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TO  DEMONSTRATE  THE  INDENTATION  SIZE  EFFECT 
 
Wendelin J. Wright1, G. Feng2 and W.D. Nix3 

 
1Departments of Mechanical Engineering and Chemical Engineering, Bucknell University, One Dent 
Drive, Lewisburg, PA 17837; wendelin@bucknell.edu ;  
2Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, 
PA 19085; gang.feng@villanova.edu ;  
3Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, 
CA 94305; nix@stanford.edu 
 
 
ABSTRACT 
 
A laboratory experiment using nanoindentation to demonstrate the indentation size effect is 
described. This laboratory introduces students to sophisticated instrumentation at low cost and low 
risk and utilizes recent research in the materials community as its foundation. The motivation, 
learning objectives, experimental details, data, and data analysis are presented. This experiment is 
intended for use in an upper-division materials science elective at the university level and has been 
successfully used in laboratory courses for senior undergraduates and first-year graduate students at 
Stanford University and Santa Clara University. 
 
Keywords: nanoindentation laboratory, indentation size effect, dislocations 
 
 
INTRODUCTION 
 
A nanoindenter is an instrument that presses a 
small tip into the material of interest and 
measures the applied load and imposed 
displacement with micro-newton and sub-
nanometer resolution, respectively. A schematic 
diagram of a nanoindenter is shown in Figure 1. 
Mechanical properties such as elastic modulus 
and hardness are obtained from the load and 
displacement data. Critical developments 
related to the analysis of nanoindentation data 
occurred in the 1980s1–3, and nanoindentation 

continues to be an important experimental tool 
for analyzing the mechanical properties of 
materials at small length scales. Nano-
indentation was originally developed to study 
the elastic modulus and hardness of hard 
materials such as thin metal films, but today it 
is widely used for studying the behavior of 
viscoelastic materials4–8, biological materials9, 
and micro- and nanostructures such as beams10 
and pillars11. Nanoindenters have also been 
incorporated into transmission electron 
microscopes for in-situ studies of the 
relationship between microstructure and 
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Figure 1.   A schematic diagram of a nanoindenter that uses a load coil to impose the load and 
capacitive gages to measure the displacement. The indenter shaft is supported by springs. A scanning 
probe microscope (SPM) is sometimes included to facilitate imaging of the material before and after 

indentation. 
 
deformation12. Several reviews of the 
nanoindentation literature have been presented 
recently12–15. Applications include determin-
ation of mechanical properties for thin film 
materials used in integrated circuit components, 
hard or corrosion-resistant coatings for cutting 
tools, structures such as nanowires and 
micropillars, and bone. 
 
The indentation size effect is the focus of this 
materials science laboratory experiment, which 
illustrates how materials behavior, and in 
particular mechanical behavior, may change at 
small length scales. This concept is critical to 
applications such as micro- and nanoelectronics 
where the characteristic length scales of devices 
are such that differences in materials properties 
from the bulk counterparts are often observed 
(e.g., the strengths of materials at small length 
scales are typically higher). The indentation 
size effect is demonstrated in a single crystal 
using nanoindentation. This experiment follows 
the treatments of Nix and Gao16 and Feng and 
Nix17. It is appropriate for use in an upper-
division undergraduate materials science 

elective at an institution with laboratory 
instrumentation that includes a nanoindenter. 
 
By analyzing the hardness of a single crystal as 
a function of indentation depth, students 
investigate the indentation size effect, the 
phenomenon that the hardness of crystalline 
materials at indentation depths on the order of 1 
µm or less is higher than hardness measured at 
larger depths. The indentation size effect is the 
consequence of strain gradient plasticity18; 
during nanoindentation of a crystalline material, 
dislocations must be created to accommodate 
the shape change imposed by the indenter at 
small length scales16 as shown in Figure 2. 
These so-called geometrically necessary 
dislocations exist in addition to the statistically 
stored dislocation density and lead to the 
hardening that manifests as the indentation size 
effect. At indentation depths larger than 1 µm, 
the geometrically necessary dislocation density 
is generally negligible compared to the 
statistically stored dislocation density and the 
indentation size effect is not observed. The 
statistically  stored  dislocations  are  those  that  
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Figure 2. A diagram of the geometrically necessary 
dislocations created by a rigid conical indentation 
with contact radius a, dislocation loop radius r, 
depth of indentation h, and angle  between the 
surface of the conical indenter and the plane of the 
surface as presented by Nix and Gao16. Reprinted 
with permission. Copyright 2008, Elsevier. 
 
exist due to homogeneous strain, and their 
density is not expected to change with 
indentation depth. 
 
In this experiment, students are able to observe 
the transition from elastic to plastic deformation 
and witness the effects of dislocation activity in 
real time. This laboratory provides an 
opportunity to introduce students to sophist-
icated instrumentation at low cost and low risk 
and utilizes recent research in the materials 
community as its foundation. The use of curve 
fits is emphasized in the data analysis. The 
learning objectives of this experiment are to  
1) understand one mechanism by which the 

mechanical properties of materials at small 
length scales may be different from bulk 
values (i.e., the indentation size effect);  

2) gain familiarity with the experimental 
technique of nanoindentation;  

3) interpret hardness data as a function of 
indentation depth;  

4) observe effects of dislocation activity; and  
5) use linear curve fitting to extract model 

parameters.  
The background theory, experimental details, 
data, and data analysis are presented in the 
sections that follow. 
 
 

THE INDENTATION SIZE EFFECT 
 

The Nix and Gao16 model for the indentation 
size effect states that hardness H increases 

significantly with small indentations according 
to 

 H 2 = H0
2 1+ h0

h






 ,                          (1) 

where H0 is the hardness when the indentation 
depth h becomes infinitely large and h0 is a 
length scale that depends on the indenter shape, 
the shear modulus, and H0. If H0 is treated as a 
constant, a plot of H2 as a function of the ratio 
1/h should give a linear function with an 

intercept at 
1
h
= 0  equal to H 0

2  and a slope 

equal to H0
2 h0 . By first determining H 0

2 , h0 
can be calculated from the slope value. 
Equation (1) is the fundamental principle 
underlying the motivation for this experiment. 
It follows from the Taylor relationship, which 
states that the strength of a crystal is directly 
proportional to the square root of the total 
dislocation density; the proportionality between 
strength and hardness; and the geometry of the 
indentation16. For a derivation of Equation (1), 
see the reference from Nix and Gao16. 
 
 
NANOINDENTATION 
 
The following brief description of nano-
indentation is presented for those instructors 
who may be unfamiliar with the technique. This 
description follows the Oliver and Pharr 
method of analysis3,13. 
 
During nanoindentation, a sharp indenter is 
pressed into an initially undeformed surface, 
and the load P is measured as a function of 
indentation depth h. Elastic modulus and 
hardness can be extracted from indentation 
data. Indenter tips are available in a variety of 
geometries. One of the most commonly used 
geometries is that of a Berkovich indenter, 
which is a three-sided pyramid. The projected 
contact area Ac under load for a perfect 
Berkovich indenter is given by 
 

                 Ac = 24.5hc
2 ,                                (2) 

 
where hc is the contact depth. Equation (2) 



Wright, Feng and Nix 

Journal of Materials Education  Vol.35 (5-6) 
 

138 

relates the cross-sectional area of the indenter to 
the distance from the tip. In practice, indenters 
are not perfect, and each tip must be calibrated 
to determine its area function Ac = f (hc )  by 
first indenting into a material of known elastic 
properties such as fused silica. A function of the 
following form is typically used for a 
Berkovich indenter: 
 


 

                       +     (3) 
 

where the Ci terms are constants determined by 
curve fitting procedures. The higher order terms 
correct for defects at the tip, whereas the 
leading term dominates at larger depths of 
indentation. See Figure 3 for a schematic 
diagram of an imperfect Berkovich indenter 
illustrating the relationship between hc and Ac. 
 
Figure 4 shows a typical plot of load P versus 
depth of indentation h for a sharp indenter. On 
loading  to  a  depth of  hmax, the deformation  is 
both elastic and plastic due to the sharpness of  
the indenter tip.  In general,   on  unloading,  the  

 
 

Figure 3. A schematic diagram illustrating the 
relationship between the contact depth hc and the 
contact area Ac . 
 
deformation is purely elastic and follows a 
power law relation given by 

                
P = α h − hf( )m

,                           (4) 

where α and m are constants and hf  is the depth 
of the residual impression.  These three 
constants are determined by a least squares 
fitting procedure.  The initial slope during 
unloading is the stiffness S = dP / dh . Thus, 
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Figure 4.   Typical load P as a function of depth h for indentation with a sharp indenter illustrating the depth of 

the residual hardness impression hf, the maximum indentation depth hmax, and the unloading stiffness S. 
 



A Laboratory Experiment using Nanoindentation to Demonstrate the Indentation Size Effect 

Journal of Materials Education  Vol.35 (5-6) 
 

139 

the unloading stiffness is found by different-
iating Equation (4) with respect to h and 
evaluating S at hmax.  
 
During indentation, sink-in at the periphery of 
the indentation means that the total indentation 
depth as measured by the displacement of the 
tip is the sum of the contact depth and the depth 
hs at the periphery of the indentation where the 
indenter does not make contact with the 
material surface, i.e., 
 

            h = hc + hs .                                      (5) 
 

 
Figure 5.   A diagram of the relationship between h, 
hc, and hs as presented by Oliver and Pharr3. 
Reprinted with permission. Copyright 1992, 
Cambridge University Press. 
 
Figure 5 shows a diagram of the relationship 
between h, hc, and hs as presented by Oliver and 
Pharr3. The surface displacement term hs can be 
calculated according to 
 

               
hs = ε

Pmax

S
,                                   (6) 

 

where Pmax is the load at maximum depth and ε 
is a geometric constant equal to 0.75 for a 
Berkovich indenter. Once hc is known (such 
that Ac is known), the reduced modulus Er can 
be calculated according to 
 

              
Er =

π
2β

S
Ac

,                              (7) 

 

where β is a correction factor that accounts for 
the lack of axial symmetry for pyramidal 
indenters. For the Berkovich indenter, the 
constant β = 1.034. The reduced modulus Er 
accounts for the effects of the non-rigid 
indenter and is given by 

              

1
E r

=
1− ν 2

E
+

1− ν i
2

Ei

,                   (8) 

 

where ν and E are the Poisson’s ratio and 
elastic modulus of the material being indented, 
and νi and Ei are the Poisson’s ratio and elastic 
modulus of the indenter. 
 
The hardness H is calculated according to 
 

                 
H =

Pmax

Ac

,                                    (9) 

 

where again Pmax is the maximum indentation 
load and Ac is the projected contact area under 
load between the indenter and the material 
being indented as determined using the tip 
shape function of Equation (3). Hardness as 
determined by nanoindentation is typically 
reported with units of GPa. 
 
The hardness H and elastic modulus E as 
determined by Equations (3)–(9) are now 
known as the Oliver and Pharr hardness and 
modulus after Warren C. Oliver and George M. 
Pharr3. Alternatively, the depth profiles of 
hardness and modulus can be determined by the 
continuous measurement of contact stiffness as 
a function of indentation depth. This is a 
dynamic technique in which a small oscillating 
load is superimposed on the total load on the 
sample. The corresponding oscillating displace-
ment and the phase angle between the load and 
displacement are measured. In practice, most 
commercial nanoindentation platforms will 
automatically compute the elastic modulus and 
hardness as a function of indentation depth once 
the tip shape calibration is known. 
 
If a single crystal is initially dislocation free, 
the transition from elastic to plastic deformation 
can be observed during the preliminary stage of 
indentation. At shallow indentation depths, the 
blunt tip of the indenter can be modeled as a 
sphere with a radius of curvature R determined 
from a tip shape calibration. For purely elastic 
contacts, the indenting load P  can be related to 
the indenter displacement h  using the Hertz 
theory of normal contact between two 
frictionless elastic solids19 : 
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2
2 3
3 4

3 rP E R h =  
 

.                     (10) 

 
Equation (10) can be used for a variety of 
purposes. For example, if the reduced modulus 
is known, a plot of P2/3 versus h can be fit to 
determine the radius R of the indenter, or if R is 
known, Er  can be determined from a plot of 
P2/3 versus h. Clear deviations from the elastic 
behavior mark a transition from elastic to 
plastic deformation. In a crystalline material, 
sudden increases in displacement at this 
transition are attributed to dislocation 
nucleation and commonly also dislocation 
multiplication events and are typically referred 
to as “pop-ins.” A pop-in in MgO is shown in 
Figure 6. 
 
 

 
 

Figure 6.   Load as a function of indentation depth 
for a single indentation of MgO. A pop-in is clearly 
visible. 
 
 
EXPERIMENTAL DETAILS 
 
A minimum of twelve indentations should be 
performed on fused silica using a Berkovich tip 
to an indentation depth of 1.0 µm and averaged 
to generate the tip shape calibration. Twelve 
indents balance time efficiency with a sufficient 
amount of data. Commercial nanoindentation 
platforms typically perform the calibration 
automatically based on the calibration data and 
a few inputs from the user such as the type of 
tip being used and its elastic constants, the 
elastic constants of the calibration material, and 

the number of parameters to be used in the fit of 
Equation (3) The elastic moduli of diamond and 
fused silica are 1.141 TPa and 72 GPa, 
respectively; the respective Poisson’s ratios are 
0.07 and 0.17. For this experiment, an 
appropriate number of fitting parameters is five. 
The tip shape calibration is then applied to the 
same tip to depths of 1.0 µm on the specimen of 
interest. We have chosen to use polished single 
crystal (100) MgO ( ν = 0.17 ) because it 
clearly demonstrates the indentation size 
effect17. Also epi-polished (100) MgO 
substrates can be purchased from a variety of 
vendors at reasonable cost. Note that the MgO 
should be stored in a desiccator to prevent the 
formation of a surface layer (due to reaction 
with water in the air) that would suppress pop-
in formation. Other single crystal materials such 
as copper or silver may be used instead of MgO 
to observe the indentation size effect16. The 
specimen must be a single crystal and ideally 
should be electro polished as a final processing 
step to remove mechanical damage from the 
polishing process. A constant load rate to load 
ratio P / P  of 0.05 s–1 is recommended for 
indentations on both materials. If the load and 
displacement data for the indentations are 
observed in real-time, the pop-ins in MgO 
should be visible in the data as they occur. 
Blunter tips such as spherical and conical tips 
with large radii of curvature promote pop-in 
formation. A Berkovich tip is used here for 
convenience. The initial radius of curvature of a 
tip is specified by the manufacturer for all tip 
shapes, but the tip will likely become blunter 
with use. The ASM Handbook provides a 
helpful summary of indentation procedures20. 
 
 
STUDENT WORK 
 
In prior offerings of this laboratory exercise, 
students performed the experiment and 
analyzed the data in groups of three and 
subsequently wrote individual reports in the 
format of standard journal articles. A 
suggestion for future improvement would be to 
analyze the data on a class-wide basis to assess 
experimental variability and uncertainty. 
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The following instructions are offered as 
suggestions for student laboratory reports. 
Results for these items will be presented in the 
next section. 
 

1. Plot the elastic modulus of fused silica and 
MgO as a function of indentation depth. 
Describe the features of the elastic modulus 
plots. Does the modulus of MgO have the 
expected value of 288 GPa? 

2. Determine the radius of the indenter tip 
using the data for MgO at small indentation 
depths (less than the depth at which the 
pop-ins in MgO occur). Show a 
magnification of the elastic loading (P 
versus h and also P2/3 versus h) of MgO at 
small indentation depths. Fit the P2/3 versus 
h data at small indentation depths with the 
Hertz theory, and based on the elastic 
modulus of MgO, determine the equivalent 
radius of the indenter tip. Comment on the 
meaning of the sudden increment of 
displacement and the change in slope of the 
P2/3 versus h plot for MgO. 

3. Plot the hardness of MgO as a function of 
indentation depth. 

4. Plot H2 as a function of 1/h for MgO. 
Determine the values of H0 and h0 with a 
linear fit to the data. Comment on the 
significance of the trends in the plot with 
respect to the indentation size effect. Is H0 
consistent with the values of H at large 
indentation depths? 
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Figure 7.   The elastic modulus of fused silica and 
MgO as a function of indentation depth. 

RESULTS AND ANALYSIS 
 
Figure 7 is a plot of the elastic modulus of 
fused silica and MgO as a function of 
indentation depth based on the averaged results 
for valid indentations for each material (twelve 
indents for each material as performed by a 
single group). The elastic modulus for both 
materials should be constant with indentation 
depth. If a varying elastic modulus for MgO is 
observed, this trend is likely due to an error in 
the calibration of the machine stiffness; an 
experienced nanoindentation user should be 
consulted to address this issue that can arise 
when indenting stiff materials such as MgO. 
According to Figure 7, MgO has an average 
elastic modulus of 306.5 +/– 2.9 GPa, com-
pared to the expected value of 288 GPa. This 
difference of 6% between the theoretical and 
measured values is considered to be good 
agreement. 
 
Figure 6 shows the load-displacement curve for 
a single representative indentation into MgO, 
indicating a dislocation nucleation event and 
the onset of plastic behavior. (Note that data for 
pop-in events should be obtained from a single 
indentation rather than averaged over many 
indentations since this behavior is discrete.) A 
dislocation nucleation event such as this is 
immediately visible in a plot of load versus 
indentation depth when such plots are provided 
by real-time displays of commercial nano-
indentation platforms. Fused silica does not 
show this behavior because it is amorphous 
(i.e., it does not have dislocations). (Note that 
the load and displacement values at which pop-
ins occur will vary with the radius of curvature 
of the tip and the surface quality of the sample. 
For sharper tips, the load and displacement 
values at which pop-ins occur will be lower 
than the values observed for blunter tips.) 
Figure 8 is a plot of P2/3 versus h for the 
representative indentation into MgO shown in 
Figure 6. By performing a linear fit to the data 
before the pop-in event, the radius of the tip 
(which is modeled as a sphere) is estimated to 
be 122 nm according to Equation (10) and the 
measured  reduced  modulus   of  248  GPa  for  
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Figure 8.   P2/3 versus h for the indentation shown in 
Fig. 6. The equivalent radius of the indenter tip is 
determined to be 122 nm from the linear fit and 
Equation (10). The curve fit shown uses the lower 
horizontal axis with units of meters. 
 
MgO. The fit is only valid to a load of 
approximately 0.5 mN and a total indentation 
depth of approximately 28 nm as these are the 
values at which the pop-in occurs.  
 
Figure 9 is a plot of the hardness of MgO as a 
function of indentation depth. The increase in 
hardness at small depths of indentation is the 
manifestation of the indentation size effect. 
Figure 10 is a plot of H2 as a function of 1/h for 
MgO. Using a linear fit to the data and 
Equation (1), H0 is determined to be 9.1 GPa 
(consistent with the hardness at large indent-
ation depths), and h0 is determined to be 91 nm. 
For an analytical expression for h0, see the 
paper  by Nix  and  Gao16.   It  should  be  noted  
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Figure 9.  Hardness as a function of indentation 
depth for MgO. 

that H2 deviates from the linear relation for 1/h 
> 0.005 nm–1, i.e., h < 200 nm. Two possible 
reasons for this deviation at the small 
indentation depths are (1) the ratio between the 
effective radius of the indentation plastic zone 
and the radius of contact between the indenter 
and the specimen surface is not constant17 and 
(2) the oscillating displacement for the 
continuous stiffness measurement is significant 
compared to the total elastically recoverable 
displacement21. The first reason dominates the 
behavior seen here since the calculated modulus 
of MgO is still constant in the range of h < 200 
nm (see Figure 7); otherwise, the modulus 
would decrease with decreasing h due to the 
second reason. Note that the hardnesses shown 
in Figures 9 and 10 are the averaged results for 
all valid indentations from a single student 
group for each material. 
 

 
 

Figure 10.   H2 as a function of 1/h for MgO. 
 
This experiment has been performed 
successfully in laboratory courses for senior 
undergraduates and first-year graduate students 
at Stanford University and Santa Clara 
University. Instructor observation of the 
students in the laboratory sessions and review 
of the student laboratory reports indicate that 
the learning objectives were met. No changes to 
the experiment were proposed based on the first 
two offerings. 
 
 
SUMMARY 
 

A laboratory experiment to determine the 
indentation size effect in (100) MgO using 
nanoindentation has been presented. Suggested 
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discussion points for student reports and typical 
results have been included for instructor use. 
The discrete nature of dislocation activity is 
highlighted as is the importance of differences 
in mechanical behavior from the bulk at small 
length scales. A related student exercise would 
involve etching the (100) MgO substrate to 
observe the pattern of dislocation etch pits that 
form on the surface using scanning electron 
microscopy. Details of the etch pitch procedure 
are available in the article by Feng and Nix17. 
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