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Closed-Range Composition Operators
on A

2 and the Bloch Space

John R. Akeroyd, Pratibha G. Ghatage and Maria Tjani

Abstract. For any analytic self-map ϕ of {z : |z| < 1} we give four
separate conditions, each of which is necessary and sufficient for the com-
position operator Cϕ to be closed-range on the Bloch space B. Among
these conditions are some that appear in the literature, where we pro-
vide new proofs. We further show that if Cϕ is closed-range on the
Bergman space A

2, then it is closed-range on B, but that the converse
of this fails with a vengeance. Our analysis involves an extension of
the Julia-Carathéodory Theorem.

Mathematics Subject Classification (2010). Primary 47B33, 47B38;
Secondary 30D55.

Keywords. Composition operator, analytic self-map, Blaschke product,
univalent map, angular derivative, nontangential limit, Bergman space,
Bloch space.

Preliminaries

Let D denote the unit disk {z : |z| < 1} and let T denote the unit circle
{z : |z| = 1}. We let A denote two-dimensional Lebesgue measure on D. The
Bergman space A

2 is the collection of functions f that are analytic in D such
that

||f ||2
A2 :=

∫

D

|f |2 dA < ∞.

As a closed subspace of L2(A), A
2 forms a Hilbert space with respect to

the inner product <f, g>:=
∫

D
fgdA. The Bloch space B is the collection of

functions f that are analytic in D such that

||f ||B := |f(0)| + sup
z∈D

(1 − |z|2)|f ′(z)| < ∞.

Now || · ||B defines a norm on B, and under this norm B forms a Banach space.
Moreover, ||f ||A2 ≤ 3||f ||B for any function f that is analytic in D, and hence
B ⊆ A

2. A function ϕ that is analytic in D and that satisfies ϕ(D) ⊆ D is



called an analytic self-map of D. Analytic automorphisms of D are Möbius
transformations of the form z �→ c α−z

1−ᾱz , where c is some unimodular constant
and α is some point in D; we let ϕα(z) = α−z

1−ᾱz . The so-called pseudohyperbol-
ic metric on D is given by ρ(z, w) = |ϕw(z)|; and is indeed a metric. For any
z in D and any r, 0 < r < 1, we let D(z, r) denote the pseudohyperbolic disk
of radius r about z, namely, {w ∈ D : ρ(z, w) < r}. Now if ϕ is an analytic
self-map of D, then the composition operator Cϕ, given by Cϕ(f) := f ◦ ϕ,
is a bounded operator on both A

2 and B. This result for the Bloch space
is a simple consequence of the Schwarz-Pick Lemma (cf., [7, page 2]), and
for the Bergman space case one may consult [13, page 17]. Moreover, if ϕ is
not constant, then Cϕ is one-to-one on these spaces and hence, by the Open
Mapping Theorem, is closed-range if and only if it is bounded below. For any
analytic self-map ϕ of D, define τϕ on D by

τϕ(z) :=
(1 − |z|2)ϕ′(z)

1 − |ϕ(z)|2 .

For ε > 0, let Λε = {z ∈ D : |τϕ(z)| > ε} and let Fε = ϕ(Λε). We say that Fε
satisfies the reverse Carleson condition if there exist s and c, 0 < s, c < 1,
such that

A(Fε ∩D(z, s)) ≥ cA(D(z, s)),

for all z in D; cf., [10] for seminal work regarding this condition. It has been
shown that Cϕ is closed-range on B if and only if there exists ε > 0 such that
Fε satisfies the reverse Carleson condition; cf. [9] and [3]. In fact, in [3] it is
shown that, what appears to be a weaker condition than the one stated above,
is indeed equivalent. To be specific, if there exist ε > 0 and s, 0 < s < 1, such
that Fε ∩D(z, s) �= ∅ for all z in D, then Cϕ is closed-range on B. One of the
first results of this paper adds one more equivalent condition to this list, and
we give a brief and rather novel proof that each of the three conditions are
equivalent to Cϕ being closed-range on B; see Theorem 2.2. We then turn to
connections between the Bloch and Bergman space settings. In the Bergman
space setting there is an analogue of Λε that takes center stage. Indeed, if ϕ is
an analytic self-map of D and ε > 0, then we let Ωε = {z ∈ D : 1−|z|2

1−|ϕ(z)|2 > ε}
and let Gε = ϕ(Ωε). In [1] it is shown that Cϕ is closed-range on A

2 if and
only if there exists ε > 0 such that Gε satisfies the reverse Carleson condition;
that is, there exist s and c, 0 < s, c < 1, such that

A(Gε ∩D(z, s)) ≥ cA(D(z, s)),

for all z in D. Here, we establish an extension of the Julia-Carathéodory The-
orem (see Theorem 3.4) and use it to show that if Cϕ is closed-range on A

2,
then there exist ε and s, 0 < ε, s < 1, such that {z : s ≤ |z| < 1} ⊆ Fε; see
Theorem 3.5. From this we easily have the implication that if Cϕ is closed-
range on A

2, then it is also closed-range on B; see Corollary 3.6. We also
(by examples) show that the converse of Corollary 3.6 fails, without remedy.
Indeed, we construct a thin Blaschke product that fixes zero and that has no
angular derivative anywhere on T, whence CB is norm preserving on B and



yet is compact on A
2; see Example 3.8. And we also construct a univalent

analytic self-map h of D that has no unimodular nontangential boundary
values on T, and thus has no angular derivative anywhere on T (whence, Ch
is compact on A

2), such that Ch is closed-range on B; see Example 3.10. We
close the paper with a result that follows easily from work done in [1] and a
remark concerning Fredholm operators; see Sect. 4.

Regarding the Bloch Space

Recall that, for any analytic self-map ϕ of D and any ε > 0,

τϕ(z) :=
(1 − |z|2)ϕ′(z)

1 − |ϕ(z)|2 , and Λε := {z ∈ D : |τϕ(z)| > ε}.

Lemma 2.1. For any ε > 0 there exist r and s, 0 < r, s < 1, such that if
z ∈ Λε, then
i) D(z, r) ⊆ Λ ε

2
,

ii) ϕ is univalent in D(z, r) and
iii) D(ϕ(z), s) ⊆ ϕ(D(z, r)).

Proof. (i) By [8], τϕ is Lipschitz with respect to the pseudohyperbolic metric.
Indeed, there is a positive constant c, independent of ϕ and of z and w in D,
such that

|τϕ(z) − τϕ(w)| ≤ cρ(z, w).

Let r = ε
2c and suppose that |τϕ(w)| ≤ ε

2 . Then, for z in Λε,
ε

2
< ||τϕ(z)| − |τϕ(w)|| ≤ |τϕ(z) − τϕ(w)| ≤ cρ(z, w).

Therefore, if z ∈ Λε and ρ(z, w) < ε
2c , then w ∈ Λ ε

2
.

(ii) Suppose that a ∈ Λε and α := ϕ(a). Notice that ϕα ◦ ϕ ◦ ϕa is an
analytic self-map of the unit disk that maps 0 to 0 and that

|(ϕα ◦ ϕ ◦ ϕa)′(0)| = |τϕα◦ϕ◦ϕa
(0)| = |τϕ◦ϕa

(0)| = |τϕ(a)| > ε.

We argue that ϕα ◦ ϕ ◦ ϕa is univalent in {z : |z| < r}; where, as in (i),
r := ε

2c . Multiplying ϕα ◦ ϕ ◦ ϕa by an appropriate unimodular constant we
may assume that (ϕα ◦ ϕ ◦ ϕa)′(0) is a positive real number (greater than
ε). And using the facts that τϕα◦ϕ◦ϕa

is Lipschitz with respect to the pseu-
dohyperbolic metric, with the same Lipschitz constant c, and that ϕα ◦ϕ◦ϕa
maps 0 to 0, we find that

Re((ϕα ◦ ϕ ◦ ϕa)′(z)) >
ε

2
, (2.1.1)

whenever |z| < r. Now let z and w be distinct points both of which have
modulus less than r, and define γ on [0, 1] by γ(t) = (1 − t)z + tw. Then, by
(2.1.1),

0 �= (w − z) ·
1∫

0

(ϕα ◦ ϕ ◦ ϕa)′(γ(t))dt = (ϕα ◦ ϕ ◦ ϕa)(w) − (ϕα ◦ ϕ ◦ ϕa)(z),



and hence ϕα ◦ ϕ ◦ ϕa is univalent in {z : |z| < r}. It now follows that ϕ is
univalent in D(a, r).

(iii) Given the terminology of part (ii), h(z) := 1
rε (ϕα ◦ ϕ ◦ ϕa)(rz) is

analytic and univalent in D, h(0) = 0 and |h′(0)| > 1. Therefore, by the
Koebe One-Quarter Theorem (cf., [13, page 154]),{

z : |z| < 1
4

}
⊆ h(D).

From this it follows that{
z : |z| < rε

4

}
⊆ (ϕα ◦ ϕ ◦ ϕa)({z : |z| < r}).

With s := rε
4 we then find that D(ϕ(a), s) ⊆ ϕ(D(a, r)). �

As before, let ϕ be an analytic self-map of D, let τϕ(z) = (1−|z|2)ϕ′(z)
1−|ϕ(z)|2

and for ε > 0, let Λε = {z ∈ D : |τϕ(z)| > ε} and let Fε = ϕ(Λε). We now
give two conditions, each of which is equivalent to Cϕ being closed-range on
B; cf., [9] and [3], or Theorem 2.2 below.
(∗) There exist ε > 0 and constants c and s, 0 < c, s < 1, such that

A(Fε ∩D(z, s)) ≥ cA(D(z, s)) for all z in D.
(#) There exist ε > 0 and s, 0 < s < 1, such that Fε ∩D(z, s) �= ∅ for all

z in D.

Theorem 2.2. Let ϕ be an analytic self-map of D. Then the following are
equivalent.
i) Cϕ is closed-range on B.
ii) Condition (∗) holds.
iii) Condition (#) holds.
iv) There are constants r, s and c, 0 < r, s, c < 1, such that, for any w in

D, there exists zw in D with the property: ϕ is univalent on D(zw, s),
ϕ(D(zw, s)) ⊆ D(w, r) and A(ϕ(D(zw, s))) ≥ c(1 − |w|2)2.

Proof. (i) =⇒ (iii). Since any Frostman shift of ϕ (i.e., ϕα ◦ϕ, where α ∈ D)
gives rise to a closed-range composition operator on B if and only if ϕ does,
we may assume that ϕ(0) = 0. Now suppose that (iii) does not hold. Then
we can find sequences {rn}∞

n=1, where 0 < rn < 1 and limr→∞ rn = 1, and
{wn}∞

n=1 in D, where limn→∞ |wn| = 1, such that

sup{|τϕ(z)| : z ∈ ϕ−1(D(wn, rn))} −→ 0,

as n → ∞. Let Δn = ϕ−1(D(wn, rn)) and letDn = D\Δn; for n = 1, 2, 3, ... .
Now

||ϕwn
◦ ϕ||B/C := sup{(1 − |z|2)|(ϕwn

◦ ϕ)′(z)| : z ∈ D}
= sup{[1 − ρ2(wn, ϕ(z))]|τϕ(z)| : z ∈ D}
≤ sup{[1 − ρ2(wn, ϕ(z))]|τϕ(z)| : z ∈ Δn}

+ sup{[1 − ρ2(wn, ϕ(z))]|τϕ(z)| : z ∈ Dn} −→ 0,

as n → ∞. Yet ||ϕwn
||B/C = 1, for all n. By Theorem 0 of [9] it now follows

that Cϕ is not closed-range on B.



(iii) =⇒ (ii). We assume (iii), that (#) holds. Then, by Lemma 2.1,
(∗) holds for ε

2 .
(ii) =⇒ (i). This follows immediately from Proposition 1 and Theorem 1

of [9].
At this point we have established the equivalence of (i), (ii) and (iii).
(iii) =⇒ (iv). This follows immediately from Lemma 2.1.
(iv) =⇒ (iii). Assuming (iv),∫

D(zw,s)

|ϕ′(z)|2dA(z) ≥ c(1 − |w|2)2,

and hence ∫

D(zw,s)

|ϕ′(z)|2
(1 − |w|2)2 dA(z) ≥ c.

Thus we can find a positive constant ε, dependent only on r and s, such that∫

D(zw,s)

|τϕ(z)|2dA(z) ≥ ε2A(D(zw, s)).

Therefore, |τϕ(z)| ≥ ε for some z in D(zw, s), and hence Fε ∩D(w, r) �= ∅ for
each w in D; which gives us (iii). The proof is now complete. �

A special case of our next result is given by Theorem 2 of [9]; namely,
the case that ϕ is a univalent, analytic self-map of D. As is indicated in the
proof of Theorem 2.2, if f ∈ B, then ||f ||B/C := supz∈D(1 − |z|2)|f ′(z)|.
Corollary 2.3. Let ϕ be an analytic self-map of D. Then Cϕ is closed-range on
B if and only if there exists δ > 0 such that, for all α in D, ||ϕα ◦ϕ||B/C ≥ δ.

Proof. We may assume that ϕ(0) = 0 here since any Frostman shift of ϕ gives
rise to a closed-range composition operator on B if and only if ϕ does, and
since the collection of analytic automorphisms of D forms a group under the
operation of composition. Moreover, notice that ||ϕα||B/C = 1 for all α in D.
So, if Cϕ is closed-range on B, then, by Theorem 0 of [9], there exists δ > 0
such that ||ϕα ◦ ϕ||B/C ≥ δ for all α in D. Conversely, suppose that there
exists δ > 0 such that ||ϕα ◦ ϕ||B/C ≥ δ for all α in D. Then, by Proposition
2 of [9], (iii) of Theorem 2.2 holds and hence Cϕ is closed-range on B. �

The Context of A
2 Versus that of B

Let ϕ be an analytic self-map of D and, for ε > 0, let Ωε := {z ∈ D :
1−|z|2

1−|ϕ(z)|2 > ε}, let Gε = ϕ(Ωε) and let K = T ∩ Ωε. By the Julia-Carathéod-
ory Theorem (cf., [13, page 57]), ϕ has an angular derivative at each point
ξ in K, which we denote by ϕ′(ξ). Indeed, ϕ′(ξ) = ζξd, where ζ := ϕ(ξ) :=
∠ limz→ξ ϕ(z) and d is given by

d := lim inf
z→ξ

1 − |ϕ(z)|
1 − |z|

(
= lim inf

z→ξ

1 − |ϕ(z)|2
1 − |z|2

)
.



The Julia-Carathéodory Theorem tells us that d > 0. And since ξ ∈ K,
d ≤ 1

ε .

Proposition 3.1. Given the terminology of the above discussion, ϕ is contin-
uous on Ωε and ϕ′ is continuous on K.

Proof. The continuity of ϕ on Ωε was established in [1]; see Remark 2.6 in
this reference. Now let {ξn}∞

n=1 be a sequence in K that converges to ξ0 in
K, and let dn = |ϕ′(ξn)|, for n = 0, 1, 2, . . .. Since ϕ is continuous on K,
the continuity of ϕ′ on K will follow if we show that dn −→ d0, as n → ∞.
Now by the discussion just prior to this proposition, {dn}∞

n=1 is bounded.
And so, passing to a subsequence if necessary, we may assume that dn −→ d,
as n → ∞. Thus our goal here is to show that d = d0. To this end, by the
Julia-Carathéodory Theorem we can find a sequence {rn}∞

n=1 in (0, 1), such
that limn→∞ rn = 1 and |dn − 1−|ϕ(rnξn)|

1−rn
| < 1

n , for n = 1, 2, 3, ... . Hence,

{rnξn}∞
n=1 is a sequence in D that converges to ξ0 and {1−|ϕ(rnξn)|

1−rn
}∞
n=1 con-

verges to d. Julia’s Theorem (cf., [13, page 63]) now tells us that d = d0. �

We now set the stage for two subsequent results.

Discussion 3.2. For any point ξ in T and any θ, 0 < θ < π, we let S(ξ, θ)
denote the interior of closed convex hull of {ξ} ∪ {z : |z| ≤ sin( θ2 )}. We
call S(ξ, θ) the Stolz region based at ξ with vertex angle θ. For our pur-
poses here it is sufficient that we keep the vertex angles of our Stolz regions
fixed at π

2 , though our arguments carry through for any fixed θ in the afore-
mentioned range. Let ϕ be an analytic self-map of D and, for ε > 0, let
Ωε = {z ∈ D : 1−|z|2

1−|ϕ(z)|2 > ε} and let K = T ∩ Ωε. Define Wε by

Wε =
⋃
ξ∈K

S(ξ, π
2
).

Suppose that {zn}∞
n=1 is a sequence in Wε that converges to a point ξ0 in

K. So, we can find a sequence {ξn}∞
n=1 in K such that zn ∈ S(ξn, π

2
) (for

n = 1, 2, 3, . . .) and limn→∞ ξn = ξ0. Now
• ζn := ϕ(ξn) := ∠ limz→ξn

ϕ(z), and
• ∠ limz→ξn

ϕ′(z) =: ϕ′(ξn) = ζnξndn – the angular derivative of ϕ at ξn,
where dn := |ϕ′(ξn)|.

By Proposition 3.1, ϕ′(ξn) −→ ϕ′(ξ0) = ζ0ξ0d0, as n → ∞, where ζ0 :=
ϕ(ξ0) := ∠ limz→ξ0 ϕ(z) and d0 := |ϕ′(ξ0)|. Since 0 < d0 < ∞, we can find
M > 1 such that 1

M ≤ dn ≤ M for all n.

Lemma 3.3. Assuming the terminology of Discussion 3.2, for any ε > 0, there
exist s, 0 < s < 1, and N (in N) such that∣∣∣dn − 1−|ϕ(z)|

1−|z|

∣∣∣ < ε,

whenever z ∈ S(ξn, π
2
), |z| > s and n ≥ N .

Proof. If not, then we can find d �= d0, a subsequence {ξnk
}∞
k=1 of {ξn}∞

n=1

and a sequence {z′
k}∞
k=1 such that



• z′
k ∈ S(ξnk

, π
2
) for all k,

• |z′
k − ξnk

| −→ 0 and hence |z′
k − ξ0| −→ 0 (as k → ∞), and

• (1 − |ϕ(z′
k)|)/(1 − |z′

k|) −→ d, as k → ∞.
By Julia’s Theorem this would then tell us that

d = |ϕ′(ξ0)| = d0;

a contradiction. �

Theorem 3.4. Assuming the terminology of Discussion 3.2, ϕ′ is continuous
on W ε.

Proof. Our proof here is based on Lemma 3.3 and some observations con-
cerning the proof of the Julia-Carathéodory Theorem in [13]. By Proposi-
tion 3.1, all we need to show is that, given the hypothesis of Discussion 3.2,
ϕ′(zn) −→ ϕ′(ξ0), as n → ∞.

Claim A. For any ε > 0 there exist s, 0 < s < 1, and N (in N) such that∣∣∣∣ζnξ̄ndn − ζn − ϕ(z)
ξn − z

∣∣∣∣ < ε,

whenever z ∈ S(ξn, π
2
), |z| > s and n ≥ N .

To justify this claim we first observe that, by Lemma 3.3, for any η > 0,
there exist σ, 0 < σ < 1, and ν (in N) such that∣∣∣∣dn − 1 − |ϕ(rξn)|

1 − r

∣∣∣∣ < η and
∣∣∣∣dn − 1 − |ϕ(rξn)|2

1 − r2

∣∣∣∣ < η (3.4.1)

provided σ ≤ r < 1 and n ≥ ν. Mimicking the proof of JC (1) =⇒ JC (2)
(in Sect. 4.5 of [13]), for n ≥ ν we carry the discussion to the right half-plane
{w : Re(w) > 0}. Let ϕn and ψn be the Möbius transformations given by
ϕn(z) := ξn+z

ξn−z and ψn(z) := ζn+z
ζn−z . Define Φn and γn on {w : Re(w) > 0}

by Φn(w) := (ψn ◦ ϕ ◦ ϕ−1
n )(w) and γn(w) := Φn(w) − cnw, where cn := 1

dn
.

Now by (3.4.1), if n ≥ ν and σ ≤ r < 1, then

dn − η <
1 − |ϕ(rξn)|

1 − r
,
1 − |ϕ(rξn)|2

1 − r2
< dn + η

and hence, by Julia’s Theorem and with wn,r := ϕn(rξn) (= 1+r
1−r ),

1
dn

≤ Re(Φn(wn,r))
Re(wn,r)

=
(

1 − |ϕ(rξn)|2
1 − r2

)
(1 − r)2

|ζn − ϕ(rξn)|2 <
dn + η

(dn − η)2
.

Therefore, if n is sufficiently large (allowing η to be sufficiently small), one
can force

Re(γn(wn,σ))
Re(wn,σ)

to be less than any prescribed positive real number; and wn,σ = 1+σ
1−σ , which

clearly does not vary with n. We let wn,σ play the role of w0 in the proof of
JC (1) =⇒ JC (2) (in Sect. 4.5 of [13]). And since the image under ϕ of any
compact subset of D is a compact subset of D, {|γn(wn,σ)|}∞

n=1 is bounded.
Thus, following through with the argument in [13], we find that, for any



τ > 0, there is a positive real number R such that if w ∈ ϕn(S(ξn, π
2
)) and

|w| > R, then ∣∣∣∣γn(w)
w

∣∣∣∣ < τ, (3.4.2)

provided n is sufficiently large. Now, via the correspondence w = ϕn(z),
routine calculations give that

w + 1
Φn(w) + 1

= ξnζ̄n

(
ζn − ϕ(z)
ξn − z

)
,

and hence, ∣∣∣∣γn(w) + 1
w + 1

∣∣∣∣ =
∣∣∣∣ ξn − z

ζn − ϕ(z)
− ξnζ̄ncnw

w + 1

∣∣∣∣ .
We now find that Claim (A) follows from (3.4.2).

Claim B. For any ε > 0 there exist s, 0 < s < 1, and N (in N) such that

|ζnξ̄ndn − ϕ′(z)| < ε,

whenever z ∈ S(ξn, π
2
), |z| > s and n ≥ N .

Now Claim (B) follows directly from Claim (A) and the proof of JC
(2) =⇒ JC (3) (in Sect. 4.6 of [13]). And by Claim (B) and the fact that
ϕ′(ξn) −→ ϕ′(ξ0), as n → ∞, we find that

ϕ′(zn) −→ ϕ′(ξ0),

as n → ∞; which completes our proof. �

Theorem 3.5. Let ϕ be an analytic self-map of D. If Cϕ is closed-range on
A

2, then there exist ε and s, 0 < ε, s < 1, such that {z : s ≤ |z| < 1} ⊆ Fε.

Proof. Suppose that Cϕ is closed-range on A
2. Then there exists ε > 0 such

that Gε := ϕ(Ωε) satisfies the reverse Carleson condition; cf., [1]. In partic-
ular, T ⊆ Gε. So, for each point υ0 in T, we can find a sequence {wn}∞

n=1

in Ωε such that {ϕ(wn)}∞
n=1 converges to υ0. Passing to a subsequence if

necessary, we may assume that {wn}∞
n=1 converges to some point ω0 in K :=

T∩Ωε. Therefore, by Julia’s Theorem, υ0 = ϕ(ω0) := ∠ limw→ω0 ϕ(w). Thus,
ϕ(K) = T. We proceed indirectly and suppose that the conclusion of this the-
orem fails. Then we can find a sequence {zn}∞

n=1 in D\{0}, such that {|zn|}∞
n=1

converges to 1 and

sup{|τϕ(w)| : ϕ(w) = zn} −→ 0, (3.5.1)

as n → ∞. Since ϕ(K) = T, there exists {ξn}∞
n=1 in K such that ϕ(ξn) =

ζn := zn

|zn| , for n = 1, 2, 3, . . .. Passing to a subsequence if need be, we may
assume that {ξn}∞

n=1 converges to some point ξ0 in K. Since, by Propo-
sition 3.1, ϕ is continuous on K, indeed, continuous on Ωε, we find that
{ζn}∞

n=1 converges to ζ0 := ϕ(ξ0). Now, by Theorem 3.4 and its proof, there
exist δ and s, 0 < δ, s < 1, and N in N such that

|τϕ(z)| ≥ δ,



whenever z ∈ S(ξn, π2 ), |z| > s and n ≥ N . Moreover, by Claim (A) in the
proof of Theorem 3.4 (that speaks to the conformality of ϕ at ξn), we can
find σ, 0 < σ < 1, and ν in N such that

{rζn : σ ≤ r < 1} ⊆ ϕ({z ∈ S(ξn,
π

2
) : |z| > s}),

whenever n ≥ ν. Since zn ∈ {rζn : σ ≤ r < 1}, if n is sufficiently large, we
find that (3.5.1) above cannot occur; and our proof is complete. �

Our next result is an immediate consequence of Theorem 3.5 and The-
orem 2.2; and so we state it without proof.

Corollary 3.6. Let ϕ be an analytic self-map of D. If Cϕ is closed-range on
A

2, then it is also closed-range on B.

A slight modification of the proof of Theorem 3.5 gives us the following
rather surprising result. It also can be viewed as a byproduct of the nice
behavior of ϕ on W ε, as indicated by Theorem 3.4.

Theorem 3.7. Let ϕ be an analytic self-map of D. Then the following are
equivalent.
i) Cϕ is closed-range on A

2.
ii) There exist ε, s and c, 0 < ε, s, c < 1, such that

A(Gε ∩D(z, s)) ≥ cA(D(z, s)),

for all z in D.
iii) There exist ε and s, 0 < ε, s < 1, such that {z : s ≤ |z| < 1} ⊆ Gε.

Proof. The equivalence between (i) and (ii) was established in [1]. And clearly
(iii) implies (ii). So we need only establish that (i) implies (iii). To this end,
assume that Cϕ is closed-range on A

2 and mimic the proof of Theorem 3.5,
replacing |τϕ(z)| by 1−|z|2

1−|ϕ(z)|2 , throughout. The argument carries over with
this modification to gives us (iii). �

By Theorem 2.5 of [1], the only univalent analytic self-maps of D that
give rise to closed-range composition operators on A

2 are the analytic auto-
morphisms of D. This is in contrast with the Bloch space setting. Indeed, if
ψ is any conformal mapping from D one-to-one and onto D \ [0, 1), then Cψ
is closed-range on B; cf., Example 2 of [9]. So, the converse of Corollary 3.6
fails. Our next two examples show that the converse fails with a vengeance.
Our first is an example of a thin Blaschke product B that fixes zero and has
no angular derivative at any point of the unit circle T; and by thin we mean
that (1 − |an|2)|B′(an)| −→ 1, as n → ∞, where {an}∞

n=1 are the zeros of B.
Therefore, CB is norm preserving on B (cf., [5], or [11]) and yet is compact
on A

2 (cf., [13, pages 52 and 195]). And since CB is compact and not of finite
rank on A

2, it is not closed-range on A
2. This first example is a factor of the

one produced by J. Shapiro on page 185 of [13].

Example 3.8. Let B∗ be the Blaschke product constructed by J. Shapiro on
page 185 of [13] and let {an}∞

n=1 be the zeros of B∗. Associated with each an
is an arc In of length 1

n of the form In = {eiθ : θn ≤ θ ≤ θn+1}. The zeros an



are given by: an := rne
iωn , where rn := 1 − 1

n2 and ωn := 1
2 (θn + θn+1). A

theorem of O. Frostman (cf., [13, page 183]) is then used to show that B∗ has
no angular derivative anywhere on T. For each positive integer ν, we define
the νth “layer” of zeros of B∗ as [aν ] := {aν , aν+1, . . . , aNν

}, where Nν is the
unique positive integer that satisfies:

T ⊆
Nν⋃
n=ν

In, yet T �⊆
Nν−1⋃
n=ν

In.

Since
∑Nν−1
n=ν

1
n < 2π, it follows that Nν < 540ν. For any positive integer ν,

let Bν be the Blaschke product with (simple) zeros [aν ]. For any ak in [aν ],
let Bk̂ν denote Bν with the Blaschke factor involving ak deleted. And choose
ak∗ in [aν ] \ {ak} such that ρ(ak, ak∗) ≤ ρ(ak, al), whenever al ∈ [aν ] \ {ak}.
Then, for such l,∣∣∣∣ ak − al

1 − ālak

∣∣∣∣
2

− 1 ≥ − (1 − r2k)(1 − r2k∗)
1 − 2rkrk∗ cos(θk − θk∗) + r2kr

2
k∗
.

Now, |θk − θk∗ | ≥ 1
4k and so, for ν sufficiently large,

1 − 2rkrk∗ cos(θk − θk∗) + r2kr
2
k∗ ≥ 1

20k2
.

Hence, ∣∣∣∣ ak − al
1 − ālak

∣∣∣∣
2

− 1 ≥ − 80
(k∗)2

≥ −80
ν2
,

independent of k and l in our range here. Therefore,

0 >

Nν∑
k �=l=ν

(∣∣∣∣ ak − al
1 − ālak

∣∣∣∣
2

− 1

)

≥ (540ν)(−80
ν2

) = −43, 200
ν

−→ 0,

as ν → ∞; uniformly in k, ν ≤ k ≤ Nν . From this it follows that

|Bk̂ν (ak)| −→ 1, (3.7.1)

as ν → ∞; uniformly in k, ν ≤ k ≤ Nν . Now since B∗ is a Blaschke product,

|Bν | −→ 1 (3.7.2)

uniformly on compact subsets of D, as ν → ∞. And since, for any fixed ν,
Bν is a finite Blaschke product,

|Bν(z)| −→ 1 (3.7.3)

uniformly in z, as |z| → 1−. Using (3.7.1)–(3.7.3), one can find a (rapidly)
increasing sequence {νj}∞

j=1 of positive integers such that [aνk
] ∩ [aνl

] = ∅ if
k �= l, and such that

B :=
∞∏
j=1

Bνj
,



whose (simple) zeros we enumerate as {αn}∞
n=1, satisfies

|Bn̂(αn)| −→ 1,

as n → ∞; where Bn̂ denotes B with the Blaschke factor involving αn deleted.
And we may assume that ν1 = 1. Hence, B is a thin Blaschke product that
fixes zero. Since the zeros of B consist of infinitely many disjoint layers of
the zeros of B∗, one can argue as in [13, page 185], and find that

∞∑
n=1

1 − |αn|
|ζ − αn|2 = ∞,

for each ζ in T. Thus, by a theorem of O. Frostman (cf., [13, page 183]), we
conclude that B has no angular derivative at any point in T.

Remark 3.9. The converse of Theorem 3.5 does not hold. Indeed, by Theo-
rem 2.7 of [4], if B is the Blaschke product that we produced in Example 3.8,
then

D ⊆ F 1
2
;

and yet CB is far from closed-range on A
2.

We now produce a univalent analytic self-map h of D that has no angu-
lar derivative at any point of T (whence, Ch is compact on A

2) such that
Ch is closed-range on B. This dramatically improves upon our understanding
of what is possible in the univalent case; cf., Example 2 of [9]. And since
h(D) contains no annulus with outer boundary equal to T (and similarly for
Example 2 of [9]), there is no analogue of Theorem 3.7 in the context of the
Bloch space.

Example 3.10. Here we construct a conformal mapping h from D one-to-one
and onto an infinite ribbon G that spirals out to T such that Ch is closed-
range on B. So h will have no unimodular nontangential boundary values
on T, and thus no angular derivative anywhere on T. We write h as the
composition of three conformal mappings:

• ζ = i
(

1+z
1−z + e

)
, which maps D univalently onto G1 := {ζ : Im(ζ) > e},

• ξ = log(ζ), which maps G1 univalently onto a smoothly bounded subre-
gion G2 of the swath {ξ : Re(ξ) > 1 and 0 < Im(ξ) < π} that asymp-
totically approximates this swath, and

• w = ξi, which maps G2 univalently onto an infinite ribbon G that spirals
out to T.

Thus, h(z) =
[
log

(
i
(

1+z
1−z + e

))]i
. Clearly h has no unimodular nontangen-

tial boundary values on T and thus has no angular derivative anywhere on
T. As we noted just prior to Example 3.8, this tells us that Ch is compact
and hence not closed-range on A

2. One may also refer to Theorem 2.5 of [1]
to obtain that Ch is not closed-range on A

2. Now let Γ = h([0, 1)), which
is an arc of infinite length that spirals out to T. Our strategy in showing
that Ch is closed-range on B is to first establish that there exists ε > 0 such
that Γ ⊆ Fε and then establish that there exists s, 0 < s < 1, such that



Γ ∩ D(z, s) �= ∅ for all z in D. Theorem 2.2 then gives us the conclusion.
In what follows we use the symbol ∼ between real-valued functions f and g
defined on [0, 1) (viz., f ∼ g) to indicate that there is a constant M > 1 such
that 1

M f(x) ≤ g(x) ≤ Mf(x) for all x in [0, 1). Now, for x in [0, 1),

h(x) =
[
log

(
i

(
1 + x

1 − x
+ e

))]i

=
[
log

(
1 + x

1 − x
+ e

)
+
iπ

2

]i
.

Denoting log
(

1+x
1−x + e

)
+ iπ

2 by ξx, we have:

h(x) = ei log(ξx) = e− arg(ξx) · ei log |ξx|.

Hence,

1 − |h(x)| ∼ arg(ξx) ∼ 1

log
(

1+x
1−x + e

) .

Thus, for x in [0, 1),

1 − x

1 − |h(x)| ∼ (1 − x) log
(

1 + x

1 − x
+ e

)
.

And, for such x, h′(x) = ei log(ξx)

log( 1+x
1−x +e)+ iπ

2
· 2

(1−x2)+e(1−x)2 ; whence

|h′(x)| ∼ 1

(1 − x) log
(

1+x
1−x + e

) .

Evidently, |τh(x)| ∼ 1, and so there exists ε > 0 such that Γ ⊆ Fε. Now, as x
increases to 1 in [0, 1), h(x) traverses Γ through infinitely many counterclock-
wise rotations about 0 as it works its way toward T. To complete our argu-
ment here it is important that we obtain a good estimate on the ratio between
1−|h(x′)| and 1−|h(x)|, if [x, x′] is a subinterval of [0, 1) over which h makes
precisely one rotation about 0. Recalling that h(x) = e− arg(ξx) · ei log |ξx|, we
find that this reduces to an examination of

h∗(y) := e− 1
y · ei log(y),

as y in [1,∞) increases to ∞. Notice that h∗ winds through 2π radians on any
subinterval of [1,∞) of the form [y, e2πy]. And, independent of y, 1−|h∗(e2πy)|

1−|h∗(y)|
is boundedly equivalent to 1

e2π . This then tells us that D\Γ does not contain
pseudohyperbolic disks of radius arbitrarily near 1. Hence, there exists s,
0 < s < 1, such that Γ ∩D(z, s) �= ∅, for all z in D. Since, as we have shown,
Γ ⊂ Fε, for some ε > 0, we can now refer to Theorem 2.2 and conclude that
Ch is closed-range on B.



Closing Remarks

In this final section we give a result in the context of A
2 for singular inner

functions and we point out some implications of our work here to the theory of
Fredholm operators. In our discussion we let m denote normalized Lebesgue
measure on T. Recall that a compact subset E of T is said to be porous if
there exists ε, 0 < ε < 1, such that whenever I is a arc of T with I ∩ E �= ∅,
then there is a subarc J of I where m(J) > εm(I) and J ∩ E = ∅. In [12]
it is shown that E is a porous subset of T if and only if E has the property:
For any singular measure μ supported on E, every nontrivial Frostman shift
of the singular inner function Sμ is a Carleson–Newman Blaschke product;
that is, a finite product of interpolating Blaschke products. The proof of
Corollary 3.11 in [1] also establishes our next result.

Proposition 4.1. Let E be a porous subset of T. If μ is any singular measure
with support in E, then CSμ

is closed-range on A
2.

Remark 4.2. We close the paper with some thoughts concerning Fredholm
operators. We first recall that the little Bloch space B0 is the collection of
functions f in B for which

lim
r→1

sup
r<|z|<1

(1 − |z|2)|f ′(z)| = 0.

And the Dirichlet space D is the collection of functions f(z) =
∑∞
n=0 anz

n,
analytic in D, such that

||f ||2D :=
∞∑
n=0

(n+ 1)|an|2 < ∞.

An operator between two Banach spaces is called a Fredholm operator if its
range is closed and both the operator and its adjoint have finite dimensional
kernel. If ϕ is an analytic self-map of D and Cϕ is a Fredholm operator on a
Hilbert space of analytic functions that contains D, then ϕ is a disk automor-
phism; cf., [6, page 153]. Now D ⊆ B0, but we will show that the situation is
different for B0. Indeed, there exists Fredholm composition operators on B0

whose symbols are not disk automorphisms. The minimal Besov space B1 is
the collection of all functions f that are analytic in D of the form

f(z) = a0 +
∞∑
n=1

anϕwn
(z), (4.2.1)

where {wn}∞
n=1 ⊆ D, and {an}∞

n=1 ∈ l1. The norm on B1 is given by

||f ||B1 := inf

{ ∞∑
n=0

|an| : (4.2.1) holds

}
.

Now B1 is a Banach space with respect to this norm and is invariant under
disk automorphisms. Under the pairing (f, g) =

∫
D
f ′(z)g′(z)dA(z), the dual



of B0 is B1 and the dual of B1 is B; cf., [2]. Notice that, for g in B0 and w in
D,

(g, ϕw) = −
∫

D

g′(z)
1 − |w|2

(1 − wz)2
dA(z) = −(1 − |w|2)g′(w),

and therefore,

(g, C∗
ϕ(ϕw)) =<Cϕ(g), ϕw>= −(1 − |w|2) (g ◦ ϕ)′(w) = −τϕ(w)(g, ϕϕ(w)).

If w ∈ D, then

C∗
ϕ(ϕw) = −τϕ(w)ϕϕ(w), (4.2.2)

and if |w| = 1, then ϕw = w and

C∗
ϕ ϕw = 0. (4.2.3)

By (4.2.2) and (4.2.3) it is easy to see that the kernel of C∗
ϕ : B1 → B1 con-

sists of the constant functions. Also, a non-constant composition operator is
always one-to-one, and therefore Cϕ : B0 −→ B0 will be a Fredholm operator
if it is closed-range. It is shown in [9] that if ψ is a conformal mapping from
D onto D \ [0, 1), then Cψ is bounded below on B. Any univalent self-map of
D is in B0, and thus ψ ∈ B0 and Cψ is a Fredholm operator on B0.
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