
Cleveland State University
EngagedScholarship@CSU

Business Faculty Publications Monte Ahuja College of Business

8-4-2010

A Language Designed for Programming I
Ben A. Blake
Cleveland State University, benblake@csuohio.edu

Follow this and additional works at: https://engagedscholarship.csuohio.edu/bus_facpub

Part of the Management Information Systems Commons
How does access to this work benefit you? Let us know!
Publisher's Statement
The final publication is available at Springer via http://dx.doi.org/10.1007/s10639-010-9139-3.

This Article is brought to you for free and open access by the Monte Ahuja College of Business at EngagedScholarship@CSU. It has been accepted for
inclusion in Business Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact
library.es@csuohio.edu.

Original Published Citation
Blake, B. (2010). A Language Designed for Programming I. Education and Information Technologies, 15, pp. 277-291.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cleveland-Marshall College of Law

https://core.ac.uk/display/216952388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/bus_facpub?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/bus?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/bus_facpub?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=engagedscholarship.csuohio.edu%2Fbus_facpub%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
mailto:library.es@csuohio.edu

BLAKE: A language designed for Programming I

Ben Blake

Abstract The process of comprehending a problem, strategically developing a
solution and translating the solution into an algorithm is arguably the single most
important series of skills acquired during the education of an undergraduate
computer science or information technology major. With this in mind, much care
should be taken when choosing a programming language to deploy in the first
University programming course. BLAKE, Beginners Language for Acquiring Key
programming Essentials, is designed specifically for use in a Programming I class.
BLAKE aids in enforcing fundamental object-oriented practices while simulta­
neously facilitating the transition to subsequent programming languages. BLAKE's
major features include; consistent parameter passing, single inheritance, non-
redundant control shuctures, a simple development environment, and hardware
independent data types. The syntax remains relatively small while still facilitating a
straightforward transition to industry standard programming languages.

Keywords Programming language· Object oriented· CUlTiculum . Syntax· Grammar

1 Introduction

In the 1960's and 1970's many computing cun'icula used languages such as Fortran,
Cobol, PLlI, Algol or BASIC in their initial programming course. Each of these
languages was developed during the emergence of software engineering. Clearly the
designers of these languages had little chance to incorporate language specific
syntactical features that encourage good programming practices precisely because
software engineering was in its infancy and these methodologies were either being
fashioned or were yet to be discovered. Likewise, consideration of the language's
effect on a beginning programmer had an insignificant influence on the pioneer
language designers. Instead, the designers focused mainly on architecture specific
issues, run-time efficiency and the compilation process with little to no consideration

B. Blake (i8J)
Cleveland State University, 1860 E. 18th, Cleveland, OH 44114, USA
e-mail: benhJake@csuohio.edu

mailto:benhJake@csuohio.edu

on the pedagogical effects of the syntax. Consequentially, cUlTicula using these
languages in their first programming courses have vanished (Raadt et al. 2002).
Throughout the remainder of the paper, the first University programming course will
be tenned Programming I as it is commonly referred to in the United States.

An eloquent editorial by Dykstra regarding the GOTO statement appeared that
radically challenged programming practices. (Dijkstra 1968) This short critique
coupled with the emergence of structured programming techniques highlighted the
inherent gap between grammars of early programming languages and good
programming practices. When Nicholas Wirth released the Pascal Programming
Language (Wirth 1971) a great number of curricula switched to using Pascal. By the
early 1980's, a majority of universities employed Pascal in Programming I courses
(Raadt et al. 2002). This should be little surprise since one of Wilth's design goals
was to create a language that encouraged structured programming. Pascal includes a
fairly simple grammar with logical structures to aid in the conversion of structured
designs into s!nrctured programs. Additionally, Pascal's small syntax allowed a
subset of it to become an effective language for compiler design courses. With these
competitive advantages, Pascal became the choice language used by the educational
community in the 1980's.

Since then, the number of schools using Pascal in Programming I has steadily
declined to near zero (Raadt et al. 2002). The reason for Pascal's fall in popularity
relates to three major factors. First, a big selling point of Pascal was that it allowed
and actually helped to reinforce stmctured design practices. This was mitigated when
the C programming language, with a similar grammar, gained industrial popularity.
The C programming language could easily replace Pascal in the curriculum.
Having a viable substitute language would not by itself cause the mass exodus
from Pascal. The second factor which led to Pascal's demise in the classroom use
was that both students and employers exerted pressure on educational institutions
to teach a language widely deployed in industry. If these two factors weren't
great enough, the third strike appeared in the 1990's when the Object-Oriented
paradigm became the rage. The Pascal programming language lacks syntactic
support for Object-Oriented methodologies which other new languages include.
These factors contribute to the fall of Pascal and the rise of other languages in
Programming I classes.

Recent trends show the emergence of C++, C#, Visual Basic, Java, or Python in
the introduction to Programming classes. A majority of schools surveyed use one of
these languages (Raadt et al. 2002). Each language has both control structures and
subroutine caillretum mechanisms strikingly similar to Pascal and C. The main
difference being that neither Pascal nor C provides language constmcts that
specifically encourage the use of object-oriented methodologies.

Alternatively, a few schools use languages such as Haskell, Eiffel, Common Lisp,
and Scheme in their initial series of programming courses (Hudak and Fasel 1992;
Springer and Friedman 1989). These languages fall under the broad category of
functional programming languages. Most proponents of functional languages site the
eXh"emely small syntax as an important characteristic for a language used in
Programming I. The small syntax requires little effort to mastering, so more time can
be assigned to problem solving efforts. While students beneflt in Programming I
using these languages, the transition from these languages to a widely accepted

industrial language such as C, C++ or Java often becomes problematic (McIver and
Conway 1996; Blilliant and Wiseman 1996).

Attempts have been made to measure the fit between Programming I course
objectives and the programming language being used (Kolling 1999; Gupta 2004).
This research involves generating a list of criteria then applying the criteria to
various programming languages (Kolling 1995; Parker et aJ. 2006; Mannila and de
Raadt 2006). These systems provide useful infonnation, but the criteria used to
gauge the language remains a contentious issue. Even after reaching consensus of
the proper cIiteria, the relative weight of each would require further research. Given
these concerns, BLAKE was not developed for optimal measurement from any of
these systems, but evaluates relatively well with all of the proposed systems.

BLAKE is created as an attempt to define a language specifically for use in a
Programming I course. Appendix A highlights BLAKE's compact grammar. The
syntax is designed in such a manner to allow a fairly trivial transition to mainstream
languages such as C, Objective C, C++, C#, Java, and Visual Basic. BLAKE allows
the Programming I course to remain focused on the problem solving process by
removing nonessential topics cun-ently covered in many Programming I courses.

The fundamental driving force behind BLAKE involves the creation of a language
that allows both the instructor and student to acutely focus on problem solving and
translating the solution into code. The language would allow the Programming I
student to fixate on these processes while avoiding the introduction of many
nonessential topics. Programming languages, such as C, e++, Java, and Visual Basic,
cUlTently used in Programming I courses expose students to many extraneous
items causing an unnecessary distraction from the fundamental concepts. While
astute instructors often minimize discussion of these topics, they still represent
needless distractions. The grammatical design of BLAKE intentionally allows the
complete omission of these extra topics in a Programming I course. BLAKE
allows an increase in time devoted to designing solutions and translating the
solutions into code.

The next section introduces many of BLAKE's syntactical design decisions and
describes the impacts these decisions have on topics covered in many Programming
I classes. The discussion includes subjects that may be safely removed fi'om
Programming I and a suggestion indicating a more appropriate placement of the
concept within a computer science curriculum. Some of the decisions guiding the
design of BLAKE stem directly from prior research, while anecdotal beliefs guide
the balance of the design decisions. Following the syntax discussion of BLAKE is a
section on other generic pitfalls that Programming I can avoid. Conclusions are
followed by appendices consisting of the BLAKE grammar, a sample program, a
sample Object, and a list of methods for each of BLAKE's base types.

2 General language syntax

2.1 Control stlUctures syntax

Often a programming language redundantly specifies multiple control stlUctures to
accomplish the same task. For instance, C, C++, and Java include the while, do

while, and lor statements to specifY repetitive logic. These languages also offer both
the ifand the switch structures for performing conditional logic. BLAKE offers only
one looping and one conditional control structure. The removal of redundant
structures simplifies students' task in two ways. First, having only one constmct for
each type of logic unencumbers students from memorizing additional syntax.
Second, it frees the student fi'om agonizing over the question of, "Which construct
should I use?" Clearly, the topic of multiple redundant control structure will arise
later in the curriculum with the introduction of another programming language.
Students at this upper level generally embrace the redundancy and are no longer
needlessly distracted by it.

2.2 Optional syntax

Many languages offer the programmer the ability to skip the begin and end
constmcts associated with programming stlUctures when only one statement exists
within the logic. This allows the programmer to hit fewer keystrokes, but does not
add anything to program readability nor enhance maintainability. BLAKE requires a
begin and end statement with each control structure. Likewise an else clause must
accompany every if statement. Finally, conditions appear with all clauses of
conditional and looping logic. The optional else clause and other terse grammatical
options can be discussed with the introduction of the second programming language.

2.3 Multiple loop exit points

Some programming languages allow advanced programmers the opportunity to exit
and restart loops with conditional logic inside the loop. This corresponds directly to
the break and continue statements in the C, C++ and Java. With no empirical
evidence available, anecdotal opinion suggests it is preferable to avoid multiple exit
points. Since Programming I assignments remain fairly simple, BLAKE allows only
a single loop termination point. Statements such as these and the GOTO statement
should be broached when transfening to a programming language that includes such
statements. A class discussing assembly language would be a very appropriate place
to introduce the concept of the GOTO statement.

2.4 Additional debugging syntax

BLAKE's philosophy banishes exception handling and assertion syntax. BLAKE
acknowledges that there can be a case made for the usefulness of these
constructs when debugging large programs, for the relatively small amount of
code lypically produced in Programming I, they become excessive. The fragile
Programming I student can safely be spared of the mechanical syntax details
while still being exposed to the underlying concepts. Debugging tools like the
try/catch and assert statements can be introduced in a software quality assurance
course.

The BLAKE viewpoint encourages programmers to explicitly verifY all data
before calling a routine. If followed strictly, this style of programming ensures that
exceptions will not be raised and all assertions will remain valid. While teaching the

concept behind assertions and exceptions remains important) syntactically adding it
to the programming language becomes extraneous. The inclusion of exceptions and!
or assertions in a programming language grammar would better be discussed in
either a software engineering course or a comparative programming languages
course.

2.5 Encoding systems and primitive types

Many languages include hardware dependent data types. Introducing these data
types normally involves a modest discussion of computer architecture and the binary
number system. While mastery of these concepts is essential for all CS and IS
undergraduates, it adds little to a student's ability to solve problems and translate the
solution into code. The discussion of encoding and the decision to make primitive
data types specific sizes more appropriately belongs in a computer organization and
architecture course.

BLAKE provides just five types, namely, IntegerNumber, RationalNumber,
CharacterString, BooleanValue, and BasicObject. Two of these, IntegerNumber
and RationalNumber represent numeric types. An IntegerNumber holds integer
value, whereas a RationalNumber consists of two IntegerNumbers. These two values
in a RationalNumber are the number's numerator and denominator. BLAKE
provides no details regarding storage of these types which allows for total omission
of discussing binary number system.

Along with avoiding the binary number system, the two numeric types largely
avoid issues of underflow and overflow. The discussion of these topics can be
limited to stating that each machine has a limited storage capacity and an improperly
written program can exceed the capacity. This eliminates the need to discuss bits and
bytes. The implementation of RationalNumber also avoids round-off errors; in fact,
round-off errors do not exist in BLAKE. The programmers introduce and control any
round-off error.

There is a single string type in BLAKE. CharacterString stores any number of
characters solely limited by the computer system's memmy size and memory
allocation scheme. This avoids the confusion of the difference between a character
and a string with a single character in it. Just like the discussion of the encoding of
numbers can be avoided, so can the discussion of character encoding.

The final two types are Boolean Value and BasicObject. Boolean Value contains
the value tme or false. BasicObject represents the base object from which every
other object inherits. It consists of two methods, CONSTANTCOPY and
CONSTANTtoCharacterString. When creating a new object definition, BLAKE
expects the programmer to ovelTide these methods. CONSTANTCOPY makes a
copy of the object and CONSTANTtoCharacterString returns a string representation
of the object.

The physical descliption of the number of bits and bytes used to store the
different data types is a better fit for a computer architecture class. The number of
bitslbytes in the vatious types was not decided by programmers, but instead by the
machine designers. While this topic fits perfectly into an architecture class, it may
require a brief introduction in a Programming II or Programming III course
whenever a more architecturally restricted language is initially covered.

2.6 No assignment statement or operators

The same argument used against primitive types also holds for operators. This indudes
the assignment operator. The discussion ofoperators, including the assignment operator,
need not be discussed in Programming 1. Likewise, the reason why operators exist in
most widely used languages would optimally be introduced in an architecture class.
While this is theoretically the con'ect curricular placement ofoperators. in practice they
would be introduced with the second programming language.

2.7 No arrays

BLAKE provides no subscripting mechanism and a list is not included in the base
types. While this appears extremely restrictive, an instructor may provide the
students with either a list or an array like object. Others may wish to use this as an
introduction to the data structures class and have the students build their own list
object(s). Once again, the concept of an array is more aligned to a data stmcture or
computer architecture class.

3 Object syntax

3.1 Parameter passing and aliasing

A little after Dykstra published an article on the GOTO statement, it seemed as if
evelyone jumped on the "anti-spaghetti code band wagon" (Dijkstra 1968).
Interestingly, another just as important concept that surfaced around the same time
remains largely ignored. The uncontrolled aliasing of a single variable exposes a
weakness that has remained relatively anonymous. Just as imprudent use of the
GOTO creates "spaghetti code" or logic that is difficult to comprehend, abundant
aliasing jumbles the mapping of variable names to data. Many programming
languages unintentionally allow incorporating such rampant aliasing.

When passing information to a method students become easily confiIsed with the
"by reference" and the "by value" passing mechanics and syntax. In Visual Basic,
the manner in which an argument is passed is specified in the method parameter list.
While the valid claim of Java is everything is passed by value, most experienced
programmers argue that this claim is merely a technicality. C assumes the method
and the method caller will agree on the passing method. C++ allows both Java like
and C like passing. In the end, none are particularly helpful in the beginning
student's understanding of the two types of parameter passing.

BLAKE allows both by value and by reference parameter passing. It differs from
most common languages because the caller of the method dictates what is passed. In
the method call, the calling code specifies whether to pass a copy or an alias for each
argument. The overall design of BLAKE encourages passing copies and only in rare
instances should a Progranlming I student be instructed to pass an alias. This
philosophy assists the student in understanding the concept of side effects, including
unexpected side effects. From the method's perspective, the parameters simply
become initialized local variable and the method freely alters their values as needed.

3.2 No access modifiers and no abstract methods

BLAKE has two implied access modifiers, public and private. All data within an
object receive the private access modifier and the methods are assigned public. The
automatic designation postpones the need to discuss these distinctions and meshes
perfectly with conect encapsulation. All other access modifiers such as protected,
shared, static, or friend, are simply perfom1ance enhancements. These topics also are
better suited for a compiler design or a comparative programming language course,
but will likely be introduced as needed in later classes that incorporate other
programming languages.

3.3 Constant and mutator methods

Most languages do not distinguish between a method that changes the state of an
object and a method that does not change the state. BLAKE requires the programmer
of an object to distinguish between the two types of methods. The method caller
also explicitly states the distinction. This ensures that both the object designer
and object creator understand if a method can or cannot change the state of the
Object. Mutator methods have no return type and constant methods have a single
return type.

3.4 Delineation between an object and a program

Many object-oriented languages blur the distinction between a program and an
object. Java, in particular, forces a programmer to place a program inside of syntax
precisely the same as defining an object. Many "Object Oriented" languages allow a
programmer to define multiple objects in a single file. In a BLAKE file, there is
precisely either a one program or one object definition with syntax clearly
identitying the difference.

4 Other items

4.1 Development environment

Since the goal of BLAKE is to allow students to focus acutely on programming and
problem solving, there are also some other issues commonly encountered in a
Programming I class that we advocate avoiding. The most problematic of these
might be something an advanced programmer couldn't imagine relinquishing, an
integrated program development environment. While incredibly helpful for the well
versed students, the complicated software development environments often represent
a huge distraction for a beginning programmer (Deek and McHugh 1998).
"Microsoft Visual Studio" represents a prime example of such a system. BLAKE
offers no development environment. Programmers simply use a basic text editor and
a command line compiler. There is no graphical package, no debugger, and no
sophisticated development packages. This creates an extremely short learning curve
for the Programming I student.

4.2 Early inheritance

The base classes IntegerNumber, RationalNumber, and CharacterString include little
ti.mctionality. This intentional design decision facilitates the early introduction of
inheritance with non-contrived examples. For instance, fairly common functionality
such as absolute value can be added to a class such as IntegerNumber. This forces
useful inheritance early to instill the necessity and beauty without creating contrived
examples. Many methods, both simple and complex can be added to the base
classes.

4.3 No macros or constants

A quick glance at the syntax shows BLAKE provides no macro expansions or
constants. BLAKE opts away from exposing Programming I students to unnecessary
syntactic details. Similarly, no default values are assigned to variables and no
constructor methods appear in objects. BLAKE requires programmers to explicitly
state all their intentions.

4.4 Input and output

Finally, all interactions between BLAKE and users are through CharacterStrings.
BLAKE disallows programmers to type numbers in their programs. Instead BLAKE
requires the programmer to type the CharacterString "12" and assign that
CharacterString to an IntegerNumber. Likewise all input is received as a Character-
String one line at a time. This includes input from both the standard input stream and
a file. At most, two files may be opened at any time-one for input and one for
output. Input files are exactly like the standard input stream with the additional
feature of and end of file method. The standard output stream and file output have
two commands each. One method outputs a CharacterString without a trialing end of
line and the other outputs the CharacterString with the trailing end of line.

5 Conclusions

BLAKE represents a language specifically designed for the initial programming
class in a computing curriculum. It attempts to delay the introduction of topics that
divert attention from the process of translating a problem solution into code. To
achieve this goal BLAKE's grammar remains small through elimination of
redundant control, optional clauses, multiple loop exit points and debugging syntax.
BLAKE avoids architectural issues such as encoding schemes, operators, and arrays
while still providing an easy transition to hoaditional languages commonly used in
industry. The concept of objects and especially inheritaoce naturally flow fi'om the
limited functionality of the base types.

While it is specifically designed for use in Programming I, BLAKE could also be
used in Programming II. BLAKE also serves as an ideal language for discussion in a
Programming Languages course and as a target in a compiler/interpreter design
course.

Appendix A

program->

objectdefinition->

idlist->

sing/eid->

idresl->

declarationlist->

statementlist->

returnlist->

statement->

rstatement->

errorstatemeni->

outputstatement->

USES Idlisl ;
BEGINPROGRAM sing/eid ;
declarationlist
statementlist
ENDPROGRAM sing/sid ;

USES idlist ;
BEGINOBJECT sing/aid INHERITSFROM idlist ;
declarationfist
mutatormethodlist
methodlist
ENDOBJECT singfeid ;

s;ngfeid Ising/eid I idlist I epsilon

[' A-Za-z'] idrest

[' A-Za-z '] idrest I
epsilon
sing/eid sing/eid. CREATE () ; declarationlist I
sing/aid sing/eid. EMPTY () ; declarationlist I
epsilon

statement ; statement/is! I
epsilon
(statement ; returnlist I
epsilon

mutatormethodcalll
ifstatement 1
untilstatement I
Qutputstatement I
errorstatement

mutatormethodcal/ I
rifstatement I
runtilstatement I
outputstatement I
filestatemeni I
returnstatement I
errorstatement

ERROR (qoute)

OUTPUT (quoteidcalJ) I
OUTPUTLlNE (quoteidcall

fi/estatement->

returnstatement->

untilstatemenl->

itstatement->

runtilstatement->

ritstatement->

quote->

anychars->

mutatormethodcall->

methodcall->

quoteidcalllisi->

condition->

FILEOOTPOT (quoteidcall) I
FILEOOTPOTLlNE (quoteidcall) I
FILEOPENOOTPUT (quoteidcall) I
FILEOPENINPOT (quoteidcall) I
FILECLOSEOOTPUT () I
FILECLOSEINPOT ()

RETURN (quoteidcal/)

BEGINLOOPUNTIL (condition)
statementlist
ENDLOOPUNTIL (condition

BEGINIF (condition) ;
statement/ist
ELSE (condition);
statementlisl
ENDIF (condition)

BEGINLOOPUNTIL (condition
rstatementlist
ENDLOOPUNTIL (condition

BEGINIF (condition)
rstatementlist
ELSE (condition);
rstatementlist
ENDIF (condition

n anychars "

['any character'] anychars I
epsilon

sing/eid . mutatorcall I
PARENT • mutatorcall I
ME • mutatorcall I
ME • sing/eid . mutatorcall

sing/eid . call I
PARENT • call I
ME • call I
ME • singleid . call

quoteidcalll
qouteidcall quoteidcalllist II

epsilon

callid I
methodcalf

quoleidcall-> 	 quote I
ea/lid I
methodeall I
INPUTLINE I
FlLEINPUTLINE
FILEEOF I
NOTHING

caffid-> 	 sing/aid . ALIAS () I
sing/aid . COpy () I
ME slnglaid. ALIAS () I
ME • sing/aid . COpy () I
ME.ALIAS()I
ME.COPY(»
PARENT . COpy ()

mutatorcall-> 	 MUTATORsing/eid (quoteidcalllist) I
ALIAS (quoteideall) I

CREATEO I
EMPTY 0

call-> 	 CONSTANTsing/eid (quoteidcalllist)
ISEMPTYO

parameterlist-> 	 sing/eid sing/eid , parameterlist I
singfeid sing/eid I
epsilon

mutatormethodlist-> 	 mutatormethod ; mutatormethodlist I
epsilon

methodlist-> 	 method ; methodlist I
epsilon

method-> 	 BEGINCONSTANTMETHOD returnid sing/eid (parameter/ist)
decfarationlist
returnlist
ENDCONSTANTMETHOD sing/eid ;

mutatormethod-> 	 BEGINMUTATORMETHOD singfeid (parameterlist)
dec/arationlist
statement/ist
ENDMUTATORMETHOD singfeid i

Reserved words: USES, BEGINPROGRAM, ENDPROGRAM, BEGINOBJECT,
ENDOBJECT, INHERITSFROM, BEGINLOOPUNTIL, ENDLOOPUNTIL, BEGINIF, ELSE,
ENDIF, BEGINCONSTANTMETHOD, ENDCONSTANTMETHOD,
BEGINMUTATORMETHOD, ENDMUTATORMETHOD, RETURN, NOTHING, TRUE,
FALSE, INPUTLINE, OUTPUT, OUTPUTLINE, FILEOUTPUT, FILEOUTPUTLINE,
FILENPUTLINE, FILEOPENINPUT, FILEOPENOUTPUT, FILECLOSEINPUT,
FILECLOSEOUTPUT, FILEEOF, ME, PARENT, CREATE, EMPTY, ISEMPTY, ALIAS,
COPY, ERROR (and alliava reserved words)

Appendix B

USES 	 CharacterString,
IntegerNumber;

BEGINPROGRAM IfProgram;
CharacterString inputString.CREATE();
IntegerNumber firstValue.CREATE():
IntegerNumber secondValue.CREATE{);

OUTPUT ("Enter first value: "l;

inputString.MUTATORset(INPUTLINEl;

firstValue.MUTATORsetCharacterString(inputString.ALIAS(l';

OUTPUT ("Enter second value : ");

inputString.MUTATORset(INPUTLINE);

secondValue.MUTATORsetCharacterString(inputString.ALIAS(»;

OUTPUTLINE("");

OUTPUT(firstValue.ALIAS(» ;

BEGINIF (firstValue.CONSTANTlessThan(secondValue.CONSTANTCOPY(»):

OUTPUT (" < ");
ELSE (firstValue.CONSTANTlessThan(secondValue.CONSTANTCOPY{) »;

OUTPUT(" >= ");
ENDIF (firstValue.CONSTANTlessThan(secondValue.CONSTANTCOPY{»);
OUTPUT(secondValue.ALIAS(» ;
OUTPUTLINE("");

inputString.EMPTY();

firstValue.EMPTY() ;

secondValue.EMPTY();

ENDPROGRAM IfProgram:

USES 	 RationalNumber;

BEGINOBJECT RationalNumberAbsolute INHERITS FROM RationalNumber:
BEGINMUTATORMETHOD absoluteValue():

RationalNumber zero.CREATE():

zero.MUTATORsetCharacterString("O"):

BEGINIF (PARENT.CONSTANTlessThan(zero.CONSTANTCOPY(»);

PARENT.MUTATORset (zero.CONSTANTsuhtract (ME.CONSTANTCOPY(»);
ELSE (PARENT.CONSTANTlessThan{zero.CONSTANTCOPY(»):
ENDIF (PARENT.CONSTANTlessThan(zero.CONSTANTCOPY(»);
zero. EMPTY () :

ENDMUTATORMETHOD absoluteValue;

BEGINCONSTANTMETHOD RationalNumberAbsolute COPY() i
RationalNumberAbsolute ret.CREATE():

RationalNumberAbsolute.MUTATORset(PARENT.COPY(»:

return (RationalNumherAhsolute.ALIAS(»;

ENDCONSTANTMETHOD RationalNumberAbsolute COPY();

ENDOBJECT RationalNumberAbsolute:

Appendix C

INPUT and OUTPUT methods

CharacterString 	 fNPUTLfNEO

OUTPUT(CharacterString)

OUTPUTLINE(CharacterString)

Boolean Value methods

BooleanValue CONSTANTandCBooleanValue)

BooleanValue CONSTANTor(BooleanVa!ue)

BooleanValue CONSTANTnotO

RationalNumber methods

RationalNumber

RationalNumber

RationalNumber

RationalNumber

RationalNumber

RationalNumber

RationalNumber

BooleanValue

BooleanValue

BooleanValue

BooleanValue

BooleanValue

BooleanValue

BooleanValue

BooleanValue

BooleanValue

RationalNumber

RationalNumber

RationalNumber

RationalNumber

RationalNumber

RationalNumber

CharacterString

IntegerNumber

CONSTANTadd(RationaINumber)

CONSTANTaddCharacterString(CharacterString)

CONSTANTaddlntegerNumber(IntegerNumber)

CONSTANTCOPYO

CONSTANTdivideBy(RationaINumber)

CONSTANTdivideByCharacterString(CharacterString)

CONSTANTdivideBylntegerNumber(IntegerNumber)

CONSTANTequals(RationaINumber)

CONSTANTequalsCharacterString(CharacterString)

CONSTANTequalsIntegerNumber(IntcgerNumber)

CONSTANTgreaterThan(RationaINumber)

CONSTANTgreaterThanCharacterString(CharacterString)

CONSTANTgreaterThanlntegerNumber(IntegerNumber)

CONSTANTlessThan(RationaINumber)

CONSTANTlessThanCharacterString(CharacterString)

CONSTANTlessThanlntegerNumber(IntegerNumber)

CONSTANTmultiplyBy(RationaINumber)

CONSTANTmultiplyByCharacterString(CharacterString)

CONSTANTmultiplyBylntegerNumber(IntegerNumber)

CONSTANTsubtract(RationaINumber)

CONSTANTsubtractCharacterString(CharacterString)

CONSTANTsllbtractIntegerNlimber(IntegerNumber)

CONSTANTtoCharacterStringO

CONSTANTtolntegerNlimberO

IvrUTATORset(RationaINumber)

lvflJTATORsetCharacterString(CharacterString)

MUTATORsetDenominator(IntegerNumber)

MUTATORsetDenominatorCharacterString(CharacterString)

MUTATORsetIntegerNumber(lntegerNlimber)

MUTATORsetNumerator(IntegerNumber)
MUTATORsetNumeratorCharacterString(CharacterS mng)
MUTATORsetPlaces(IntegerNumber)
MUTATORsetPlacesCharacterString(CharacterString)

integerNumber methods

IntegerNumber
IntegerNumber
RationalNumber
integerNumber
RationalNumber
RationalNumber
RationalNumber
BooleanValue
BooleanValue
BooleanValue
BooleanValue
BooleanValue
BooleanValue
BooleanValue
BooleanValue
BooleanValue
IntegerNumber
integerNumber
RationalNumber
IntegerNumber
IntcgerNumber
RationalNumber
CharacterString
RationalNumber

CONSTANTaddCIntegerNumber)
CONSTANTaddCharacterString(CharacterString)
CONSTANTaddRationaINumber(RationaINumber)
CONSTANTCOPYO

CONSTANTdivideBy(IntegerNumber)
CONSTANTdivideByCharacterString(CharacterString)
CONSTANTdivideByRationaINumber(RationaINumber)
CONSTANTequals(IntegcrNumber)
CONSTANTequalsCharacterString(CharacterString)
CONSTANTequalsRationalNumber(RationaINumber)
CONSTANTgreaterThan(IntcgerNumber)
CONSTANTgreaterThanCharacterString(CharacterString)
CONSTANTgreaterThanRationaINumber(RationaINumber)
CONSTANTlessThan(IntegerNumber)
CONSTANTlessThanCharacterString(CharacterString)
CONSTANTlessThanRationalNumber(RationaINumber)
CONSTANTmultiplyBy(IntegerNumber)
CONSTANTmultiplyByCharacterString(CharactcrString)
CONSTANTmultiplyByRationaINumber(RationaINumber)
CONSTANTsubtract(IntegerNumber)
CONSTANTsubtractCharactcrString(CharacterString)
CONSTANTsubtractRationalNumber(RationalNumber)
CONSTANTtoCharacterStringO
CONSTANTtoRationalNumberO
MUTATORsetClntegerNumber)
MUTATORsetCharacterString(CharacterString)
MUTATORsetRationaINumber(RationaINumber)

CharacterString methods

CharacterString
BooleanValue
CharacterString
IntegerNumber
CharacterString
BooleanValue
BooleanValue
BooleanValue

CONSTANTCOPYO

CONSTANTequals(CharacterString)
CONSTANTgetLeft(IntegcrNumbcr)
CONSTANTgetLengthO

CONSTANTgctRight(IntegerNumber)
CONSTANTgreaterThan(CharacterString)
CONSTANTisAlphaO

CONSTANTlessThan(CharacterString)

IntegerNumber

RationalNumber

CONSTANTtolntegerNumberO

CONSTANTtoRationalNurnberQ

MUTATORappend(CharacterString)

MUTATORset(CharacterString)

MUTATORsetIntegerNumber(lntegerNumber)

MUTATORsetRationaINumber(RationaINumber)

MUTATORtoLowerCaseO

lvlUTATORtoUpperCascO

References

Brilliant, S., & Wiseman, T. R (1996). The first programming paradigm and language dilemma. ACM
SlGCSE Bulletin, 28(1), 338-342.

Deck, F., & McHugh, 1. A. (1998). A survey and critical analysis of tools for learning programming.
Compliler Science Education, 8(2), 130-178.

Dijkstra, E. (1968). Go to statement considered hannful. COlI/lIIUllicatiollS oj the ACM, 11(3), 147-148.
Gupta, D. (2004). What is a good first programming language? Crossroads, 10(4), I-IS.
Hudak, P.; & Fase!, J. H. (1992). A Gentle Introduction to Haskell. SIGPLAN Notices, 27(5).
Kolling, M. K. (1995). Requirements for a first year object-oriented teaching language. SISCSE Technical

Symposiulll on Computer Science Education (pp. 173-177). Nashville: ACM Press.
Kolling, M. (1999). The problem of teaching object-orineted programming, part 1: languages. JOlll'IZa[of

Object-Oriented Programming, 11 (8), 8-15.
ManniJa, L., & de Raadt, M. (2006). An objective comparison of languages for teaching introductory

programming. Proceedings of the 6th Baltic Sea conference Oil Compllting education research: Koli
CalliJlg 2006 (pp. 32-37). Uppsala: ACM.

McIver, L., & Conway, D. (1996). Seven deadly sins of introductory programming language design.
Proceedings of the 1996 IlIlel'lZatioJ/ai Conference on Software Engineering: Edllcation and Practice
(pp. 309-316). Dunedin: IEEE COmputer Society.

Parker, K., Chao, J., Ottaway, T., & Chang, J. (2006). A formal language selection process for introductory
programming courses. JOlll1lal of Injonna/ion Technology Education, 5, 133-151.

Raadt, M., Watson, R., & Toleman, M. (2002). Language trends in introductory programming courses.
Proceedings oj the blformiJlg Science + IT Education Conference (pp. 329-337). Cork: Informing
Science Institute.

Springer, G., & Friedman, D. P. (1989). Scheme alld the art ofprogramming. The Massachusetts Institute
of Technology.

Wirth, N. (1971). The programming language pascal. Acta Informatica, 1,35-63.

libuser
Typewritten Text
Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2015

	Cleveland State University
	EngagedScholarship@CSU
	8-4-2010

	A Language Designed for Programming I
	Ben A. Blake
	Publisher's Statement
	Original Published Citation

