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An efficient approach to reliability-based topology 
optimization for continua under material uncertainty
Mehdi Jalalpour ∙ Mazdak Tootkaboni

Abstract This contribution presents a computationally effi
cient method for reliability-based topology optimization for 
continuum domains under material properties uncertainty. 
Material Young’s modulus is assumed to be lognormally 
distributed and correlated within the domain. The com
putational efficiency is achieved through estimating the 
response statistics with stochastic perturbation of second 
order, using these statistics to fit an appropriate distribu
tion that follows the empirical distribution of the response, 
and employing an efficient gradient-based optimizer. Two 
widely-studied topology optimization problems are exam
ined and the changes in the optimized topology is dis
cussed for various levels of target reliability and correlation 
strength. Accuracy of the proposed algorithm is verified 
using Monte Carlo simulation.

Keywords Continuum topology optimization ∙ Material 
uncertainties ∙ Stochastic perturbation ∙ Structural 
reliability

1 Introduction

Topology optimization is a systematic and general purpose 
computational tool for designing high-performance struc
tures. The technique is different from shape optimization 
methods in that it allows for the introduction and removal

of structural features by changing the layout of material 
within the design domain through variations in both its 
boundary and its connectivity. While the power of topology 
optimization has been demonstrated in the literature, deter
ministic conditions have often been assumed. Real-world 
applications, however, possess sources of uncertainty that 
exist either due to deviations in the built structure from 
the intended design or because the operating conditions 
are not predictable with full certainty. Such uncertainties, 
if overlooked, may lead to designs that are sub-optimal 
under real-world engineering conditions. In recent years 
attempts that aim at incorporating uncertainties into shape, 
size and topology optimization frameworks have emerged 
(Schueller and Jensen 2008; Maute 2014). This incorpora
tion of uncertainties into the optimization process leads to 
probabilistic design schemes where the structural response 
becomes a stochastic quantity. Among possible sources of 
uncertainty those that lead to stochastic structural stiffness 
are computationally burdensome to treat. The challenge 
here is that the displacements, indicating structural behav
ior, become a function of the inverse of a stochastic matrix. 
Most of the research in this direction has focused on robust 
topology optimization (RTO) under uncertainty (Guest and 
Igusa 2008; Chen et al. 2010; Asadρoure et al. 2010, 2011; 
Jalalpour et al. 2011; Schevenels et al. 2011; Lazarov et 
al. 2012a, b; Tootkaboni et al. 2012; Jang et al. 2012; 
Jansen et al. 2013). RTO is achieved, often, through con
trolling a combination of expected value and an arbitrary 
factor of standard deviation of the response. The higher this 
factor, the less variability is expected in the final design 
performance. This, however, is at the expense of diverg
ing from the “mean” optimized design since the designs 
that constitute the Pareto front do not usually coincide 
with the“utopia” point in the design space. While RTO 
has shown to achieve manufacturing-tolerant designs, the



measure of robustness remains somewhat qualitative and 
undefined (how many standard deviations one would need 
to include in the objective function?).

An alternative path to having a probabilistic measure of 
the design performance is to include structural reliability 
which has, at its core, the probability of failure. Includ
ing reliability in topology optimization algorithms, leads 
to reliability-based topology optimization (RBTO) (Maute 
and Frangopol 2003; Jung and Cho 2004; Kharmanda et al. 
2004; Kang et al. 2004; Wang et al. 2006; Nguyen et al. 
2011; Rozvany and Maute 2011). The first- and second- 
order reliability methods (FORM and SORM) have been 
shown to be accurate approaches to estimate the probability 
of failure (Rackwitz and Flessler 1978; Der Kiureghian et al. 
1987; Ditlevsen and Madsen 1996; Zhao and Ono 2001; 
Xu and Cheng 2003; Rackwitz 2001). FORM and SORM, 
however, require an optimization algorithm to locate the 
most probable point (MPP) for accurate estimates of relia
bility. RBTO therefore poses the following challenges: (1) 
computational prohibitiveness as it essentially results in a 
double-loop optimization where the inner loop estimates 
structural reliability and the outer loop conducts topol
ogy optimization, (2) convergence issues which may be 
encountered when the search for the most probable point is 
performed (Enevoldsen and Sorensen 1994; Tu et al. 1999). 
This is more pronounced for cases where the number of 
basic variables is large (see Rackwitz (2001) and Schueller 
et al. (2004) for a detailed review), a situation often faced 
in topology optimization under stochastic stiffness. Regard
less, the double-loop approach method has been applied to 
topology optimization problems with uncertainty in loading, 
boundary conditions and non-structural mass and has been 
shown to produce designs that are tangibly different from 
deterministic designs (Maute and Frangopol 2003; Mogami 
et al. 2006).

Making RBTO practical for large-scale problems has 
generated a significant interest among researchers in recent 
years. The challenge here is to achieve acceptable esti
mate of reliability for low probabilities of failure while 
making the computations tractable, i.e. eliminating crude 
Monte Carlo simulations that are not amiable for use in 
situations involving a large number of (design) iterations. 
Attempts in this direction can be generally classified into: 
(T) turning the nested (two-level) reliability based optimiza
tion to a uni-level formulation (2) simulation techniques that 
leverage regression, machine learning or special sampling 
methods to estimate structural reliability with acceptable 
accuracy faster. From these two, the former is achieved 
by either replacing the inner loop by its corresponding 
first-order Karush-Kuhn-Tucker (KKT) necessary optimal
ity conditions at the upper level optimization loop or using 
these optimality conditions to form schemes that update 
the design variables and the point in the stochastic space

simultaneously. The main idea here is that because typi
cally the optimization is solved by numerically satisfying 
the KKT conditions such strategies are computationally 
equivalent to solving the original double-loop optimization 
problem (Kuschel and Rackwitz 2000; Kharmanda et al. 
2002; Liang et al. 2004; Agarwal 2004; Agarwal et al. 
2007). Successful applications of this idea or its variants to 
component and system RBTO problems with few random 
variables representing uncertainty in the system have been 
reported in the literature. Silva et al. (2010) for example 
used a variant of a single-loop method proposed by Liang 
et al. (2004) to perform component and system RBTO under 
loading uncertainty. Kogiso et al. (2010) used a modification 
of single-loop single-vector (SLSV) (Chen et al. 1997) to 
perform RBTO of frame structures under uncertainty in 
loads and non-structural mass. Nguyen et al. (2011) exten
ded the single-loop method proposed by Liang et al. (2004) 
for system reliability-based topology optimization under 
statistical dependence between limit-states. They increased 
the accuracy via a SORM-based formulation and facilitated 
the system reliability calculations using matrix based system 
reliability (MSR) analysis. They also reduced the computa
tional cost (in a deterministic sense) by using multi-resolu
tion topology optimization where they use different meshes 
for perceiving the design variables, density and finite ele
ments. As for the other category, i.e. using surrogate models, 
machine learning techniques or special sampling method
ologies, promising approaches that reduce the computa
tional cost dramatically have recently emerged (Youn and 
Choi 2004; Agarwal and Renaud 2004; Kim and Choi 2008; 
Taflanidis and Beck 2008; Basudhar and Missoum 2008; 
Valdebenito and Schueller 2011). Examples of applying 
these techniques to topology optimization problems, how
ever, have not yet appeared in the literature. This is likely 
attributed to the nature of topology optimization problems 
where the number of design variables is large and significant 
topology changes between two consecutive design itera
tions may appear. The large number of the random variables 
in cases where uncertainty in the system is represented, 
for example, via a lightly correlated random field adds to 
the challenge. Nevertheless, Patel and Choi (2012) have 
recently applied neural network classification to reliability- 
based topology optimization of truss structures, showing 
that their proposed methodology is also applicable to prob
lems with disjoint failure (or safe) sets (e.g. buckling limit- 
states). We refer the reader to Valdebenito and Schueller 
(2010) for a review on the state-of-the-art techniques for 
reliability-based design.

A quick look at the above body of work shows that 
a RBTO methodology that tightly couples modeling of 
material uncertainty with topology optimization is absent 
from the literature. In this work, a computationally efficient 
RBTO algorithm for accounting for uncertainty in Young’s



modulus is proposed that does not suffer from many of the 
shortcomings discussed above, such as the problems faced 
when searching for the MPP in a high dimensional space. 
The algorithm is based on our numerical observation that for 
the cases where Young’s modulus is modeled via a random 
field with known marginal distribution (lognormal in this 
work), the distribution of the displacement-based response 
does not change much (with a reasonable degree of accu
racy) from one design iteration to another throughout the 
optimization process. The sensitivity of a measure of reli
ability (such as Reliability Index) can then be written in 
terms of the sensitivities of the parameters of this distribu
tion which can be calculated via efficient techniques such as 
stochastic perturbation. Having calculated the sensitivities, 
the gradient-based optimizers are then the natural choice 
to further reduce the computational cost. The algorithm is 
tested on two widely-studied problems in topology opti
mization literature, and is shown to lead to designs that meet 
target reliabilities. Monte Carlo simulation is used to verify 
the accuracy of the results.

is a proxy for structural stiffness. To motivate black-and- 
white solutions, the modified SIMP approach as described 
by Sigmund (2007) is used where Young’s modulus of finite 
elements are expressed as: ε(p) = εmin + pp(∈o - ∈min). 
Here p is the SIMP penalization exponent (Bends0e 1989; 
Zhou and Rozvany 1991; Mlejnek 1992), ∈ denotes mem
ber Young’s modulus, and ∈min is set to a small number 
to avoid singularity of stiffness matrices. In the following 
we discuss the needed changes to the above problem defi
nition to achieve optimized topologies that meet reliability 
constraints under stochastic stiffness.

where x is a vector that collects all uncertainties (Young’s 
modulus of elements), c* is a predetermined structure 
capacity and c(x, p) is the compliance which is now a ran
dom variable. Therefore, g(x, p) < 0 denotes failure, and 
our goal is to achieve designs with probabilities of failure 
lower than a prescribed value (target reliability). The deter
ministic topology optimization problem defined in (1) is 
thus turned into the following problem:

where Pf denotes the probability of failure and Pt denotes 
the target probability. It is noted that the deterministic 
constraints in (1) has been replaced with two stochastic con
straints one involving the stochastic equilibrium and the 
other including the probability of failure. In what follows 
we explain our strategies in handling these two constraints. 
While perturbation will be used to replace the stochastic 
equilibrium with equivalent deterministic ones, the con
straint on the probability of failure will be handled through 
Reliability Index Approach (RIA) (Tu et al. 1999); see 
Section 4.

2 Deterministic topology optimization

Density-based deterministic topology optimization can be 
formulated in the following form:

Throughout this work we follow a standard notation, where 
the bold upper and lower case letters symbolize matrices and 
vectors respectively. In (T) the design variables are finite- 
element relative volumes and are stored in the vector p, v is 
the vector of finite-element volumes for a unit density and 
V, the objective function, is the total volume. The stiffness 
matrix of the deterministic structure is denoted by K0, d0 is 
the vector of displacements under the applied loads f, 1i is 
a unit vector associated with ith degree-of-freedom, and ci* 
is the deflection constraint at this degree-of-freedom. The 
first constraint enforces the equilibrium condition, the sec
ond restricts the displacement in the degrees of freedom of 
interest, and the third is to be interpreted componentwise 
as is often the case for inequalities involving matrices or 
vectors. For example, under a specific deflection constraint, 
c* represents the maximum allowable deflection at degree 
of freedom i and c represents the corresponding actual 
deflection. It is, however, a common practice in structural 
topology optimization to set 1i = f, in which case the prod
uct fTd becomes the compliance (Bendsoe and Sigmund 
2004). Compliance is proportional to external work and

3 Reliability-based topology optimization

3.1 Adding structural reliability as a constraint

The focus of this work is to obtain topologies that meet 
target probability of failure constraints under variability in 
materials Young’s modulus. To assess the structural reliabil
ity, structural performance has to be measured in terms of a 
load effect (stress, deflection, etc), and a limit-state or per
formance function has to be defined. In this work we define 
the limit-state function in terms of the compliance as:



3.2 Response under stochastic stiffness

When uncertainty is introduced into structural stiffness, 
such as in the form of material property uncertainties, 
obtaining the structural response is more challenging than 
when there is uncertainty in loading. This is because the 
response, the displacement field or a quantity that depends 
on the displacement field such as compliance, is a func
tion of the inverse of a stochastic matrix. In this work, we 
adopt perturbation technique (Hisada and Nakagiri 1981; 
Liu et al. 1986; Kleiber and Hien 1992) to calculate the 
response statistics. The idea has recently been used in the 
context of topology optimization under uncertainty (Guest 
and Igusa 2008; Asadpoure et al. 2011; Jalalpour et al. 2011) 
and, in its most basic form, is based on writing response 
quantities in terms of Taylor series in the vector of uncertain 
quantities. We begin with expressing the randomness as:

compact form, let us define U as a dimensionless matrix 
collecting normalized structural displacements under a sys
tem of equivalent normalized loads (Jalalpour et al. 2011) 
as follows:

4 Reliability index based formulation and solution 
algorithm

It was mentioned before that our numerical observation 
indicates that when Young’s modulus of elements is

The system of equivalent normalized loads F is expressed in 
terms of first derivative of global stiffness matrix as:

Equation (9) is general and can be used to determine the 
compliance in terms of the vector of uncertain parameters 
for any source of uncertainty and for all structural systems 
that behave in the linear elastic regime.

3.3 Response statistics

Equations for estimating the expected value and standard 
deviation of compliance under stochastic stiffness using per
turbation have previously been derived in Guest and Igusa 
(2008), and (Asadpoure et al. 2011; Jalalpour et al. 2011). 
Following Jalalpour et al. (2011), we can write the expected 
value of compliance in (9) as:

where C is the covariance matrix of the basic random vari
ables, and tr{∙} is the trace operator. The variance of the 
compliance, obtained using a first order estimate of C, can 
be expressed as (Asadpoure et al. 2011; Jalalpour et al. 
2013):

For the numerical problems considered in this work, we 
observed that the truncated equation above provides good 
estimates for the variance of compliance. Equations (10) 
and (11) are general and do not depend on the distribution 
of basic variables. It is also noted that this matrix notation 
does not pose any additional computational time for corre
lated basic variables in comparison to the uncorrelated case. 
These two estimated moments will be used the fit an appro
priate lognormal distribution to the response as discussed in 
Section 4.

where x is a vector of uncertain Young’s modulus for all 
finite elements (δxi), ei∙ is the unit vector associated with 
each finite-element, and we have used standard indicial 
notation with repeated index meaning summation. Omit
ting the dependence on the vector of design variables p the 
equilibrium equation is written as:

where the applied loads f are assumed deterministic, and it is 
observed that the stochastic variability in structural stiffness 
has made the displacement vector a random vector. Assum
ing the uncertainty in Young’s modulus of elements (the 
variability around the mean of the modulus) is small, pertur
bation technique then attempts to write the dependence of a 
response quantity on uncertain variables in terms of series 
expansions involving derivatives of stiffness matrix evalu
ated at the mean value of input uncertainties, deterministic 
quantities obtained by solving a deterministic set of equa
tions and the uncertain variables (Asadpoure et al. 2011; 
Jalalpour et al. 2011). The procedure enables the compli
ance for any structure with stochastic stiffness to be written 
in the following form:

In the above equation K0 and K0,i denote the stiffness 
matrix and its derivative with respect to the ith basic vari
able evaluated at the mean value of the vector of uncertain 
parameters and d0 is the solution to the deterministic (mean) 
equilibrium problem. Observe that c is now written in terms 
of the deterministic matrices, which are straightforward 
to compute (see Guest and Igusa (2008) and Asadpoure 
et al. (2011) for details). To rewrite the above in a more



modeled as a marginally lognormal random field, the right 
tail of the distribution for compliance closely follows that 
of a lognormal distribution throughout the optimization 
process, that is c ~ logN(l, s) with I and s the param
eters of the lognormal distribution. We note that the dis
tribution of response is (at the very least) a function of 
both the distribution and correlation structure of the input 
uncertainties. We furthermore note that the probabilistic 
properties of the response, being a function of the inverse 
of the stochastic stiffness matrix, is influenced by both 
what the input uncertainties represent (e.g. nodal loca
tions vs material properties) and how the global stiffness 
matrix is formed from the assembly of the element stiff
ness matrices (e.g. truss elements vs continuum elements). 
For instance, while in the author’s previous paper (Jalalpour 
et al. 2013) the response was found to follow a Gumbel 
distribution for truss structures under uncorrelated nor
mally distributed node location uncertainty, in the present 
work—a continuum structure under correlated lognormally 
distributed material uncertainties—the response follows a 
lognormal distribution. To find the appropriate distribu
tion. we drew upon the work of Liu and Der Kiureghian 
(1986), which lists the most widely used two-parameter dis
tributions for structural reliability analysis (normal, logistic, 
gumbel, weibull. and lognormal). We examined the tail of 
distribution of the response against these distributions and 
observed that lognormal distribution provides, by far, the 
closest fit to the distribution of compliance. We calculate the 
parameters of lognormal distribution employing method-of- 
moments which in essence means using the two following 
equations:

where μc and σc2 are given in (10) and (11) respectively. 
Omitting dependence on the design variables p, the proba
bility of failure can be written as:

Adopting RIA (Tu et al. 1999), the second constraint in (3) 
is written as a target Reliability Index constraint with β > βt
or:

Fig. 1 Design domain and deterministic design for the MBB beam 
problem (a) design domain geometry, boundary conditions, and the 
applied load, (b) minimum weight solution under deterministic condi
tions and compliance constraint, half of the design is shown

Therefore, the reliability-based topology optimization 
problem can be expressed, similar to Jalalpour et al. (2013), 
as follows:

The major changes with respect to (3) are replacing 
the constraint on probability of failure by the Reliability 
Index through choosing a target index βt , and replacing the 
stochastic equilibrium with two deterministic ones where 
the dependence on the vector of uncertain variables is trans
formed to a “mean” linear equation plus another equation 
involving normalized load cases collected in the matrix F. 
It is noted that, unlike the right hand side of the first con
straint. the right hand side of the second constraint depends 
on the vector of design variables p. It is also noted that that 
the second constraint is basically one single linear system 
with multiple right hand sides.

4.1 Sensitivities with respect to design variables

Because of the large number of design variables in density- 
based topology optimization, it is desirable to use gradient- 
based schemes (Sigmund 2011). Using (16) as the reliability

with F denoting the cumulative distribution function (CDF). 
Now, following Ditlevsen (1979), the (generalized) Reli
ability Index is defined as β = Φ-1(l - Pf) resulting 
in:



Fig. 2 Reliability-based topology optimization designs for the MBB beam for c* = 192. Changes in target Reliability Index lead to changes in 
topology through member thickening (or thinning) and/or changes in load path diversity



constraint, the sensitivity of the constraint with respect to 
design variables now reads:

with primes denoting derivative with respect to design vari
ables (pe). Hence, we need the sensitivities of l and s which 
we write in terms of sensitivities of response statistics given 
in the preceding section as:

Fig. 3 Relationship between the weight of the optimized topology and 
the target reliability, a weight vs target Reliability Index, b weight vs 
probability of failure

The same argument holds for the last term in (22):

The solutions to these subproblems can be obtained via fast 
Cholesky factorization of the matrix K0 once. We therefore, 
in place of the last terms in (23) and (24), compute:

Table 1 Verification of 
predicted values for the MBB 
problem with Lexp = Ly/2

β,

Monte Carlo Predicted

μ σ Pf(%) μ σ Pf(%)

1.03 179.716 12.069 15.240 179.747 11.902 15.151
2.05 167.954 11.419 2.366 167.949 11.157 2.018
2.33 164.805 11.105 1.066 164.823 10.965 0.990
2.66 161.297 10.969 0.477 161.190 10.745 0.391
2.80 159.682 10.875 0.296 159.684 10.649 0.256
2.86 159.002 10.846 0.287 159.023 10.613 0.211
3.01 157.431 10.711 0.162 157.410 10.562 0.131

It can be shown (Asadpoure et al. 2010; Jalalpour et al. 
2013) that sensitivities of expected value and variance are 
of the following forms:

To avoid computing the inverse of the stiffness matrix in 
the sensitivity calculations we take the following steps. We 
consider the last term in (21), and rewrite it as:

Therefore, we require the solution to the following linear 
problems:



Fig. 4 Probability of failure plots for the MBB beam for c* = 192. The fitted lognormal CDF closely follows the right tail of the empirical CDF



As every matrix in the finite-element method is an assem
bly of the elemental level matrices, we perform all the 
numerical computations at elemental level and assemble 
the final results. Having calculated the sensitivities of the 
response statistics with respect to design variables one then 
proceeds with calculating the sensitivity of the constraint 
involving the Reliability Index. These sensitivities, together 
with the sensitivity of other constraints and the objec
tive function are then fed into an efficient gradient-based 
optimizer to search for the optimized topology.

4.2 Solution algorithm

Putting all the preceding discussions together, we can now 
summarize the RBTO algorithm as follows:

1. Choose a capacity c*, and a required target reliability 
βt-

2. Start with an initial guess for vector of design variables 
(p).

3. Solve the deterministic equation f = K0d0.
4. Assemble the pseudo-force matrix F = K0,id0eTi, 

and solve F = K0U for U the matrix of normalized 
displacements.

5. Evaluate the response expected value and variance 
using (10) and (11).

6. Use (12) and (13) to fit the parameters of the lognormal 
distribution for compliance.

7. Evaluate the objective function V = vτ p, and the 
constraint on the Reliability Index using (16).

8. Compute the gradient of the objective function (vτ) and 
the gradient of the Reliability Index constraint using 
(18)—(20) with the help of (21)-(22), and update the 
design variables using a gradient-based optimizer.

9. If not converged go to step 3.

It is noted that the number of operations needed to cal
culate the reliability in the perturbation-based approach 
adopted in this work is on the order of n3dof /3 + nrυ × n2dof 
with nrυ the number of random variables and ndof the num
ber of degrees-of-freedom. In contrast, a Monte Carlo-based 
approach would require n3dof /3 ×nmcs operations (with nmcs 
the number of Monte Carlo simulations) suggesting a clear 
advantage for the perturbation-based approach. This is not 
considering the cost associated with computing sensitivities 
which, if taken into account, would further favor the pertur
bation approach from a computational cost point of view. It 
is also noted that, in comparison with algorithms for robust 
topology optimization (RTO) under stochastic stiffness, the 
only change here is in step 6. However, because this step 
uses estimated statistical moments, that have to be com
puted for RTO anyway, the increase in computational cost 
is minimal.

5 Results

We test the proposed algorithm on two widely studied prob
lems in the literature. Consistent units are used throughout, 
hence all magnitudes are presented as unitless. Numerical 
implementation is achieved by taking the efficient and pub
licly available code by Andreassen et al. (2011) and adding 
modules for uncertainty analysis. The gradient-based opti
mizer used here is the Method of Moving Asymptotes 
(MMA) which is kindly provided by Svanberg (1987). 
MMA solves a sequence of convex approximations to the 
original problem. It is known to be efficient for density- 
based topology optimization problems, provided the num
ber of active constraints is small. The tolerance for MMA 
is chosen as 0.001%. All numerical problems are solved 
for ∈0 = 1, and use plane stress 4-node quadrilateral ele
ments to discretize the domain. All designs begin with 
a uniform material distribution, and use heaviside projec
tion method (HPM) (Guest et al. 2004) as implemented 
by Andreassen et al. (2011). HPM is typically conducted 
with a continuation scheme on the regularization parame
ter. However, we followed an approach proposed by Guest 
et al. (2011) and use a constant HPM regularization param
eter of 16. We also use SIMP method with p = 3 to 
motivate black-and-white solutions. Material uncertainty in 
Young’s modulus is modeled with a marginally lognormal 
random field. The covariance structure is assumed to be 
exponentially decaying and of the following form:

where σij is the covariance between element i and j, σii = 
σjj is the variance, di is the coordinate for center of element 
i, and Lexp is a measure of correlation within the random 
field. The larger the correlation length the stronger the cor
relation. Different correlation lengths are considered and the 
RBTO problem is solved for a range of target reliability 
indices.

5.1 MBB beam

We begin with the simply supported beam with a unit load 
applied in the center (commonly referred as MBB beam 
in the literature). Design domain geometry, boundary con
ditions, and the applied load are shown in Fig. la. We 
discretize half of the domain using 150 * 50 elements, and 
use filter radius of 0.0165Lx with c* = 192. This capacity 
value is chosen from the designs presented in Andreassen 
et al. (2011) (minimum compliance design with a volume 
fraction of 50% of the design domain). The deterministic 
design is shown in Fig. lb.

We now assume that Young’s modulus of material is 
uncertain and marginally (that is at any given point within



the design domain) follows a lognormal distribution with 
mean value of μ = ∈0 and standard deviation of σ = 
0.15∈o∙ The random field representing the Young’s modulus 
is assumed correlated throughout the domain with a covari
ance structure that is defined by (29). We retain the chosen 
capacity as in the deterministic design, and use the proposed 
algorithm in Section 4 to design for various target reliability 
indices βt. To also examine the effect of correlation struc
ture on the optimized designs we present the results for two 
different values of correlation length Lexp = Ly /10 and 
Lexp = Ly∣2. The results are presented in Fig. 2. Compar
ing the results column-wise (identical correlation) indicates 
that, in general, a higher target reliability results in thicker 
members and/or more complex designs with more struc
tural features to diversify the load path. While, depending 
on the range of the target Reliability Index, one of these two 
mechanisms (load path diversification vs member thicken
ing) may dominate the change in topology, the mechanism 
by which the topological change is driven may switch from 
one to another as, for example, member thickening may lead 
to disappearance of small holes and less complex topolo
gies. In fact, some initiated load paths may be removed 
or replaced at higher target reliabilities; see the first two 
designs for Lexp = Ly /10 or the third and forth designs for 
Lexp = Ly∣2. This observation is also in agreement with

(b)
Fig. 5 Design domain and deterministic design for the Wheel prob
lem (a) design domain geometry, boundary conditions, and the applied 
load, (b) minimum weight solution under deterministic conditions and 
compliance constraint, half of the design is shown

the work of Zhao et al. (2013), where a higher Reliability 
Index led to less complexity in the design. All of the designs, 
however, feature more redundancy and load path diversifi
cation in comparison to the deterministic design. Comparing 
the results in each row (identical target reliability), it is seen 
that a smaller correlation length leads to lighter structures 
with fewer and thinner structural features.

Figure 3, finally, summarizes how changes in target Reli
ability Index and correlation length of the random field 
used to model the uncertainty in material property affect the 
weight of the optimized topologies. The figure plots the nor
malized volumes (with respect to the deterministic design) 
against the target reliability and Pf, indicating that a smaller 
correlation strength results in a lighter structure for the same 
target Reliability Index or probability of failure. This has 
also been observed in previous studies on robust topology 
optimization under material uncertainty (see Tootkaboni 
et al. (2012)). It is also seen from this figure that for larger 
correlation strength, the increase in the reliability of the final 
topology comes at a higher price (more weight), which is 
likely to be more in the form of member thickening.

To verify the prediction accuracy, we conduct Monte 
Carlo simulation with 50000 samples on the final designs. 
Figure 4 depicts the resulted probability of failure plots for 
higher target reliability indices. It is observed that the fit
ted lognormal distribution follows the empirical distribution 
closely.

Table 1 reports the predicted statistics as well as proba
bility of failure from the proposed methodology along with 
the results obtained from Monte Carlo simulation. Accuracy 
of the predicted values can be verified. Interestingly for this 
problem, we observe that lowering the target probability of 
failure, through a higher target Reliability Index, results in 
decreasing both the expected value and standard deviation 
of compliance (maximum deflection in this case), in a way 
that ultimately leads to a more reliable topology. There are 
cases for RBTO that this trend might not hold, but this is 
in contrast with RTO methods that use a combination of the 
two statistics, expected value and standard deviation, as the 
objective function (or in the constraints) where it is more 
likely that a decrease in one comes at the expense of an 
increase in the other.

5.2 Wheel problem

The second example is a 2L by L domain supported at L/3 
from each end with a unit load applied at its bottom cen
ter. This problem has been previously studied in Tootkaboni 
et al. (2012) where a RTO algorithm was used to arrive at 
robust topologies in the presence of material uncertainty. 
We disceritize half of the domain with a 90 * 90 mesh, and 
choose the filter radius as 0.03Ly and c* = 32 which is 
the same as the target compliance in Tootkaboni et al. 2012.



The design domain, the supports, the load and the resulted 
deterministic topology are shown in Fig. 5, where the design 
topology looks similar to a “wheel” with thin spikes.

We now assume uncertainty in Young’s modulus mod
eled as a lognormal random field with the same mean value

as in the deterministic design ∈o. and a %20 coefficient 
of variation, that is σ = 0.20 ∈ρ. Similar to the previous 
problem, we present RBTO designs with various target reli
abilities and for two different correlation lengths in Fig. 
6. Again the general trend is a combination of load path

Fig. 6 Reliability-based topology optimization designs for the Wheel problem for c* = 32. Load path diversification and sizing of the members 
drive the changes in topology. Some load paths may be joined together to form a less complex structure with stronger members



diversification and member thickening. The effects of the 
nonlinear reliability constraint on the optimized topology 
can be clearly seen here where, for example for Lexp = 
Ly  ∕2, the design for βt = 3.01 features four spikes, whereas 
the design for βt = 2.66 features five spikes, all of which 
are thinner than the former design with higher target Reli
ability Index. Examining the results presented in the first 
column (Lexp = Ly ∕4) it is evident that at lower target relia
bilities, more reliability is achieved in the form of load path

diversification and more spikes. At higher target reliabil
ities, however, the change in topology represents itself in 
the form of closing the holes and thicker members. The 
trend for Lexp = Ly∣2, on the other hand, is slightly diffe
rent in the sense that the mechanism dominating the 
change in topology alternates between member splitting 
and merging/thickening of members. Nevertheless, increas
ing the target reliability results in an increase in total 
volume of the optimized topology in all cases regardless

Fig. 7 Probability of failure plots for the wheel problem for c* = 32 
and Lexp = Ly∕2. The fitted lognormal CDF follows the right tail of 
the empirical cumulative distribution function closely

Fig. 8 Probability of failure plots for the wheel problem for c* = 32 
and Lexp = Ly∣4. The fitted lognormal CDF follows the right tail of 
the empirical cumulative distribution function closely



of the correlation length. Finally, to verify the prediction 
accuracy, Monte Carlo simulation with 50000 samples is 
conducted. The empirical probability of failure plots accom
panied with plots pertaining to fitted lognormal distribution 
are depicted in Figs. 7 and 8 where it is observed that 
the fitted distribution follows the empirical distribution 
closely.

6 Concluding remarks

Real-world problems are accompanied with uncertainties. 
These uncertainties, if not taken into account throughout 
the design process, may lead to designs that are suboρti- 
mal under real-world engineering conditions. We presented 
an efficient topology optimization algorithm for design
ing continuum structures that are reliable in the presence 
of material uncertainties. Specifically, we optimized under 
constraints containing Reliability Index as a measure of 
probability of failure. The uncertainty in material property 
was modeled via a two-dimensional marginally lognor
mal random field with different correlation structures. The 
reliability index was estimated by fitting an appropriate 
distribution that was shown to follow the tail of the empir
ical distribution for the quantity of interest closely. The 
parameters of the distribution were estimated using second- 
order stochastic perturbation. The proposed approach 
allowed for efficient inclusion and handling of a con
straint on the reliability index in the optimization framework 
by providing compact representations for the sensitivity 
equations.

The presented algorithm was demonstrated on two min
imum weight design problems. The results showed that a 
change in target reliability, changes the optimized topol
ogy in primarily two ways: in the form of member splitting 
or introduction of new (additional) members and mem
ber thickening. These trends were more readily seen when 
the correlation length of the underlying random field was 
increased. The mechanism driving the topological changes 
was shown to switch from one to another depending on 
the range of target reliability index contained in the con
straint. All forms of topological changes, however, led to 
an increase in the final volume of the optimized topol
ogy as the target reliability index was increased. The 
designs obtained using the proposed algorithm were exam
ined via Monte Carlo simulation and the prediction accuracy 
on response statistics and the probability of failure was 
verified.
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