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Brain control of functional reach in healthy
adults and stroke survivors

Janis J. Daly Ken Hrovat John Holcomb and Svetlana Pundik

Abstract.
Purpose: Recovery of the most basic shoulder-flexion/elbow-extension components of functional reach is critical for effective
arm function following stroke. In order to understand the mechanisms of motor recovery, it is important to characterize the
pattern of brain activation during the reach task.
Methods: We evaluated 11 controls and 23 moderately to severely impaired chronic stroke survivors (>6 months), with impaired
shoulder flexion and elbow extension. Measures were acquired for Arm Motor Ability Test (AMAT) and functional Magnetic
Resonance Imaging (fMRI) during the basic shoulder/elbow reach.
Results: First, in controls, lateralization of fMRI signal during the reach task was less pronounced in comparison to other tasks,
and even further diminished after stroke (p < 0.05). Second, for the stroke group, centroid locations, for specific ipsilesional
(contralateral to working limb) motor-sensory regions and for contralesional (ipsilateral to working arm) somatosensory and
SMA regions, were significantly more distant from the centroid location of average healthy controls (p < 0.05). Third, both
greater activation volume and greater degree of signal intensity were correlated with better motor function in stroke survivors.
Conclusions: These findings can be useful in guiding the development of more targeted brain training methods for recovery of
impaired reach coordination.

Keywords: Stroke, arm function, motor control, brain function, functional MRI, brain activation

Introduction

One of the most important basic functions of the
upper extremity is functional reach, that is, translation
of the upper limb through space to the desired location
so that the hand can perform functional tasks. From
the considerable research efforts regarding studies of
healthy control subjects, we are able to appreciate the

complexity of the central neural pathways involved in
the control of shoulder/elbow reach and hand grasp
movements (Himmelbach et al., 2013; Konen et al.,
2013; Bernier et al., 2012; Gallivan et al., 2009;
Cavina-Pratesi et al., 2010; Desmurget et al., 2001;
Kertzman et al., 1997; Gallivan et al., 2013; Dean et al.,
2012).

After stroke, arm and hand coordination can be
mildly to severely impaired, with resulting disability
and high cost to individuals and society (Carod-Artal
and Egido 2009; Harvey et al., 1998). For stroke sur-
vivors, almost all of the upper limb studies were limited
to distal limb tasks, such as finger flexion/extension
(Askim et al., 2009; Calautti et al., 2010;Carey et al.,



2005; Jang et al., 2004; Loubinoux et al., 2007; Mar-
shall et al., 2000; Small et al., 2002; Zemke et al., 2003)
or grasp (Fujii and Nakada 2003; Kokotilo et al., 2010;
Ward et al., 2003). These studies of hand function are
important; at the same time, the hand is not useful
unless it can be translated through the workspace to
the desired location for execution of the hand tasks.

There have been only a few studies of fMRI-derived
measures of brain control of shoulder movements
in stroke survivors. One was a two-case study of a
reach movement, with functional connectivity mea-
sured before and after a treatment for these two
subjects (Sergi et al., 2011). A second study compared
shoulder adduction vs elbow flexion cortical repre-
sentation using electroencephalographic signal (EEG)
(Yao et al., 2009); EEG provides good precision in
terms of brain latencies, but does not have good res-
olution with regard to location of brain activations.
Finally, two other studies focused on the relatively sim-
ple movements of shoulder abduction (Feydy 2002; a
two-case report) or internal rotation of the humerus
(Cramer and Crafton 2006), leaving uninvestigated,
the very basic reach components of shoulder/flexion
and elbow extension in stroke survivors, with regard to
fMRI measures of the location of brain function.

It is important to gain an understanding of the brain
control of the functional reach task and the impair-
ment in brain control of this task after stroke. Shoulder
flexion and elbow extension are among the most basic
components of functional reach. Given the paucity
of information on brain control of these basic reach
components (referred to as ‘functional reach’, for sim-
plicity, throughout the remainder of the manuscript),
the two-fold purpose of this study was to: 1) character-
ize the pattern of brain activation during execution of
functional reach in healthy adults and chronic, mod-
erately to severely impaired stroke survivors in the
chronic phase (>6 months); and 2) identify brain activa-
tion correlates with upper limb functional performance
in stroke survivors.

Methods

2.1. Subjects

We enrolled 23 individuals with chronic stroke
(stroke onset >6 months) and 11 healthy adults. The
inclusion criteria for stroke subjects were as follows:
age >21yrs, single stroke, at least a trace grade in man-

ual muscle testing for movement in the stroke-affected
arm, and no contra-indications for MRI. Subjects were
assessed for impairment level according to the Fugl-
Meyer test (Duncan et al., 1983; Fugl-Meyer et al.,
1975). The study protocol was approved by the Insti-
tutional Review Board in the Medical Center; informed
written consent was obtained for each subject.

2.2. MRI data acquisition

MRI was acquired using a Siemens Symphony 1.5
T system with a circularly polarized head coil and an
interleaved multi-slice gradient-echo echoplanar imag-
ing (EPI) sequence. Both T1-weighted anatomical and
blood-oxygenation level dependent (BOLD) images
were collected in the axial plane. BOLD data acqui-
sition parameters were as follows: in-plane resolution
was 3 × 3 mm, repetition time (TR) was 3.87 s, echo
time (TE) was 50 ms, flip angle was 90 degrees, and
the number of axial slices through the entire cere-
brum was 36. For T1 images, in-plane resolution was
1 × 1 mm, TR = 2.16 s, TE = 3.45 ms, and flip angle
was 15 degrees.

BOLD data was acquired in a block design with
alternating move and rest periods (10scans/period,
40 seconds/block); rest/move cycles were repeated 5
times; each move block consisted of 5 move cycles; the
paradigm started and ended with a rest block. For every
block and movement trial, the resting position was with
humerus resting flat on the MRI bed and forearm/hand
cradled and supported in the movement guide. The
reach task for the involved arm was performed by
flexing the shoulder/extending the elbow, sliding the
arm along a custom-designed wooden movement guide
placed at a 30 degree angle with respect to the horizon-
tal bed (Fig. 1); the forearm was placed in a pronated
position, and the hand was placed, with the mid-palm
leaning on the dowel-stick palm support, with fingers
in the relaxed, neutral position, resting on the move-
ment guide; the weight of the hand and forearm were
sufficient to maintain the arm and hand in this posi-
tion, so that grasp was not demanded for this shoulder
flexion/elbow extension task. For a few subjects, the
forearm and hand did not naturally remain in the sup-
ported, relaxed position, during the motor task; in that
case, the hand was secured in the desired, relaxed
position, to the palm-rest using a soft strap. This posi-
tion was maintained for all subjects during rest and
movement. Friction in the system was minimized by
using soft polished wooden materials. Commands, at



Fig. 1. fMRI Setup for shoulder/elbow motor task.

a timed frequency, were used to cue the subject to
begin the motor task and to rest. Practice sessions
were performed the day before (outside of the MRI
department) and on the day of testing (in the MRI
room) in order to ensure that the motor tasks were
understood and accurately performed. Using methods
described elsewhere (Daly et al., 2008), the potential
for confounding mirror movements in the uninvolved,
non-tested arm was monitored through the use of an
MRI-compatible EMG data acquisition system (Brain-
Vision LLC, Morrisville, NC, USA), with monitoring
of the following uninvolved limb muscles: anterior
deltoid, triceps, biceps, wrist and finger flexors and
extensors. Scans were discarded in the event that they
were associated with undesired activation of the unin-
volved, non-tested limb.

During data acquisition, we found that head move-
ment was limited to <0.4 mm of translation in the x, y,
and z directions and <0.4◦ of rotation; to accomplish
this, we used the following methods: 1) Dense sponge
materials were placed within the head coil for stabi-
lization of the head; position and amount of the sponge
materials was customized according to given head size;
2) A strap system was constructed to stabilize the torso.
To control for rotational or other movements of the
upper torso, a strap was secured to the plinth proximal
to the shoulder and extended across the upper torso
clavicular region, subsequently running diagonally, to
the opposite side of the torso and secured to the plinth
just distal to the waist; this strap system was applied to

both sides of the body. This strap secured the torso, but
allowed free movement of the humerus with respect to
the glenoid fossa for the shoulder movements of flexion
and extension; 3) The motor task was practiced prior
to scanning, using EMG signal to monitor undesired
muscle activation in the non-tested upper limb and to
instruct the participant as to the level of effort needed
in order to execute the desired task.

2.3. MRI data analysis

The approach to MRI analysis was consistent with
other successful studies of stroke motor behavior
(Cramer and Crafton 2006; Dong et al., 2007; von et al.
2009). MRI data were processed and analyzed using
the Statistical Parametric Mapping (SPM5) package
(Wellcome Department of Imaging Neuroscience at
University College London, UK), along with custom
in-house software analysis packages designed by our
lab using the MATLAB (The MathWorks, Inc., Natick,
MA) technical computing environment.

The fMRI data analysis included several tempo-
ral and spatial pre-processing steps. The initial 2
scans were discarded for each of the rest and move
blocks to account for the delay in the hemodynamic
response. Slice-timing and head motion corrections
were performed. Anatomical and BOLD images
were co-registered. Extraneous non-brain signal was
excluded using brain parenchyma segmentation. Data
were normalized to a standard template based on
the Montreal Neurological Institute (MNI) reference
data. Spatial smoothing was performed with a 6 mm3,
full-width at half maximum Gaussian kernel. For the
analyses, images were right/left flipped in order to align
the lesion hemispheres which were all contralateral to
the tested arm (Nair et al., 2007; Loubinoux et al.,
2007; Crafton et al., 2003). All control subjects per-
formed the task with the dominant arm. In 70% of the
stroke group, the dominant side was affected by stroke.
The shoulder/elbow reach task is a gross proximal arm
movement, and at the relatively low effort level for
this task, would not be influenced by arm dominance
(Macedo and Magee 2008; Acuna et al., 2010).

We studied brain activation measures within 5
functional sensorimotor regions of interest (ROI), as
follows: (1) primary motor region (Brodmann area
(BA) 4); (2) somatosensory region (BA 1, 2, 3); (3)
lateral premotor area (LPM) (lateral surface of BA 6)
(Picard and Strick 2001); (4) Supplementary Motor
Area (SMA) proper (medial portion BA 6 that is poste-



rior to the anterior commissure line) (Picard and Strick
1996); and (5) Posterior parietal (PP) region (BA 5, 7).
Contralateral and ipsilateral hemispheres were consid-
ered separately.

ROI selection was based on the role in motor func-
tion. We used brain atlas templates to identify the ROIs;
the images were transformed into a standard MNI tem-
plate. If lesion intruded into ROIs, we inspected the
MNI transformation to ensure no distortion of ROI.
Then, pre-existing anatomical masks provided by SPM
software were applied to select voxels corresponding
to the pre-specified ROIs. We carefully inspected fMRI
activation maps in relation to the lesions to determine
whether there were voxel activations in the cavity of
the lesion; for 21 of the 23 subjects, we found no voxel
activity in the lesion area. For two subjects, there was
activity identified around the periphery of the lesion.
From our inspection of the data, it appeared that this
activation was in neural tissue, and we treated it as such;
this was minimal in volume and intensity, in compari-
son to other activation for those two subjects. The same
individual processed the data for all subjects.

Each of the 5 ROIs was utilized in comparing stroke
versus healthy adult, according to brain activation pat-
terns during the functional reach task. In addition, brain
activation measures within each of the 5 regions of
interest were utilized in investigation of brain acti-
vation pattern correlates with a measure of complex
functional task performance.

2.4. Functional motor measure

We used the Arm Motor Ability Test (AMAT) to
assess motor function (Kopp et al., 1997). The AMAT
consists of 13 upper limb tasks of activities of daily
living that depend upon shoulder/elbow function and
is measured according to the time to complete each of
the tasks.

2.5. fMRI activation analysis. Measures of voxel
count and percent signal intensity change

For each ROI, we calculated the average active voxel
count and also the average signal intensity (SI) of the
active cluster.

fMRI activation was calculated as follows. For the
combined 34 subjects (11 controls and 23 stroke) we
computed an average signal intensity map, using an
independent sample t-test to identify voxels in which
there was a signal intensity difference between the rest

and the move conditions (p < 0.05), using standard
correction for multiple comparisons(Benjamini and
Hochberg 1995; Genovese et al., 2002). The resultant
threshold p-value = 0.00062 was then applied in order
to determine brain activation in individual subjects,
contrasting rest versus move conditions. An average
control activation map was generated for the control
subjects.

Percent signal intensity (SI) during the motor task,
for each subject, per voxel was calculated as follows:
% SIv = 100*(avgIntM-avgIntR)/avgIntR, where,
SIv = signal intensity per given voxel, avgIntM =
average signal intensity of the given voxel across all
motor task scans, avgIntR = average intensity across
all rest scans.

The average SI map for control subjects was cal-
culated by voxel-based averaging of SI values across
control subjects.

2.6. fMRI measure of laterality index

Laterality index was calculated for comparison of
the task-related activation in hemispheres contralat-
eral vs ipsilateral to the moving arm (Marshall et al.,
2000). LI’s were defined for each ROI as (C–I)/(C + I),
where C was the number of active voxels in the con-
tralateral hemisphere and I was that for the ipsilateral
hemisphere (Marshall et al., 2000).

2.7. fMRI measure of euclidean distance from
average control brain map centroid

Centroid was defined and calculated according to
published methods (Fesl et al., 2008), and has been
used by others studying brain function after stroke
(Carey et al., 2006; Jaillard et al., 2005). Centroid was
defined as the voxel location within the 3-dimensional
space of a given ROI that was both of greatest inten-
sity of activation and most centrally located within the
cluster of most intensely activated voxels in that given
ROI (Fesl et al., 2008). These two criteria of location
and intensity were weighted in order to derive the voxel
location taking both of these criteria into account (Fesl
et al., 2008). The centroid was first determined for an
average map across the control group using the average
SI map generated from the eleven controls. The cen-
troid was also calculated within each control subject
and within each stroke subject, within each ROI.

Calculation of the centroid coordinates in each ROI
was percent SI-weighted.
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The percent SI-weighted (%SI) coordinates were
calculated as follows:

Where,
C = centroid voxel coordinate location;
x, y, and z = location coordinates;
%SIi = the percent difference intensity at the ith

voxel.
Within each ROI, the Euclidean distance was calcu-

lated between the location of the average control map
centroid and the centroid for each individual subject
(control and stroke).

2.8. Statistical analysis

For stroke versus control groups, we employed the
Mann-Whitney U test for non-normal distributions.
Second, within each ROI, Spearman correlation anal-
ysis was conducted between AMAT score and each of
the fMRI measures: voxel count, signal intensity (SI),
and distance from the average control centroid. Third,
in order to compare our results based on MNI, with
the published reports of some others, we transformed
our data from MNI to Talaraich coordinates (Lancaster
et al., 2007). Fourth, for the centroid variable, descrip-
tive statistics were generated to describe the number
of stroke subject centroids either within or outside the
range of the location of the centroids for the control
subjects, and comparisons were conducted for stroke
versus control. For the comparisons of stroke versus
control, correction for multiple tests was conducted
using the standard Bonferroni-Holmes method (Aickin
and Gensler, 1996; Darling et al., 2009), and signifi-
cant p values after correction are indicated in Tables 3
and 4 with an asterisk.

Results

3.1. Subjects

Subject characteristics are provided in Table 1.
According to the upper limb Fugl-Meyer coordina-

tion scale, 2 subjects were moderately impaired (FM
range, 30–49) and 21 were severely impaired (FM
range, 10–29; (Duncan et al., 1983; Fugl-Meyer et al.,
1975)). Average AMAT score for the stroke cohort was
1636.63 ± 668.42 seconds.

3.2. Control subjects; characterization of brain
activation during the reach task

Results showed that healthy adults activated bilateral
primary and secondary cortical motor-sensory regions
during the functional reach task. The pattern of aver-
age control group activation is shown in Fig. 2 (panel
A), and in Table 2. For controls, the activated brain
volume was greater in the hemisphere contralateral to
the moving limb, as expected, in all ROIs shown in
Table 2, column D. That is, for each of the ROIs listed
in Table 2, brain activation (column D) was 1.8 to 12
times greater for the hemisphere contralateral to the
moving arm versus the ipsilateral hemisphere.

3.3. Comparison of cortical and sub-cortical
stroke

From the comparison analysis of subjects with corti-
cal versus subcortical lesions, we found no difference
between those two groups in any ROIs according to

Table 1

Subject characteristics

Stroke Control
subjects subjects
n = 23 n = 11

Age in years, mean (std dev) 56.3 (12.8) 54.4 (12.9)
Female (%) 41% 54%
Stroke hemisphere (% Left) 55%
Stroke Type (% ischemic) 88.6%
Right dominant n(%) 16(70%)
Dominant arm affected n(%) 15(65%)
Lesion location n(%)

BG/IC 7(30%)
Pons 2(8.6%)
Frontal lobe 1(2.3%)
Frontal/parietal lobes 3(13%)
Frontal lobe/BG/IC 3(13%)
Frontal/parietal lobes/BG/IC 5(21.7%)
Frontal/parietal/temporal lobes/BG/IC 2(8.6%)

Years since stroke, mean (SD) 1.8 (1.1)
Medical history

DM 17.4%
HTN 52.2%
Heart disease 21.7%
Smoking 56.5%







Table 3

Comparison of stroke versus control according to the laterality index (LI)

ROIs Control mean LI (std) Stroke mean LI (std) p value

M1 0.55 (0.32) 0.32(0.49) 0.17
SS 0.34 (0.44) 0.15 (0.45) 0.36
LPM 0.47 (0.29) 0.12 (0.48) 0.03
SMA 0.30 (0.35) 0.03 (0.46) 0.03
PP 0.21 (0.31) −0.17 (0.61) 0.06
LI for the Combined ROIs 0.37 (0.36) 0.06(0.53) <0.001*

M1 = primary motor cortex. PP = posterior parietal area. SS = somatosensory area. LPM = lateral premotor
area. *significant p value after corrections for multiple tests.

Table 4

Comparison of stroke vs. control according to the distance from the COM in the average control brain map

A.ROI B. Side Distance from Average Control Brain Map COM

C. Control mean (SD) D. Stroke mean (SD) E. p value

M1 C 5.21 (3.78) 12.02(9.4) 0.007*
I 9.13 (4.91) 17.58 (15.33) 0.1

SS C 4.23 (2.69) 10.33 (7.64) 0.01*
I 8.73 (12.09) 19.40 (12.95) 0.006*

LPM C 6.53 (4.85) 14.47 (13.0) 0.03
I 5.30 (4.48) 27.12 (10.87) 0.0003*

SMA C 4.21 (1.80) 7.39 (4.56) 0.04
I 5.37 (3.03) 5.17 (2.77) 0.9

PP C 5.56 (2.85) 10.51 (6.63) 0.026
I 6.17 (2.27) 9.24 (7.08) 0.185

C = hemisphere contralateral to the working arm (lesioned hemisphere). I = hemisphere ipsilateral to the working
arm (non-lesioned hemisphere). M1 = primary motor cortex. PP = posterior parietal area. SS = somatosensory area.
LPM = lateral premotor area. *significant after correction for multiple tests.

voxel count and motor functional task performance
(AMAT measure of upper limb function) in the primary
and the secondary motor-sensory regions (Table 5,
column C) of the hemisphere contralateral to the work-
ing arm (lesioned hemisphere; correlations ranged,
r = 0.51 to r = 0.73; Fig. 4). Similar results were found
in the non-lesioned hemisphere (ipsilateral to the work-
ing arm), but for only two ROIs, M1 and SMA
(non-lesioned; r = 0.47 and 0.43, respectively). This
finding indicates that for this cohort of chronic severely
impaired stroke survivors, greater extent of brain acti-
vation in both primary and secondary motor-sensory
regions was operative for those with better motor func-
tional task performance.

Figure 2 provides three examples of stroke sur-
vivors and the average for the control group, with each
showing ipsilesional hemisphere activation (contrale-
sional hemisphere is shaded to indicate that only the
ipsilesional hemisphere activations are shown here for
these examples in Fig. 2). These single subject exam-
ples are provided to illustrate the difference in brain

Table 5

Correlation of functional task performance with measures of brain
function in stroke subjects

A. ROI B. Hemi sphere C. Voxel Count D. Signal Intensity
Correlation with Correlation with

Functional Functional
Performance Performance

M1 C 0.525* 0.585‡
I 0.473*

SS C 0.537* 0.747‡
I

LPM C 0.522* 0.639‡
I

SMA C 0.513*
I 0.425*

PP C 0.732 * 0.656 ‡
I

C = hemisphere contralateral to the working arm (lesioned hemi-
sphere). I = hemisphere ipsilateral to the working arm (non-lesioned
hemisphere). M1 = primary motor cortex. PP = posterior parietal
area. SS = somatosensory area. LPM = lateral premotor area. *Cor-
relations of >0.4 and with p < 0.05, ‡Correlations of >0.4 and with
p < 0.01.





Table 6

Comparison of MNI and Talairach (tal) coordinates for the average
activation map for healthy controls during a shoulder/elbow reach

task

ROIs Hemi sphere Centroid Coordinate

X-MNI (X-tal) Y-MNI (X-tal) Z-MNI (Z-tal)

M1 C −31 (−31) −26 (−31) 61 (56)
I 12 (9) −30 (36) 68 (62)

SS C −42 (−41) −32 (−36) 54 (49)
I 37 (33) −39 (−43) 61 (56)

LPM C −31 (30) −11 (−17) 61 (57)
I 21 (17) −3 (−10) 70 (66)

SMA C −10 (−11) −4 (−11) 69 (65)
I 9 (6) −2 (−9) 66 (63)

PP C −14 (−15) −58 (−61) 63 (55)
I 17 (14) −59 (−63) 63 (55)

C = hemisphere contralateral to the working arm (lesioned hemi-
sphere). I = hemisphere ipsilateral to the working arm (non-lesioned
hemisphere). M1 = primary motor cortex. PP = posterior parietal
area. SS = somatosensory area. LPM = lateral premotor area.

we identified a relationship between greater volume
and intensity of brain activation, and higher functional
task performance.

4.1. Location of brain control for a functional
reach task of shoulder flexion and elbow
extension

Our results showed activation in five ROIs during
functional reach, composed of shoulder flexion and
elbow extension. Table 2 provides the results from the
current study according to centroid coordinates using
the MNI template; Table 6 provides a side-by-side
report of the MNI centroid coordinates, as well as the
coordinates converted into Talairach, for the purpose
of comparison of our findings with the work of others.

There have been only a few prior neuroimaging stud-
ies addressing shoulder movements in chronic stroke
survivors, and these focused on a single movement of
the shoulder. Our results for centroid location are con-
sistent with the results of others who studied a simple
shoulder rotation task; that is, brain activation for more
proximal muscles is located more dorsally. Specifi-
cally, we found that in the M1 ROI, the y coordinate
for reach was ‘y-tal = −26’ which was very similar to
the y-tal coordinate reported by others for the shoul-
der external rotation movement (y-tal = −27; primary
sensorimotor cortex (precentral plus postcentral gyrus
from vertex to 7 mm above Sylvian fissure (Cramer
and Crafton, 2006)). This is a reasonable similarity,
given that the y coordinate determines a ventral/dorsal
location on the motor homunculus.

Unlike the simple shoulder movement task studied
by others, the reach task includes elbow extension and
shoulder flexion against gravity. Therefore, in contrast
to others who studied only a simple humerus rotation
movement (Cramer and Crafton, 2006), we found that
the ‘x’ centroid coordinate for the reach task, which
involves both shoulder and elbow joints, was more
lateral, as expected (Kandel et al., 2000), than that
of the single joint shoulder rotation movement. This
greater laterality was reflected by our findings for the
x-tal coordinate in the M1 ROI (x-tal = 31; hemisphere
contralateral to moving arm), which was more lateral
than the x-tal = 22 for the simple shoulder rotation
task (Cramer and Crafton, 2006). Our average con-
trol M1 centroid coordinates (contralateral to moving
arm) represent a location within the dorsal curvature
of the precentral gyrus, an expected site for primary
motor region control of a shoulder flexion and elbow
extension reach movement (Kandel et al., 2000).

It is well-known that afferent feedback plays an
important part in guiding normal active movement, and
that afferent feedback during passive movement can
generate brain activations measured by fMRI (Nelles
et al., 1999). In the current study, we investigated active
movement, which inherently includes both efferent
and afferent neural activity. In future work, it may be
helpful to study afferent (passive movement), as differ-
entiated from active movement. In this paper, we have
referred to brain activations as “task-related”, meant
to include both efferent and afferent activity that is
captured by fMRI.

Functional connectivity measures are emerging as
an important indication of the complexity of the brain
control of the motor system (Grefkes and Fink, 2014),
which is composed of interacting cortical and subcor-
tical areas. The integrity of regions of activity and
their connections are critical to normal control of
motor function; therefore it is important to identify
the locus of activations as well as their connections,
for particular motor functions. Our findings for stroke
are consistent with studies on functional reaching in
healthy adults. That is, for some ROIs there is a rela-
tionship between motor function and brain activation
in both hemispheres during a unilateral movement.
For example, according to studies in healthy control
subjects (Gallivan et al., 2013; Bernier et al., 2012;
Kertzman et al., 1997), it is reasonable to assume
that activation in both PP and SMA regions represent
movement planning-related activation, and that bilat-
eral hemisphere relationships are important (bilateral



M1 (Gallivan et al., 2013) and bilateral SMA (Kertz-
man et al., 1997). Emerging evidence is indicating that
re-organization of these networks may contribute to
recovery of motor control (Grefkes and Fink, 2014;
Jiang et al., 2013). The results of the current study
provide a first step in that direction by identifying
the location of brain activations in an array of ROI’s
serving motor control and their brain function impair-
ments after stroke for functional reach. These results
can be utilized in future work to target specific ROIs
and their connections so that treatment can be more
accurately targeted to modulate connectivity between
these regions (Jiang et al., 2013; Grefkes and Fink,
2014).

4.2. Comparison of laterality index in healthy
adults and stroke survivors

The Laterality Index has been used in post-stroke
fMRI studies to identify neuroplastic changes after
stroke (Marshall et al., 2000). The current work pro-
vides three findings of note for the reach task. First, we
found greater laterality in controls versus stroke. Our
LI values for the shoulder/elbow reach task for healthy
adults ranged 0.08 to 0.55; and the LI values for stroke
survivors were lower than for healthy adults and ranged
−0.08 to 0.32. The stroke group demonstrated less lat-
eralization than healthy controls, in the SMA and LPM
regions. These findings indicate that for healthy adults
in comparison to stroke survivors, there was relatively
greater activation of the hemisphere contralateral to the
working limb versus the activation in the hemisphere
ipsilateral to the working limb.

Second, in stroke survivors, we found an LI that
indicated a greater activation in the hemisphere con-
tralateral to the working limb (lesioned hemisphere)
versus the hemisphere ipsilateral to the working limb
(non-lesioned hemisphere). These results are consis-
tent with that of Marshall and colleagues (Marshall
et al., 2000), who reported that brain activation was
more highly lateralized to the lesioned hemisphere
(contralateral to the working arm) versus healthy
adults, for the finger/thumb opposition task (LI = 0.32
(range −0.2 to 0.8) at 3–6 months after stroke). Others
reported an LI for a simple humeral rotation move-
ment (LI = 0.8) and a finger tap movement (LI = 0.79
(Cramer and Crafton, 2006)) for stroke survivors over
4 months after stroke.

Third, the low laterality index for healthy controls
could reflect the bihemispheric nature of shoul-

der/elbow movement control; since many tasks are
bilateral, a unilateral single limb right arm reach
(driven by the left hemisphere) might require activation
of the right hemisphere to inhibit the habitual left limb
bilateral functional movements often demanded (Chen
et al., 1997; Avanzino et al., 2011). In this example, the
right hemisphere might also inhibit the antagonist mus-
cles (the large shoulder extensors and elbow flexors)
which have much greater force-generating capabil-
ity than those muscle groups employed in the reach
task. Furthermore, a role of ipsilateral motor control
appears to be important for the proximal limb muscles;
this phenomenon was demonstrated in the studies that
described that ipsilateral motor evoked response can
be induced with stimulation of the cortical regions for
the proximal muscle groups (Wassermann et al., 1994;
Strutton et al., 2004).

Fourth, we found that for the functional reach task,
there was a lower LI than for more simple or distal limb
tasks, studied by others. This is reasonable, considering
a number of factors. The shoulder/elbow task requires
control of more than one joint and requires lifting the
arm against gravity. Additionally, activation of shoul-
der muscles can engage scapular stabilizers and other
muscles of the shoulder capsule mechanism, as well as
torso stabilizers. Also, in comparison to a single move-
ment at a single joint, the reach movement of shoulder
flexion/elbow extension is an ‘out-of-synergy’ move-
ment, requiring the neural system to execute this more
highly coordinated motor task, which is often impaired
in stroke survivors (Carr and Shepherd, 2011).

4.3. Correlation between brain activation and
functional motor tasks

The results of the current work showed a strong
correlation between complex motor functional task
performance and two measures of brain activation
(extent of activation and intensity of activation (r = 0.5
to 0.7) for primary and secondary motor and sen-
sory control regions of the brain. The confluence of
these findings supports the conclusion that for severely
impaired chronic stroke survivors, greater activation in
the motor and sensory control system of the ipsile-
sional hemisphere (contralateral to working arm) is
associated with better functional task performance.

Our work extends the literature in two ways: a more
complex shoulder/elbow reach task was studied dur-
ing brain measurement; and the function measure, to
which we correlated brain function, is composed of



actual functional tasks (i.e., not simple movement tests,
such as box and blocks, Fugl-Meyer joint movement
test). The more complex reach task, used in the current
study to acquire brain function data, provides infor-
mation beyond that of prior studies which used motor
tasks inside the scanner that were simple single joint
movements or distal tasks (e.g., (Cramer and Crafton
2006; Feydy et al., 2002)). And, in the current work, for
purposes of correlation of brain function with every-
day motor tasks, we used the AMAT, which is based on
13 complex functional tasks. Others reported correla-
tions of brain activation measures with motor function,
but in those studies, the motor function measures were
at the impairment level (pegboard test, Fugl-Meyer
coordination test, measures of strength, finger-tapping
rate) (Askim et al., 2009; Calautti et al., 2010; Cramer
et al., 2002; Fujii and Nakada, 2003; Jang et al., 2004),
rather than at the functional task level. Additionally,
in prior work, others reported correlations between
scanner tasks and motor tasks, and were limited to a
single MRI measure of brain activation (Askim et al.,
2009, Calautti et al., 2010; Cramer et al., 2002; Fujii
and Nakada, 2003; Jang et al., 2004; Kokotilo et al.,
2010; Marshall et al., 2000; Ward et al., 2003; Zemke
et al., 2003); whereas, in the current work, we report the
confluence of results from two measures of brain func-
tion and their respective correlation with a measure
of complex functional tasks. Most prior reports were
limited to the primary sensorimotor area, but reported
as we do, that better motor function was associated
with greater activation in ipsilesional primary sensori-
motor areas (Calautti et al., 2010; Carey et al., 2005;
Jang et al., 2004; Marshall et al., 2000; Zemke et al.,
2003), and with either increased (Fujii and Nakada,
2003) or decreased (Cramer and Crafton, 2006) acti-
vation in contralesional primary sensorimotor area. In
contrast to these studies, our study extends the liter-
ature by quantifying an array of active task-related
brain regions, suggesting a network of cortical sensory-
motor regions relevant to skilled motor function.

For the most part, our results are consistent with the
work of others. Only a few studies were not consistent
with the main body of work of others and our own work.
These few studies found no correlation between brain
activation and physical movement capability (Feydy
et al., 2002; Loubinoux et al., 2007; Small et al., 2002);
but of note, those studies used a different approach for
correlation data analysis (Loubinoux et al., 2003) or
smaller sample size and a different statistical approach
(Feydy et al., 2002; Small et al., 2002).

Correlation values ranged from 0.5 to 0.7. Though
correlations were good, subject variability was exhib-
ited (Fig. 4). There are a number of variables that could
have an effect on the relationship between brain acti-
vation measures and functional capability, as follows:
volume of lesion (Darling et al., 2009; Cramer et al.,
2007; Rickards et al., 2012), type of stroke and num-
ber of motor control regions involved (Mestriner et al.,
2013), degree of white matter involvement (Hedna
et al., 2013), and functionality of intracortical net-
work connections (Jiang et al., 2013; Grefkes and Fink,
2014). In future studies of a larger sample size, inves-
tigation of each of these variables will be required in
order to more fully understand the variables affect-
ing the relationship of brain activation levels for each
motor control region and functional motor control.

4.4. Research and clinical implications

Current clinical practice is not guided by accurate
knowledge of the relationship of brain impairment and
arm motor dysfunction, particularly for the functional
reach, basic components of shoulder flexion/elbow
extension. The results of this study provide a descrip-
tion of brain activation in an array of ROIs which
normally serve motor control of the reach compo-
nent movements, and in which brain impairment is
located after stroke; three types of brain measures
are provided; volume of brain activation, intensity of
brain activation, and centroid location of brain acti-
vation during this task; with the identification of these
benchmark measures of impaired brain function, future
work can then attempt to more accurately target these
brain function impairments in treatment methods. The
study findings indicate that greater brain activation was
associated with higher functional level for severely
impaired, chronic stroke survivors. Therefore, training
could include methods for enhancing brain activation
in these identified ROIs. One example of using these
fMRI findings could be to employ real time fMRI
(rtfMRI) neural feedback treatment to target these
identified ROIs and utilize up-regulation training of
brain activity to more accurately target brain train-
ing for shoulder flexion/elbow extension training for
motor recovery; this kind of rtfMRI targeted treat-
ment is currently emerging in research reports and
has been attempted for elbow flexion (Sitaram et al.,
2012), but not yet for shoulder flexion/elbow extension
reach movement, which is a more difficult measure-
ment problem.



Summary

This study provides new information for moderately
to severely motor impaired, chronic stroke survivors,
with regard to brain activation patterns during the basic
components of function reach, shoulder flexion/elbow
extension; brain activation patterns for stroke were sig-
nificantly different from healthy controls, according to
measures of volume of activation, laterality of activa-
tion, and centroid location, in a number of ROIs.

Results showed that two brain activation measures
(volume of activation and intensity of activation)
during shoulder flexion/elbow extension reach were
correlated with a measure of complex functional motor
tasks, across primary and secondary regions respon-
sible for motor control. Overall, a greater extent and
intensity of brain activation correlated with better
motor function. Taken together, these measures char-
acterizing impairment of brain function can be used
to more accurately target motor recovery interven-
tions. For example, our results suggest that recovery of
proximal arm motor control may be enhanced through
bi-hemispheric engagement, which is in contrast to
training for recovery of distal arm function. More-
over, for shoulder/elbow motor control recovery, it may
prove productive, through neural feedback training or
direct brain stimulation, to enhance activation for the
regions identified here, for more focused treatment.
Generating and testing innovative methods to induce
engagement of the appropriate brain regions to recover
control of shoulder/elbow motor function may be a
fruitful pathway to improving neurorehabilitation after
stroke.
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