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Construction ofm4-run linear graphs by
finite geometries

Chung-yi Suen

Introduction

In a fractional factorial design where the main effect of each factor and some two-factor 
interactions are to be estimated, a graph, which consists of vertices and edges, is usually 
used to represent the model. Each vertex in the graph denotes the main effect of a factor, and 
the interaction of two factors is denoted by the edge joining the two factors. Taguchi (1959, 
1960) introduced linear graphs, which associate graphs with orthogonal arrays of strength 
two, for planning this type of experiments. Linear graphs have since been used extensively 
in the design of industrial experiments. Designs obtained from linear graphs, which were 
shown by Dey and Suen (2002) to satisfy the combinatorial conditions given by Dey and



Mukerjee (1999),are universally optimal(as defined byKiefer, 1975)for estimating the
specified main effects and two factor interactions among all designs involving the same
number of runs.

In this paper, we consider symmetrical factorial designs where each factor hasm levels.
An orthogonal array OA(N, k, m, t), havingN rows,k columns,m symbols, and strength
t, is an N× k array with elements from a set ofm symbols in which all themt possible
combinations of symbols occur equally often as rows in anyN × t subarray. Here we shall
use orthogonal arrays of strength two only. A linear graph for an orthogonal array is an
assignment of the columns of the array to the vertices and edges of a graph so that different
vertices or edges correspond to different columns. Any column of the orthogonal array can
be assigned to a vertex of the graph, but them − 1 columns assigned to an edge must be
carefully chosen so that the edge represents the interaction of the two vertices on the edge.

Collections of linear graphs can be found in the appendices of Taguchi (1987) andWu
and Chen (1992).Sun and Wu (1994)also gave interaction graphs for three-level designs,
but some of their designs allow only partial estimation of certain two-factor interactions.
We now briefly describe Taguchi’s method for designing this type of experiments. Given
the main effects of a set of factors and some two-factor interactions to be estimated, the
investigator first draws a graph according to the model. The investigator then searches
through the list of linear graphs to see if any graph contains the model as a subgraph. If
a linear graph in the list is found to contain the drawn graph then it can be used in the
experiment by dropping the unused vertices and edges. A disadvantage of this method, as
Wu and Chen (1992)pointed out, is that the total number of linear graphs is usually too large
to be included in the collection. Only six types of 16-run linear graphs are given, out of more
than 800 types of graphs, inTaguchi’s (1987)table.Wu and Chen (1991)had 190 16-run
linear graphs in their collection. While it is true that the total numbers of linear graphs are
usually too large for large-run plans, we believe that among those “more than 800 types
of graphs” for 16-run designs, most of them are subgraphs of others. An attempt to list all
nonisomorphic maximal linear graphs for 16-run designs is given in the last section.

In Section 2, the geometric approach to construct linear graphs is described. The concept
of maximal linear graphs is introduced to reduce the number of nonisomorphic graphs.
In Section 3, several series ofm4-run linear graphs are constructed using the geometric
properties of PG(3, m). 81-run linear graphs are given as examples. However, we are not
ready to give a complete list of 81-run linear graphs because we think there are too many of
them. In Section 4, we give a list of 27 nonisomorphic 16-run maximal linear graphs. We
believe that this list is complete although we cannot prove it.

Linear graphs and finite geometries

Since many orthogonal arrays are constructed by using finite fields and finite geometries,
we shall use a geometric approach to demonstrate linear graphs. Letmbe a prime or a power
of a prime, and let PG(r − 1, m) denote the(r − 1)-dimensional finite projective geometry
over GF(m), the finite field ofm elements. A point in PG(r − 1, m) is represented by an
r-tuple(x0, x1, . . . , xr−1), wherex0, x1, . . . , xr−1 are elements of GF(m) which cannot be
all 0’s. Twor-tuples represent the same point if one is a multiple of the other. Therefore there



are(mr −1)/(m−1)points in PG(r −1, m).A t-flat in PG(r −1, m) is a set of points which
are linear combinations oft + 1 independent points. There are(mt+1 − 1)/(m− 1) points

in a t-flat, and there are(m
r−1)(mr−1−1)···(mr−t−1)

(mt+1−1)(mt−1)···(m−1)
t-flats in PG(r − 1, m). 0-flats, 1-flats,

and 2-flats are also called points, lines, and planes, respectively. Given integerss, t, s � t ,

there are(mr−s−1−1)(mr−s−2−1)···(mt−s+1−1)

(mr−t−1−1)(mr−t−2−1)···(m−1)
t-flats passing through ans-flat in PG(r − 1, m).

For more properties about finite projective geometries, we refer toHirschfeld (1979).
Now letAbe anr×(mr−1)/(m−1)matrix with the(mr−1)/(m−1) r×1 column vectors

corresponding to all the points of PG(r−1, m). Then themr ×(mr −1)/(m−1)array, whose
row vectors are elements of the row space ofA, forms an OA(mr, (mr −1)/(m−1), m,2).
Since the matrixAgenerates the orthogonal array, the(mr−1)/(m−1)points of PG(r−1, m)

can be used to represent the columns of this array. LetL be a graph withn vertices andk
edges, thenL is a linear graph for the orthogonal array OA(mr, (mr − 1)/(m − 1), m,2)

if the following assignment is possible: (a) assign each vertex a point in PG(r − 1, m)

and assign each edgem − 1 other points on the line joining the two vertices; and (b) the
n + k(m − 1) points corresponding to then vertices andk edges are distinct. We also callL
anmr -run linear graph. Clearly, a necessary condition forL to be anmr -run linear graph is
n+k(m−1) � (mr −1)/(m−1).L is said to besaturatedif n+k(m−1)=(mr −1)/(m−1).
If L is not saturated, we can add(mr − 1)/(m − 1) − n − k(m − 1) isolated vertices to it
and assign them to the remaining unassigned points in PG(r − 1, m) to make it saturated.

Since isolated vertices can be added to a linear graph easily, we ignore all isolated vertices
when isomorphisms of linear graphs are considered. Lete(L) denote the set of all edges of
a linear graphL, and letL1 andL2 be twomr -run linear graphs.L1 is said to be a subgraph
of L2 (L1 ⊆ L2) if it is possible to relabel the vertices ofL1 such thate(L1) ⊆ e(L2). If L1
is a subgraph ofL2 butL2 is not a subgraph ofL1, thenL1 is said to be apropersubgraph
of L2. L1 andL2 are said to beisomorphicif L1 ⊆ L2 andL2 ⊆ L1. Clearly, if L1 is a
subgraph ofL2, thenL1 can be obtained fromL2 by deleting some edges.

Definition 2.1. An mr -run linear graphL is said to bemaximalif L is not a proper subgraph
of any othermr -run linear graph.

It is only necessary to list nonisomorphic maximal linear graphs for each orthogonal
array since all other linear graphs can be obtained from them by deleting some edges. An
mr -run linear graph withn vertices andkedges is maximal if it has no isolated vertices and
(mr − 1)/(m− 1)− n − k(m − 1) < m− 1. In particular, a saturated linear graph with no
isolated vertices is maximal.

Since a model is completely determined by its graph, we are interested in the isomorphism
of the graphs instead of the designs in this paper. The approach used byWu and Chen (1992)
andSun and Wu (1994)is different. They started with nonisormorphic designs, and listed
nonisomorphic graphs for each design.As a result, some of their graphs from nonisomorphic
designs are isomorphic.

For convenience, we shall use the following notations for graphs.

1. (F1, F2; F3, F4; . . . ; F2u−1, F2u)1: a graph consisting of 2u verticesF1, . . . , F2u andu
edgesF1F2, F3F4, . . . , F2u−1F2u.



2. (F1 . . . , Fu; Fu+1 . . . , Fu+v)2: a graph consisting ofu + v verticesF1, . . . , Fu+v and
uv edgesFiFj (1 � i � u, u + 1 � j � u + v).

3. (F1, . . . , Fu)3: a graph consisting ofu verticesF1, . . . , Fu anduedgesF1F2, F2F3, …,
Fu−1Fu, FuF1.

A graph may consist of one or more components of the above as subgraphs. There may be
several different ways to represent a graph using the above notations. If a graph consists of
more than one component, we shall choose the components such that any two components
may share the same vertex but not the same edge. In general, we like any two components
to share the least number of vertices as possible.

Sometimes it is not easy to see if a graph is a subgraph of another because people draw
graphs differently. For example, the left of the following two graphs is a 16-run linear graph
taken fromWu and Chen (1992). We cannot easily tell if it is a subgraph of any of the 27
16-run maximal linear graphs in Table 1. But if we draw the graph as the one on the right,
it is easily seen to be a subgraph of the graph 8.

A suggestion to help determine the isomorphism of two graphs, as indicated in the above
example, is that we should always show the largest polygon when drawing graphs. Most
linear graphs in this paper show the largest polygons except when it is difficult to draw that
way such as Example 6(a).

m4-run linear graphs

Dey and Suen (2002)used finite geometries to construct several families of universally
optimal designs for estimating certain main effects and two-factor interactions.Their designs
are actually Taguchi’s linear graphs. However, their constructions are more general and
cover only a few specific cases. In this section, we focus on the construction ofm4-run
linear graphs only and try to cover as many graphs as possible. Hence some of our linear
graphs are special cases ofDey and Suen (2002).

We first consider them3-run linear graphs which are associated with the OA(m3, m2 +
m + 1, m, 2). As discussed in the previous section, the orthogonal array is represented by
the finite projective plane PG(2, m). The following are the only two nonisomorphicm3-run
maximal linear graphs.

L3.1 = {(F1, F2, F3)3}, whereF1, F2, F3 are three noncollinear points in PG(2, m).
L3.2 = {(F0; F1, . . . , Fm+1)2}, whereF1, . . . , Fm+1 arem + 1 points on a line andF0 is

a point not on this line.
We next consider them4-run linear graphs which are associated with the OA(m4, m3 +

m2+m+1, m, 2). In addition to the properties mentioned in Section 2, it is helpful to know
that them3 + m2 + m + 1 points of PG(3, m) can be partitioned intom2 + 1 disjoint lines.



The following maximal linear graphs are constructed by using the geometry of PG(3, m).
For each of the graph, we illustrate it with an example of 81-run linear graph, i.e.m = 3.
Let 0, 1, 2 be the three elements of GF(3). We use the numbers 1, . . . , 40 to represent the
40 points of PG(3,3) as below.

(1) L4.1 = {(F1, F2; F3, F4; . . . ; F2m2+1, F2m2+2)1}. Let L1, . . . , Lm2+1 bem2 + 1 lines
which partition PG(3, m). For i = 1, . . . , m2 + 1, chooseF2i−1 andF2i to be two points
on the lineLi .

Example 1.

(2) L4.2 = {(F0; F1, . . . , Fm2+m+1)2}, whereF1, . . . , Fm2+m+1 arem2 + m + 1 points
on a plane andF0 is a point not on this plane.

Example 2.

(3) L4.3 = {(F0, . . . , Fm; F ′
0, . . . , F

′
m)2}, whereF0, . . . , Fm arem + 1 points on a lineL

andF ′
0, . . . , F

′
m arem + 1 points on another line which do not intersectL.

We now construct more graphs fromL4.3. Let x2 − �1x − �0 = 0 be a primitive poly-
nomial in GF(m2), and letx0, x1, x′

0, x′
1 be the coordinates of the four independent points

F0, F1, F
′
0, F

′
1 in PG(3, m), respectively. Fori�2, define recursivelyxi ≡ �0xi−2+�1xi−1

andx′
i ≡ �0x′

i−2 + �1x′
i−1. Let Fi andF ′

i be the points with coordinatesxi andx′
i , respec-

tively. Then it can be shown thatFi(F
′
i ) andFj (F

′
j ) represent the same point ifi ≡ j (mod



m + 1). The(m + 1)2 two-factor interactions inL4.3 can be partitioned intom + 1 groups
{F0F

′
0, . . . , FmF ′

m}, {F0F
′
1, F1F

′
2, . . . , FmF ′

0}, . . . , {F0F
′
m, F1F

′
0, . . . , FmF ′

m−1}of m + 1
two-factor interactions each. Let�1, . . . , �m−1 be them−1 nonzero elements of GF(m). For
eachj = 0, . . . , m, thejth group{F0F

′
j , F1F

′
j+1, . . . , FmF ′

m+j } are represented bym2 − 1

points with coordinatesxk + �ix
′
j+k(k = 0, . . . , m; i = 1, . . . , m− 1). Thesem2 − 1 points

can be partitioned intom− 1 linesLi,j ={x0 + �ix
′
j , ..., xm + �ix

′
j+m} (i = 1, . . . , m− 1).

Let Fj(m−1)+i,1 andFj(m−1)+i,2 be any two points on the lineLi,j , then thejth group of
m + 1 two-factor interactions can be replaced by 2(m − 1) main effects andm − 1 two
factor interactions(Fj (m−1)+1,1, Fj (m−1)+1,2; . . . ; F(j+1)(m−1),1, F(j+1)(m−1),2)1.

Various linear graphs can be obtained by replacing one or more groups ofm+1 two-factor
interactions by the correspondingm − 1 pairs of factors. In particular, by replacing thejth
group bym − 1 pairs of factors for eachj = 1, ..., m− 1, we have the following graph.

L′
4.3 = {(F0, F

′
0, . . . , Fm, F ′

m)3, (Fm,1, Fm,2; . . . ; Fm2−m,1, Fm2−m,2)1}.

Example 3. (a) By choosing(F0, F1, F2, F3, F
′
0, F

′
1, F

′
2, F

′
3) = (1,5,6,7,2, 14, 17,20),

we have the graphL4.3.

(b) Replacing the two-factor interactionsF0F
′
2, F1F

′
3, F2F

′
0, andF3F

′
1 in (a) by the graph

(9,22; 12, 21)1, we have the following linear graph.

(c) Replacing the two-factor interactionsF0F
′
1, F1F

′
2, F2F

′
3, andF3F

′
0 in (b) by the graph

(10, 18;13,19)1, we have the linear graphL′
4.3.



(d) Replacing the two-factor interactionsF0F
′
0, F1F

′
1, F2F

′
2, andF3F

′
3 in (b) by the graph

(3,25;4, 33)1, we have the following linear graph.

(4) L4.4 = {(F0,1; F1,1, . . . , Fm,1)2, . . . , (F0,m+1; F1,m+1, . . . , Fm,m+1)2}. Let F0,1, . . . ,

F0,m+1 be them + 1 points on a lineL, and letH1, . . . , Hm+1 be them + 1 planes through
L. For i= 1, . . . , m + 1, letLi be a line on the planeHi which does not pass through the
pointF0,i . ChooseF1,i, . . . , Fm,i to be thempoints on the lineLi but not onL.

Example 4. By choosing(F0,1, F0,2, F0,3, F0,4) = (1,2, 3,4), we have

(5) L4.5 = {(F0,1; F0,2, F1,1, . . . , Fum,1)2, (F0,2; F1,2, . . . , F(m+1−u)m,2)2}, where 1� u

� m. LetF0,1 andF0,2 be two points on a lineL, and letH1, . . . , Hm+1 be them+1 planes
throughL. For i= 1, . . . , u, let Li be a line on the planeHi which does not pass through
the pointF0,1 and chooseF(i−1)m+1,1, . . . , Fim,1 to be thempoints on the lineLi but not
onL. For i=u+1, . . . , m+1, letLi be a line on the planeHi which does not pass through
the pointF0,2 and chooseF(i−u−1)m+1,2, . . . , F(i−u)m,2 to be them points on the lineLi

but not onL.

Example 5. By choosing(F0,1, F0,2) = (1,2), we have two linear graphs.(a) Withu = 1
or 3, we have

(b) With u = 2, we have



(6) L4.6 = {(F1, . . . , Ft ; F0,1, . . . , F0,m+1)2, (F0,1; F1,1, . . . , Fu1m,1)2, . . . , (F0,v; F1,v,

. . . , Fuvm,v)2}, where 1� t � m, 1 � v � m + 1− t,
∑v

i=1ui = m + 1− t, ui �1. LetL1
andL2 be two disjoint lines, and letF0,1, . . . , F0,m+1 andF1, . . . , Fm+1 be the points on
the linesL1 andL2, respectively. Fori = 1, . . . , m+ 1 − t , let Hi be the plane containing
the lineL1 and the pointFt+i and letL′

i be a line on the planeHi which does not pass
through the pointF0,i . For i= 1, . . . , v andj = 1, . . . , ui , chooseF(j−1)m+1,i, . . . , Fjm,i

to be thempoints on the lineL′
u1+···+ui−1+j but not onL1.

Example 6. By choosing(F0,1, F0,2, F0,3, F0,4, F1, F2, F3, F4)=(1,2, 3,4, 5,14, 23,32),
we have the following linear graphs.(a) Witht = 3, v = 1, andu1 = 1, we have

(b) With t = 2, v = 1, andu1 = 2, we have

(c) With t = 2, v = 2, andu1 = u2 = 1, we have

(d) With t = 1, v = 2, andu1 = 2 andu2 = 1, we have

(e) With t = 1, v = 3, andu1 = u2 = u3 = 1, we have



(7)L4.7={(F0,0; F1,0, . . . , F(m−1)2,0)2, (F0,1; F0,2, F1,1, . . . , Fm−1,1)2, (F0,2; F0,3, F1,2,

. . . , Fm−1,2)2, (F0,3; F0,1, F1,3, . . . , Fm−1,3)2}. Let F0,0, F0,1, F0,2, F0,3 be four points
which are not on the same plane, and letLi,j be the line through the pointsF0,i and
F0,j for i, j = 0, 1,2, 3, i = j . ChooseF1,0, . . . , F(m−1)2,0 to be the(m − 1)2 points on
the plane containing pointsF0,1, F0,2, F0,3 but not on the linesL1,2, L1,3, L2,3. Choose
F1,1, . . . , Fm−1,1 to be them − 1 points other thanF0,0 andF0,2 on the lineL0,2. Choose
F1,2, . . . , Fm−1,2 to be them − 1 points other thanF0,0 and F0,3 on the lineL0,3.
ChooseF1,3, . . . , Fm−1,3 to be them − 1 points other thanF0,0 and F0,1 on the line
L0,1.

With the same choice of the points in the graphL4.7, we also obtain

L′
4.7={(F0,0; F1,0, . . . , F(m−1)2,0)2, (F0,1; F0,0, F0,2, F1,1, . . . , Fm−1,1)2,

(F0,1, F0,2; F0,3, F1,2, . . . , Fm−1,2)2}.

Example 7. By choosing(F0,0, F0,1, F0,2, F0,3) = (14, 1,2, 5), we have (a) L4.7 and (b)
L′

4.7. (a)

(8) L4.8 = {(F1,1, . . . , Fm,1; F1,2, . . . , Fm,2)2, (Fm+1,1; Fm+1,2, F1,3, . . . , Fm−1,3)2,

(Fm+1,2; F1,4, . . . , Fm−1,4)2}. Let F1,1, . . . , Fm+1,1 and F1,2, . . . , Fm+1,2 be the points
on two disjoint linesL1 andL2, respectively. ChooseF1,3, . . . , Fm−1,3 to be them − 1
other points on the line joining the pointsF1,1 andFm+1,2, and chooseF1,4, . . . , Fm−1,4 to
be them − 1 other points on the line joining the pointsF1,2 andFm+1,1.

Example 8. By choosing(F1,1, F2,1, F3,1, F4,1)=(5,6,7,1)and(F1,2, F2,2, F3,2, F4,2)=
(14, 17,20, 2), we have

Linear graphsL4.1, L4.3, L4.4, andL4.2 are special cases of Theorems 3.3–3.5, and
Corollary 3.1 ofDey and Suen (2002), respectively. Graphs derived fromL4.3 and other
series of the above linear graphs arenew.

Ten more 81-run maximal linear graphs obtained by trial and error are listed in the
following example.
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Example 9.



Taguchi (1987)listed 14 nonisomorphic 81-run linear graphs, where some of them are not
maximal. In fact, his graph 11 is a proper subgraph of his own graph 3. Examples 1, 2, 5(b),
and 9(g) are Taguchi’s graphs 13, 12, 14, and 3, respectively. Taguchi’s graph 8 is a proper
subgraph of Example 7. Taguchi’s graphs 4 and 7 are proper subgraphs of Example 9(i).
Sun and Wu (1994)also listed some 81-run graphs, but their graphs allow partial estimation
of two-factor interactions. Most of their graphs are not maximal since their approach is
different.

All 81-run maximal linear graphs given in this section are saturated and have no isolated
vertices. We believe that there are other such 81-run maximal linear graphs. In addition, we
also believe that there are many other 81-run maximal linear graphs with isolated vertices
such as Taguchi’s graph 1. In our opinion, the number of nonisomorphic 81-run maximal
linear graphs is too large to list them all.

16-run linear graphs

Unlike the 81-run linear graphs, there are not that many nonisomorphic 16-run maximal
linear graphs. In this section, we provide a table of 27 nonisomorphic 16-run maximal
linear graphs. This table is arranged in the order that the graph with the larger poly-
gon is listed before the one with smaller polygon. The arrangement makes it easier to
check if a given graph is a subgraph of one in the table. We believe, though we can-
not prove, that there are no more than 27 nonisomorphic 16-run maximal linear graphs.
Some graphs in the table are constructed by the methods given in Section 3, others are
constructed by trial and error. Withm = 2 in Section 3,L4.6 gives graphs 11 and 22,
andL4.1, L4.2, L4.3, L′

4.3, L4.4, L4.5, L4.7, L′
4.7, L4.8 give graphs 27, 25, 2, 3, 26, 23,

18, 13, 16, respectively. Taguchi’s 16-run linear graphs 1, 2, 3, 4, 5, 6 are our graphs



7, 17, 19, 25, 27, 23, respectively.Wu and Chen (1991)listed 190 16-run linear graphs
according to their defining relations. We can verify that each one is a subgraph of one
of our 27 graphs. Our graphs 3 and 16 are the only two graphs which are not found in
Taguchi (1987)or Wu and Chen (1991). Again by letting 0 and 1 be the elements of
GF(2), we use the numbers 1, . . . , 15 to represent the 15 points in PG(3,2) as below.
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