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Optimal and heuristic lead-time quotation for an integrated steel mill 
with a minimum batch size 
Susan A. Slotnick * 
Dl>panmenr of Opera /ions o"d Su pply Chain Managemem. Nanu Callege of lIu$ine.ss Administration. Cleveland Stult University, 2121 EUClid Avenue, Cleveland, OH 44115. USA 

I. Introduction 

Steel production involves a number of processes, from melting 
the raw materials. purifying and adding alloys, to casting. rolling. 
and finishing the product (see Fig. 1). To ensure on-time delivery, 
the steel producer must take into account processing time, as well 
as potential delays, from when an order arrives at the facility until 
the finished material is loaded for transport. The model presented 
in this paper focuses on the first stage of steel production: melting 
and casting. At the steel mill that motivates this research, the con-
tinuous caster is the bottleneck operation. In order to promise 
delivel)' dates that are both attainable and acceptable to custom-
ers. the steel producer needs to know the expected time from order 
entl)' to deli vel)'. which includes the lead-times (processing time 
plus delay time) for the production processes. This paper develops 
a model of lead-t ime policies for the bottleneck process. the con-
tinuous caster. which determine in turn delivery promises to the 
customer. 

The consequences of inaccurate delivery promises are twofold. 
If the promise is too short. then the order is more likely to be 
delivered tardy. This may result in penalties, refunds to the cus-
tomer. and/or lost business in the future. If the promise is too long. 
the customer may decline it and seek out a competitor who prom-
ises earlier delivel)'. Accurate internal lead-time quotations are 
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necessary to determine external delivery-date promises that are 
both realistic and acceptable to customers. 

The author spent four months interacting with members of a 
task force charged with improving deJivel)' performance at a steel 
mill. During busy periods. when the volume of orders exceeds 
production capacity. the percentage of on-time orders drops below 
the performance target. On-time delivel)' is of vital strategic 
importance for this firm: while some customers are flexible with 
regard to deJivery performance. other customers will not accept 
late orders. Another indication of the criticality of delivering on 
time is the fact that the annual bonus for these managers depends 
in part on the percentage of on-time deliveries. The importance of 
delivery performance was a lso reflected in the existence and make-
up of this task force. consisting of managers of the major divisions 
of the plant (steelmaking. rolling mills, t ransportation. and sales). 

One reason for poor delivery performance at this plant is the 
way in which delivery promises are made. All products are 
assigned a "standard lead time.H that is. customers placing orders 
are quoted a delivery date that consists of a constant processing 
time plus a fixed number of weeks. In busy periods, that fixed 
number of weeks is adjusted upward, in an attempt to account 
for delays resulting from congestion. While this method crudely re-
flects the status of the plant, it is adjusted infrequently, and the 
decision is made at headquarters in another city, rather than 
locally by managers who know about and are sensitive to the 
current status of production. 

In addition, no adjustment is made for the waiti ng time that 
will be incurred by an order that is smaller than the minimum 
batch size. Because of the size of the ladle in which the steel is 
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Fig. 1. Steelmaking with continuous casting. 

prepared for casting, there is a minimum size for each batch, or 
melt. Only one product type, or grade, can be melted at a time; 
product differences include the nature of the alloy and the quality 
of the steel. Since the facility is strictly make to order, producing 
extra product to stock is not permitted. So customer orders that 
do not meet the minimum batch size must wait for other orders 
of the same grade, that is, orders with similar metallurgical and 
physical characteristics, until there is enough volume to constitute 
a melt. As a consequence, such orders are more likely to be 
delivered late. 

How should delivery promises be determined in this situation? 
The current status of the mill, including waiting time for the bottle
neck process, is one important component. Orders that are smaller 
than the minimum batch size may experience an additional delay. 
So lead-time quotations for the caster, and consequently, customer 
delivery promises, should take into account processing time, 
queueing time and time for arrival of enough tonnage to complete 
the minimum batch size requirement. 

To provide insights into how this steelmaker (and similar firms) 
might improve its delivery performance, the present paper devel
ops a model of lead-time policies for the continuous caster, with 
stochastic arrivals of multiple products, and a minimum batch size. 
The combination of these elements in one model is a contribution 
of this paper to the substantial literature on scheduling steel pro
duction. The problem is modeled as a stochastic dynamic program 
with a large state space (two vectors and two scalars). A computa
tional study investigates the relationship of an optimal lead-time 
quotation to the amount of this product already on order, and to 
two characteristics of the orders (arrival rate and customer atti
tude toward delivery promises). For example, will a relatively high
er arrival rate of a product, all else equal, result in a longer lead 
time because of congestion, or a shorter lead time because the min
imum batch size is achieved more quickly? What are the effects of 
arrival rates of other products? It seems intuitive that an order 
from a customer who is more sensitive to delivery promises, all 
else equal, should be relatively shorter, but what is the influence 
of the lead-time sensitivities of other customers? 

The results of the computational study provide answers to these 
questions. First, the optimal lead-time for an order is decreasing in 

the amount of that product that is already waiting to be melted; 
this reflects the fact that the time waiting for the orders to accumu
late to the minimum batch size will be shorter if there is more 
there to start with. Second, an order for a product with a higher ar
rival rate, all else equal, results in a shorter optimal lead-time, 
since the orders accumulate more quickly and the minimum batch 
size is reached sooner. Third, higher arrival rates of other products 
cause more congestion in the system, and so result in a longer opti
mal lead time for the incoming order. Fourth, optimal lead times 
are shorter for those customers who are sensitive to the promise 
date, and might seek other suppliers if the date were too long. Fi
nally, higher sensitivities of other customers result in a shorter 
optimal lead-time quotation for the current order, since the likeli
hood of balking is higher, which would reduce congestion and thus 
shorten waiting-time delays for the current product. These results 
are intuitive, but not obvious, since the trade-off between longer 
and shorter delivery promises affects both retention rate (hence 
incoming revenue) and tardiness (hence discounts or lateness pen
alties). None of these insights were being used at the steel-making 
facility. 

The near-monotone property of lead times in relation to the le
vel of waiting orders suggests a heuristic approach. A numerical 
example shows that using this property would save about 40% of 
computational effort in a typical problem. Computational results 
confirm that the heuristic is much faster than the optimal proce
dure, and very close to optimal in value. 

The contributions of this research include the analysis of a prob
lem common to steel mills and other applications (such as the pro
duction of glass, paint and pharmaceuticals), that is, a lead-time 
decision that is complicated by a minimum batch size constraint. 
The computational study provides insights into the problem of 
how to quote lead-times in order to arrive at delivery promises 
that will balance the benefits of order retention (revenue) and tar
diness costs. The model also provides insights into how aspects of 
the shop and of customer orders should influence lead-time quota
tion, and constitutes an application of stochastic dynamic pro
gramming to a practical problem of high dimensionality. 

The rest of the paper is structured as follows. Section 2 dis
cusses related research in the areas of scheduling steel production 
and lead-time models. The model is presented in Section 3, proper
ties and algorithms are described in Section 4, and the computa
tional study is detailed in Section 5. Section 6 presents a 
summary and conclusions. 

2. Related work 

2.1. Scheduling steel production 

The past twenty years have seen scores of papers on the topic 
of scheduling steel production. Surveys are included in Lee and 
Murthy (1996), Cowling and Rezig (2000), Dutta and Fourer 
(2001), Tang et al. (2001), Tang and Wang (2008). Tang et al. 
(2000) review mathematical programming models and expert-
system approaches to scheduling steel production. The present 
discussion covers only those papers that focus on scheduling 
continuous casters, with special attention to minimum batch size 
and related grouping decisions. 

Two papers consider the problem of scheduling a caster for 
which product changeovers involve costly setups. Box and Herbe 
(1998) present a decision support system for a twin strand contin
uous caster. A heuristic algorithm selects and then sequences or
ders for casting, with the objective of minimizing ‘‘pseudo-costs,” 
which include penalties for inefficient use of capacity, missing 
due-dates, and time spent in setups. In order to accommodate min
imum batch sizes for the caster, they recommend producing future 



as well as present and past-due orders of low-volume cast families, 
which may also involve making some tonnage to stock. Dorn et al. 
(1996) apply iterative improvement techniques to scheduling a 
continuous caster, using constraint satisfaction to minimize setups 
and product changeovers, as well as to take into account product 
compatibility and due-dates. 

A number of studies develop models for scheduling the caster 
and subsequent operations. Tamura et al. (1998) employ a two-
stage algorithm (including both human and computer compo
nents) to schedule casting and hot rolling. Multiple objectives 
incorporate product selection and due-dates. Constraints take into 
account chemical and physical characteristics, batch sizes and 
other capacity constraints. Macro- and micro-level schedules are 
produced by a combination of human expertise, search and 
dynamic programming. 

Cowling and Rezig (2000) use mathematical programming and 
heuristics to find near-optimal integrated schedules for a continu
ous caster and (downstream) hot strip mill. The compound objec
tive includes due-date performance, flow time and set-up 
considerations, with constraints based on physical dimensions 
and sequencing and capacity. The three-stage algorithm first finds 
a feasible solution, next improves it with greedy methods, and fi
nally uses local search for further improvement. Computational 
tests using industrial data demonstrate the superiority of this ap
proach over manual solutions, and potential cost benefits include 
savings from reduced inventory and energy, as well as increased 
flexibility and throughput. 

Cowling et al. (2004) employ a multi-agent system to schedule 
casting and milling operations, in the face of real-time events 
such as material shortages and rush orders. The scheduling 
of the continuous caster defines production sequences (heats) 
under constraints involving physical and chemical compatibility. 
The model incorporates linear programming and bin-packing, 
with the objective of minimizing the number of heats and 
earliness/tardiness penalties. The minimum batch idea is embod
ied in the scheduling of heats. A simulation study shows that this 
method dominates a centralized approach in which schedules are 
generated sequentially without coordination among the different 
processes. 

The problem of grouping orders for a continuous caster involves 
the minimum batch size of the ladle, the cost of setups and product 
turnover, and the desire to minimize or eliminate making product 
to stock. Chang et al. (2000) use integer programming and a col-
umn-generation heuristic that minimizes the total number of casts 
required to group a given set of charges (ladle loads) for the casting 
operation. Constraints include product characteristics, time limits, 
and technological constraints. 

Ferretti et al. (2006) use an Ant Colony metaheuristic applied to 
a Traveling Salesman Problem to schedule continuous casting and 
billet cooling. The objective is to determine the sequence of jobs 
that maximizes profit (revenue of sold billets minus the costs of 
billet stocking and order delays). In comparison with a mixed inte
ger linear approach, this algorithm models the industrial situation 
more closely, and provides good solutions in acceptable computing 
times. 

Tang et al. (2000) develop a four-step scheduling model for 
steelmaking, refining and continuous casting. In order to ensure 
production continuity and just-in-time delivery, the model mini
mizes penalty costs from product changes, temperature drops 
and earliness/tardiness. Rough scheduling is performed manually, 
and then the nonlinear model is transformed into a linear program
ming model which can be solved by standard methods. A subse
quent paper (Tang et al., 2002) develops an integer programming 
model for the same problem, which minimizes ‘‘cast breaking, 
job waiting and earliness/tardiness” and is solved by a combination 
of Lagrangian relaxation and dynamic programming. 

Naphade et al. (2001) consider a problem of melt scheduling 
that shares some characteristics of continuous casting: a minimum 
batch size and different families of products. Their method mini
mizes waste (extra material that is melted to meet the minimum 
batch size of an order) and total tardiness. A mixed-integer pro
gram is computationally expensive, and so a heuristic is formu
lated that decouples order selection and resource allocation. This 
method is tested computationally and has been implemented as 
part of a decision support system. 

Dobson and Nambimadon (2001) consider the combination of 
batching and scheduling that is typical of heat treatment (includ
ing casting) in steel production. Jobs belong to different families, 
which share processing characteristics. Batches cannot be split. 
The model minimizes weighted flow time, which they describe 
as a proxy of both cost and lead time. Processing times are not 
dependent on batch contents, jobs may be of different sizes, and 
all jobs are available for processing at the time of the decision. 
They formulate an NP-hard integer program, decompose it 
into scheduling and batching problems, and develop an optimal 
polynomial-time algorithm for the special case of related job 
volumes. Heuristics are developed for the general case. 

Tang and Zhao (2008) look at the problem of heating billets as a 
‘‘semi-continuous” batching machine. That is, a batch consists of 
orders that share processing characteristics, and orders enter and 
leave the processor individually, with the processing time of the 
batch determined by the longest processing time of any one job. 
The objectives are minimization of makespan and total completion 
time. Processing times are deterministic. Optimal properties are 
derived for the batching and scheduling problems, and used to de
velop dynamic programming algorithms. 

Tang and Wang (2008) develop a decision support system to 
perform two levels of order grouping for a continuous caster. Jobs 
are grouped into charges by grade (chemical composition) and size, 
and charges are grouped into casts, which must consist of compat
ible grades. The objectives include minimization of ‘‘quality 
upgrading” (delivering a higher quality steel than the customer 
specified, in order to achieve a minimum batch size), late delivery 
and extra inventory (for the charge batching problem), and mini
mization of setups and deviations from priorities and target 
weights (cast batching problem). A mixed integer-linear program 
integrates the two problems, and heuristic algorithms obtain solu
tions of practical problems with acceptable running times. Compu
tational results show that the proposed methods generate 
solutions that are better and faster than manual methods. Another 
paper that considers adapting customer specifications, by 
Balakrishnan and Geunes (2003), presents a production planning 
model that accounts for the possibility of customer flexibility in 
product specifications (such as specialty steel). 

These articles solve variations of scheduling problems associ
ated with steel production, including caster scheduling, integrated 
schedules for the caster and downstream operations, batching and 
order grouping. Batch size considerations are sometimes included 
as constraints, and/or incorporated into minimization of setup 
and changeover costs. One way of dealing with the problem of or
ders that are smaller than minimum batch size is to consider the 
balance of the batch as make-to-stock product; another is to take 
advantage of customer flexibility, or combine orders so that some 
customers receive a higher quality than specified. 

The present paper takes a different view of the minimum batch 
size problem. Instead of seeking ways to use the extra product that 
would result from rounding up and producing a batch that meets 
the minimum batch size but is more than has been ordered, or 
minimizing setup and other costs while incurring penalties for late 
delivery, the research presented here seeks to maximize revenue 
(offset by tardiness penalties) by finding lead-time policies that 
take into account the time needed to accumulate enough orders 



for those low-volume jobs that must wait for others until a mini
mum batch size is achieved and production is initiated. The next 
subsection places this research in the context of the body of liter
ature that focuses on lead-time quotation. 

2.2. Lead-time models 

Although the studies of lead-time quotation and due-date set
ting are intertwined, and ‘‘lead-time quotation” is often used syn
onymously with ‘‘due-date setting,” the following distinction will 
be made in this paper. Lead time is the processing time plus the 
amount of time that an order incurs from waiting and other types 
of delays in the manufacturing facility. Lead-time quotation, an  
internal policy, is necessary for setting external delivery promises gi
ven to customers. This section focuses on those contributions that 
are most closely related to the present paper, in particular, 
research that uses lead time as a decision variable. 

The literature on due-date setting in deterministic models is re
viewed by Cheng and Gupta (1989). Under the general title of 
‘‘Due-Date Management Policies,” Keskinocak and Tayur (2004) 
provide a comprehensive survey of the literature on lead-time quo
tation. Relevant to the present paper is their discussion of due-date 
management research with order selection decisions, in which de
mand (the orders retained or refused) is affected by the lead-time 
policy and subsequent due-date quotation, papers that combine 
pricing and order selection, and papers that explicitly take into ac
count shop load to quote lead times and set customer due-dates. 
Missbauer and Uzsoy (2010) discuss workload-dependent lead-
time models in the context of production planning optimization. 
For more recent reviews of this literature, see Zorzini et al. 
(2008), Upasani and Uzsoy (2008). 

Two previous papers consider lead-time quotation using profit 
maximization and tardiness penalties. In Chatterjee et al. (2002), 
the sales department knows the processing time of an order, but 
does not have complete information about the status of the shop 
or current delays. Customers decide to stay or leave, depending 
on the quoted delivery promise; the optimal lead-time policy is a 
log-linear function of the processing time of the order. Slotnick 
and Sobel (2005) extend this model to the case where the firm 
has complete information about shop status and delays, and com
pare the performance of the two procedures to gain insights about 
when it is cost-effective for a firm to expend resources to provide 
information about processing backlogs to the sales department. 

A number of papers consider lead-time policies when due-dates 
must be reliable. Kaminsky and Lee (2008) develop due-date quo
tation algorithms for a dynamic single processor problem with the 
objective of minimizing the sum of quoted due dates, with no tar
diness allowed. Ata and Olsen (2009) investigate the effect of the 
shape of the customers’ delay cost function on capacity, lead-time 
and sequencing decisions in a make-to-order facility. Late delivery 
is not allowed, customers leave if the lead-time quotation is too 
long, and production times are deterministic, as are the delay costs. 
The model maximizes revenue minus the cost of capacity. Results 
include asymptotically optimal policies for different delay cost 
functions, which yield cost savings as demonstrated by a numerical 
study. 

Several recent papers consider the problem of determining due-
dates for different customer classes. Plambeck (2004) develops a 
model for two customer classes, differentiated by price and pa
tience, and reliable due-dates. When a customer arrives, the man
ager quotes a delivery date and then sequences orders. An upper 
bound on the long-run average profit rate is derived from a static 
formulation of the problem, and if some customers will accept long 
lead times, then capacity utilization will be near 100%. The author 
uses diffusion approximations to derive a near-optimal policy, with 

a closed-form expression for profit rate. A simulation study dem
onstrates the accuracy of these approximations. 

Kapuscinski and Tayur (2007) present a finite-horizon, discrete-
time model with stochastic demand, deterministic processing 
time, and two classes of customers with different delivery-time 
sensitivities and contribution margins, which require reliable 
due-dates (no late deliveries allowed; early shipments are not 
penalized). All orders are accepted, and demand and price are 
not related to due-date quotation. The tradeoff here is that an early 
delivery quotation to a low-margin customer could cause a future 
high-margin customer to wait longer. The authors characterize the 
optimal policy and develop an approximation that provides fast 
near-optimal solutions. 

Celik and Maglaras (2008) consider the tradeoff between price 
and lead times for multiple customer classes. They also allow dy
namic selection of price and lead times, after which orders are se
quenced and may be expedited at a cost. With the objective of 
maximizing the long-run average expected revenue minus the cost 
of expediting, a diffusion model approximation is developed and 
evaluated via computational studies. This paper includes the 
features of expediting capability and the option for a product to 
be offered at multiple lead times with different prices. 

The present paper extends the current literature by developing 
a stochastic model in which lead-time policies depend on current 
workload and on the time needed to accumulate orders to satisfy 
a minimum batch size constraint. As in order acceptance models, 
customers may choose to stay or not, depending on the quoted 
lead time. The computational study provides insights into the rela
tionship of lead-time policies, number and size of orders already 
received, customer characteristics (the tolerance of customers for 
long lead-times) and order characteristics (the arrival rate of a par
ticular class of orders) for the quotation of lead-times in systems 
that require a minimum batch size for processing. 

3. Caster system model 

The customer orders in this discrete-time Markov decision pro
cess (MDP) model arrive as prospects who are issued lead-time 
quotations. Period n is the interval of time between the arrivals 
of the nth and n + 1st orders, and the planning horizon is the time 
needed for N prospective orders to arrive. At the beginning of per
iod n, the decision maker learns an and gn which are the respective 
tonnage and grade of the nth prospective order, n = 1,  2,  . . . , N. Then 
the decision maker issues a lead-time quotation (a decision vari
able) Ln + H (where Ln is the lead time in the caster and H is the 
processing time on the subsequent operations) to the prospective 
customer with order n, who reacts by making a firm commitment 
or by balking. Let dn indicate the reaction; dn = 0 if the customer 
balks, and dn = 1 if not. Since the caster is the bottleneck operation, 
the rest of this paper focuses on the decision variable Ln; for pur
poses of this analysis, H is treated as a constant. 

In the model, the prospective customer with order n balks with 
probability 1 - e-nðgn ÞLn and submits a firm order with probability 
e-nðgnÞLn . That is, the probability of a tentative order becoming firm 
is a convex decreasing function of the lead-time quotation Ln, and 
n(gn) parameterizes the ‘‘impatience” of the prospective customer 
with the nth order. In other words, n(gn) parameterizes the sensi
tivity to the delivery promise of the prospective customer with or
der n: for a given value of Ln, the higher the value of n(gn), the more 
likely that the customer will not submit order n. Customer impa
tience depends on grade, since in this facility, particular grades 
can be associated with particular customers. For example, impor
tant customers with large volumes of orders, such as automotive 
fabrication plants, demand short lead times and on-time delivery, 
or they will take their business elsewhere. On the other hand, some 



customers place their orders far enough in advance of their pro
duction so that they can accept a longer lead-time without disrupt
ing their own production. Customer patience as a decreasing 
function of lead-time is common in the lead-time literature 
(Dobson and Pinker, 2006; Ata and Olsen, 2009), and there is also 
precedent for using the exponential form (Duenyas and Hopp, 
1995; Chatterjee et al., 2002; Slotnick and Sobel, 2005). 

If the prospective customer places a firm order n, the tonnage of 
that order is added to a virtual ‘‘bucket”; that is, a database entry 
keeps track of the volume of orders for each grade g (among a total 
of G grades). If the customer balks, the level of the bucket is un
changed. Whenever a bucket is full, that is, the accumulated vol
ume of orders of that grade has reached the minimum batch size, 
those orders join the caster queue as a single batch. See Fig. 2. 
The chemical composition determines which products can be pro
duced in the same melt. As described in Tang and Wang (2008), it  
is possible to produce more than one type of order in a melt, by 
delivering a higher-quality product to some customers. Even 
allowing for such combinations, there are hundreds of possible 
melt formulas. The decision of how to combine similar grades into 
melts is not considered in the present paper. So ‘‘grade,” in this pa
per, is used to refer to a grade family, that is, a group of products 
that can be melted together. 

Following the arrival of order n, let Tn be the elapsed time until 
the bucket for grade gn is full and ready to join the caster queue. Let 
Wn be the subsequent time that the order spends in the caster sys
tem. The order is tardy in the caster system if Tn + Wn > Ln. Note 
that, because the caster is the bottleneck operation, the delivery 
promise to the customer is a function of the lead-time quotation 
for the caster system. For ease of exposition, the balance of the pa
per refers to the influence of lead-time quotations on customers, 
meaning the influence of delivery promises derived from these 
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Fig. 2. Order flow and buckets. 

lead-time quotations. So an order that is tardy in the caster system 
is assumed to be delivered tardy to the customer. 

If the prospective customer places a firm order n and the order 
is not tardy, then the mill is credited with wr(gn)an which is propor
tional to the tonnage of the order (an). The profit rate wr(gn) de
pends on the grade because different grades are priced 
differently. If the order is tardy, then the credit is offset by a pen
alty wp; so the net credit is wr(gn)an - wp. Let sn indicate whether 
this order n is tardy or not; that is, sn = 1 if the order is tardy, 
and sn = 0 if not. The factor wr represents the value to the firm of 
processing and delivering an order; it may be considered a per-unit 
revenue or contribution margin. 

With this notation, the total credit that the mill accrues during 
the planning horizon is 

N 

dn½wr ðgnÞan - snwp ]: ð1Þ 
n¼1 

X
After the arrival of order n, the steel mill managers already 

know the grade gn and tonnage an of the prospective order, as well 
as the lead-time quotation Ln which they have chosen. So there are 
three sources of randomness. First, the prospective customer may 
balk. Second, if the customer does not balk, the interval of time un
til the bucket for grade gn becomes full is random. Third, the sub
sequent time spent in the caster system is random. Thus, after 
the mill issues quotation Ln, the expected value of its net credit 
associated with prospective order n is 

-nðgnÞLne ½wr ðg Þan -wpPfTn þWn > Lng]: ð2Þn

Therefore, the expected value of the total credit during the planning 
horizon is ! 

N 

E e-nðgnÞLn ½wr ðg Þan -wpPfTn þWn > Ln g] : ð3Þ 
X

n 
n¼1  

Expression (2) is the expected single-period reward in the MDP 
model, and the overall criterion is to maximize the expected total 
credit, i.e., (3), with respect to non-anticipative decision rules for 
choosing lead-time quotations L1, L2, . . . , LN. The analysis is based 
on the following assumptions regarding the stochastic elements 
in the model. The tonnages and grades, (a1, g1), (a2, g2), . . ., (aN, gN), 
are independent and identically distributed pairs. That is, they 
have an exogenous joint distribution which does not depend on 
lead-time quotations directly or indirectly. The arrival times of 
prospective orders of various steel grades are independent grade-
dependent Poisson processes. The tonnages of different orders 
with the same grade are independent and identically distributed 
exponential random variables. The arrival rate of each grade, de
noted kg for grade g, and mean tonnage per order, are exogenous 
known parameters. 

The times that firm orders spend in the caster system (Wn if cus
tomer n does not balk) are independent and identically distributed 
as the equilibrium waiting time in an M/M/1 queueing system with 
arrival rate K and service rate l. That is, Wn is exponentially distrib
uted with rate K - l. An unavoidable source of complexity in this 
model is that K is endogenous. The rate at which full buckets enter 
the caster process depends on the exogenous arrival processes and 
on the lead-time quotations. Short quotations will induce infre
quent balking and, therefore, the buckets will fill quickly and the in
put process to the caster will have a higher rate. On the other hand, 
if most of the quotations are long, then many customers will balk 
and so the buckets will fill slowly, and the input to the caster will 
have a lower rate. Congestion will be higher in the former case than 
the latter, and the Wn’s will be stochastically greater. The input rate 
to the caster in this model reflects these considerations and, when 
the nth prospective order arrives, is 



XG 
nðgÞLK ¼ kge - g ; 

g¼1 

where Lg denotes the most recent quotation on an order of grade g. 
The idea is that customers are aware of the most recent lead-time 
quotation through the delivery promise, which affects their deci
sions to balk or stay. 

Given a value of Ln, these assumptions and a normal approxima
tion yield an easily computed value of P{Tn + Wn > Ln} (Sobel, 2009) 
which is needed to optimize the expected value of the total credit 
(3). This yields a discrete-time Markov decision process (MDP) 
with the objective of maximizing (3). The action of the MDP is 
the quotation L and its state is the vector ðs; a;L; gÞ with 2G + 2  
components having the following interpretation. At the beginning 
of period n, i.e., when the nth prospective order arrives, the vector 
s = (s1, s2, . . . , sG) specifies the bucket levels of the grades, a and g are 
the tonnage and grade of the prospective order, and the vector 
L ¼ ðL1;L2; . . . ;LGÞ specifies the most recent previous lead-time 
quotation for each grade. 

In order to specify the dynamics of the MDP, let (s, a, L, g) be the 
state upon the arrival of the nth prospective order, and let L be the 
ensuing lead-time quotation. Let ðŝ; a0;Lb ; g0Þ denote the state when 
the (n + 1)st prospective order arrives. The joint probability distri
bution of (a0 , g0), the tonnage and grade of that order, is exogenous, 
i.e., it does not depend either on the state or the lead-time quota
tion. Also, Lb g ¼ L and Lb k ¼ Lk for all k – g because only the nth 
prospective order receives a lead-time quotation during period n. 
Similarly, ŝk ¼ sk for all k – g because only the grade g bucket is af
fected by the arrival of prospective order n and its decision to balk 
or not. If the customer balks, and that occurs with probability 

-1 - e n(g)L, then ŝg ¼ sg . 
Let M be the capacity of the ladle, i.e., the minimum batch size. 

If the nth prospective customer does not balk, there are two cases. 
If sg + a P M, then the updated grade g bucket has reached the min
imum batch size, the grade g batch enters the caster process, and 
ŝg ¼ 0 (the bucket is emptied). If sg + a < M, then the updated grade 
g bucket has not yet reached the minimum batch size and cannot 
yet enter the caster process, and ŝg ¼ sg þ a. If the nth prospective 
customer balks, then the amount in the grade g bucket remains un
changed so ŝg ¼ sg . Since the order volumes of the products in 
question are relatively small, the model does not keep track of 
the small amount by which sg + a may exceed M. 

The MDP model corresponds to the following dynamic program 
with fN+1(-, -, -, -) = 0: n h i 

nðgÞLe - wrfn ðs; a;L; gÞ ¼ maxL>0 a -wpPfT þW > Lgg h i 
nðg0 ÞLþ e - E½fnþ1ðŝ; a0;Lb ; g0]h  io    

þ 1 - e -nðg0 ÞL E fnþ1ðs; a0;Lb ; g0Þ : ð4Þ 

4. Properties and algorithms 

4.1. Introduction 

The problem of determining lead-time policies for the steel mill 
exemplifies the strategic importance of operational decisions, since 
delivery performance is a vital competitive priority. How can the 
caster system model (4) contribute to understanding how to quote 
lead-times? What characteristics of the production facility, cus
tomers and orders should the delivery performance team consider 
when deciding how to determine due-date promises? What are the 
tradeoffs, and how should they inform decision making? 

Answers to these questions are found in the relationship be
tween state variables, model parameters, and the decision variable. 

It seems reasonable that the combination of current order size an 

and bucket level for the current grade sg, that is, the updated buck
et level ŝg , should influence the estimate of how long it will take to 
finish and deliver the order, since waiting time until release into 
the caster system depends on when the bucket level reaches min
imum batch size (see Fig. 2). 

Other parameters of the model also influence the lead-time 
decision, which influences in turn the delivery promise to the cus
tomer. Exogenous arrival rates kg have a dual effect: higher arrival 
rates may cause congestion delays, but may also speed the filling of 
the bucket which shortens the wait until minimum batch size is 
reached. If customers vary in their sensitivity to the length of 
due-date promises, it seems likely that more impatient customers 
(higher n(g)) should be quoted shorter delivery promises. The sen
sitivity of other customers may have two countervailing effects. If 
resources are devoted to meeting the higher impatience of others, 
a longer due date should be quoted for the current order. On the 
other hand, the impatience of others may lead to fewer retained or
ders, lower congestion and so the ability to quote a shorter delivery 
date for the current model. 

The richness of the model (4) makes possible the investigation 
of these questions. However, the resulting complexity brings diffi
culties to the analysis. The size of the state space, which includes 
two vectors and two scalars, invokes the ‘‘curse of dimensionality.” 
The next subsection describes how a near-monotonone property of 
the model provides an opportunity for a fast, high-quality 
heuristic. 

4.2. Computational acceleration 

The number of arguments in the dynamic program (4) and the 
well-known curse of dimensionality make the computation of an 
optimal solution a formidable task. However, if the optimal lead-
time quotation were non-increasing in the size of the updated 
bucket ŝg , there would be a dramatic reduction in computational 
effort. First, consider the number of states that are visited in a 
straightforward implementation of the dynamic program. Let M 
be the minimum batch size in units (tons), G be the total number 
of possible grades, K be the largest acceptable lead time, and A 
be the largest order size. Then there are G components in each of 
the vectors s and L. The state space has (MK)GA G  elements. So 
for N arrivals, making comparisons for K possible values of L, the 
total number of comparisons is (NK)(MK)G(AG). 

The near-monotonicity with respect to ŝg can be exploited as 
follows. At each stage n of computation, and for each state vector, 
begin by performing K comparisons to calculate the optimal lead 
time eL0 with an arrival to an empty bucket (sg = 0). So if K = 5, then 
there would be five comparisons. For the next value of ŝg , i.e., 
ŝg ¼ 1, the values of L to be considered are 1;2; . . . ; eL0. If  eL0 ¼ 3, 
only three values of L need be considered for the state in which 
ŝg ¼ 1. 

To illustrate the savings in effort, let M = 5,  K = 5,  A = 5 and G = 3.  
The straightforward approach would require 1,171,875N compari
sons. If eL1 ¼ 4 and eL2 ¼ 2, using the monotonicity results would 
decrease this to 703,125N comparisons, which is about a 40% sav
ing. Computational experiments show that the lead-time policy is 
not always non-increasing in ŝg , so this property is employed as a 
heuristic in the computational study described below. 

4.3. The algorithms 

The computational study described in Section 5 employs two 
solution procedures: an implementation of the dynamic program 
(4) (OPTDP), and a heuristic based on the near-monotone property 
described above (MONDP). OPTDP loops through the grid defined 
by the state variables (grade, order size, vector of previous 



lead-time quotations, vector of bucket levels) and saves the lead-
time quotation that provides the highest profit for that state. The 
implementation is straightforward: 

Procedure OPTDP 

For each grade;  
For each order size;  
For each value of previous lead-time quotation;  
For each bucket level;  
For each possible lead-time quotation;  
{Calculate the probability of tardiness;  
Calculate the expected profit  
If the current profit is the highest, save this lead-time quo

tation and profit}  

The probability of tardiness is calculated using the following 
formula (Sobel, 2009):     LX j - lT L - lTPfT þW > Lg ¼  / e-ðl-KÞðL-jÞ þ 1 -U : 

rT rTj¼0 

ð5Þ 

The mean and standard deviation of time remaining to fill this 
bucket are pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

M - ðsg þ aÞ lTlT ¼ rT ¼ ;
kg kg 

where l is the processing rate of the caster system, K is the sum of 
filtered arrival rates of all grades, and / and U are the density func
tion and distribution function of the standard normal distribution. 

The second procedure, the heuristic MONDP, uses the near-
monotone property of the model described in Section 4.2 to de
crease the search space: 

Procedure MONDP 

For each grade;  
For each order size;  
For each value of previous lead-time quotation;  
For each bucket level;  
For each possible lead-time quotation,  
where possible lead-times for this bucket are bounded above 
by the highest lead-time value for the previous bucket in this 
state; 
{Calculate the probability of tardiness; 
Calculate the expected profit 
If the current profit is the highest, save this lead-time quo

tation and profit} 

5. Computational study 

5.1. Design of the computational study 

The computational study has two aims. The first is to investi
gate the relationship between the optimal lead time L and three 
other values: the level of the updated bucket of orders already re
ceived for the current grade ŝg , the exogenous arrival rate kg, and 
customer impatience n(g). The influence of a higher kg is ambigu
ous: orders with a higher arrival rate fill the bucket faster, and so 

the waiting time until joining the queue (T) should be lower. How
ever, a higher arrival rate means potentially more congestion in the 
shop, a longer queue, and so a longer wait in the queue before pro
cessing on the caster (W). Similarly, it seems reasonable to quote a 
shorter delivery promise to an impatient customer (higher n(g)), 
but what is the effect of the delivery-time sensitivities of other 
customers? 

In order to investigate the influence of these three factors on 
the optimal lead-time quotation, two values each of kg and n(g) 
are varied among three grades (see Table 1). Preliminary pilot 
studies determined that kg be set at a high value of 1.3 and a 
low value of 0.5, and n(g) be set at a high value of 0.5 and a 
low value of 0.005 (these values were chosen to generate a vari
ety of lead-times over all states, rather than values that were all 
on the boundaries, i.e., 1 and 8). The computational study uses 
a full-factorial design, resulting in twenty separate tests. In each 
test, the maximum lead time is set at 8 and minimum batch size 
is 5. The per-unit reward is 2 and the per-unit time penalty is 1 
for all grades. The processing rate of the caster, l, is set at 4. This 
design results in 960,000 states per test, or 19,200,000 states for 
all twenty tests. Each test runs for 20 periods, i.e., 20 arriving 
orders. 

The second aim is to evaluate the speed and quality of the heu
ristic, as compared to the optimal dynamic programming algo
rithm. To do this, both OPTDP and MONDP were run on the 20 
tests described above, and compared in terms of solution quality 
and running time. Both programs are coded in FORTRAN 90 and 
run on a Sun Ultra workstation under the Solaris 8 operating 
system. 

Computational effort in this program is linear in the planning 
horizon N. So a smaller N means faster processing time, or more 
computational resources available to expand the problem (for 
example, to include more grades). To determine whether a horizon 
of less than N = 20 would provide acceptable results, convergence 
of the lead-time policy is analyzed by comparing differences in 
lead times and values between the same states in different 
periods. 

Table 2 displays the results of these comparisons for both 
algorithms. For OPTDP, in five of twenty tests, there is immediate 
lead-time convergence (no difference between lead-time quota
tions, for corresponding states, in periods 1 and 20). That is, if 
computation had been done with N = 1 rather than N = 20 peri
ods, the optimal lead-time policy would have been the same. 
Test 2 converged after the second period. In the remaining four
teen tests, the policies in periods 1 and 2 were still different, but 
the frequency of such differences was very low. The worst case 
had complete agreement in all but 293 states, that is, in 
99.69% out of 960,000 states (see the second and third columns 
of Table 2, which lists the number and percentage of correspond
ing states with different lead times in periods 1 and 2, respec
tively). The convergence with regard to the value function was 
checked using maximum absolute difference MAXABS (where 
c ¼ ðs; a;L; gÞ): 

MAXABS ¼ maxcjf3ðcÞ - f4ðcÞj -maxcjf1ðcÞ - f2ðcÞj: 

The largest value of MAXABS was 0.0003357 (see the fourth column 
of Table 2). 

For MONDP, there are five tests with immediate convergence of 
lead times. Tests 2 and 7 converge after period four. In the remain
ing thirteen tests, the worst case had complete agreement in 
97.74% out of 960,000 states (see the fourth and fifth columns of 
Table 2). The largest value of MAXABS was 0.8096924 (see the 
sixth column of Table 2). These results demonstrate that both pro
cedures converge rapidly, with small values of N giving excellent 
results most of the time. 



Table 1 
Parameter settings for the computational study. 

Parameter Test number 

By grade 1 2 3 4 5 6 7 8 9 10 

k1 1.3 1.3 0.5 0.5 1.3 0.5 0.5 1.3 1.3 0.5 
k2 1.3 1.3 0.5 0.5 0.5 0.5 0.5 0.5 1.3 0.5 
k3 1.3 1.3 0.5 0.5 1.3 1.3 1.3 1.3 1.3 0.5 
n(1) 0.5 0.005 0.5 0.005 0.5 0.5 0.005 0.005 0.5 0.5 
n(2) 0.5 0.005 0.5 0.005 0.5 0.5 0.005 0.005 0.5 0.5 
n(3) 0.5 0.005 0.5 0.005 0.5 0.5 0.005 0.005 0.005 0.005 

11 12 13 14 15 16 17 18 19 20 

k1 1.3 0.5 1.3 0.5 0.5 1.3 1.3 1.3 1.3 1.3 
k2 1.3 0.5 0.5 1.3 0.5 1.3 0.5 1.3 0.5 0.5 
k3 1.3 0.5 1.3 1.3 1.3 0.5 0.5 0.5 0.5 0.5 
n(1) 0.5 0.5 0.5 0.5 0.005 0.5 0.005 0.5 0.005 0.5 
n(2) 0.005 0.005 0.005 0.005 0.005 0.5 0.5 0.005 0.5 0.5 
n(3) 0.005 0.005 0.005 0.005 0.5 0.005 0.5 0.5 0.005 0.005 

Table 2 
Convergence for the computational study. 

Test OPTDP MONDP 

# Diff. states % Diff. States MAXABS #Diff. states % Diff. states MAXABS 

1 0 0.0003357 0 0.0003357 
2 0 0.0001526 0 0.0001526 
3 0 0.0002441 0 0.0002441 
4 0 0.0000763 0 0.0001221 
5 0 0.0003128 0 0.0003128 
6 0 0.0002785 0 0.0002785 
7 242 0.025 0.0000763 0 0.0000916 
8 244 0.025 0.0000763 249 0.026 0.0782318 
9 60 0.006 0.0002975 3050 0.318 0.8096924 
10 54 0.006 0.0002136 126 0.013 0.0713806 
11 293 0.031 0.0001602 3855 0.402 0.3947678 
12 225 0.023 0.0001526 59 0.006 0.0017014 
13 134 0.014 0.0001678 12412 1.293 0.8095169 
14 214 0.022 0.0001144 21686 2.259 0.7382126 
15 21 0.002 0.0001907 1 0.000 0.0003510 
16 74 0.008 0.0002823 49 0.005 0.0676575 
17 52 0.005 0.0002060 45 0.005 0.0006027 
18 49 0.005 0.0002441 62 0.006 0.8078232 
19 131 0.014 0.0001526 1022 0.106 0.7775955 
20 117 0.012 0.0002441 15 0.002 0.0705185 

5.2. Results of the computational study 

The relationship of optimal lead-time quotation to updated 
bucket level, customer impatience and arrival rate was analyzed 
using regression analysis with 19,200,000 observations (the output 
of OPTDP). The regression model is: 

L ¼ b0 þ b1 ̂sg þ b2nðgÞ þ b3kg þ b4INT1 þ b5INT2 þ �: 

Two interaction terms are included, to assess the relationship 
between customer impatience and arrival rate of the current arri
val and these two characteristics of the other two grades. The first 
interaction term (INT1) represents the relationship between the 
impatience of the customer of the current order (grade g) and 
the impatience of other customers, and the second interaction 
term (INT2) represents the relationship between the arrival rate 
of the grade of the current order and the arrival rates of other 
grades: 

G GX X
INT1 ¼ nðgÞ nðjÞ INT2 ¼ kg kj: 

are less than five, so multicollinearity is not a problem here. See 
Table 3. A plot of the residuals shows that the assumption of 
normality is justified. 

These results provide insights into the effects of customer/order 
characteristics on lead-time quotation, and answer the questions 
posed in Section 4.1. The main effects are as follows. Lead-time 
quotations should be shorter when the level of the updated bucket 
ŝg 

The first result confirms that the model reflects the reality of the 
motivating phenomenon. The second main effect answers one 
question about the countervailing effect of arrival rates: optimal 
lead times are shorter when the arrival rate of the current grade 
(kg) is  higher; the bucket fills up faster, and so waiting time to join 
the queue is lower. 

Table 3 
Results of regression analysis. 

is higher, and when customers are more impatient (higher n(g)). 

Variable b t-Value p-Value Variance inflation 

Intercept 7.05634 4779.58 <0.0001 0 
0.40881 -2235.7 <0.0001 1.00000-ŝgj–g j–g 

n(g) -6.77428 -3013.7 <0.0001 2.31438 

The regression was run using the REG procedure of SAS (version kg -1.44011 -887.22 <0.0001 3.15211 
INT1 (n) -0.18204 -65.12 <0.0001 2.316639.13). The combination of relatively high R2 (0.59) and low p-values 
INT2 (k) 0.67382 1085.18 <0.0001 3.15436

suggest that the model is a good fit. All variance inflation factors 



Table 4 
Comparison of OPTDP and MONDP (running time in seconds). 

Test 1  2  3  4  5  6  7  8  9  10  

Avg % Dev 0.0000 0.0003 0.0000 0.000 0.000 0.000 0.667 0.185 0.276 0.561 
Max % Dev 0.0000 0.0003 0.0000 0.000 0.000 0.000 1.017 0.349 1.020 0.876 
Opt time 2338 2317 2332 2309 2336 2334 2308 2310 2329 2327 
Heur time 535 2277 534 1489 536 535 1435 1529 662 726 
% Opt time 22.88 98.27 22.90 64.49 22.95 22.92 62.18 66.19 28.42 31.20 

11 12 13 14 15 16 17 18 19 20 

Avg % Dev 0.073 0.661 0.497 0.199 0.258 0.549 0.107 0.179 0.544 0.564 
Max % Dev 0.401 1.053 1.125 0.827 0.637 0.868 0.762 0.979 1.161 0.881 
Opt time 2319 2321 2324 2321 2325 2335 2328 2329 2334 2339 
Heur time 1036 1088 1030 971 1276 738 729 718 956 734 
% Opt time 44.67 46.88 44.32 41.84 54.88 31.61 31.31 30.83 40.96 31.38 

The interaction effects provide additional insights into the 
tradeoffs between impatience levels and arrival rates of the current 
order versus other orders. As discussed in Section 4.1, it is not obvi
ous whether higher impatience of other customers will delay the 
current order, resulting in a longer lead-time, or reduce congestion 
because impatient customers are more likely to leave, resulting in 
a shorter lead time. The negative coefficient of INT1 suggests that, 
given the impatience of the current customer, higher impatience 
levels of other customers result in a shorter lead time for the cur
rent order. Intuitively, if other customers are more impatient, there 
is likely to be more balking, and so less congestion at the caster 
queue. This order will experience less delay, and so it makes sense 
to quote a shorter optimal lead-time. 

The positive coefficient of INT2 suggests that higher arrival rates 
of other grades (given an arrival rate for the grade of the current 
order) result in a longer optimal lead time for the current order. 
This is because higher arrival rates of other grades will cause more 
congestion at the caster queue, and more tardiness, if lead-time 
estimates are not adjusted upward. 

These results are intuitively consistent with what might be ex
pected, but are not obvious from the industrial situation or the 
model itself. In particular, the delivery promises should take into 
account not just the general congestion of the facility, but also 
the waiting time that is incurred by orders that are less than min
imum batch size. In addition, they provide a range of easily obser
vable measures by which to adjust lead-time quotations: the 
current volume of orders for each grade; history of order volume 
across grades; and the experience and opinion of the sales depart
ment about the time-related tolerance of various customers. For 
the steel producer that motivated this study, it was common 
knowledge on the shop floor which customers had low tolerance 
for long delivery promises. 

The comparison of OPTDP and MONDP reveals that the heuristic 
produces results very close to optimal, with much faster running 
times. The average deviation in value function was always less 
than 1%, and maximum deviation in value function was always less 
than 2%, with the highest average deviation less than 0.7% and the 
highest maximum deviation less than 1.2%. Except for one test for 
which the heuristic took almost as much time as the optimal pro
cedure, MONDP ran substantially faster, with more than 50% 
saving in computation time for fifteen of the twenty tests. See 
Table 4 for details. 

6. Summary and conclusions 

The contributions of this paper are (a) a dynamic programming 
formulation for the problem of computing an optimal lead-time 
quotation when there is a minimum batch size, (b) a heuristic algo
rithm that performs very close to optimal with considerable saving 

in computation time, and (c) a computational study that provides 
insights into the relationship between optimal lead-time quotation 
and bucket level, sensitivity to delivery promise times and arrival 
rate. 

The consequences of these results have policy implications for 
the steel-producing facility. Since the optimal lead-time quotation 
for the caster system is generally decreasing in the updated bucket 
level for that grade, delivery performance and retention rate would 
be improved by using information about the state of previously ac
cepted orders, in combination with the size of the incoming order, 
to determine delivery date promises. Shorter delivery promises 
should be assigned to orders for which the customer is unlikely 
to place an order if s/he will wait too long for delivery, and also 
when other customers are relatively more impatient. Higher arrival 
rates for the current order will result in shorter lead times, and so 
delivery promises should be adjusted accordingly. However, higher 
arrival rates of other customers require a longer lead time, because 
of added congestion in the caster system. 

One motivation for this project was the development by the 
steel mill of an automated order entry system to be used by their 
customers. A customer would enter the details of the tentative or
der, and the system would respond with information including 
proposed delivery time. If the customer decided to place the order, 
the relevant information would be sent to the operational data
base. The research described in this paper could serve as the 
intelligent engine that generates the delivery times, based on 
the lead-time quotation model described here. Alternatively, the 
lead-time quotation program could be implemented as a stand
alone decision tool for the sales force, enabling them to tailor their 
delivery-time promises in a more sophisticated manner than they 
have been doing (Section 1). 

For input to the order-entry system, arrival rates could be deter
mined from historical demand data (by grade), maximum lead 
time would be set according to company policy and market stan
dards, and the minimum batch size is determined by the size of 
the physical ladle. Per-unit reward would be the contribution mar
gin of each product, and per-unit tardiness penalty could be quan
tified from historical data on expediting costs and actual tardiness 
discounts. The processing rate of the caster is a known operational 
factor. 

In order to quantify customer impatience, the sales department 
of the steel mill, who are familiar with their customers over time, 
might be consulted to rank customers in terms of their sensitivity 
to lead-time. These rankings could then be used to set initial values 
of the impatience parameter for a series of test runs of the system, 
which could subsequently be checked and recalibrated if 
necessary. 

In principle, the present program would need to be scaled up to 
handle hundreds of grades. However, in practice the number of 
grades to be processed at any one time would be smaller, because 



(1) a limited number of grades are ordered each day, and (2) orders 
that exceed the minimum batch size are placed immediately in the 
caster queue, since there is no need to wait for a bucket to fill. The 
program could easily be modified to ‘‘streamline” such orders, pro
viding lead-time quotations via the embedded M/M/1 model of the 
caster system, while including those arrivals in the calculation of 
the equilibrium waiting time. If the resulting complexity still led 
to unacceptably long running times for an interactive system, a 
batch run could be made periodically (each morning perhaps) to 
provide ‘‘typical” lead times for various products, based on the cur
rent status of the caster and the orders waiting to be processed. 
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