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a b s t r a c t

Groups preserving a distributive product are encountered often in algebra. Examples in-
clude automorphism groups of associative and nonassociative rings, classical groups, and
automorphism groups of p-groups. While the great variety of such products precludes any
realistic hope of describing the general structure of the groups that preserve them, it is
reasonable to expect that insight may be gained from an examination of the universal dis-
tributive products: tensor products.We give a detailed description of the groups preserving
tensor products over semisimple and semiprimary rings, and present effective algorithms
to construct generators for these groups.We also discuss applications of ourmethods to al-
gorithmic problems forwhich all currently knownmethods require an exponential amount
of work.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many groups can be described as the set of linear transformations that preserve a distributive product. Obviously this is
the case for automorphism groups of algebras, both associative and nonassociative. Among the other well known examples
are classical groups, which preserve other forms of distributive products, namely reflexive forms; cf. [1, p. 107]. In more
subtle ways, automorphisms of finite p-groups preserve a distributive product that arises from commutation, via the cor-
respondences of Baer [2], and of Kaloujnine, Lazard, and Mal’cev [23]. As the estimates for rings [19], and for p-groups [11],
suggest, however, there are simply too many products to have any realistic expectation of understanding the structure of
all such groups.

The goal of this paper is to examine the groups preserving tensor products. As tensor products are universal products,
the structure of these groups informs us of overall structure of groups preserving distributive products. Tensor products
over central simple rings have already been studied in [17, Theorems 3.6 & 4.1]. Here we consider tensor products over
semiprimary rings (rings R whose Jacobson radical J(R) is nilpotent and whose quotient R/J(R) is semisimple). This case is
surprisingly complicated because of the presence of a nontrivial Jacobson radical.

We begin with a general distributive product ◦ : U × V → W between abelian groups U , V , and W , also known as a
biadditive or bilinear map, or just bimap. For simplicity we assume that bimaps are full in that W = U ◦ V = ⟨u ◦ v : u ∈

U, v ∈ V ⟩. An autotopism of a bimap ◦ is a triple (f , g; h) in Aut(U)× Aut(V )× Aut(W ) satisfying

(∀u ∈ U,∀v ∈ V ) uf ◦ gv = (u ◦ v)h. (1.1)

Our notation accommodates the introduction of left and right scalars, so our homomorphisms are evaluated on the right
(resp. left) for left modules (resp. right modules), and exponentially for bimodules.
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We are principally interested in describing Aut(◦), the group of all autotopisms of a bimap ◦. Our approach relies on the
ring of adjoints of ◦, defined as

Adj(◦) = {(f , g) ∈ End(U)× End(V )op : uf ◦ v = u ◦ gv}. (1.2)

This ring was introduced in [24, p. 2654] and is characterized as the largest ring R acting faithfully on U and V for which
◦: U×V → W factors throughU⊗RV .We show that tensor products and adjoint rings are Galois connected (Theorem2.11),
and use this connection to prove the following result.

Theorem 1.3. The autotopism group of a bimap ◦: U × V → W embeds in

N(Adj(◦)) = {(f , g) ∈ Aut(U)× Aut(V ) : Adj(◦)(f ,g) = Adj(◦)},

with equality precisely when ◦ is a tensor product. In turn, the bimap ◦ is a tensor product if, and only if, the uniquely defined
linear map U ⊗Adj(◦) V → W is an isomorphism.

In several applications, such as constructing automorphism groups of finite p-groups, the bimaps ◦ that arise haveU = V
and are endowedwith natural symmetry. In those settings, one is primarily interested in special types of autotopisms called
pseudo-isometries; see [24, p. 2650]. We therefore consider alternating and symmetric bimaps ◦, and study the group of all
pseudo-isometries of ◦, namely

Ψ Isom(◦) = {f : (f , g; h) ∈ Aut(◦) and f = g}. (1.4)

We prove the following result.

Theorem 1.5. For an arbitrary nondegenerate alternating or symmetric bimap ◦: V × V → W, the group Ψ Isom(◦) embeds
naturally in

N∗(Adj(◦)) = {f : (f , g) ∈ N(Adj(◦)) and f = g},

with equality precisely when ◦ is a symmetric or exterior tensor product. Again, the bimap ◦ is a tensor product if, and only if, the
linear map V ∧

±

Adj(◦) V → W is an isomorphism.

From our point of view, the crucial aspect of Theorems 1.3 and 1.5 is that Aut(◦) and Ψ Isom(◦) are shown to act on a
known associative, unital ring, which is easy to construct algorithmically [4, Section 4], [5]. So much more is known about
the structure of rings than of general distributive products, and even basic features, such as the Jacobson radical and simple
factors of Adj(◦), clarify the structure of Aut(◦). Indeed, Theorems 3.10 and 4.5 give detailed structural descriptions of
the groups N(Adj(◦)) and N∗(Adj(◦)) in the case when Adj(◦) is semiprimary and separable (which holds, for example,
whenever U and V are finite-dimensional vector spaces over a field). These structural details are often sufficient to compute
generators for autotopism groups efficiently (say in polynomial time), as was observed in [17, Theorem 1.3] for central
simple rings.

The paper is organized as follows. In Section 2 we develop the necessary background on bimaps, culminating with our
Galois connection between bimaps on U × V and subsets of End(U)× End(V )op (Theorem 2.11).

In Section 3 we study the autotopism group of an arbitrary bimap, proving Theorem 1.3, and giving a precise structure
theorem forN(Adj(◦)) in the casewhen Adj(◦) is semiprimary and separable (Theorem 3.10).We also describe an algorithm
to construct generators for the normalizer of a finite-dimensional matrix algebra, and hence for the autotopism group of a
tensor product.

In Section 4, we consider the special case when ◦ is symmetric or alternating. We prove Theorem 1.5 and provide an
analogue of Theorem 3.10 for rings with involutions (Theorem 4.5).

In the concluding section, we expand on the key applications of our results and algorithms to the problem of computing
automorphism groups of finite p-groups, and briefly discuss ongoing work in this area.

2. Homotopisms, isotopisms and pseudo-isometries of bimaps

Our use of rings and modules is standard. A bi-additive map (or just bimap) is a function ◦: U × V → W , where U, V ,W
are abelian groups, satisfying the two-sided distributive law

(∀u1, u2 ∈ U,∀v ∈ V ) (u1 + u2) ◦ v = u1 ◦ v + u2 ◦ v

(∀u ∈ U,∀v1, v2 ∈ V ) u ◦ (v1 + v2) = u ◦ v1 + u ◦ v2.

Recall that our bimaps are full, in thatW = U ◦ V = ⟨u ◦ v : u ∈ U, v ∈ V ⟩.
Let ◦: U × V → W and �: U ′

× V ′
→ W ′ be bimaps. A homotopism from ◦ to � is a triple (f : U → U ′, g : V →

V ′
; h : W → W ′) of homomorphisms satisfying

(∀u ∈ U,∀v ∈ V ) (u ◦ v)h = uf � gv. (2.1)

Denote by hom(◦,�) the set of all homotopisms from ◦ to �.
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Fig. 1. Commutative diagram demonstrating how the bimap � factors through ◦ if, and only if, their factorizations through the tensor product have nested
kernels. Double shafted arrows denote bimaps and regular arrows are homomorphisms.

Remark 2.2. For a product ◦ : U × V → W to determine a nonassociative ring requires that U = V = W . This can result
in products that are not full, such as the multiplication of any nilpotent Lie algebra. The restriction to full bimaps can be
avoided by considering ‘‘weak’’ homotopisms, which are triples (f , g; h) where h is defined from U ◦ V → U ′

� V ′ instead
of fromW → W ′.

The class of bimaps together with homotopisms forms a category, called the homotopism category. There are various
natural morphisms on classes of bimaps, such as adjoint-morphisms [25], so we name the categories after the morphisms
rather than the objects. We are interested primarily in isotopisms, namely homotopisms whose constituent maps are all
isomorphisms. Define the autotopism group of a bimap ◦: U × V → W to be

Aut(◦) = hom(◦, ◦) ∩ (Aut(U)× Aut(V )× Aut(W )). (2.3)

We denote the elements of Aut(◦) as triples (f , g; h), separating h from f and g to distinguish between two natural Aut(◦)-
modules, namely U ×V andW . As ◦ is full, h is determined by (u◦v)h = uf ◦vg , so the action of Aut(◦) on U ×V is faithful.

2.1. Factor equivalence

We now fix two abelian groups U and V and consider bimaps on U × V . For a bimap ◦: U × V → X and homomorphism
τ : X → Y we define the bimap ◦

τ
: U × V → Y by

(∀u ∈ U,∀v ∈ V ) u ◦
τ v = (u ◦ v)τ .

For bimaps ◦: U × V → X and �: U × V → Y , we say � factors through ◦, and write ◦ → �, if there is a homomorphism
τ : U ◦ V → Y such that ◦

τ
= � (equivalently, if (1U , 1V ; τ) is a homotopism from ◦ to �). We say that ◦ and � are factor

equivalent, denoted ◦ ↔ �, if ◦ → � and � → ◦. Note that ◦ ↔ � forces X = U ◦ V and Y = U � V to be isomorphic (as
our bimaps are full). It follows that ↔ is an equivalence relation on the class of bimaps on U × V , and → is a partial order
on the bimaps on U × V relative to the equivalence ↔.

Let U ⊗ V denote the usual tensor product of U and V (as abelian groups) and let ⊗: U × V → U ⊗ V denote the
associated bimap. The universal property of tensor products asserts that every bimap◦: U×V → X factors uniquely through
⊗: U × V → U ⊗ V . Writing ◦̂ : U ⊗ V → X for the implied homomorphism, so that ◦ = ⊗

◦̂, we have u ◦ v = (u ⊗ v)◦̂

for all u ∈ U and all v ∈ V . Hence, for a bimap � on U × V ,

◦ → � ⇐⇒ ker ◦̂ ⊆ ker �̂. (2.4)

Fig. 1 illustrates this correspondence.
Associated to each subgroup K of U ⊗ V is a bimap

• = •(K) : U × V → (U ⊗ V )/K ,

defined by

(∀u ∈ U,∀v ∈ V ) u • v = u ⊗ v + K . (2.5)

Fig. 1 also shows that, for every bimap ◦: U×V → X , we have ◦ ↔ •(ker ◦̂).We regard •(ker ◦̂) as the regular representation
of ◦ since it is a canonical representative of the factor-equivalence class containing ◦. This establishes a bijection ◦ → ker ◦̂
from the factor-equivalence classes on U × V to the set of subgroups of U ⊗ V .

We nowdefinemeets and joins for bimaps onU×V in amanner that respects factor equivalence. For bimaps ◦: U×V →

X and �: U × V → Y , let

W = {(u ◦ v, u � v) : u ∈ U, v ∈ V } 6 X × Y ,
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Fig. 2. Commutative diagram showing that if ◦ → ⋆ and � → ⋆ then (◦ ∪ �) → ⋆. The point is that the middle of the diagram is a pushout for (◦̂, �̂).

and define (◦ ∩ �) : U × V → W by

(∀u ∈ U,∀v ∈ V ) u(◦ ∩ �)v = (u ◦ v, u � v). (2.6)

For the join ◦ ∪ �, let J = ⟨(u ◦ v,−u � v) : u ∈ U, v ∈ V ⟩ 6 X × Y . Now define (◦ ∪ �) : U × V → W/J so that

(∀u ∈ U,∀v ∈ V ) u(◦ ∪ �)v = (u ◦ v, u � v)+ J. (2.7)

Both ∩ and ∪ generalize to arbitrary sets of bimaps on U × V .

Proposition 2.8. The factor-equivalence classes of bimaps on U × V form a lattice under →, ∩ and ∪ that is isomorphic to the
lattice of subgroups of U ⊗ V under ⊆, ∩, and +. A bimap ◦ is at the top if U ◦ V = 0, and at the bottom if ◦̂ : U ⊗ V → U ◦ V is
an isomorphism.

Proof. Observe that U(◦ ∪ �)V = ((U ◦ V )⊕ (U � V ))/J is a pushout for the pair (◦̂, �̂) in the category of abelian groups.
Furthermore, if ⋆ : U × V → Z is a bimap and ◦,� → ⋆, then the associated homomorphisms U ◦ V → Z and U � V → Z
create a commutative square from U ⊗V to Z (see Fig. 2). The universal property of the pushout implies that ◦∪� → ⋆, and
we see that∪ is indeed a join. Fig. 2 also illustrates that ◦∪� ↔ •(ker ◦̂+ker �̂). In similar fashion, ◦∩� ↔ •(ker ◦̂∩ker �̂)
and serves as the meet. �

Remark 2.9. Themeet ◦∩� of bimaps ◦ : U×V → Y and� : U×V → Y has appeared elsewhere as a bimapU×V → X⊕Y ,
for example in [4, p. 1976]. We have modified our definition of ◦ ∩ � here to ensure that it is a full bimap.

2.2. A Galois connection

A Galois connection between partially ordered sets (P,6) and (Q ,⊆) is a pair of functions ⊥ : P → Q and ⊤ : Q → P
such that

(∀p ∈ P,∀q ∈ Q ) q⊤ 6 p ⇐⇒ q ⊆ p⊥.

The reader is referred to [9] for equivalent definitions and interpretations of Galois connections. In this section we exhibit a
Galois connection between the lattice of factor-equivalence classes of bimaps on U × V and the lattice of subsets of the ring
End(U)× End(V )op.

Recall that we regard U as a right End(U)-module and a left End(U)op-module. Thus, subsets S of End(U)× End(V )op act
on the right of U and on the left of V so that one may form the tensor product ⊗S : U × V → U ⊗S V . We say that a bimap
◦: U × V → W is mid S-linear if it factors through ⊗S :

(∀s ∈ S,∀u ∈ U,∀v ∈ V ) us ◦ v = u ◦ sv. (2.10)

For a fixed bimap ◦ : U × V → W , recall from (1.2) that

Adj(◦) = {(x, y) ∈ End(U)× End(V )op : ∀u ∈ U,∀v ∈ V , ux ◦ v = u ◦ yv},

a subring of End(U)× End(V )op. We can now formulate the Galois connection.

Theorem 2.11. Let U and V be abelian groups. If S ⊆ End(U)× End(V )op, and ◦: U × V → W is a bimap, then

⊗S → ◦ if, and only if, S ⊆ Adj(◦).
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This establishes a Galois connection between the lattice of factor-equivalence classes of bimaps on U ×V and the lattice of subsets
of End(U)× End(V )op. Moreover,

(i) Adj(⊗Adj(◦)) = Adj(◦), and
(ii) ⊗Adj(⊗S ) ↔ ⊗S .

Hence Adj(⊗−) and ⊗Adj(−) are closure operators on the two lattices.

Proof. First, if ◦ factors through ⊗S then there is a (unique) map ◦̂ : U ⊗S V → W such that u ◦ v = (u ⊗ v)◦̂ for all u ∈ U
and all v ∈ V . For each s ∈ S,

(∀u ∈ U,∀v ∈ V ) us ◦ v = (us ⊗ v)◦̂ = (u ⊗ sv)◦̂ = u ◦ sv.

So S ⊆ Adj(◦). Conversely, suppose S ⊆ Adj(◦). Define τ : U ⊗S V → U ◦ V on pure tensors, sending u ⊗ v → u ◦ v, and
extending linearly. For each s ∈ S,

(∀u ∈ U,∀v ∈ V ) (us ⊗ v)τ = us ◦ v = u ◦ sv = (u ⊗ sv)τ .

It follows that τ is well-defined, and hence that ◦ factors through ⊗S .
Both (i) and (ii) are general properties of Galois connections, but their proof in context is straight-forward. For (i), we

have Adj(◦) ⊆ Adj(⊗Adj(◦)). For the reverse inclusion, we know that ⊗Adj(◦) → ◦, so there exists τ : U ⊗Adj(◦) V → U ◦ V
such that u ◦ v = (u ⊗ v)τ for all u ∈ U , v ∈ V . For each s = (x, y) ∈ Adj(⊗Adj(◦)),

(∀u ∈ U,∀v ∈ V ) us ◦ v = (ux ⊗ v)τ = (u ⊗ yv)τ = u ◦ sv,

so that s ∈ Adj(◦). Similarly for (ii), we have ⊗Adj(⊗S ) → ⊗S . Since S ⊆ Adj(⊗S), the identity map on pure tensors extends
linearly to a well-defined map U ⊗S V → U ⊗Adj(⊗S ) V . It follows that ⊗S → ⊗Adj(⊗S ). �

A consequence of Theorem 2.11 is that a bimap ◦ on U × V is a tensor product (i.e. it possesses the universal mapping
property for some set S ⊆ End(U)× End(V )op) if, and only if, ◦ ↔ ⊗Adj(◦). This proves the last assertion of Theorem 1.3.

Note that if R is any ring, and ·R is itsmultiplication,mapping R×R → R, then Adj(·R) = {(u → ur, v → rv) : r ∈ R} ∼= R.
In that sense adjoint rings are arbitrary. Their representations, however, are more constrained, in the sense that a subring
S of End(U) × End(V )op seems rather unrelated to its closure, Adj(⊗S). For instance, there are commutative subrings S of
End(U)× End(V )op, having nontrivial Jacobson radical, for which Adj(⊗S) is noncommutative and simple.

3. Autotopisms and normalizers

Having introduced the homotopism category of bimaps and some of its basic properties, we now consider the automor-
phism groups in the category.

In Section 3.1we show, for an arbitrary bimap ◦: U×V → W , that the autotopism group Aut(◦) is naturally represented
as a normalizer,N(Adj(◦)), within Aut(U)×Aut(V ), thereby completing the proof of Theorem1.3. In Section 3.2, we describe
N(A) for semiprimary separable subrings A of End(U)×End(V )op, and hence also Aut(⊗S) for S ⊆ End(U)×End(V )op having
Adj(⊗S) semiprimary and separable. This includes the autotopisms of tensor products of finite-dimensional vector spaces.
Finally, in Section 3.3, we present an algorithm to construct N(A).

3.1. Autotopisms acting on adjoints

For abelian groups U, V , and subring A of End(U)× End(V )op, define the normalizer of A to be

N(A) =

(f , g) : ∀(x, y) ∈ A, (x, y)(f ,g) = (f −1xf , gyg−1) ∈ A


⊆ Aut(U)× Aut(V ). (3.1)

Theorem 3.2. Let U and V be abelian groups.

(i) If ◦ is a bimap on U × V then Aut(◦)|Aut(U)×Aut(V ) ⊆ N(Adj(◦)).
(ii) If S ⊆ End(U)× End(V )op then Aut(⊗S)|Aut(U)×Aut(V ) = N(Adj(⊗S)).

Proof. For (i), let (f , g; h) ∈ Aut(◦). For each (x, y) ∈ Adj(◦) and all u ∈ U, v ∈ V ,

uxf ◦ v = (uf −1x ◦ g−1v)h = (uf −1
◦ yg−1v)h = u ◦ ygv.

Therefore, (x, y)(f ,g) ∈ Adj(◦), so that Aut(◦)|Aut(U)×Aut(V ) normalizes Adj(◦).
For (ii)we require the reverse containment in the case that◦ ↔ ⊗S = ⊗Adj(⊗S ) for some S ⊆ End(U)×End(V )op. Suppose

that (f , g) ∈ N(Adj(⊗S)). We construct h ∈ Aut(U⊗S V ) such that (f , g; h) ∈ Aut(⊗S). If such h exists, it is uniquely defined
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by (u ⊗ v)h = uf ⊗ gv, for each u ∈ U and each v ∈ V . Accordingly h exists if this definition is well-defined (respects the
tensor product relations). For all u, u′

∈ U and all v, v′
∈ V ,

((u + u′)⊗ v)h = uf ⊗ gv + u′f ⊗ gv = (u ⊗ v)h + (u′
⊗ v)h, and

(u ⊗ (v + v′))h = uf ⊗ gv + uf ⊗ gv′
= (u ⊗ v)h + (u ⊗ v′)h.

Finally, let s = (x, y) ∈ S ⊆ Adj(⊗S). As (f , g) ∈ N(Adj(⊗S)), it follows that (xf , yg) ∈ Adj(⊗S). Now, for each u ∈ U and
each v ∈ V ,

(us ⊗ v)h = uxf ⊗ gv = ufxf ⊗ gv = uf ⊗ yggv = uf ⊗ gyv = (u ⊗ sv)h.

Therefore h is well-defined on U ⊗S V , so that (f , g; h) ∈ Aut(⊗S). As ◦ ↔ ⊗S , Aut(⊗S)|Aut(U)×Aut(V ) = Aut(◦)|Aut(U)×Aut(V ),
which completes the proof. �

Proof of Theorem 1.3. Recall from Section 2 that for a full bimap ◦, each autotopism (f , g; h) has h determined by (f , g) and
soAut(◦) is faithfully represented onU×V . Thus, the first assertion of Theorem1.3 follows immediately fromTheorem3.2(i).
As commented earlier, the second assertion follows from the Galois connection; specifically, from Theorem 2.11(i). �

3.2. Normalizers of matrix rings

Theorem 3.2 states that the groups Aut(◦) act as automorphisms of the rings Adj(◦). We can use the well-developed
structure of rings to limit the behavior of Aut(◦).

In this section we pursue a more precise description of N(Adj(◦)) for k-bilinear maps U × V → W , where k is a field,
and U, V and W are finite-dimensional k-vector spaces. The proof actually applies to any adjoint ring which is separable
and semiprimary. Since we are unable at present to describe which subrings of End(U) × End(V )op are adjoint rings we
assume anything is possible. The resulting structure theorem (Theorem 3.10) is technical, but each component is implied
by well-known properties of rings. We need this level of detail for timing estimates of various algorithms, such as those in
Section 3.3 and [6]. The ring-theoretic properties we use are found in [8, Sections 3, 5, 6].

Before stating the main structure theorem, we set up some notation and establish some preliminary results. Fix a field k,
finite-dimensional k-spaces U, V , and let A be a k-subalgebra of Endk(U)× Endk(V )op. Let J = J(A) be the Jacobson radical
of A. Define the radical series of A to be the finite module chain

U ⊕ V > UJ ⊕ JV > · · · > UJc ⊕ JcV > UJc+1
⊕ Jc+1V = 0. (3.3)

As each ideal J i is characteristic in A, the radical series is N(A)-invariant. For convenience we let J0 = A. The main theme is
to choose bases for U and V such that A is block upper triangular, and such that the action of N(A) on A permutes the blocks
within each radical section but otherwise respects the block decomposition. We choose these bases with some additional
properties in mind.

First, Wedderburn’s principal theorem [16, p. 374] establishes the existence of a subalgebra S 6 A such that A = J ⊕ S as
a k-vector space. As S is semisimple, so UJ i splits in U as an S-module for each i ∈ {0, . . . , c}; likewise J iV splits in V . Hence,
there are S-submodules X0, . . . , Xc 6 U and Y0, . . . , Yc 6 V such that for all 0 6 i 6 c ,

UJ i = Xi ⊕ · · · ⊕ Xc J iV = Yi ⊕ · · · ⊕ Yc . (3.4)

For each i ∈ {0, . . . , c}, J is in the kernel of the induced action of A on UJ i/UJ i+1 and J iV/J i+1V , so these modules are (A/J)-
modules, and hence semisimple. As S splits with J in A, so UJ i/UJ i+1 ∼= Xi as S-modules. Therefore, bases for U and V that
exhibit the decompositions U = X0 ⊕ · · · ⊕ Xc and V = Y0 ⊕ · · · ⊕ Yc will express A in block upper triangular form with S
represented as block-diagonal matrices.

It is convenient to state our main structure theorem with reference to the group

N(S; J) = StabN(S)({(UJ i, J iV ) : 0 6 i 6 c}). (3.5)

Our preliminary results describe some structural properties of this group. Let E be the set of central-primitive idempotents
of S [8, Section 3]. Then the minimal ideals of S are precisely the ideals I = eSe = Se, where e ∈ E . Next, we define an
equivalence relation ∼ on E , where

e ∼ e′
⇐⇒

eSe ∼= e′Se′ as rings, and for all i ∈ {0, . . . , c},
dim Xie = dim Xie′ and dim eYi = dim e′Yi.

(3.6)

With this notation, we have the following result.

Lemma 3.7. Let S be a semisimple complement to the Jacobson radical, J , of a subalgebra of Endk(U)× Endk(V )op, and let E be
the set of central-primitive idempotents of S. Then, for each e ∈ E , the following hold.

(i) For i ∈ {0, . . . , c}, Xie is a direct sum of isomorphic simple S-submodules of Xi, and eYi is a direct sum of isomorphic simple
S-submodules of Yi.

(ii) For e′
∈ E , e ∼ e′ if, and only if, there exists g ∈ N(S; J) with eg = e′ such that g acts as the identity on E − {e, e′

}.
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Proof. For each e ∈ E , Xie is a faithful eSe-module and, as e is central-primitive, eSe is simple. Therefore, each Xie is a direct
sum of isomorphic simple eSe-modules and every S-submodule of Xi that is isomorphic to a submodule of Xie is contained
in Xie; see [8, Section 3].

Now suppose e′
∈ E − {e}. If e ∼ e′, then eSe ∼= e′Se′ and both are simple Artinian rings. As such, each is isomorphic

to Mde(∆e) for some positive integer de and finite-dimensional division algebra∆e over k. Thus, both Xie and Xie′ are direct
sums of multiple copies of∆e. Since dim Xie = dim Xie′ for each i, it follows that Xie ∼= Xie′ as∆e-vector spaces. Hence, there
is a∆e-semilinear isomorphism from Xie to Xie′. The same applies to the right modules eYi and e′Yi.

Fix∆e-semilinear transformations ϕi : Xie → Xie′ and ψi : eYi → e′Yi. Since U =
c

i=0


e∈E Xie, we define ϕ ∈ End(U)
as ϕi from Xie → Xie′, as ϕ−1

i : Xie′
→ Xie, and as the identity on Xif → Xif for each f ∈ E −{e, e′

}. Mimic this construction
to create ψ ∈ End(V )op which interchanges eYi with e′Yi for each i ∈ {0, . . . , c}. It follows that e(ϕ,ψ) = e′, and (ϕ, ψ)
∈ N(S; J). �

Fix e ∈ E . As in the proof of Lemma 3.7, eSe ∼= Mde(∆e) for a positive integer de and finite-dimensional division k-algebra
∆e. Furthermore, for each i ∈ {0, . . . , c} there is are pairs (mi(e), ni(e)) of non-negative integers such that

Xie ∼= ∆de
e ⊗k kmi(e) and eYi ∼= ∆de

e ⊗k kni(e) (3.8)

as eSe-modules. The following is an explicit description of the subgroup of N(S; J) that normalizes every simple ideal of S.

Lemma 3.9. Let S be a semisimple complement to the Jacobson radical, J , of a subalgebra of Endk(U)× Endk(V )op, and E the set
of central-primitive idempotents of S. Then the subgroup of N(S; J) that normalizes every ideal eSe (e ∈ E) of S is isomorphic to

e∈E

Γ Lde(∆e)⊗k


c

i=0

GLmi(e)(k)× GLni(e)(k)


.

Proof. Let (ϕ, ψ) ∈ N(S; J) be such that eSe(ϕ,ψ) = eSe for every e ∈ E . Fix e ∈ E . Then (ϕ, ψ) induces a ring automorphism
τe of eSe ∼= Mde(∆e). The Skolem–Noether theorem [8, (3.62) ] shows that τe is conjugationby a∆-semilinear transformation.
Also, Γ Lde(∆e) acts diagonally on Ue, which is isomorphic as ∆e-module to ∆de(m0+···+mc )

e , and also on eV , isomorphic to
∆

de(n0+···+nc )
e .
Let τ = (τe : e ∈ E) ∈ End(U) × End(V )op. Notice eSe(ϕ,ψ) = eSeτ and (Xiτ , τYi) = (Xi, Yi) so τ ∈ N(S; J). Finally,

τ ′
= (ϕ, ψ)τ−1 centralizes S and lies inN(S; J). Therefore, τ ′ is the identity on the S-simple submodules of the S-semisimple

modules Xi and Yi. In particular, τ ′ acts on Xie as 1⊗kGLmi(e)(k) and on eYi as 1⊗kGLni(e)(k), in the decomposition of (3.8). �

We can now state the full structure theorem for N(A).

Theorem 3.10. Let A be a subalgebra of End(U) × End(V )op. Let J = J(A) be the Jacobson radical of A, and S a semisimple
complement to J in A. Let E be the set of central-primitive idempotents of S, and N(S; J) the group defined in (3.5). Then the
following hold.

(i) N(A) = ⟨1 + J,N(S) ∩ N(A)⟩.
(ii) N(S) ∩ N(A) = StabN(S)(J) = {(x, y) ∈ N(S) : J (x,y) = J}.
(iii) For each e ∈ E there is a positive integer de and a finite-dimensional division k-algebra∆e such that eSe ∼= Mde(∆e) and

e∈E

GLde(∆e) 6 N(S) ∩ N(A) 6 N(S; J).

(iv) Let F = {


e′∼e e
′
: e ∈ E}. Then N(S; J) =


f∈F N(fSf ; J), where

N(fSf ; J) = StabN(fSf )({(UJ if , fJ iV ) : 0 6 i 6 c}).

(v) Let f ∈ F , and suppose f =


e′∼e e
′ for some e ∈ E . Put df = de, ∆f = ∆e, rf = |{e′

∈ E : e′
∼ e}|, dfmi(f ) =

dim∆e UJ
ie/UJ i+1e, and df ni(f ) = dim∆e eJ

iV/eJ i+1V . Then

N(fSf ; J) =


Γ Ldf (∆f )⊗k

c
j=0

GLmi(f )(k)× GLni(f )(k)


≀ Srf .

Proof. For (i), we recall the theorem of Mal’cev asserting that 1 + J 6 A× 6 N(A) acts transitively on the set of semisimple
complements to J in A. Thus, for each ϕ ∈ N(A) there exists z ∈ J with Sϕ = S1+z , so that (1 + z)ϕ−1

∈ N(S) ∩ N(A).
For (ii), since N(S) ∩ N(A) acts as ring automorphisms on A, it follows that N(S) ∩ N(A) 6 StabN(S)(J). Also, if

(ϕ, ψ) ∈ StabN(S)(J) and (x, y) ∈ A, then (x, y) = (w + s, z + t) for w, z ∈ J and s, t ∈ S. As (w, z)(ϕ,ψ) ∈ J and (s, t)(ϕ,ψ)

∈ S, we have (x, y)(ϕ,ψ) = (w, z)(ϕ,ψ) + (s, t)(ϕ,ψ) ∈ J + S = A, so that (ϕ, ψ) ∈ N(A).
For (iii), we have S =


e∈E eSe with eSe ∼= Mde(∆e). Hence,


e∈E GLde(∆e) = S× 6 N(S) ∩ N(A). Clearly, N(S) ∩ N(A)

stabilizes the radical series (3.3), so N(S) ∩ N(A) 6 N(S; J).
Finally, (iv) and (v) follow directly from Lemmas 3.7 and 3.9. �
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3.3. An algorithm to construct N(A)

In this section, we present an algorithmic version of Theorem 3.10. Although we anticipate practical uses for such an
algorithm as a stand-alone function, it is already proving to be a valuable component in the algorithmic study of p-groups.
We discuss this matter further in the concluding section. The complexity of the algorithm is difficult to predict, but it is
roughly a function of the size of the Jacobson radical of Adj(◦). For convenience, we shall mostly think of k in this section as
a finite field, although extensions to algebraic number fields are possible.

Let A 6 Ma(k) × Mb(k) be given (we assume, as the enveloping algebra of some set of generators). First, we compute
a Wedderburn decomposition A = J ⊕ S, along with a decomposition of S into its minimal ideals {eSe : e ∈ E}, where
E is the set of central-primitive idempotents of S. Rónyai has shown that the complexity of decomposing algebras in this
way is essentially that of factoring polynomials over k [21]. If k is a finite field, this can be done in polynomial time using
randomized algorithms of the Las Vegas variety. (Such algorithms only return answers that are correct, but there is also a
small chance that failure is reported.) Details may be found in [7, Section 4], [10,13].

Next, the idempotents E are partitioned to form the F of Theorem 3.10(iv). This applies the equivalence relation ∼ of
Lemma 3.7. In particular, if e, e′

∈ E then e ∼ e′ requires only that de = de′ , that∆e ∼= ∆e′ , and that dimensions of various
∆e-vector spaces agree. Of those requirements, the only significant challenge is to test whether∆e ∼= ∆e′ .

In fact, to build the permutations in N(S; A) promised by Lemma 3.7, we really need an explicit isomorphism between
the two division algebras. In the case when k is a finite field, isomorphism type is determined by dimension, and we require
an isomorphism between field extensions K and L of k. In the context of the algorithm, the extensions K and L are specified,
respectively, by generators ρ and µ (matrices of the same degree with entries in k). We use the following idea suggested to
us by W.M. Kantor: compute the minimal polynomial of ρ over the base field k, and factor this polynomial over L; then, for
any root τ ∈ L, the assignment ρ → τ determines a linear transformation conjugating K to L.

We remark that isomorphism testing of general division algebras over Q is not known to be easy except for quaternionic
instances [15].

The final step, for each e ∈ E and 0 6 i 6 c , is to decompose Xie = ∆de
e ⊗k kmi(e) and eYi = ∆de

e ⊗k kni(e). This is done
with a randomized Las Vegas algorithm known as the MeatAxe [12,14]. The action of Γ Lde(∆e) ⊗ (GLmi(e)(k) ⊕ GLni(e)(k))
on (Xie, eYi) is then immediate from the decomposition. We have thus proved:

Theorem 3.11. For finite fields k, there is a polynomial-time Las Vegas algorithm that given a k-subalgebra A 6 Mu(k)× Mv(k)
computes generators for the group ⟨1 + J,N(S; J)⟩, along with its order and composition factors.

Finally, by Theorem3.10(ii), to buildN(A) = ⟨1+J, StabN(S;J)(J)⟩ onemust next construct StabN(S;J)(J). In general, it seems
that one can do little better than simply to build a permutation presentation of N(S; J) on J and compute the stabilizer as a
permutation group, of course taking advantage of the decomposition in Theorem 3.10(iii). The problem of finding stabilizers
in permutation groups is thought to be difficult [18, Section 4], and we do not expect an efficient general solution to the
problem (see, for example, the construction in Section 3.4). We have, however, established the following result.

Theorem 3.12. There is a polynomial-time Las Vegas algorithm that, given a semisimple subalgebra of End(U)×End(V )op, where
U and V finite-dimensional vector spaces over a finite field, constructs generators for N(A).

3.4. An example

We conclude this section with a construction which shows that computing N(A) is at least as hard as computing Aut(◦)
for an arbitrary bimap ◦, and that the latter is essentially a generic ‘‘quadratic stabilizer" problem for which no efficient
solution is known (details in Section 5.2). Thus, it is likely not through a lack of understanding that we have failed to achieve
polynomial time for the general problem. We stress, however, that not all rings are adjoint rings, and in fact the rings we
construct are not known to be adjoint rings. Hence, although the examples in our family give some indication of the difficulty
of constructing Aut(⊗S) for S ⊂ End(U)× End(V )op, they do not completely settle the matter.

Fix a field k, any bimap ◦: U × V → W , where U, V andW are finite-dimensional k-spaces, and ordered bases X and Y
for U and V respectively.

For each ϕ ∈ W ∗
= homk(W , k), letM(◦ϕ) denote the Grammatrix of the k-bilinear form ◦

ϕ , whose (x, y)-entry (x ∈ X,
y ∈ Y) is (x ◦ y)ϕ ∈ k. The Gram representation of ◦ is then defined as

W ◦
= {M(◦ϕ) : ϕ ∈ W ∗

} 6 Ma×b(k), (3.13)

where a = dimk U and b = dimk V . Observe that (f , g; h) ∈ Aut(◦) if, and only if, the matrices (F ,G) corresponding to
(f , g) satisfy the condition

FW ◦G = W ◦. (3.14)

Now define

A =


a1U Z
0 b1V


,


a1U 0
Z t b1V


: a, b ∈ k, Z ∈ W ◦


6 Ma+b(k)× Ma+b(k).
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Then J = J(A) =


0 Z
0 0


,
 0 0
Z t 0


: Z ∈ W ◦


, so

N(S; J) =


F 0
0 G


,


F−t 0
0 G−t


: F ∈ GL(a, k),G ∈ GL(b, k)


, and

N(S) ∩ N(A) =


F 0
0 G−t


,


F−t 0
0 G


: FW ◦G = W ◦


∼= Aut(◦).

Thus, in order to construct N(S) ∩ N(A) from N(S; J), one must solve a generic stabilizer problem of the form FW ◦G = W ◦.

4. Pseudo-isometries and ∗-normalizers

In this section we consider bimaps that have a certain form of symmetry. We say that ◦: V × V → W is Hermitian if
there exists θ ∈ Aut(W ) such that, for all u, v ∈ V , u ◦ v = (v ◦ u)θ . Hermitian bimaps, which include the more familiar
reflexive forms, were studied in [4], where the groups

Isom(◦) = {f ∈ Aut(V ) : ∀u, v ∈ V , uf ◦ vf = (u ◦ v)}

= {f : (f , g; h) ∈ Aut(◦), f = g and h = 1} (4.1)

of isometries of ◦ were described, and then used to construct intersections of classical groups. However, there are crucial
applications of Hermitian bimaps – notably to automorphism groups of p-groups (see Section 5) – that involve a broader
(but still restricted) type of autotopism, called a pseudo-isometry. We therefore study the group of all pseudo-isometries,
namely

ΨIsom(◦) =


(f ; f̂ ) ∈ Aut(V )× Aut(W ) : ∀u, v ∈ V , uf ◦ vf = (u ◦ v)f̂


= {(f ; h) : (f , g; h) ∈ Aut(◦), f = g}. (4.2)

As in the case of a general bimap, we propose to study Hermitian bimaps by factoring through an associated tensor product.
In view of that, and of the specific applicationswe have inmind, we restrict our attention to bimaps that are either symmetric
(u ◦ v = v ◦ u for all u, v ∈ V ), or alternating (v ◦ v = 0 for all v ∈ V ). The tensor products associated to symmetric and
alternating bimaps are equipped with the same symmetry property, and we denote them ∧

+ and ∧
−, respectively.

Once again, we form tensors over the adjoint algebra, Adj(◦), of the bimap ◦. The symmetric nature of ◦ means that
(x, y) ∈ Adj(◦) if, and only if, (y, x) ∈ Adj(◦). If, in addition, ◦ is nondegenerate, then y is uniquely determined by x. Hence
x∗

:= y defines an anti-automorphism of Adj(◦) of order at most 2, giving it the structure of a ∗-ring. If A ⊆ End(V ) is a
∗-ring, then the normalizer of A in (3.1) becomes

N∗(A) = {g ∈ Aut(V ) : (yg)∗ = (y∗)g ∈ S for all y ∈ A}. (4.3)

4.1. Proof of Theorem 1.5

We now prove our analogue of Theorem 1.3 for symmetric and exterior tensor products.

Proof. If ◦: V × V → W is nondegenerate symmetric or alternating then ◦ factors through ∧
±

Adj(◦). To be equivalent to a
tensor product, ◦̂ : V ∧Adj(◦) V → W must be an isomorphism.

Now suppose that ◦ = ∧
±

A for a ∗-algebra A 6 End(V ). Let ϕ ∈ N∗(Adj(∧S)), so that (ϕ, ϕ) ∈ N(Adj(∧S)). As in
Theorem3.2, there is an induced linearmapping ϕ̂ ∈ Aut(V⊗SV ) defined by (u⊗v)ϕ̂ = uϕ⊗vϕ. Thismap also satisfies (u∧

u)ϕ̂ = 0, so we can induce ϕ̂ on V ∧S V . Now (ϕ, ϕ̂) ∈ Ψ Isom(∧±

S ), and we see that N∗(Adj(∧±

S )) ⊆ Ψ Isom(∧±

S )|Aut(V ). �

4.2. ∗-algebra normalizers

Theorem 1.5 demonstrates that pseudo-isometries of alternating tensor products are essentially ∗-normalizers of the
adjoint ring of the tensor product. We now give a structural description of the ∗-normalizer of an algebra of matrices; in
Section 4.3 we describe an algorithm to construct this group.

Weadapt the notation set up in Section 3.2 to∗-algebras. LetA 6 Md(k)be a∗-algebra,where k = 2k is a field (we exclude
fields of characteristic 2). By a result of Taft [22],Apossesses a∗-invariant (semisimple) complement, S, to its Jacobson radical
J = J(A).

We also require E to consist of ∗-invariant central-primitive idempotents. This set is obtained from E0, the set of central-
primitive idempotents of the ring A (ignoring ∗ temporarily) as follows. Put I0 = {e ∈ E0 : e∗

= e} and J0 = {e + e∗
: e ∈

E0 − I0}. Then E := I0 ∪ J0 is the desired set of ∗-invariant central-primitive idempotents. In particular, eSe is a minimal
∗-ideal, for every e ∈ E .

Our initial partition of idempotents is a little more refined than for ordinary rings, as we now explain.
Each simple ∗-algebra has an associated pair (d,O) of parameters, where d is a positive integer, and O is a ∗-algebra

whose non-trivial ∗-invariant elements are invertible. Osborn has classified such rings O and so we refer these as Osborn
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pseudo-division algebras [20]. To avoid confusion, we denote the involution in O as s → s. Define the usual Hermitian O-
forms as bimaps •: Od

× Od
→ O where for someM = M

t
∈ Md(O),

(∀u, v ∈ Od) u • v = uMvt . (4.4)

Fix e ∈ E . As shown in [24, Section 4.5], there is a unique Osborn division algebra Oe, a rank de, and a nonsingular Me =

Me
t
∈ Mde(Oe) such that

eSe ∼= Adj(• : Ode
e × Ode

e → Oe) ∼= ⟨Mde(Oe), X → MeX
t
M−1

e ⟩

(eSe)# = {x ∈ eTe×
: xx∗

= 1} = Isom(• : Ode
e × Ode

e → Oe)

= {g ∈ GLde(Oe) : gMeg t
= Me}.

Define S-submodules X0, . . . , Xc of V as in (3.4), where VJ i = Xi ⊕ · · · ⊕ Xc for each 0 6 i 6 c.
We can now define our equivalence relation ∼ on E , where e ∼ e′ if, and only if, eSe and e′Se′ are isomorphic as ∗-rings

(that is, de = de′ and Oe and Oe′ are isomorphic algebras) and, for all i ∈ {0, . . . , c}, dim Xie = dim Xie′.
The following is our ∗-analogue of Theorem 3.10.

Theorem 4.5. Let A be a ∗-subalgebra of End(V ). Let J = J(A) be the Jacobson radical of A, and S a semisimple ∗-invariant
complement to J in A. Let E be the set of ∗-invariant central-primitive idempotents of S. Then the following hold.

(i) N∗(A) = ⟨{z +
√
1 + z2 : z ∈ J, z∗

= −z},N∗(S) ∩ N∗(A)⟩.
(ii) N∗(S) ∩ N∗(A) = StabN∗(S)(J−) ∩ StabN∗(S)(J+).
(iii) For each e ∈ E there is a positive integer de, a finite-dimensional Osborn pseudo-division k-algebra Oe, and an Hermitian

O-form •e : Ode
e × Ode

e → Oe such that eSe ∼= Adj(•e) (as ∗-algebras) and
e∈E

Isom(•e) 6 N∗(S) ∩ N∗(A) 6 StabN∗(S)(VJ i).

(iv) Let F = {


e∼e′ e
′
: e ∈ E}. Then N(S; J) =


f∈F N(fSf ; J), where

N(fSf ; J) = StabN∗(fTf )({VJ if : 0 6 i 6 c}).

(v) Let f ∈ F , and suppose f =


e′∼e e
′ for some e ∈ E . Put df = de, Of = Oe, rf = |{e′

∈ E : e′
∼ e}, and dfmi(f ) =

rankOe VJ
ie/VJ i+1. Then

StabN∗(fTf )(UJ if , fJ iV ) =


Ψ Isom(•e)⊗k

c
j=0

GLmi(f )(k)


≀ Srf .

Proof. For (i), let ϕ ∈ N∗(A). Since Sϕ is a ∗-invariant complement to J in A, and U = {z +
√
1 + z2 : z ∈ J−} acts

transitively on the set of all such complements, there exists u ∈ U such that Sϕu = S [4, Theorem 1.1]. It follows that ϕu ∈

StabN∗(S)(J−) ∩ StabN∗(S)(J+), and the result follows.
For (ii), note thatϕ ∈ N∗(S) lies inN∗(A) if, and only if,ϕ stabilizes J and commuteswith the involution on J . The condition

is equivalent to ϕ stabilizing J+ and J−. For, if ϕ stabilizes J+ and J−, and z = z+
+ z− with z±

∈ J±, then

(zϕ)∗ = ((z+
+ z−)ϕ)∗ = ((z+)ϕ)∗ + ((z−)ϕ)∗ = (z+)ϕ − (z−)ϕ .

On the other hand, if z ∈ Jϵ , say, with zϕ ∉ Jϵ , then (z∗)ϕ = ϵzϕ ≠ (zϕ)∗.
For (iii)–(v) the proofs are essentially the same as that of Theorem 3.10 except that N∗(eSe) ∼= Ψ Isom(•e)⊗ GLmi(e)(k),

where •e : Ode
e × Ode

e → Oe [24, Corollary 4.30]. �

4.3. An algorithm to construct N∗(A)

Most of the machinery needed to provide an algorithmic version of Theorem 4.5 was developed in [4].
First, procedures for decomposing S as a direct sum of minimal ∗-ideals, and for identifying the simple type of these

ideals, are given in [4, Theorem 4.1].
The algorithm for Theorem 4.5 is almost identical to its counterpart for Theorem 3.10. The only essential difference is

that, instead of generators for GL(di, Ki), we must choose suitable generators for Ψ Isom(•e). Those groups are, however, all
(conformal) classical groups, and it is elementary to write down small generating sets for them (see [4, Section 5.4]).

For (ii), an algorithmic version of Taft’s decomposition is given in [4, Proposition 4.3]. The unipotent radical {z +
√
1 + z2 : z ∈ J−} is constructed in [4, Section 5.2] using a power series. Finally, the remarks we made about stabilizing

the radical in Section 3.3 apply equally in this setting.
We conclude this section with an analogue of Theorem 3.12 for ∗-rings.

Theorem 4.6. There is a polynomial-time Las Vegas algorithm that, given a semisimple ∗-subalgebra, A, of End(V ), where V is a
finite-dimensional vector space over a finite field of odd characteristic, constructs generators for N∗(A).
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5. Applications

We conclude the paper with a brief discussion of several algorithmic problems of interest whose solution relies on our
ability to compute and understand Aut(◦).

5.1. Automorphisms of p-groups

The relationship between nilpotent groups and algebras extends back to the 1930’s and has evolved to handle ever larger
families of groups; for a survey see [23, Section 5]. The typicalmethod is to relate commutation [x, y] = x−1y−1xy in a groupG
to a distributive product. Through specific correspondences of Baer, and of Kaloujnine, Lazard, and Mal’cev, automorphisms
of G are seen to induce autotopisms of a distributive product. We make this precise for the more elementary setting: the
Baer correspondence [2]. Further details are given in [24, Section 3].

Let G be a group, G′
= ⟨[x, y] = x−1y−1xy : x, y ∈ G⟩ its commutator subgroup, and Z = Z(G) = {x ∈ G : [x,G] = 1}

its center. Suppose that G′ 6 Z . If V = G/Z and W = G′, with operations written additively, then ◦: V × V → W , with
xZ ◦ yZ := [x, y] for all x, y ∈ G, is a well-defined bimap. Also, since v ◦ v = 0 for all v ∈ V , we see that ◦ is alternating.
Hence ◦ factors uniquely through ∧: V × V → V ∧ V = V ⊗ V/⟨v ⊗ v : v ∈ V ⟩.

For convenience, let us assume that G is a finite p-group, so V and W are now finite-dimensional k-spaces, where
k = GF(p). Each α ∈ Aut(G) restricts to an automorphism wϕ̂ = wα on W , and induces an automorphism (xZ)ϕ = xαZ
on V . Furthermore, the pair (ϕ; ϕ̂) is a pseudo-isometry of ◦. This establishes a homomorphism from Aut(G) to the group
Ψ Isom(◦) of all pseudo-isometries of ◦. In some important settings (for instance when Gp

= 1) the image of Aut(G) is all of
Ψ Isom(◦) [24, Proposition 3.8].

In the absence of more refined strategies, Ψ Isom(◦) is typically constructed ‘‘by brute-force", meaning that one simply
computes the stabilizer of ker ◦̂ under the natural action of GLk(V ) on V ∧ V , sending u ∧ v → ug ∧ vg , for g ∈ GLk(V ).
The limitations are obvious: the action of GLk(V ) on V ∧ V can have orbits that are far too large for effective computation.
Moreover, the results give no hint of structure.

One way to finesse the problem is to factor ◦ through the possibly smaller space V ∧A V , where A = Adj(◦). This helps in
two ways. First, the natural group that acts on V ∧A V , namely the group Ψ Isom(∧A) of pseudo-isometries of the bimap ∧A,
is no longer all of GLk(V ), and may be a significantly smaller subgroup. Second, the space V ∧A V may have much smaller
dimension than V ∧V . Therefore findingΨ Isom(◦) as a stabilizer inΨ Isom(∧A) of ker ◦̂ 6 V ⊗A V will often be substantially
easier. Not surprisingly, this approach to computing Aut(G) ∼= Ψ Isom(◦) is most effective in situations where A = Adj(◦)
is large or V ∧A V is small. Both of those desirable conditions are met, for instance, when |G′

| = p2, a particularly nice case
that is handled separately in [6].

The general method we have outlined above constitutes one part of a comprehensive new strategy to construct
generators for the automorphism group of p-group of class 2 and exponent p. This strategy is currently being developed
jointly by the authors and E.A. O’Brien [3].

5.2. Quadratic stabilizer

Autotopism groups provide a natural context for the general problem of stabilizing a subspace of rectangular matrices.
The familiar linear stabilizer problem starts with a field k, a positive integer a, and subspace W 6 ka; and asks for

Stab(W ) = {x ∈ GL(a, k) : Ux = U}. By simply writing ka = X ⊕ U we find that

Stab(W ) =


A B
0 C


: A ∈ GL(X), B ∈ hom(X,U), C ∈ GL(U)


.

So this linear stabilizer problem is elementary to solve.
The quadratic stabilizer problem concerns a field k, positive integers a, b, and a subspace W 6 Ma×b(k). The goal is to

describe the group

Stab(W ) = {(x, y) ∈ GL(a, k)× GL(b, k) : xWyt = W }. (5.1)

The related Hermitian stabilizer problem has the tighter constraints that a = b and that for all w ∈ W , w = ε wt for some
ε ∈ {±1}, and some (possibly identity) field automorphism s → s on k. The problem is then to describe the group

H Stab(W ) = {x ∈ GL(a, k) : xWxt = W }. (5.2)

The quadratic and Hermitian stabilizer problems are known to be hard problems. It is no surprise that the reverse construc-
tion to Section 3.4 shows that the quadratic stabilizer problem is the problem of constructing Aut(◦).

The introduction of tensor products (other than with k) is new to the this topic. Similar to the improvements made for
automorphisms of p-groups in Section 5.1, knowledge of Aut(⊗S) reduces the work needed to compute Stab(W ).
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