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Construction ofn*-run linear graphs by
finite geometries

Chung-yi Suen

Introduction

In afractionalfactorialdesignwherethe maineffectof eachfactorandsometwo-factor
interactionsareto be estimateda graph,which consistsof verticesandedgesjs usually
usedo representhemodel . Eachvertexin thegraphdenoteshemaineffectof afactor,and
theinteractionof two factorsis denotedy theedgejoining thetwo factors.Taguchi(1959,
1960)introducedineargraphswhich associatgraphswith orthogonalarraysof strength
two, for planningthis type of experimentsLineargraphshavesincebeenusedextensively
in the designof industrialexperimentsDesignsobtainedfrom linear graphs,whichwere
shownby Dey and Suen(2002)to satisfythe combinatorialconditionsgivenby Dey and



Mukerjee (1999)are universally optimalas defined byiefer, 1975)for estimating the
specified main effects and two factor interactions among all designs involving the same
number of runs.

In this paper, we consider symmetrical factorial designs where each factorlbasls.

An orthogonal array OAN, k, m, t), havingN rows, k columns,m symbols, and strength

t, is an N x k array with elements from a set af symbols in which all then’ possible
combinations of symbols occur equally often as rows in&ny ¢ subarray. Here we shall

use orthogonal arrays of strength two only. A linear graph for an orthogonal array is an
assignment of the columns of the array to the vertices and edges of a graph so that different
vertices or edges correspond to different columns. Any column of the orthogonal array can
be assigned to a vertex of the graph, butihe 1 columns assigned to an edge must be
carefully chosen so that the edge represents the interaction of the two vertices on the edge.

Collections of linear graphs can be found in the appendices of Taguchi (198¥yand
and Chen (1992)5un and Wu (19943lso gave interaction graphs for three-level designs,
but some of their designs allow only partial estimation of certain two-factor interactions.
We now briefly describe Taguchi’'s method for designing this type of experiments. Given
the main effects of a set of factors and some two-factor interactions to be estimated, the
investigator first draws a graph according to the model. The investigator then searches
through the list of linear graphs to see if any graph contains the model as a subgraph. If
a linear graph in the list is found to contain the drawn graph then it can be used in the
experiment by dropping the unused vertices and edges. A disadvantage of this method, as
Wu and Chen (1993)ointed out, is that the total number of linear graphs is usually too large
to be included in the collection. Only six types of 16-run linear graphs are given, out of more
than 800 types of graphs, faguchi's (1987}able.Wu and Chen (1991had 190 16-run
linear graphs in their collection. While it is true that the total numbers of linear graphs are
usually too large for large-run plans, we believe that among those “more than 800 types
of graphs” for 16-run designs, most of them are subgraphs of others. An attempt to list all
nonisomorphic maximal linear graphs for 16-run designs is given in the last section.

In Section 2, the geometric approach to construct linear graphs is described. The concept
of maximallinear graphs is introduced to reduce the number of nonisomorphic graphs.
In Section 3, several series af*-run linear graphs are constructed using the geometric
properties of P@3, m). 81-run linear graphs are given as examples. However, we are not
ready to give a complete list of 81-run linear graphs because we think there are too many of
them. In Section 4, we give a list of 27 nonisomorphic 16-run maximal linear graphs. We
believe that this list is complete although we cannot prove it.

Linear graphs and finite geometries

Since many orthogonal arrays are constructed by using finite fields and finite geometries,
we shall use a geometric approach to demonstrate linear grapimsbleet prime or a power
of a prime, and let PG — 1, m) denote thér — 1)-dimensional finite projective geometry
over GHm), the finite field ofm elements. A point in PG — 1, m) is represented by an
r-tuple (xg, x1, ..., x,—1), Wwherexg, x1, ..., x,_1 are elements of Gf) which cannot be
all 0’s. Twor-tuples represent the same pointif one is a multiple of the other. Therefore there



are(m” —1)/(m—1)pointsin PGr — 1, m). At-flatin PG(r — 1, m) is a set of points which
are linear combinations of+ 1 independent points. There are’*1 — 1) /(m — 1) points

: g N )1 e S B (. i NP : _ } _
in a t-flat, and there aré D 1) D) t-flats in PGr — 1, m). O-flats, 1-flats,

and 2-flats are also called points, lines, and planes, respectively. Given integess< r,

there are(’”'(;Y,f_l,illi(i’;r(;:_z,:211"1')(_’?7.[(;:11)’1) t-flats passing through asflat in PGr — 1, m).
For more properties about finite projective geometries, we refdirszhfeld (1979).

Now letAbe arnr x (m" —1)/(m—1) matrix with the(m” —1) /(m—1) r x 1L column vectors
corresponding to all the points of RG-1, m). Thenthen” x (im" —1)/(m—1) array, whose
row vectors are elements of the row spac@&giorms an OAm”, (m" —1)/(m —1), m, 2).
Since the matrifA generates the orthogonal array, thé —1) / (im—1) points of PGr—1, m)
can be used to represent the columns of this arrayl et a graph wit vertices and
edges, them is a linear graph for the orthogonal array @&, (m" — 1)/(m — 1), m, 2)
if the following assignment is possible: (a) assign each vertex a point it PQ, m)
and assign each edge — 1 other points on the line joining the two vertices; and (b) the
n + k(m — 1) points corresponding to threvertices andk edges are distinct. We also chll
anm’”-run linear graph. Clearly, a necessary conditiorLfte be ann”-run linear graph is
n+k(m—1) < (m"—1)/(m—1).Lissaid to besaturatedf n+k(m—1)=(m"—1)/(m—1).

If L is not saturated, we can adad” — 1)/(m — 1) — n — k(m — 1) isolated vertices to it
and assign them to the remaining unassigned points iir P&, m) to make it saturated.

Since isolated vertices can be added to alinear graph easily, we ignore all isolated vertices
when isomorphisms of linear graphs are considerede et denote the set of all edges of
a linear graph., and letL1 andL» be twom”-run linear graphsl; is said to be a subgraph
of Ly (L1 C Ly)ifitis possible to relabel the vertices bf such thak(L1) C e(L2). If L
is a subgraph of., but L3 is not a subgraph af4, thenL is said to be g@ropersubgraph
of Ly. Ly and L, are said to bésomorphicif L1 € Ly, andLy € L1. Clearly, if Ly is a
subgraph of_», thenL4 can be obtained from, by deleting some edges.

Definition 2.1. Anm"-run linear graph is said to benaximalif L is not a proper subgraph
of any othenn”-run linear graph.

It is only necessary to list nonisomorphic maximal linear graphs for each orthogonal
array since all other linear graphs can be obtained from them by deleting some edges. An
m”-run linear graph withn vertices and edges is maximal if it has no isolated vertices and
m"—1)/m—1)—n—k(m — 1) <m — 1. In particular, a saturated linear graph with no
isolated vertices is maximal.

Since amodelis completely determined by its graph, we are interested in the isomorphism
of the graphs instead of the designs in this paper. The approach ugéddnd Chen (1992)
andSun and Wu (1994is different. They started with nonisormorphic designs, and listed
nonisomorphic graphs for each design. As aresult, some of their graphs from nonisomorphic
designs are isomorphic.

For convenience, we shall use the following notations for graphs.

1. (F1, F2; F3, Fa; .. .; Fo,_1, F2,)1: a graph consisting ofi2verticesFi, . .., F, andu
edgesF1F, F3Fa, ..., Fou—1F2,.



2. (F1...,Fy; Fyy1..., Fyyy)o: a graph consisting af + v verticesFy, ..., F,+, and
uvedgesFiF; (A<i<u,u+1<j<u+v).

3. (F1, ..., F,)3: agraph consisting af verticesFyu, ..., F, andu edgesFi F», FoF3, ...,
Fuleua FuFl-

A graph may consist of one or more components of the above as subgraphs. There may be
several different ways to represent a graph using the above notations. If a graph consists of
more than one component, we shall choose the components such that any two components
may share the same vertex but not the same edge. In general, we like any two components
to share the least number of vertices as possible.

Sometimes it is not easy to see if a graph is a subgraph of another because people draw
graphs differently. For example, the left of the following two graphs is a 16-run linear graph
taken fromWu and Chen (1992). We cannot easily tell if it is a subgraph of any of the 27
16-run maximal linear graphs in Table 1. But if we draw the graph as the one on the right,
it is easily seen to be a subgraph of the graph 8.

1 15
2 4
7o 6 Te 2 0
3 15 4 i

A suggestion to help determine the isomorphism of two graphs, as indicated in the above
example, is that we should always show the largest polygon when drawing graphs. Most
linear graphs in this paper show the largest polygons except when it is difficult to draw that
way such as Example 6(a).

m*-run linear graphs

Dey and Suen (2002)sed finite geometries to construct several families of universally
optimal designs for estimating certain main effects and two-factor interactions. Their designs
are actually Taguchi's linear graphs. However, their constructions are more general and
cover only a few specific cases. In this section, we focus on the constructiafi-afn
linear graphs only and try to cover as many graphs as possible. Hence some of our linear
graphs are special casesizdy and Suen (2002).

We first consider the:3-run linear graphs which are associated with the(@® m? +
m + 1, m, 2). As discussed in the previous section, the orthogonal array is represented by
the finite projective plane P@, m). The following are the only two nonisomorphic-run
maximal linear graphs.

L3 1= {(F1, F2, F3)3}, whereF1, F», F3 are three noncollinear points in RZ m).

L3o2={(Fo; F1, ..., Fut1)o}, WhereFy, ..., F, 11 arem + 1 points on a line andy is
a point not on this line.

We next consider the:*-run linear graphs which are associated with the(@A m? +
m?+m+1, m, 2). In addition to the properties mentioned in Section 2, it is helpful to know
that them® + m2 + m + 1 points of PG3, m) can be partitioned inta2 + 1 disjoint lines.



The following maximal linear graphs are constructed by using the geometry &, PG

For each of the graph, we illustrate it with an example of 81-run linear graplm 3.

Let 0, 1, 2 be the three elements of G We use the numbers 1, ..., 40 to represent the
40 points of P@&3, 3) as below.

123456789 10 11 12 13 14 15 16 17 18 19 20
coooo0oo000000 0 0 o0 1 1 1 1 1 11
0000111111 1 1 1 0 0 0 0 0 0 0
o1r11r000111 2 2 2 0 0 0 1 1 1 2
1012012012 01 2 0 1 2 0 1 2 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 1r 11 111 1 1 1 1 1 1 1 1 1 1 1 1 1
o o6 1 11 1 11 1 1 1 2 2 2 2 2 2 2 2 2
22 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
r1 20 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

(1) La1 = {(F1, F2; F3, Fa; .. .; Fopoiq, Fou2i0)1). LetLa, ..., L2, bem? + 1 lines
which partition PG3, m). Fori=1, ..., m? + 1, chooseF;_1 and F»; to be two points
on the lineL;.

Example 1.
1. 3,4 2. 5' 23,32 1I4 6 27,37 17 9 28,38 15 1|0 29,34 1|8
1|1 25,40 1|9 7' 31,39 2|() ]'I3 30,35 ]'I6 1|2 26,33 2|2 8' 24,36 2|1
(2) La2 = {(Fo; Fu, ..., Fp2 12}, WhereFu, ..., F,2,,. 1 arem? + m + 1 points

on a plane andqy is a point not on this plane.

Example 2.

(3) Laz={(Fo, ..., Fu; Fé, ..., F})2), whereFy, ..., Fy, arem + 1 points on a lind
andFy, ..., F, arem + 1 points on another line which do not intersect

We now construct more graphs frofy 3. Let x2 — a1x — ap = O be a primitive poly-
nomial in GRm?), and letxg, X1, X, X7 be the coordinates of the four independent points
Fo, F1, F§, F{in PG(3, m), respectively. For > 2, define recursively; = ooX;—2+o1X;—1
andx; = aoX;_, + o1X;_;. Let F; and F; be the points with coordinates andx;, respec-
tively. Then it can be shown thd (F) andF,-(Fj’.) represent the same pointit= j(mod



m + 1). The(m + 1)2 two-factor interactions i, 3 can be partitioned inte + 1 groups
{FoFy, ..., FnF)}, {FoF], F1F}, ..., FuFl}, ... . {FoF,,, F1F}, ..., FyF) _Jofm +1
two-factor interactions each. Lgf, . . ., y,,_1 be then —1 nonzero elements of G ). For
eachj =0, ..., m,thejth group{FoF’, Fle’.H, e FmF,;Hj} are represented by? — 1
points with coordinates; + yix;+k(k =0,...,m;i=1,...,m—1). Thesen?—1 points
can be partitioned inta: — 1 linesL; ; = {Xo+ yix/j, vees X +yix’j+m} (i=1,...,m-=1).
Let Fjou—1)+i1 and Fj(,—1)4i,2 be any two points on the ling; ;, then thejth group of
m + 1 two-factor interactions can be replaced by:2- 1) main effects andn — 1 two
factor interaction$F; n—1)+1.1, Fjm—-1)+1.2 - - -3 FG+Dm-1),1 F(j+1)0m—1),2)1-
Various linear graphs can be obtained by replacing one or more groups bfwo-factor
interactions by the corresponding— 1 pairs of factors. In particular, by replacing fitie
group bym — 1 pairs of factors for each=1, ..., m — 1, we have the following graph.

L2143 = {(Fo, Fé» covs Fu, Fy/n)37 (Fm,L Fm,2§ cees sz_m’]_, sz—m,Z)l}'

Example 3. (a) By choosing Fo, F1, F2, F3, F}), F1, F;, F3) = (1,5,6,7,2,14,17,20),
we have the graphg 3.

7 31,39 20
(b) Replacing the two-factor interactiog F,, F1F;, F2F), andF3Fj in (a) by the graph
(9,22 12, 21),, we have the following linear graph.

2 8,11

[

26,35 99
1 17 9 23,36 .

15,16 27,37
14 6 12 28,32 21
*o——————0

25,33 30,40
7 31,39 20

(c) Replacing the two-factor interactiol F;, F1F,, F2F3, andF3Fy in (b) by the graph
(10, 18;13,19);, we have the linear graphy, .

9 . 22 10 . 18
Py 23,36 Py Py 29,34 PY
12 21 13 19
o 832 o o 243 o




(d) Replacing the two-factor interactiow Fyy, F1F;, F2F,, andF3F3 in (b) by the graph
(3, 25;4, 33),, we have the following linear graph.

1 17 ¢ .
18,19 2 5 9 22 3 25
8,11 o 23:36 Py e 26:30 PY
15,16 27,37
12 . 21 4 33
. 2151 8 o 28:32 Py o 39:40 Py

31,39 0

(4) Laa={(Fo1: F11, ..., Fn.0)2. - . (Fom+1: Fimi1. - - -, Fums1)2}). Let Foq, ...,
Fom+1 be them + 1 points on a lind., and letHy, ..., H,11 be them + 1 planes through
L.Fori=1,...,m+ 1, letL; be aline on the plan&; which does not pass through the
point Fo ;. ChooseFy ;, ..., Fy ; to be thempoints on the lind; but not onL.

Example 4. By choosing(Fo 1, Fo.2, Fo.3, Fo.a) = (1,2, 3,4), we have
17 6 26 35

I18,19 12 25,30 3,40
15,16 121,22 8,11 10,13 27,31 124,28 37,39 134,36
2 ? 8 % % %

(5) Las = {(Fo1: Fo2, F1.1, ..., Fum,1)2, (Fo2: F1.2, ..., Fin1-uym,2)2}, where 1< u

< m. Let Fp 1 andFp 2 be two points on aling, and letHy, . .., H,1 be them + 1 planes
throughL. Fori=1, ..., u, let L; be a line on the plan&; which does not pass through
the pointFp 1 and choos&;_1y,+1.1, - - - . Fim,1 to be them points on the line; but not
onL.Fori=u+1,...,m+1,letL; be aline on the plan#; which does not pass through
the pointFp 2 and choos& ;i —y—1ym+1,2. - - - » Fli—uym,2 t0 be them points on the line;
but not onL.

Example 5. By choosing(Fo.1, Fo.2) = (1, 2), we have two linear graphs.(a) Wiih= 1
or 3, we have

‘e

5 8 11 23 24 25




(6) Lag = {(F1,..., F;; Fou1, ..., Fomy1)2, (Fo1: F1.1, .o, Fuym1)2, - -+ (Fou: F1,0,

v Fumv)z),where 1<t <m, 1<v<m+1—1,% ] qui=m+1—1t,u; >1. LetLy
and Ly be two disjoint lines, and leky 1, . .., Fom+1 andFu, ..., F,1 be the points on
the linesLy and Ly, respectively. Foi =1, ..., m+ 1 — ¢, let H; be the plane containing
the line L1 and the pointF;; and IetL§ be a line on the planél; which does not pass
through the poinfp;. Fori=1,...,vandj =1, ..., u;, ChOOS&F(;_1ymi1,is---» Fjm.i

to be them points on the IineL;H__.Jru’_flJrj but not onL1.

Example 6. By choosing Fo 1, Fo.2, Fo.3, Fo,4, F1, F2, F3, F4)=(1,2, 3,4, 5,14, 23,32),
we have the following linear graphs.(a) Witk= 3, v = 1, andu1 = 1, we have
23 14 5 32 35

(c)Witht =2,v =2, andu; = uz = 1, we have
2 4 32

14
(d)Witht =1,v =2, andu; = 2 andup = 1, we have
32 3 14 17 20
35,38 13
33 36,30 2 8,11 5 6,7
®
37,40 10,12
7l
(e)Witht =1,v =3, andu; = u2 = uz =1, we have
33
[}

. 7,38
23 3.2 36,40 3L 3539 3.4

6,29 9,13 15,16
%1 2730 2 8,11 ! 6,7 18,19 1.7

8,31 10,12 21,22

2 ?

—
N

(3]




(1) Laz={(Fo0: F1,0, ..., F,,_12.0)2, (Fo.15 Fo2, F11, ..., Fu-112, (Fo2; Fo3, F1.2,
s Fno1.2)2, (Fo3: Fo 1, F1.3. ..., Fuo1,3)2}. Let Foo, Fo,1, Fo2, Fo.3 be four points
which are not on the same plane, and 1gt; be the line through the pointBy; and
Fojfori, j=0,1,2,3,i # j. ChooseFiyo, ..., F, 4 to be the(m — 1)? points on
the plane containing point&p 1, Fo 2, Fo.3 but not on the lined.1 2, L1 3, L2 3. Choose

F11,..., Fpy—1.110 be them — 1 points other thaifp o and Fp 2 on the lineLg 2. Choose
F12,...,Fn_12 to be them — 1 points other thanfpo and Fp3 on the line Lo 3.
ChooseFy 3, ..., F—1,3 t0o be them — 1 points other tharFpo and Fo 1 on the line
Lo1.

With the same choice of the points in the graply, we also obtain

Ly 7={(Fo,0; F1,0, -, F(,,_12.0)2, (Fo.1; Fo0, Fo.2, F1.1, - -+, Fu—1,12,
(Fo1, Fo2; Fos, F1,2, ..., Fin—1,2)2}.

Example 7. By choosing(Fo.o, Fo.1, Fo,2, Fo.3) = (14,1, 2,5), we have (a) 47 and (b)
Ly (@)

(b)

33,30 1,22

an “\}2/

(8) Lag = {(Fi1.....Fn1; F12, ..., Fn2)2, (Fut1,1 Fut1,2, F13, ..., Fn—1,3)2,
(Fn+1.2s F1a, ..., Fy_1.24)5}. Let F1 1, ..., Fyy11 and F1 2, ..., Fyy41.2 be the points
on two disjoint linesL1 and Ly, respectively. Choosé 3, ..., F,,—1.3 to be them — 1
other points on the line joining the poinkg 1 and F),, 11 2, and choosé™ 4, ..., F,y—1.4t0
be them — 1 other points on the line joining the poinks 2 and F,, 41 1.

Example 8. By choosing F1,1, F2.1, F3,1, F4,1)=(5,6,7,1)and(F1 2, F2,2, F3 2, F4.2)=
(14, 17,20, 2), we have

20 11 15

31,39 27,37 Q 12,13 18,21 d
w 8 g 1 sa 2 19,22 16
28,36 1

Linear graphslLa1, La3, Laa, and Ly are special cases of Theorems 3.3-3.5, and
Corollary 3.1 ofDey and Suen (2002), respectively. Graphs derived fforg and other
series of the above linear graphs asav.

Ten more 81-run maximal linear graphs obtained by trial and error are listed in the
following example.
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Example 9.
9 16,39 2=6 21,34 ]'33 15.37 29
6,12 20,38
24 27,30 2 18,10 11,35 31,40 22
3, 23,32
-l 18,19 -la7 28,36 '{5 25.33 4
(a)
9 _ 16,39 26 21,34 13 15.37 29
24,35 22
4
1‘0 31,36 14 23,32 5 30,39 21 QQLOM)
o] TR " 1092435 o 22
(g) 56 27,28 34 37,40 3.'4 12&’ 18
14 17,20 2 33 37,38 3 35,39 3424 26,31 4 27,29
[ . 9| 22,36 2|3 18,40 1|3 IIO 19,30 3I2 21,28 .

hy P



16,22

4+ 19

=
o
; [\

(1)

6

Q)

Taguchi (1987)isted 14 nonisomorphic 81-run linear graphs, where some of them are not
maximal. In fact, his graph 11 is a proper subgraph of his own graph 3. Examples 1, 2, 5(b),
and 9(g) are Taguchi's graphs 13, 12, 14, and 3, respectively. Taguchi’s graph 8 is a proper
subgraph of Example 7. Taguchi’'s graphs 4 and 7 are proper subgraphs of Example 9(i).
Sun and Wu (19943lso listed some 81-run graphs, but their graphs allow partial estimation
of two-factor interactions. Most of their graphs are not maximal since their approach is
different.

All 81-run maximal linear graphs given in this section are saturated and have no isolated
vertices. We believe that there are other such 81-run maximal linear graphs. In addition, we
also believe that there are many other 81-run maximal linear graphs with isolated vertices
such as Taguchi's graph 1. In our opinion, the number of honisomorphic 81-run maximal
linear graphs is too large to list them all.

16-run linear graphs

Unlike the 81-run linear graphs, there are not that many nonisomorphic 16-run maximal
linear graphs. In this section, we provide a table of 27 nonisomorphic 16-run maximal
linear graphs. This table is arranged in the order that the graph with the larger poly-
gon is listed before the one with smaller polygon. The arrangement makes it easier to
check if a given graph is a subgraph of one in the table. We believe, though we can-
not prove, that there are no more than 27 nonisomorphic 16-run maximal linear graphs.
Some graphs in the table are constructed by the methods given in Section 3, others are
constructed by trial and error. Withh = 2 in Section 3,L46 gives graphs 11 and 22,
and L41, Lao, Las, Lil.S’ Lag, Las, La7, L21_7: Lag give graphs 27, 25, 2, 3, 26, 23,

18, 13, 16, respectively. Taguchi’'s 16-run linear graphs 1, 2, 3, 4, 5, 6 are our graphs



7,17, 19, 25, 27, 23, respectiveldu and Chen (1991sted 190 16-run linear graphs
according to their defining relations. We can verify that each one is a subgraph of one
of our 27 graphs. Our graphs 3 and 16 are the only two graphs which are not found in
Taguchi (1987)or Wu and Chen (1991). Again by letting 0 and 1 be the elements of
GF(2), we use the numbers 1, ..., 15 to represent the 15 points (8 Xp as below.

1 234567 89 10 11 12 13 14 15
c6oo0000011 1 1 1 1 1 1
6001111000 0 1 1 1 1
060110011001 1 0 0 1 1
1010101010 1 0 1 0 1

Table 1. 16-run maximal linear graphs

11
7) 8)
8 7 15 8 7 15
\\\9\ \‘\
14 [ 14
| 13 1 12 13 1 u 10
; . 1 4 ,V/ 3
A8 45—
9 10
) 8 7 15 10 =5 ) 2 6 4
14
12 13 1 3 5/ /11 h12
/ 15
4 6 2 11 =9 1 14) S 7 13 10



11) 12)
1 3 10 12— 2
13, 9
3 5 pz2 14 13 ]1 6
2 7;; 4 . .11 1 11)5 4 s 7‘ . %
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