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The main results of this short note follow from the framework created in
[LO2] for the study of symplectic circle actions on symplectic manifolds. With this
in mind, we now turn to a brief review of that framework.

1. Review of the λα̂-invariant

An S1-action and its orbit map may be generalized to produce certain basic ele-
ments in the fundamental group of M and of the function space (MM , 1M ) in the
following manner. Say that an element α ∈ π1(M) is in the Gottlieb group of M ,
denoted α ∈ G(M), if there is an associated map

A : S1 × M → M

such that A|M = 1M and A|S1 = α. From [Go1] and [Go2], we know certain things
about G(M). In particular, we know that

(1) G(M) ⊆ Z(π1(M)).
(2) If M = K(π, 1), then G(M) = Z(π1(M)).

By the exponential law, there is a map α̂ : S1 → MM , α̂(s)(x) = A(s, x),
such that evaluation ev(f) = f(p) of a function at a basepoint m ∈ M satisfies
ev ◦ α̂ = α. Hence, ev#(α̂) = α where ev# : π1(MM , 1M ) → π1(M). Note that a
group action A : S1 × M → M provides a Gottlieb element α � A|S1 which may
be identified with the homotopy class of the orbit map a : S1 → M . Also note that
it is possible for α to be nullhomotopic, but α̂ to be essential. For this reason,
we shall be more interested in the associated map A and its adjoint α̂ than in the
(possible) Gottlieb element α.

There is a classifying space Baut(M) for fibrations with fibre M which obeys
πi+1 Baut(M) = πi(MM , 1M ). Therefore, α̂ ∈ π1(MM , 1M ) corresponds to an
element in π2 Baut(M) represented by a map S2 → Baut(M). Pulling back the
universal fibration with fibre M gives a fibration

M
i→ E → S2

with α = ∂#(1) ∈ Im(∂# : π2S
2 → π1M). Such a fibration has a Wang sequence

associated to it,

· · · → Hq(E) i∗→ Hq(M) λα̂→ Hq−1(M) → Hq+1(E) → · · · .

The map λα̂, called the Wang derivation, is a derivation on H∗(M). That is,
λα̂ satisfies the relation λα̂(uv) = λα̂(u)v + (−1)|u|uλα̂(v)). There is a beautiful
connection between the Wang sequence and the map A. Namely, for any u ∈
Hq(M),

(†) A∗(u) = 1 × u + σ̄ × λα̂(u),



where σ̄ ∈ H1(S1) is a chosen fixed generator, α = ev#(α̂) and × is the external
product. In case u ∈ H1(M), we have α∗(u) = λα̂(u)σ̄, with λα̂(u) ∈ H0(M) = Q,
and the expression (†) may be rewritten

A∗(u) = 1 × u + σ̄ × λα̂(u) = 1 × u + α∗(u) × 1.

For further details on the derivation λα̂, see [Go3]. We have a basic result, which
follows immediately from the exactness of the Wang sequence.

Proposition 1.1. λα̂(ω) = 0 if and only if there exists ω̄ ∈ H2(E) with i∗ω̄ = ω.

The following fundamental result connects the λα̂-invariant to symplectic
geometry [LO2]:

Theorem 1.2. If α̂ comes from a symplectic S1-action on a compact symplectic
manifold (M, ω), then

λα̂(ω) = [i(X)ω],

where X denotes the fundamental vector field associated to the symplectic S1-action
and i(−) is interior multiplication.

Because the equality [i(X)ω] = 0 is precisely what symplectic geometers
mean by a Hamiltonian action, this theorem provides the basis for

Definition 1.3. A closed manifold M2n is cohomologically symplectic (often short-
ened to c-symplectic) if there exists ω ∈ H2(M) with ωn �= 0. For a c-symplectic
manifold (M,ω), an element α̂ ∈ π1(MM , 1M ) is said to be cohomologically
Hamiltonian, or c-Hamiltonian, if λα̂(ω) = 0. If α̂ comes from an S1-action and
λα̂(ω) = 0, then we say that the action is c-Hamiltonian.

For the moment, let M be an N -dimensional manifold, with top class μ ∈
HN (M ; Q). For applications we will specialize to a c-symplectic manifold (M2n, ω)
with μ = ωn. In general, we take α̂ ∈ π1(MM , 1M ) and α = ev#(α̂) ∈ π1(M).
Recall that the Hurewicz homomorphism h : π1(M) → H1(M) is defined by h(γ) =
γ∗(σ), where σ is a generator of H1(S1; Z) dual to σ̄ ∈ H1(S1; Z) and γ∗ is the
map on homology induced by γ : S1 → M .

Our initial goal is to clarify the relationship between λα̂ and h(α). First, recall
that Poincaré duality may be characterized in terms of cup, cap and Kronecker
products: For a ∈ Hq(M), z ∈ HN (M) a fundamental class Kronecker dual to the
top class μ, the element â ∈ HN−q(M) is Poincaré dual to a if

〈b ∪ â, z〉 = 〈b, â ∩ z〉 = 〈b, a〉
for any b ∈ Hq(M). If u ∈ H1(M), then u ∪ μ = 0 by dimensional considerations.
Since λα̂ is a derivation, we get

0 = λα̂(u ∪ μ) = λα̂(u) · μ − u ∪ λα̂(μ).



Since u is in degree 1, we have α∗(u) = λα̂(u) · σ̄. Hence,

〈u ∪ λα̂(μ), z〉 = 〈λα̂(u) · μ, z〉 = λα̂(u) = 〈α∗(u), σ〉 = 〈u, α∗(σ)〉 = 〈u, h(α)〉.
Our first result follows immediately from these observations.

Lemma 1.4. Let μ ∈ HN (M) be a top class and let α̂ ∈ π1(MM , 1M ) with α =
ev#(α̂).
(1) For u ∈ H1(M), λα̂(u) = 〈u, h(α)〉.
(2) λα̂(μ) is Poincaré dual to h(α).

Combining Lemma 1.4 with another general observation yields the following
result.

Proposition 1.5. Let μ ∈ HN (M) be a top class and let α̂ ∈ π1(MM , 1M ) with
α = ev#(α̂). We have the equivalences

λα̂(μ) = 0 ⇔ λα̂(H1(M)) = 0 ⇔ h(α) = 0.

Proof. The first equivalence follows from a general result: If θ is a degree −1
derivation on a Poincaré duality algebra H, of top dimension N , then θ(HN ) = 0
if and only if θ(H1) = 0 (see [LO1, Lemma 3.3] or [FOT, Proposition 7.60]). The
second equivalence follows from Lemma 1.4(1). �

This then gives

Proposition 1.6. Let (M2n, ω) be a c-symplectic manifold, with top class ωn, and
let α̂ ∈ π1(MM , 1M ) with α = ev#(α̂). If α̂ is c-Hamiltonian (i.e. if λα̂(ω) = 0),
then the three equivalent conditions of Proposition 1.5 hold.

Proof. Since λα̂ is a derivation, we have λα̂(ωn) = n ωn−1 λα̂(ω) = 0. �

Definition 1.7. A c-symplectic manifold (M2n, ω) has Lefschetz type if the multi-
plication homomorphism ωn−1 : H1(M) → H2n−1(M) is an isomorphism.

The Lefschetz type hypothesis allows for the implication of Proposition 1.6
to be reversed.

Theorem 1.8. Let (M2n, ω) be a c-symplectic manifold of Lefschetz type and let
α̂ ∈ π1(MM , 1M ) with α = ev#(α̂). Then the following are equivalent:
(1) The element α̂ is c-Hamiltonian (i.e. λα̂(ω) = 0).
(2) λα̂(ωn) = 0.
(3) λα̂(H1(M)) = 0.
(4) h(α) = 0.

Proof. In light of Proposition 1.6, we need only show that h(α) = 0 implies
λα̂(ω) = 0. Now, by Lemma 1.4, h(α) is Poincaré dual to λα̂(ωn) = n·λα̂(ω)∪ωn−1.
By duality, h(α) = 0 then implies n ·λα̂(ω)∪ωn−1 = 0 and, by the Lefschetz type
hypothesis, this can only happen if λα̂(ω) = 0. �



2. c-Symplectic maps and the λα̂-invariant

In this section, let (N2n, ωN ) and (M2m, ωM ) be c-symplectic manifolds with S1-
actions

AN : S1 × N → N, AM : S1 × M → M.

Let f : N → M be a based homotopy equivariant map which is c-symplectic. We
shall always require our maps between c-symplectic manifolds to be basepoint pre-
serving, and homotopy equivariance will refer to basepoint preserving homotopies.
Homotopy equivariance is expressed by a homotopy commutative diagram

S1 × N
AN ��

1×f

��

N

f

��
S1 × M

AM �� M

The map f is c-symplectic if f∗(ωM ) = ωN . Of course, any symplectic map is
c-symplectic.

This diagram provides the link between λα̂N
(ωN ) and λα̂M

(ωM ).

Lemma 2.1. Let α̂N ∈ π1(NN , 1N ) and α̂M ∈ π1(MM , 1M ) be the adjoints of the
respective actions AN and AM . Then

f∗(λα̂M
(ωM )) = λα̂N

(ωN ).

Proof. We can compute two ways using homotopy equivariance:

(1 × f)∗A∗
M ωM = (1 × f)∗(1 × ωM + σ̄ × λα̂M

(ωM ))

= 1 × f∗(ωM ) + σ̄ × f∗(λα̂M
(ωM ));

A∗
Nf∗(ωM ) = 1 × f∗(ωM ) + σ̄ × λα̂N

(f∗(ωM ))

= 1 × f∗(ωM ) + σ̄ × λα̂N
(ωN ).

By comparing the expressions, we see that f∗(λα̂M
(ωM )) = λα̂N

(ωN ). �

Proposition 2.2. With the notations above, if α̂M is c-hamiltonian, then so is α̂N .

Remark 2.3. Note that an equivariant map f : N → M satisfies the above. In par-
ticular, a symplectic map of symplectic manifolds which is equivariant with respect
to S1-actions fits the situation. Therefore, if the action on M is Hamiltonian, then
so is the action on N .

We can relate these ideas to the notion of Lefschetz type as follows.

Theorem 2.4. Let f : N → M be a c-symplectic map of c-symplectic manifolds
(N, ωN ) and (M, ωM ) which is homotopy equivariant with respect to S1-actions AN

and AM respectively. For the adjoints α̂N of AN and α̂M of AM , if α̂N satisfies the
equivalent conditions of Proposition 1.5, but is not c-hamiltonian, then the same
is true for α̂M . Hence, M cannot have Lefschetz type (and so, cannot be Kähler).



Proof. Since α̂N satisfies the conditions of Proposition 1.5, the Hurewicz image
h(αN ) is zero. Recall that αN is represented by the composition

S1
α̂N �� NN

ev �� N.

The homotopy equivariance of the map f provides a homotopy commutative dia-
gram

S1
α̂N ��

=

��

NN
ev �� N

��
S1

α̂M �� MM
ev �� M

showing that f#(αN ) = αM , where f# : π1(N) → π1(M). Then by the naturality
of the Hurewicz map, we have

π1(N)
f# ��

h

��

π1(M)

h

��
H1(N)

f∗ �� H1(M)

which gives h(αM ) = f∗(h(αN )) = 0 as well.
Now, α̂N is not c-hamiltonian by hypothesis, so λα̂N

(ωN ) �= 0. Then, by
Lemma 2.1, f∗(λα̂M

(ωM )) = λα̂N
(ωN ), so λα̂M

(ωM ) �= 0 also. Therefore, α̂M sat-
isfies the conditions of Proposition 1.5, but is not c-hamiltonian. By Theorem 1.8,
M cannot have Lefschetz type. �

Remark 2.5. In fact, all that we have said above for S1-actions also holds for maps
A : S1 × N → N which may not be actions, but which are adjoints of elements
α̂N ∈ π1(NN , 1N ). Given such maps for N and M and a homotopy commutative
diagram

S1 × N
AN ��

1×f

��

N

f

��
S1 × M

AM �� M

we can carry out the proofs of the results above with no changes. This will prove
important in the next section.

3. c-Symplectic maps of aspherical manifolds

Let us apply the results above to the case where (N, ωN ) = (K(π, 1), ωπ) and
(M, ωM ) = (K(ρ, 1), ωρ) are c-symplectic aspherical manifolds and f : K(π, 1) →
K(ρ, 1) is a c-symplectic map between them. Here, we can do without the necessity
of requiring S1-actions on the manifolds because it is a fact that any (effective) S1-
action A on an aspherical manifold K has an orbit map α : S1 → K which induces



an injection α# : π1(S1) → π1(K) whose image, in fact, must lie in the center of
π1(K) (which is of course G(K)). Therefore, in the case of aspherical manifolds,
we can turn our attention from S1-actions to the centers of fundamental groups
instead. Indeed, for an aspherical space K, it can be shown that

π1(KK , 1K) ev
∼=

�� Z(π1(K)),

so that α̂K and αK always correspond in this case. We shall assume this identifi-
cation below when we show

Theorem 3.1. Let (K(π, 1), ωπ) and (K(ρ, 1), ωρ) be c-symplectic aspherical man-
ifolds and let f : K(π, 1) → K(ρ, 1) be a c-symplectic map. Suppose there exist
nontrivial απ ∈ Z(π) and αρ ∈ Z(ρ) such that f#(απ) = αρ. If απ satisfies the
equivalent conditions of Proposition 1.5, but is not c-hamiltonian, then the same
is true for αρ. Hence, K(ρ, 1) cannot have Lefschetz type (and so, in particular,
cannot be Kähler).

Proof. First notice that, because απ is in the center of π, there is a homomorphism
Z × π → π given by Aπ#(n, g) = αn

π g and similarly for αρ. We then have a
commutative diagram

Z × π
Aπ# ��

1×f#

��

π

f#

��
Z × ρ

Aρ# �� ρ

We can also make the computation

f#Aπ#(n, g) = f#(αn
πg) = f#(αn

π) f#(g) = αn
ρ f#(g)

= Aρ#(n, f#(g)) = Aρ# (1 × f#)(n, g).

Because maps between aspherical spaces are classified at the fundamental group
level and π1(S1) = Z, this gives a homotopy commutative diagram

S1 × K(π, 1)
Aπ ��

1×f

��

K(π, 1)

f

��
S1 × K(ρ, 1)

Aρ �� K(ρ, 1)

By Remark 2.5, we may now apply Theorem 2.4 to this situation to obtain the
result. �

It is known that nilmanifolds of Lefschetz type (e.g. Kähler nilmanifolds)
are diffeomorphic to tori. The proof of this fact in [LO1, Theorem 3.1] (or in [O,
Theorem 2.3.10]) may be interpreted as saying that, for a c-symplectic non-toral
nilmanifold K(π, 1), there always exists an element απ ∈ Z(π) ∩ [π, π] such that
h(απ) = 0 (since απ ∈ [π, π] and H1(π; Z) = π/[π, π]), but λα̂π (ωπ) �= 0 (i.e.



απ is not c-hamiltonian). We can use this interpretation and the results above to
propagate the non-Kählerness of nilmanifolds by c-symplectic maps as follows.

Corollary 3.2. Let (K(π, 1), ωπ) be a c-symplectic nilmanifold and suppose that
(K(ρ, 1), ωρ) is a c-symplectic manifold such that f : K(π, 1) → K(ρ, 1) is a c-
symplectic map. Suppose that f#(απ) = αρ, where απ ∈ Z(π) ∩ [π, π] is as above
and αρ ∈ Z(ρ) is nontrivial. If K(ρ, 1) has Lefschetz type, then K(π, 1) is a torus.

Proof. By Theorem 3.1, since απ satisfies the conditions of Proposition 1.6, but is
not c-hamiltonian, then the same holds for αρ. This, however, contradicts Theo-
rem 1.8, since, by hypothesis, K(ρ, 1) has Lefschetz type. Hence, the nilmanifold
K(π, 1) must be a torus since απ always exists for non-toral nilmanifolds. �

Remark 3.3. Corollary 3.2 would apply, in particular, to the case of a nilmanifold
N c-symplectically embedded as the fibre of a Mostow fibration

N → S → T

where S is a solvmanifold and T is a torus. If απ may be extended to an element
in the center of π1(S) and S has Lefschetz type, then N must be a torus. By our
remarks above about S1-actions on aspherical manifolds, such an extension would
take place if the free S1-action on N given by απ may be extended to all of S.
Also note that, for completely solvable solvmanifolds, a symplectic form on S may
be chosen which restricts to one on N ([BG]).

4. Some related questions

R. Gompf showed that any finitely presented group can be realized as the funda-
mental group of certain symplectic 4-manifolds. More recently, in [IKRT] certain
restrictions were found on the groups that can arise as fundamental groups of sym-
plectic manifolds where the symplectic cohomology class annihilates the image of
the Hurewicz homomorphism. These are the so-called symplectically aspherical
manifolds. A fair amount is known about the homotopy theory of symplectically
aspherical manifolds (see [LO2] as well as the reference [IKRT] mentioned above),
but these manifolds are very special. In particular, these are the manifolds that
are amenable to a homotopical proof of the Arnold conjecture on fixed points of
hamiltonian diffeomorphisms (see, for instance, [RO, CLOT]). These are just first
steps in understanding the homotopy theory of symplectic manifolds and certain
classes of symplectic manifolds.

The first homotopical question that arises concerns the Gottlieb groups of
symplectically aspherical manifolds. From [LO2, Theorem 4.12, Corollary 5.13],
we know the following.

Theorem 4.1. If a circle acts on a symplectically aspherical manifold M , then the
orbit map at a point, S1 → M , induces an element of infinite order in the Gottlieb
group G(M). Further, if M also has Lefschetz type, then the Hurewicz image of
this Gottlieb element is of infinite order in H1(M ; Z).



Here we see that homotopy theory and geometry of M intertwine. In fact,
however, this type of result is rare for Gottlieb groups. Indeed, it seems to be
unknown if all finitely generated abelian groups arise as Gottlieb groups of compact
manifolds. The result above, however, says that the following question may have
an answer.

Question 4.2. What are the Gottlieb groups of symplectically aspherical manifolds?

A more fanciful line of thought asks

Question 4.3. What restrictions, if any, are placed on the Gottlieb groups of man-
ifolds of Lefschetz type?

The Gottlieb group is also known to lie inside the subgroup of π1(M) con-
sisting of all elements that act trivially on all higher homotopy groups (under the
standard action). This brings up a general question about symplectic manifolds.
Recall that a space X is nilpotent if π1(X) acts nilpotently on πj(X) for all j ≥ 1.
The methods of homotopy theory and, especially, rational homotopy theory, work
best for nilpotent spaces. So, if we are to make use of these methods, then it would
be very nice to know the answer to the following

Question 4.4. How can nilpotent symplectic manifolds be recognized? If a symplectic
manifold is a nilpotent space, what special homotopical properties are apparent?
Conversely, what nilpotent spaces have symplectic or c-symplectic structures?

This is a question which connects geometry and homotopy theory in a funda-
mental way. Although we do not know of any general results in this direction, here
is a result that gives a slight indication of how the action of the fundamental group
on higher homotopy may be recognized in the symplectic world. While the propo-
sition holds in general, it pays to think of ω as the symplectic (or c-symplectic)
class. For a symplectic manifold (M,ω), the condition of symplectic asphericity is
equivalent to the condition that ω = f∗(ω̃), where f : M → K(π1(M), 1) classifies
the universal cover and ω̃ is some class in H2(K(π1(M), 1); R) (see [LO2]). Hence,
p∗(ω) = 0, where p : M̃ → M is the universal cover. On the other hand, the result
below applies to the generic case of symplectic manifolds that are not symplecti-
cally aspherical. The proposition is a special case of one found in [LMP], but the
homotopical proof is new.

Proposition 4.5. Suppose that M is a path connected space with a ∈ H1(M ; Q)
and ω ∈ H2(M ; Q) obeying a ∪ ω = 0 and p∗(ω) �= 0, where p : M̃ → M is the
universal cover. Then the action of π1(M) on π2(M) is nontrivial.

Proof. The proof and interpretation will come together in several steps.

Step 1. The condition p∗(ω) �= 0 is equivalent to saying that ω|π2(M) �= 0, where
ω ∈ H2(M) ∼= Hom(H2(M ; Z), R) is considered dual to homology and operating



on the image of Hurewicz in H2(M ; Z). The equivalence of the conditions is implied
immediately by the following commutative diagram:

π2(M̃)
h
∼=

��

p#

��

H2(M̃ ; Z)

p∗
��

π2(M) h �� H2(M ; Z)

The condition ω|π2(M) �= 0 removes the universal cover from consideration and
focusses on M and ω.

Step 2. So, take γ ∈ π2(M) such that ω(h(γ)) �= 0 and α ∈ π1(M) such that
a(h(α)) �= 0. We wish to understand the action of α on γ in a classical way. Namely,
the deviation of the action from being trivial is detected by the Whitehead product

α · γ − γ = [α, γ].

Thus, to show that the action of π1(M) on π2(M) is nontrivial, it is sufficient to
show that the Whitehead product [α, γ] is nonzero. In order to do this, we will use
Steenrod’s functional cup product.

Step 3. Consider the following situation: f : X → Y and v ∈ Hq(Y ). We have a
commutative diagram

Hp−1(Y )
f∗

��

λ1

��

Hp−1(X) δ ��

λ2

��

Hp(Y,X) i∗ ��

λ3

��

Hp(Y )
f∗

��

λ1

��

Hp(X)

Hp+q−1(Y )
f∗

�� Hp+q−1(X) δ �� Hp+q(Y,X) i∗ �� Hp+q(Y )
f∗

�� Hp+q(X)

where λ1(y) = y∪v, λ2(u) = u∪f∗v and λ3(z) = z∪v (using relative cup product).
Let u ∈ Ker(f∗)∩Ker(λ1). Then u∪v = 0. Also, because u ∈ Ker(f∗), there exists
β ∈ Hp(Y,X) with i∗β = u and

λ1i
∗β = λ1u = 0 = i∗λ3β = i∗(β ∪ v).

Hence, there exists τ ∈ Hp+q−1(X) with δτ = β ∪ v. Thus we can associate τ to
the element u. This association u �→ τ provides a homomorphism

σ : Ker(f∗) ∩ Ker(λ1) → Hp+q−1(X)/f∗Hp+q−1(Y ) + λ2H
p−1(X)

and we define the functional cup product (as a coset) by

u ∪f v := σ(u).

The following facts are found in [W]:

• Fact 0. If f is nullhomotopic, then u ∪f v = 0.
• Fact 1. If f : X → Y and g : Y → Z, then u ∪gf v ⊂ g∗(u) ∪f g∗(v) for

u, v ∈ H∗(Z).



• Fact 2. For the Whitehead product map [ιp, ιq] : Sp+q−1 → Sp∨Sq and up, uq

the respective generators of Hp(Sp), Hq(Sq), we have

up ∪[ιp,ιq ] uq = −up+q−1,

where up+q−1 generates Hp+q−1(Sp+q−1).
Now, for α ∈ πp(X) and β ∈ πq(X), represent the Whitehead product [α, β]

by

F : Sp+q−1 [ιp,ιq ]−−−→ Sp ∨ Sq h→ X,

where h|Sp = α, h|Sq = β. Let u, v ∈ H∗(X) be as above and such that u∪ v = 0.
Now, for p, q > 1, F (Hp+q−1(X)) = 0 since F factors through Sp∨Sq, and F ∗v = 0
since Hq(Sp+q−1) = 0. For the case p = 1, q > 1, F ∗(Hq(X)) = 0 because the
Whitehead product [ιp, ιq] itself induces the zero homomorphism Hq(S1 ∨ Sq) →
Hq(Sq) due to the fact that [ιp, ιq] attaches the top cell in S1 × Sq. Hence there
is no indeterminacy in the definition of the functional cup product and we have

u ∪F v ∈ Hp+q−1(Sp+q−1).

By Fact 1 above, u ∪F v ⊂ h∗(u) ∪[ιp,ιq ] h∗(v).
Now suppose that u ∈ Hp(X) is dual to a Hurewicz element h(α) for α ∈

πp(X) and v ∈ Hq(X) is dual to a Hurewicz element h(β) for β ∈ πq(X). Then
h∗(u)(ūp) = u(h∗(ūp)) = u(h(α)) = 1 and similarly h∗(v)(ūq) = 1. Thus,

u ∪F v = h∗(u) ∪[ιp,ιq ] h∗(v) = up ∪[ιp,ιq ] uq = −up+q−1

by Fact 2. Since up+q−1 �= 0, by Fact 0, F = [α, β] �= 0 as well.

Step 4. The situation above is almost exactly that of Proposition 4.5 with α ∈
π1(M) and β = γ ∈ π2(M). There is a slight difference which occurs because ω
is not necessarily dual to h(γ), but only is nonzero on it. This just introduces a
nonzero factor ξ into the equation

a ∪[α,γ] ω = ξu2,

where u2 generates H2(S2), and hence is nonzero. Therefore, the Whitehead prod-
uct [α, γ] = α · γ − γ �= 0 and the action of π1(M) on π2(M) is nontrivial. �

Another proof of Proposition 4.5 using the minimal models of rational ho-
motopy theory is given in [FOT, Proposition 4.100]. Other interactions between
symplectic (and complex) manifolds and rational homotopy theory may be found
there as well.

5. Self-maps of (symplectic) manifolds

Another subject in symplectic geometry which has not been studied extensively
is that of the homotopy theory of self-maps. Here is a type of result that relates
a homotopical property of a space to the more geometrical question of how the
space sits as a fibre in fibrations (or bundles).



Proposition 5.1. Suppose A is a manifold such that Hodd(A; Q) = 0 and A sits as
the fibre in a fibration A

i→ E → B. If f : A → A is not rationally nullhomotopic,
then i ◦ f : A → E is also not rationally nullhomotopic.

Remark 5.2. By a result of [LO1], any symplectic (or c-symplectic) homogeneous
space A must be of maximal rank, and hence has Hodd(A; Q) = 0.

Proof of Proposition 5.1. If i◦f : A → E were nullhomotopic, then f would factor
through the connecting map in the Puppe sequence, ∂ : ΩB → A. Then Theo-
rem 5.3 below would imply that f is rationally null, a contradiction. �

We shall now give a new proof of the fundamental theorem of Lupton and
Smith. Their original proof used minimal models, but here we use only classical
homotopy theory.

Theorem 5.3 ([LuSm, Theorem 3.2]). Let f : A → X be a map whose rationaliza-
tion factors through an H-space. If X is a finite complex and Hodd(A; Q) = 0,
then f is rationally trivial.

Since we are taking rationalizations in the theorem, from now on we will
simply take A and X to be rational spaces. Also, by Hopf’s theorem, we can take
the H-space through which f factors to be a product of K(Q, j)’s.

First, let us recall a standard result. Let Xn denote the n-th Postnikov term
of X. (Also, for later use, recall that the n-connective cover of X, denoted X〈n〉,
is the homotopy fibre of X → Xn.) Milnor showed that, for any space K, there is
a short exact sequence

∗ → lim←−
1 [SK,Xn] → [K, X] → lim←− [K, Xn] → ∗,

where SK denotes suspension.

Lemma 5.4. If X is a rational space, then lim←−
1 [SK,Xn] = 0.

Proof. We always have [SK,Xn] = [K, ΩXn] and, because of Hopf’s result, we
have the following homotopy commutative diagram expressing the fact that any
map K → ΩXn can be lifted, up to homotopy, to K → ΩXn+1.

ΩXn+1

��

∼= �� ∏
K(Q, nj) × K(πn+1(X), n + 1)

projection

��
K

α×∗
����������� α �� ΩXn

∼= �� ∏ K(Q, nj).

Therefore, we see that we have surjections of groups [SK,Xn+1] → [SK,Xn] for
all n. The tower of these groups then satisfies the Mittag-Leffler condition, so
lim←−

1 [SK,Xn] = 0. �

The result above is sometimes expressed by saying that there are no rational
phantom maps. Therefore, in order to understand the homotopy class of a rational
map K → X, it is sufficient to understand the projections to all Postnikov pieces.



Now suppose we have a factorization A
g→ H

h→ X with f = hg. Let H =
Ho × He, where

Ho =
∏

K(Q, 2kj + 1) and He =
∏

K(Q, 2ki)

by Hopf’s theorem. It is always true that [K, X × Y ] = [K, X] × [K, Y ], so the
homotopy class of g is determined by that of the projections A → Ho and A → He.
Because Ho =

∏
K(Q, 2kj + 1), the class of A → Ho is given by an element in

Hodd(A; Q) = 0. Hence, we may restrict attention to He. In fact, we now focus on
the restriction he : He → X. Note that He has the property that every element in
H∗(He; Q) has infinite height (i.e. cup product powers never vanish).

Lemma 5.5. Suppose Z has the property that every element in H∗(Z; Q) has infinite
height and let X be a rational space of finite category (e.g. the rationalization of a
finite complex). Then [Z, X] = ∗.
Proof. First note that Hodd(Z; Q) = 0 since elements of odd degree have finite
height 1. Secondly, note that a composition Z

h→ X
p2→ X2 = K(π2(X), 2) must

be nullhomotopic because the homotopy class is determined by an element of
H2(Z; π2(X)) which is pulled back from an element of H2(X; π2(X)) by h∗. But
the element in H2(X; π2(X)) would then have infinite height, and this is impossible
by the assumption that X has finite category (which means that the cuplength of
X is finite). This begins an induction where, for any map h : Z → X, we have the
following homotopy commutative diagram:

X〈i〉 ρ ��

��

K(πi+1(X), i + 1)

��
Z

h̃

���������� h ��

pih�∗ ����
��

��
��

X

pi

��

pi+1 �� Xi+1

p̃i

��
Xi

id �� Xi

Of course, we are able to factor through the fibres only because the map pih is
trivial.

There are two cases. If i + 1 is odd, then the homotopy class of ρh̃ : Z →
K(πi+1(X), i + 1) is an element of Hodd(Z; Q) = 0. Hence, the composition
pi+1h : Z → Xi+1 is also trivial and the induction continues.

If i + 1 is even, then, by what we have just said, we have a factorization

through fibres Z
h̃→ X〈i〉 ρ→ K(πi+1(X), i + 1). As before, the class of this map

is given by an element in Hi+1(Z; πi+1(X)) which is pulled back from an element
in Hi+1(X〈i〉; πi+1(X)) by h̃∗. If this map is not nullhomotopic, then this element
in Hi+1(X〈i〉; πi+1(X)) would have infinite height. But this is impossible because
the i-connective covering map X〈i〉 → X is injective on homotopy groups, and the



Mapping Theorem of rational homotopy theory (see [FOT, Theorem 2.81]) then
says that

cup0(X〈i〉) ≤ cat0(X〈i〉) ≤ cat0(X) < ∞.

Hence, pi+1h � ∗. Therefore, we see inductively that pjh � ∗ : Z → Xj for all j.
By Lemma 5.4, we have h � ∗. �

Proof of Theorem 5.3. We have already seen that we can restrict to a map he :
He → X, where He =

∏
K(Q, 2ki). But then He satisfies the hypotheses of

Lemma 5.5, so [He, X] = ∗. Therefore, we obtain

f � hg � h(ge × go) � h(ge × ∗) � hege � ∗ge � ∗. �
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