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On the construction of mixed orthogonal arrays of
strength two

Chung-yi Suen , Warren F. Kuhfeld

1. Introduction

An orthogonal array of strength two, LN(s1 · · · sk), is an N ×k matrix with symbols in the
ith column from a finite set of si symbols (1� i�k), such that in every N × 2 submatrix,
all possible combinations of symbols occur equally often as a row. If among s1, . . . , sk ,
there are ni that equal �i (1� i�u) where {ni} and {�i} are positive integers, �i �2,
n1 +· · ·+nu = k, then we will write LN(�n1

1 · · ·�nu
u ) for LN(s1 · · · sk). When s1 =· · ·= sk

the orthogonal array is called symmetric; otherwise it is called asymmetric or mixed. An
orthogonal array LN(s1 · · · sk) is tight if

∑k
i=1si −k=N −1. Orthogonal arrays have exten-

sive applications in statistical design of experiments, computer science, and cryptography,



and large orthogonal arrays, sometimes with hundreds of runs, are becoming increasingly 
popular among researchers modelling consumer choice (Kuhfeld, 2004). Methods for con-
structing mixed orthogonal arrays of strength two have been developed recently by Wang 
and Wu (1991), Dey and Midha (1996, 2001), Wang (1996a, b), Zhang et al. (1999), Xu 
(2002), and many other authors. For an excellent description of the methods of construction 
of orthogonal arrays, see Hedayat et al. (1999).For extensive construction methods, see 
Kuhfeld (2004).

Wang andWu (1991) used the Kronecker sum of orthogonal arrays and difference schemes 
to construct several families of mixed orthogonal arrays. Dey and Midha (1996, 2001) 
extended the method of Wang and Wu (1991) to construct more families of mixed orthogonal 
arrays. In this paper, we modify this method to allow more flexibility. As a consequence, 
some new families of mixed orthogonal arrays are obtained.

2. Basic concepts and notations

Let G be an additive group with p elements, 0, 1, . . . , p−1. An rp×k matrix with entries
from G is called a difference scheme Drp,k,p, if among the differences of the corresponding
elements of any two columns, each element of G appears r times.

Let A = (aij ) and B = (bij ) be n × r and m × s matrices respectively with entries from
an additive group G of p elements. The Kronecker sum of A and B, denoted by A ∗ B,
is defined to be an nm × rs matrix (Baij )1� i �n,1� j � r , where Ba is an m × s matrix
(bij + a)1� i �m,1� j � s .

Throughout, we let 0n be the n × 1 vector of zeros and let �n be the n × 1 vector
(0, 1, . . . , n − 1)′. We now list some useful properties of difference schemes.

1. We can assume, without loss of generality, that the first column of a difference scheme
Drp,k,p is 0rp. Then every element of G appears exactly r times in all other columns.

2. The Kronecker sum of a difference scheme Drp,k,p and an orthogonal array LN(ps) is
an orthogonal array LrpN(pks). The Kronecker sum of two difference schemes Dr1p,k1,p

and Dr2p,k2,p is also a difference scheme Dr1r2p2,k1k2,p.
3. If Drp,k,p exists then k�rp. Drp,rp,p is called a generalized Hadamard matrix. Dh,h,2

is a Hadamard matrix of order h. If a Hadamard matrix of order h exists, h is called
a Hadamard number. It is conjectured that h is a Hadamard number if h = 1, 2, or a
multiple of 4.

4. If p is a prime or a prime power then Drp,rp,p exists in each of the following cases: (a)
r = 2 or 4; (b) r and p are powers of the same prime; (c) r = qm(q + 1)/p for all m�0
if q is a prime power and Dq+1,q+1,p exists.

Suppose an LN(s
n1
1 · · · snu

u ) and difference schemes DM,k1,s1 , . . . , DM,ku,su exist. Parti-
tion the LN(s

n1
1 · · · snu

u ) as [LN(s
n1
1 ), . . . , LN(s

nu
u )]. By using Kronecker sum, Wang and

Wu (1991) constructed the following mixed orthogonal array LMN(s
k1n1
1 · · · skunu

u M1),

[DM,k1,s1 ∗ LN(s
n1
1 ), . . . , DM,ku,su ∗ LN(snu

u ), �M ∗ 0N ].



If LM(t
m1
1 · · · tmv

v ) exists, then we can replace the M-symbol column of the above ar-
ray by

∑v
1=1mi columns of symbols t1, . . . , tv respectively and obtain an LMN(s

k1n1
1

· · · skunu
u t

m1
1 · · · tmv

v ). Furthermore, if a1, a2, a3 are three 2-symbol columns such that a1 +
a2 = a3, then we can replace these three 2-symbol columns by a 4-symbol column. By us-
ing this procedure, Wang and Wu (1991) constructed several families of mixed orthogonal
arrays.

Dey and Midha (1996) modified the construction of Wang and Wu (1991) and ob-
tained the following result. If there exist an orthogonal array LN(w1sn1

1 · · · snu
u ) and dif-

ference schemes DM,k1,s1 , . . . , DM,ku,su , then an LMN(s
k1n1
1 · · · skunu

u (Mw)1) can be con-
structed as follows. Arrange the rows of the LN(w1sn1

1 · · · snu
u ) such that the first column

is �w ∗ 0N/w. Partition LN(w1sn1
1 · · · snu

u ) as [�w ∗ 0N/w, LN(s
n1
1 ), . . . , LN(s

nu
u )]. Then an

LMN(s
k1n1
1 · · · skunu

u (Mw)1) can be constructed as

[DM,k1,s1 ∗ LN(s
n1
1 ), . . . , DM,ku,su ∗ LN(snu

u ), �Mw ∗ 0N/w].

3. Main results

We first modify the result of Wang and Wu (1991) to obtain an N-symbol column by
sacrificing several columns in the construction.

Theorem 1. If there exists an orthogonal array LN(s
n1
1 · · ·

s
nu
u ) and difference schemes DM,k1,s1 , . . . , DM,ku,su , then we can construct an orthogo-

nal array LMN(s
(k1−1)n1
1 · · · s(ku−1)nu

u M1N1).

Proof. For i=1, . . . , u, let DM,ki ,si =[0M, DM,ki−1,si ]. Then each of the si symbols appears
M/si times in every column of DM,ki−1,si . We can verify that

[DM,k1−1,s1 ∗ LN(s
n1
1 ), . . . , DM,ku−1,su ∗ LN(snu

u ), �M ∗ 0N, 0M ∗ �N ]

is an LMN(s
(k1−1)n1
1 · · · s(ku−1)nu

u M1N1). �

For examples, we obtain an L216(18112165366) by using L18(6136), D12,6,6, and D12,12,3;
obtain an L216(181121377211) by using L18(3721), D12,12,3, and D12,12,2; and obtain an
L144(122311244) by using L12(3124), D12,12,3, and D12,12,2 in Theorem 1.

The result in Theorem 1 was, in a slightly different formulation, also obtained by Dey and
Midha (2001) by a slightly different method. Note that LMN(s

(k1−1)n1
1 · · · s(ku−1)nu

u M1N1)
in Theorem 1 is tight if LN(s

n1
1 · · · snu

u ) is tight and DM,k1,s1 , . . . , DM,ku,su are general-
ized Hadamard matrices. Several families of tight orthogonal arrays are constructed in the
following by using Theorem 1.

Corollary 1.1. If p is a prime power and Drp2,rp2,p2 exists, then we can construct a tight
orthogonal array Lrp5((rp2)1(p3)1(p2)rp

2−1p(rp2−1)p2
).



Proof. Orthogonal arrays can be constructed by using Lp3 ((p2)1pp2 
), Drp2,rp2,p2 , and 

Drp2,rp2,p inTheorem 1.The existence of Drp2,rp2,p is implied by the existence of Drp2,rp2,p2 . 
�

For p = 2 and r = 3 in Corollary 1.1, we have a new array L96(12181411244). For p = 3 
and r = 2 we obtain L486(2711819173153).

Corollary 1.2. If p is a prime power and Drp,rp,p exists, then we can construct a tight
orthogonal array Lrpn ((rp)1(pn−1)1p(rp−1)(pn−1−1)/(p−1)) for all n�3.

Proof. The orthogonal array can be constructed by using Lpn−1 (p(pn−1−1)/(p−1)) and 
Drp,rp,p in Theorem 1. �

For r = 2, n = 3, and p = 4, 5 in Corollary 1.2, we have new arrays L128(16181435) and 
L250(251101554). In particular, we obtain the following orthogonal arrays by Corollaries 
1.1 and 1.2, since D2p,2p,p, D4p,4p,p, and D4r,4r,2 exist.

Corollary 1.3. If p is a prime power, r �1, and n�3, we can construct tight orthogonal ar-
rays (a) L2p5 ((2p2)1(p3)1(p2)2p2−1p(2p2−1)p2 

); (b) L4p5 ((4p2)1(p3)1(p2)4p2−1p(4p2−1)p2 
);

(c) L2pn ((2p)1(pn−1)1p(2p−1)(pn−1−1)/(p−1)); (d) L4pn((4p)1(pn−1)1p(4p−1)(pn−1−1)/(p−1));

and (e) Lr2n+1 ((4r)1(2n−1)12(4r−1)(2n−1−1)).

For p = 3 and n = 3, 4 in Corollary 1.3 (c) and (d), we obtain tight arrays L54(9161320), 
L162(27161365), L108(12191344), L324(2711213143). L54(9161320) was also constructed by 
Wang and Wu (1991), the other three arrays are believed to be new.

We next modify the construction of Dey and Midha (1996) to obtain the following or-
thogonal array.

Theorem 2. If there exist orthogonal arrays LN(w1sn1
1 · · · snu

u ) and LN(w1tm1
1 · · · tmv

v )

and difference schemes DM,k1,s1 , . . . , DM,ku,su , then we can construct an orthogonal array
LMN(s

(k1−1)n1
1 · · · s(ku−1)nu

u t
m1
1 · · · tmv

v (Mw)1).

Proof. Partition the orthogonal arrays as LN(w1sn1
1 · · · snu

u ) = [�w ∗ 0N/w, LN(s
n1
1 ), · · · ,

LN(s
nu
u )] and LN(w1tm1

1 · · · tmv
v ) = [�w ∗ 0N/w, LN(t

m1
1 · · · tmv

v )]. For i = 1, . . . , u, let
DM,ki ,si = [0M, DM,ki−1,si ]. Then we can verify that

[DM,k1−1,s1 ∗LN(s
n1
1 ), . . . , DM,ku−1,su ∗LN(snu

u ), 0M ∗LN(t
m1
1 · · · tmv

v ), �Mw ∗0N/w]

is an LMN(s
(k1−1)n1
1 · · · s(ku−1)nu

u t
m1
1 · · · tmv

v (Mw)1). �

Example 1. We use Theorem 2 to construct many new 72-run orthogonal arrays in the
following by combining two 36-run orthogonal arrays.



(a) By using L36(31227), assorted L36, and D2,2,2 in Theorem 2, we obtain L72:

L36(31121311) → L72(12161311227) L36(316336) → L72(6436227)
L36(31633221) → L72(6432228) L36(31633123) → L72(6431230)
L36(316324) → L72(64231)

(b) By using L36(21234), assorted L36, and D2,2,2 in Theorem 2, we obtain L72.

L36(2118121) → L72(18141235) L36(2191212) → L72(9141246)
L36(216333) → L72(634133234) L36(21633222) → L72(634132236)
L36(21633123) → L72(634131237) L36(216327) → L72(6341241)
L36(216238) → L72(624138234) L36(21623521) → L72(624135235)
L36(21623428) → L72(624134242) L36(21623129) → L72(624131243)
L36(21613922) → L72(614139236) L36(21613829) → L72(614138243)
L36(216131217) → L72(614131251) L36(2132219) → L72(4132253)
L36(2131226) → L72(4131260)

We now construct two families of orthogonal arrays by using Theorem 2. Let r(�3) be
an odd number. It is known that L4r ((2r)122) exists, and it is not possible to have more than
two 2-symbol columns. Let �r denote the largest possible m in an L4r (r

12m). It is known
that �3 =4 and �5 =8. For r �7 we do not know the exact value of �r except that �7 �12,
�9 �13, �11 �12, �13 �12, and �r �13 for r �15.

Corollary 2.1. If r �3 is an odd number and h is an Hadamard number, then we can con-
struct (a) L4rh((2h)1(2r)12(4r−2)(h−1)+1); and (b) L4rh((2h)1r12(4r−2)(h−1)+�r−1), where
�r is the maximum number m such that L4r (r

12m) exists.

Proof. L4rh((2h)1(2r)12(4r−2)(h−1)+1) is obtained by usingL4r (2124r−2),L4r (21(2r)121),
and Dh,h,2 in Theorem 2. L4rh((2h)1r12(4r−2)(h−1)+�r−1) is obtained by using L4r

(2124r−2), L4r (21r12�r−1), and Dh,h,2 in Theorem 2. �

For h=2 in Corollary 2.1(a), we obtain L8r ((2r)14124r−1) which was also constructed by
Agrawal and Dey (1982). For h= 2 and r = 3, 5, 7, 9, and 11 in Corollary 2.1(b), we obtain
L24(4131213), L40(5141225), L56(7141237), L72(9141246), and L88(11141253) respectively.
The first two arrays were also obtained by Wang and Wu (1991), and the last three arrays are
believed to be new. Also for h=4, 8, 12 and r=3, 5, 7, 9 in Corollary 2.1, we obtain new ar-
rays L112(14181279), L112(8171289), L144(241612111), L144(241312113), L144(181812103),
L144(91812114), L160(1611012127), L160(161512133), L224(1611412183), L224(161712193),
L240(2411012199), L240(241512205), L288(1811612239),L288(161912250), L336(241141

2287), L336(241712297), L432(2411812375), and L432(241912386).
In the following example, we obtain two new 96-run orthogonal arrays by using Dey

and Midha’s (1996) construction, and replacing several 2-symbol columns by 4-symbol
columns.

Example 2. Partition the L8(4124) as [�2 ∗ 04, L8(41), L8(23)]. By sacrificing a 2-symbol
column in L8(4124), Dey and Midha (1996) obtained L96(241412236) as

[D12,12,4 ∗ L8(41), D12,12,2 ∗ L8(23), �24 ∗ 04].



More arrays can be obtained by replacing �24 with any 24-run array L24. Let L8(23) =
[a1, a2, a3] and D12,12,2 = [012, b1, b2, B]. If the 24-run array has at least two 2-symbol
columns, we can permute the rows of L24 such that L24 = [b1 ∗ 02, b2 ∗ 02, L]. Since for 
i = 1, 2 we have

012 ∗ ai + bi ∗ ai = bi ∗ 08 = bi ∗ 02 ∗ 04,

the three 2-symbol columns 012 ∗ ai , bi ∗ ai , bi ∗ 02 ∗ 04 can be replaced by a 4-symbol 
column. For example, if we choose L24 to be L24(121212) and L24(6141211), we obtain
two new 96-run arrays L96(121414242) and L96(61415241), respectively.
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