, or other), age, stage of the disease (local, regional, or distant), 
radiation therapy (whether or not the patient received radiation therapy), surgery (whether or not 
the patient received surgery), marital status (married or divorced, separated, widowed, single), and 
median family income on the county of residence (in thousands). A clinical interaction of interest 
is the interaction between radiation and stage since radiation is a treatment used mainly for 
melanoma patients whose stage at diagnosis is not local. It is also known that surgery is the first 
course of action for melanoma treatment, so it may be of interest to analyze if radiation and surgery 
interact.

The marginal estimated Kaplan-Meier curves for all the counties in the state of New Jersey show 
a plateau in the survival curve (see, for example, Figure 1), thus a cure rate model appears to be 
suitable for these data. Kaplan-Meier curves also show regional differences on the survival curve 
which can be explained using spatially correlated frailties. Survival curves over a long period of time 
are usually not time invariant so temporal components should be included. Additionally, the 
Kaplan-Meier curves evidence that non-proportionality of hazard occurs with (possibly strong) 
between-county survival difference including crossing of survival curves over time. Proportionality 
of the hazard functions is a strong assumption for these data.

The characteristics of the above-mentioned data violate the assumptions of many classical 
survival models. Classical survival models often consider that all the subjects are at risk of death, 
non-spatio-temporal clusters, and either proportionality of the hazard or the survival odds when 
covariates are present.

This section has two goals. First, we model our data using the transformation class spatio-
temporal cure rate model in equation (6) with non-parametric baseline given by equation (14) 
(full model). We carry out a Bayesian analysis with covariates using the proposed priors and 
obtain the usual posterior estimates, smoothed by county level maps of spatio-temporal frailties 
and cure rate parameters. Second, we compare the full model with the standard PH (α= 1) and PO 
(α = 0) cure rate models with iid frailties (ξ = 0) and spatio-temporal frailties.

The Gibbs sampler with Metropolis-Hastings steps described in Section 3.2 was implemented. 
For some parameters, transformations were necessary and the hyperparameters for the prior 
distributions were chosen to obtain flat distributions. We coded the algorithm in R.26

The modeling constants E, {(re,se)}Ee=1, J0j(t), a0, and b0 in equation (14) were chosen as follows. 
Based on Gelfand and Mallick,21 we fixed E—5 since keeping E relatively small produces inferences

Table I. Summary of the melanoma cancer data.

Survival time Status Year of diagnosis

(months) (count) year: (count)

Median 34 Censored (8857) 00: ( 955) 01: (1 159) 02:(l 305) 03:(l 170)
IQR 46 Death (1480) 04: (1387) 05: (1393) O6:(I436) 07:(l532)

IQR: interquartile range.



Figure I. Marginal Kaplan-Meier plot for some counties in the state of New Jersey.

that are almost indistinguishable from large E. {(re, se)}Ee=1 where chosen to produce evenly spaced 
Beta CDFs by setting {re} = (1, 2, 3, 4, 5) and {Se} = (5, 4, 3, 2, 1). F0j (t), a0, and b0 were selected such 
that F0j(t) substantially maps into [0, 1]. F0j(t) is a central distribution around which F0j is 
distributed. The exponential distribution provides a flexible option in controlling the vagueness of 
the priors, so we set F0j(t) = 1 - exp(λ0f); Vj, a CDF from an exponential distribution with mean 1/λ0
where λ0 was fixed at 0.025 (corresponding to a large variance) which keeps our prior confidence 
about F0j(t) vague. We found that choosing a0 = 100/λ0 and b0 = 400 led to values of J0(t) =a0F0(t)/a0F0(t)+b0 
that substantially cover the interval [0, 1].

Our algorithm was ran three initially overdispersed parallel MCMC chains for 20.000 iterations 
each and 25% of the runs were used as burn in period. Convergence was assessed using 
autocorrelation plots, density plots, trace plots, acceptance rates, Heidelberger-Welch stationarity 
tests, and Gelman and Rubin’s convergence diagnostic.27’28 The acceptance rate oscillates between 
0.25 and 0.64. All the plots are satisfactory with the exception of some autocorrelation plots.

Table 2 displays the posterior medians and 95% highest posterior density (HPD) intervals for the 
transformation parameter α, the γ parameters involve in the cure rate specification (ψ[θ(y, Zijk)]) and 
the hyperparameters used in the modeling of the spatio-temporal frailties wjk. The estimates for the 
interaction between radiation and surgery are not displayed since they are not statistically 
significant; so, the model was refitted without this interaction. The posterior median for α is



Table 2. Transformation, cure and spatio-temporal parameter estimates and 95% HPD intervals.

Full Model
θ(y,Zijk) = exp[ztijky], Wjk ~ CAR(ξ,σ2k), α random

Parameter Median HPD Intervals

Transformation parameter

α

0.1565 (0.149, 0.198)
Cure rates parameters

ywhite 3.3187 (3.152, 3.474)
yfemale -0.2856 (-0.398, -0.179)
Yage 0.8685 (0.803, 0.933)
Ylocalized tumor -0.7387 (-2.361, -0.421)
Yradiation -0.6022 (—1.025, 0.173)
Yrad*loc tumor -0.0898 (-1.059, 0.614)
Yno rad*loc tumor -0.8501 (—1.236, -0.548)
Yrad*reg∕dist tumor -0.6402 (-0.851, -0.273)
Ysurgery -0.7765 (-0.908, -0.641)
Ymarried 0.0532 (-0.049, 0.186)
Yincome -0.1058 (-0.162, -0.051)

Spatio-temporal hyperparameters

ξ

0.7182 (0.591, 0.815)
σ21 10.78 (6.227, 21.566)

10.74 (6.179, 21.319)
10.73 (6.201, 21.415)σ42 10.82 (6.230, 21.504)
10.77 (6.189, 21.221)
10.76 (6.142, 21.308)
10.82 (6.187, 21.231)

σ28 10.79 (6.163, 21.108)

HPD: highest posterior density.

0.1565 with a 95% HPD of (0.149, 0.198) which indicates that the fitted model is neither a PO or PH 
model.

According with the HPD intervals for the y parameters, all the variables involved in the cure rate 
specification are significant with the exception of the variables marital status and radiation; however, 
the interaction effect of radiation and stage of the tumor (local versus regional or distant) is 
statistically significant. The posterior median for the coefficient Yage is 0.8685 which implies that 
the cure rate decreases with age at diagnosis. For example, the odds of cure given one is diagnosed at 
age 25 over at age 45 are 1.37, assuming all other variables have zero effect. Similarly, any other 
overall cure odds for different age points can be computed using the formula ψ[θ(γ, Zijk)∖. The cure 
rate increases as the median family income on the county of residence (in thousands) increases. Note 
that all the variables were standardized.

The posterior median for the variables gender and surgery are negative, indicating a higher cure 
rate effect for the female group and the patients that have a surgical procedure, respectively, while all 
the other variables are constant. The posterior median for the variable race is positive, indicating a 
higher cure rate effect for non-white group, while all the other variables are constant.



Table 3. Estimates of the interaction parameters and cure rates stratified by stage at diagnosis and radiation therapy.

Stage Radiation

Overall γ effect Cure rates

IQREstimate 95% HPD intervals Mean Median

Localized tumor Yes — 1.1297 (-1.860, -0.038) 0.691 1.000 (0.137, 1.000)
Not -0.9617 (-2.064, -0.526) 0.415 0.164 (0.000, 1.000)

Regional/distant tumor Yes -0.421 1 (—2.249, -0.049) 0.356 0.008 (0.000, 1.000)
Not - - 0.014 0.000 (0.000, 0.000)

HPD: highest posterior density and IQR: interquartile range.

The interaction between radiation and stage is significant. Table 3 presents the estimates of the 
overall interaction effects and summary statistics for the estimated cure rates stratified by stage at 
diagnosis and radiation therapy. The sign of the estimates is negative, indicating higher cure rates 
with respect to the baseline group (patients diagnosed with regional or distant tumor with no 
radiation treatment), while all the other variables are constant. The hyperparameters for the 
spatio-temporal components are all significant according to Table 2. Especially, ξ different from 
zero shows a spatial effect on the survival curve. The HPD intervals for the variables overlap 
which implies that the temporal effect may be not strong.

Figure 2 shows a combination of a box plot and a kernel density plot for the estimated cure rates, 
ψ[θ(γ, Zijk)]. The plot starts with a box plot. It then adds a rotated kernel density plot to each side of 
the box plot. The plots show the estimated cure rates classified by gender, race, surgery versus no 
surgery, and interaction between stage at diagnosis and radiation, respectively. All plots indicate low 
rates with high density around zero for the categories male, white, and no surgery, respectively. 
Patients in the group regional-distant stage tumor and no radiation have lower cure rate than those 
in any other classification of the radiation and stage interaction. The kernel is bimodal for the non-
white category, indicating low cure rates for some non-white subjects and a higher proportion of 
non-white subjects with higher cure rates.

Figures 3 and 4 map the posterior medians of the frailties wjk for the years 2000 and 2007. The 
pattern of the frailties varies from year to year. The counties cluster into three groups: low, median, 
and high frailties. The small frailties (darker colors) indicate higher cure rates. For the year 2000, five 
of the counties in the southwest of the state have the lowest median frailties (darker colors), while for 
the year 2007, counties in the southeast have the lowest frailties (darker colors).

The scale of maps 3 and 4 are different. The scales suggest an overall decreasing pattern in the 
frailties over time. The pattern of the frailties by year is visualized better in Figure 5. It shows the 
box plots of the posterior medians of the wjk frailties over time. Figure 5 suggests a constant trend 
for the first three years, followed by a decreasing trend for the last three years. The overall total 
decrease in median frailties from year 2000 to 2007 is 0.60 units over the observation period. We can 
also observe that the variability of the posterior medians changes over time.

We now compare several other models that belong to our family of proposed models using two 
criteria: LPML and DIC. Table 4 lists the DIC and LPML for models with α random, α fixed at two 
levels, and several frailty structures. Note that the frailties are assumed to be iid if ξ = 0, a model 
with CAR(ξ, σ2) structure is a model with spatial association, while a model with CAR(ξ, σ2k) is a 
model with spatio-temporal association. The cure rate PH CAR(ξ, σ2) model has the larger LPML 
statistics suggesting that the best model is the one with PH structure and spatial frailties. However, 
the best model according to the DIC criteria is the cure rate transformation model with α random



Figure 2. Box-kernel density plot for (ψ[θ(γ, Zijk)])∙

and CAR(ξ, σ2k) structure for the frailties suggesting a model with spatio-temporal frailties to be the 
best. For any transformation structure, cure rate models with spatial frailties and spatio-temporal 
frailties outperformed models with iid frailties.

The medians for the parameters involved in the cure rate specification (γ) and the 
hyperparameters that control the spatio-temporal frailties (ξ, σ2k) for models with PH (α = 0) and 
PO (α = 1) structure are listed in Table 5 along with their 95% HPD intervals. The conclusions are 
consistent with the ones reached from Table 2. All the variables involved in the cure rate 
specification are significant with the exception of marital status and education level. Additionally, 
the hyperparameters for the spatio-temporal components are all significant, in particular ξ is 
different from zero (spatial frailty effect).

We have proposed a hierarchical Bayesian methodology to model spatially arranged survival data 
with possibility of cure and temporal effects. We propose a flexible transformation class of survival 
curves by assuming a continuous transformation of the population survival function indexed by a



Figure 3. Fitted spatio-temporal frailties, New Jersey counties for the year 2000.

single parameter assumed to lie in [0, + ∞). Our transformation model is a larger class of models 
containing two special cases of the well-known existing models: PH and PO models.

The survival curve is modeled as a function of a baseline curve, cure rates, and spatio-temporal 
frailties. Further, our model does not assume any particular shape for the baseline survival function,



Figure 4. Fitted spatio-temporal frailties, New Jersey counties for the year 2007.

instead a non-parametric baseline function is incorporated. We integrate cure rates and spatio-
temporal frailties into the survival curve specification. The cure rates are modeled through a 
covariate specification. The spatial frailties are specified using a CAR model with time-varying 
parameters resulting in a spatio-temporal formulation. The likelihood function is formulated



Figure 5. Box plot of the posterior medians for the spatial frailties Wjk for each year k.

Table 4. LPML and DIC for various cure rate competing models.

Model Number Transformation α Frailties Wjk LPML DIC

1 Random iid -12,760.01 32,797.78
2 CAR(ξ, σ2) -12,743.62 32,891.27
3 CAR(ξ, σk2) -12,71 1.46 32,526.63
4 PH (α = 0 ) iid -12,755.22 32,949.74
5 CAR(ξ, σ2) -12,698.31 32,725.81
6 CAR(ξ, σk2) -12,734.22 32,850.00
7 PO (α = 1 ) iid -12,854.29 33,189.76
8 CAR(ξ, σ2) -12,852.93 33,192.48
9 CAR(ξ, σk2) -12,883.72 33,379.13

LPML: logarithms of the pseudomarginal-likelihood; DIC: devaince information criterion; PH: proportional hazard; and
PO: proportional odds.

assuming that the single parameter controlling the transformation is unknown (it needs to be 
estimated) and full conditional distributions are derived based on non-informative priors. Our 
melanoma survival example suggests that cure rate models with spatial or spatio-temporal 
frailties outperform cure rates models with iid frailties.

5 Discussion
We have formulated a class of models for spatially arranged survival data by simultaneously 
incorporating a cure fraction and adjusting for spatio-temporal correlation. The model 
formulation does not assume any proportionality of the survival curve, instead a single parameter



Table 5. Parameter estimates and 95% HPD intervals for PH and PO models with θ(γ, Zijk) = exp[tijkγ] and
Wjk ~ CAR(ξ, σk2)).

Parameter

PH model (α, = 0) PO model (α = 1)

Median HPD intervals Median HPD intervals

Cure rates parameters
Ywhite 3.2824 (3.1 15, 3.430) 3.6063 (3.378, 3.777)
Yfemale -0.2810 (—0.399, -0.169) -0.2981 (—0.435, -0.159)
Yage 0.8388 (0.779, 0.903) 0.9545 (0.880, 1.029)
Ylocalized tumor -0.3383 (—0.832, -0.225) -1.0287 (-1.829, -0.285)
Yradiation -0.2142 (—0.722, -0.128) -0.0794 (-0.534, 0.976)
Yrad*loc tumor -0.4507 (—0.653, 1.059) -0.0826 (—0.198, 1.219)
Yno rad*loc tumor -0.9540 (—1.506, -0.488) -0.4105 (-1.120, -0.007)
Yrad*reg∕dist tumor -0.8982 (—1.399, 0.399) -0.5588 (—0.238, 0.239)
Ysurgery -0.7256 (—0.846, -0.604) -I.0I2I (—1.180, -0.859)
Ymarried 0.0412 (-0.059, 0.172) 0.0519 (—0.077, 0.199)
Yincome -0.1000 (—0.149, -0.050) -0.1343 (-0.194, -0.072)

Spatio-temporal hyperparameters
ξ 0.7191 (0.581, 0.810) 0.7195 (0.598, 0.807)
σ21 10.81 (6.156, 21.551) 10.73 (6.138, 21.233)

10.75 (6.154, 21.415) 10.72 (6.161, 21.584)
10.77 (6.165, 21.102) 10.79 (6.148, 21.308)

σ24 10.81 (6.167, 2l.l 16) 10.75 (6.184, 21.459)
10.80 (6.192, 21.156) 10.74 (6.167, 21.337)

σ26 10.76 (6.137, 21.395) 10.76 (6.145, 21.044)
σ72 10.74 (6.121, 21.241) 10.70 (6.183, 21.204)
σ28 10.78 (6.209, 21.149) 10.78 (6.131, 20.949)

based transformation on Sp,(t│.) was proposed. The benchmark PH and PO models are special cases 
of our transformation model. The model does not assume any particular shape for the baseline 
survival function, instead a non-parametric baseline function is incorporated. The cure rates are 
modeled through a covariate specification which allows for a biomedical interpretation and is 
suitable for Bayesian estimation. The spatial frailties are specified using a CAR model with time- 
varying parameters resulting in a spatio-temporal formulation. The likelihood function is 
formulated assuming that the single parameter controlling the transformation is unknown (it 
needs to be estimated) and full conditional distributions are derived based on quickly informative 
priors.

We also considered several values of α∈[0, 1] to compare our model with the two benchmark 
models, PH and PO. Different values of α led to a various modeling structures. The interpretation of 
γ and {Wjk} is the same for different transformations, but the effect on the cure rates, ψ[θ(y, Zijk)], 
and spatio-temporal relative risks, ψ[θ(y, Zijk)], is different, causing difficulties when comparison 
with PH or PO models is desired.

Our method is implemented via MCMC and it is naturally suitable for model comparison using 
the LPML and DIC criteria. An MCMC procedure was proposed for Bayesian estimation of the 
single parameter that controls the transformation, cure rates, and spatio-temporal frailties parameters. 
Another MCMC procedure was proposed when the parameter that control the transformation is 
assumed to be known. The computational efforts in terms of time and hardware are moderate,



especially for large samples like the one used here. We found some problems with some of the 
autocorrelation plots by, in general, the convergence diagnostics were satisfactory. Our results for 
the melanoma cancer data set support that a CAR prior and cure rates parameters can be useful in the 
modeling of the survival curves.

The model formulation given by equation (6) supports many other specifications for θ(y, Zijk) 
that lead to identifiable models as long as F(t) is parametrically specified (Theorems 2.1 and 3.1 ). 
Model (6) also supports other areal and geostatistical model specifications for the spatio-temporal 
frailties and it can be easily generalized to incorporate other random effects in addition to the 
random intercepts. Although our application does not include interaction effects in the cure rate 
specification, the model is suitable to include any kind of variables in the cure rate link function, 
θ(y, Zijk).
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Appendix I
Proof of Theorem 2.1
Proof of (a) Without loss of generality assume that z is one dimensional and Z = (z0, z1); 
—∞ <z0 <z1 < ∞. In each case, we need to show that Sp(t│z) ≡ Sp*(t│z) if and only if F(t) = F*(t) 
for almost all t <C and θ(z) — θ*(z) for all z ϵ Z. The ‘if part is clearly true, so we prove here the 
‘only if part.

Assume that α is known and F(t) = F(t│γ), where y is a parameter or vector of parameters. To 
show the ‘only if part, assume Sp(t│z) ≡ Sp(t│z). For both cases, α = 0 or α>0, Sp(t│z) ≡ S*p(t│z) 
impliesθ(z)/θ*(z) = F*(t │y*)/F(t│y) = a, where a is a positive constant (functionally independent of z and t) for all
t < C and z ϵ Z. If F*(t│γ*) = aF(t│γ), then F*(t∣y*) does not belong to the same parametric family to 
which F(t│γ) belongs if α≠l, unless γ* = γ. Then, a=1 and so F(t) = F*(t) for all t<C and 
θ*(z) — θ(z) for all z∈Z. Then, the model is identifiable regardless of whether θ(z) is unspecified 
or specified.

Proof of (b) Assume that α is fixed and δ = 0. The ‘if part is clearly true, so we prove here the ‘only 
if part.

For both cases, α = 0 or α > 0, Sp(t∣z, w) ≡ Sp*(t│z, w) implies = F*(t)/F(t) = a, where a is a positive
constant (functionally independent of z and t) for all t < C and z ∈ Z. It follows that θ(z) — aθ*(z) for 
all z∈Z, which implies that θ(z) = a θ*(z) = exp(β*z + log(a)) for all z ∈ Z. It follows that θ(z) cannot 
be written as exp(βz) unless a = 1. Then, the model is identifiable when δ = 0. Now suppose δ ≠ 0 and 
3a≠ 1 such that θ(z) — aθ*(z) for all zϵZ and F*(t) = aF(t) for all t<C. Then, Sp*(t∣z,w) ∈ H and 
Sp*(t│z, w) = ψ[F*(t) 1/a exp (δ+ βz) exp (w)] = Sp(t│z, w). This shows that the model is not identifiable 
for δ≠0.

Proof of (c) Assume that α > 0 is unknown and that δ — 0. The ‘if part is clearly true, so we prove 
here the ‘only if part.

Let Sp(t│z) = Sp*(t│z). It follows that [1 + αθ(z)F(t)]α*/α = [1 + α*θ*(z)F*(t)], for all t<C, z∈ Z. Let 
g(t, z)=θ(z)F(t). g*(t, z) = θ*(z)F*(t) and consider the Taylor series expansion around (1, 0) of the 
following functions G(t,z) = [1 + αg(t,z)αα z)]α*/α and G*(t, z) = [l + α*g*(t, z)]. G(t, z) = G*(i,z) for all 
t < C, z ∈ Z if and only if all the terms of the Taylor series expansion of G(t, z) and G*(t, z) are equal. 
In particular, the second term of the Taylor series expansions of G(t, z) and G*(t, z) around (1,0) are 
equal if and only if (1 + α)α*/α-1 = 1. It follows that α*=α which implies that = = a, where a
is a positive constant (functionally independent of z and t) for all t < C and z∈Z. It follows that 
θ(z) = αθ*(z) = exp(β*z + log(a)) for all zϵZ. θ(z) cannot be written as exp(βz) unless a—1. Then, 
the model is identifiable when δ = 0.

http://www.R-project.org


Appendix 2
Likelihood for α = 0
Sinceψ'(x)/ψ(x) = -(1 + αx)-l 1I{α > 0} — l1I{α = 0}, the contribution ijk to the conditional likelihood 
reduces to equation (16) when α > 0 and to equation (17) when α = 0

Appendix 3
Proof of Theorem 3.1
We prove the theorem for α > 0. A similar proof holds for α = 0. First, we proof that 3R(α) > 0 such 
that

When δijk = 0, Lijk(α, y,F0j∣W, D) = [1+αF0j(t)exp(z'ijk y + wjk)]-1/α which one can show is less 
than or equal to 1 using basic calculus, so equation (18) holds. For δijk = 1, Lijk(α, y, F0j∣W, D) can 
be written as F0j(t) exp (z'ijk + wjk)[l + αF0j(t) exp (z'ijky + wjk)]-1/α-1f0j(t)/F0j(t). Let h(x) = x(l + a x)-(1 + 1/α) 

x > 0. It can be shown that h(x) < (1 + α)-(1 + 1/α) < (1 + α)-1 < (1 + a). Since f0j(t)/F0j(t) < B for some
B> 0, equation (18) holds when δijk = 1 and R(α) = B(l + α).

Since Z* is full rank, there exists L independent row vectors z'ijk1,..., z'ijkL such 
that δijkl, = 1, Vl = 1,... L. Using equation (18) in the posterior π(α,y,F0∣D) (equation (13)),
we get

where Ra denotes the a-dimensional Euclidean space and (0, l]J the unit hypercube in RJ . Let 
vl=zijkι γ be the 1-1 linear transformation from γ to v = (vl,..., vl)'. Then equation (19) is 
proportional to



Integration out v, equation (20) reduces to

Post-print standardized by MSL Academic Endeavors, the imprint of the 
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By assumption (d) of Theorem 3.1, < B for some B>0, and so equation (21) is less than or
equal that
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