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A new optimization algorithm for single hidden layer feedforward

neural networks

Leong Kwan Li, Sally Shao, Ka-Fai Cedric Yiu

Introduction

Feedforward neural networks (FNNs) have been the subject of
intensiveresearchinrecent years. FNNs are probably the most com-
monly used function approximation techniques in neural networks
because of their capability of approximating any function with any
desired accuracy providing some associated conditions being sat-
isfied. Following the work of Hornik et al. [2], which showed that
the Multi-layer feedforward networks are universal approximators
in 1989, single hidden layer FNNs have been investigated more
thoroughly out of many kinds of neural networks [4]. The clas-
sification and recognition properties of FNNs have been found in
many papers such as Gibson [1] and Li [3]. It is clear that a single-
1 den layer FNN is sufficient to approximate the corresponding
desired outputs arbitrarily close by the approximation theorem.
FNNs have been applied to a wide variety of problems arising

from a variety of disciplines, including mathematics, computer sci-
ence, engineering, and medicine. However, the training/learning
algorithm has a profound impact on the network learning capacity
and its performance in modeling nonlinear dynamical phenomena
[10,9]. Two issues are of great importance in the neural network
training: how to avoid local minimum and how to achieve faster
convergence. On the other hands, genetic algorithms (GAs)isalarge
class of learning algorithms based on the process of natural evo-
lution. They are effective in function optimization with large and
complex scale problems similar to neural networks. As a learning
algorithm, genetic algorithms are promising but time consuming
because GA might explore the global optimal solution with its
stochastic property. Many researchers modify GA algorithms for
their problem needs (see, for example [13,14,12,8]). Also, it is still
a challenge in developing training algorithm that simultaneously
improve convergence ability, learning speed, and generalization
capability in real-world problems [5]. Viewing the error back prop-
agation developed by Rumelhart et al. [11] is a piecewise gradient
descent learning algorithm, Yam and Chow (1997) demonstrated
an improved error back propagation algorithm to batch learning
that one can use least squares technique that trains the FNN in a
very efficient way. Later in Yam and Chow [16], they improved a
weight initialization method for multi-layer FNN.



Classical GA techniques apply mutation and crossover on a
string of one or more parents. This reproduction process is adiscrete
interchanging of parameters that may improve the population into
next generation as discuss in Venkatesan et al. [15]. Kwong et al.
[6] demonstrated how to use GA for training FNN. In particular, for
a single-hidden layer FNN structure, we may generalize the idea
of discrete learning process to a continuous one. In this paper, we
present a new optimization algorithm which based on a partic-
ular learning strategy, namely the convex combination algorithm
(CCA), to massaging the information in the hidden layer. Apart from
the usual choice of the error function which sums the squares of
the error norms at the output layer, the idea is to set up a new
error function to measure the performance of the FNN, which the
nonlinear optimization problem can be solved directly. Since the
error function is a nonlinear function of the neural parameters,
weights and thresholds, we then define an iterative process, the
CCA learning algorithm to obtain the optimal choice of the con-
nection weights. For a differentiable activation function o, we may
compute the gradient layer by layer systematically and minimize
the error by gradient descent or quasi-Newton method. The CCA
achieves the desired properties of convergence, fast learning speed,
and easy generalization capability to tackle real-world problems.
In the numerical experiments, our results shows that CCA has good
exploration and exploitation capabilities in search of the optimal
weight in training the single hidden layer FNN. We found that it is
an effective training procedure comparing with some well-known
least squares based algorithms as well as its descendants.

The organization of this paper is as follows. In Section 2, we
present the methodology of optimization algorithm for the sin-
gle hidden layer FNN. Let by this discussion, we show step by step
how it can be improved to achieve better results and the desired
learning properties in Section 2. In Section 3, we discuss the prob-
lem of evaluating and comparing the performance of the CCA in
terms of numerical techniques. In the light of the discussion, we
demonstrate some experimental results to show the effectiveness
of the proposed optimization algorithm CCA. Finally, Section 4 is an
account of concluding remarks.

Methodology

Suppose that we have a set of input and desired output pattern
pairs (x;, d;), where the network inputs x; € R" and desired outputs
d; e R™ with 1 <i < N.We use a single hidden layer FNN of n inputs
and m outputs to learn the input and output relationship of the
system. First, we assume that the number of hidden units, p, is larger
than the number of output units m. That is, p>m. Let o be the
activation function which is bounded, differentiable and monotonic
increasing. The network system output s; for input x; is defined by

si=Uy;=Uoc(Wx; +0)eR™;, i=1,2,...,n. (1)

where the system outputs
yi = o(Wx; +6),

W= [Wij]pxn e RP*™ and U = [uij]mxp € R™*P are the connection
weight matrices; 0=[61, 65, ...,0,]" € R" is the input bias or thresh-
old vector of the system. With out loss of generality, we neglect the
threshold 6 in the following discussions by setting

Xni1 =1, Wyny1) =0,

That is, for simplicity, we have activation function for each layer

except the outer layer which is “identity” function. Moreover, we
use the identical activation function in all layers. Hence, for each

i=1,2,3,...,n, we have y; = 0(2;7:11wijxj) = o(Wx;) € R, which
implies
si=Uy; =Uo(Wx;) eR™; i=1,2,...,n. (2)

Consider the standard least squares error function defined by

N

1

7> lsi—dif’?
i

E(U, W)
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N

1

72 IUo(Wxy) = dif.
i

The network is called exactly capable of the task if there exist some
optimal connection weighted matrices U" and W' such that

E(U*,W*) = 0.

In practice, it is highly unlikely to obtain such U and W'
because of the numerical errors including the accumulative round-
off errors. To due with this issue, the common practice is to
provide some tolerances. We assume that there exist some U’
and W' such that E(U", W) < € for some prescribes tolerance €.
Hence, for a nonlinear least squares optimization problem, gra-
dient or quasi-Newton type learning algorithms can be used to
minimize the error function E. For instance, the error back prop-
agation developed by Rumelhart et al. [11] is well known iterative
learning algorithm. For a single-hidden layer FNN, since o is
differentiable, we may study the relation between the optimal
weights at the minima. Along this line, we establish a new learning
algorithm.

2.1. New error function

Let us first look at the optimization process of minimizing the
error function. It is clear that the gradient of the error function VE
has the form

N
OE 2 : ¢
= i — di t
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where gt denotes the transpose of vector g. To minimize the error
E, the necessary condition is

VE(U*, W*) = 0.

It follows that 0E/OU = Opyxp, which implies that the optimal U’
satisfies the equation

OF

oy =2 Wyi—diyi =0 (5)
i

and we obtain
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providing the inverse of(z,. y,-yf) exists. For givend;,i=1,2,...,N,
let Ypun=1[y1,¥2, ..., ynland Ty =[d1, d, . .., dy] be the matrices
of column vectors of outputs y; and d;, respectively. Then Eq. (6)

U =



can be rewritten as
Ut = TYY(yyH ' = 1Y, (7)

where Y* =Y{(YY!)-1.

On the other hand, it is clear that the gradient 0E/0W involving
the partial derivatives of the parameters U and W that cannot be
solved directly. In view of this, instead of adding the momentum
term or higher order terms to error functions as some researchers
proposed, we propose in this paper to decouple the weight param-
eters U and W. The key idea is to define a new error function F to
measure the errors at the hidden layer, that is,

N
1
F(U*t, W) = §Z||U+di - yil?
i-1

N
1
= 3> U d;— o(Wx)I,
i=1

where U* is the pseudo-inverse of U. Note that unlike the error func-
tion E in (3), the two connection weight matrices U* and W are now
separated in the error function F(U*, W), which are fundamental
important because it makes the computation of the gradients much
easier and faster comparing with the standard error function E. In
addition, it is not difficult to show that if the network is exactly
capable of the task, that is, there exist some optimal connection
weight matrices U” and W' such that E(U", W')=0, we have F(U*",
WH=0.

To minimize the proposed error function F(U*, W), we look at the
partial derivatives of the weight matrices U* and W in (8), which
can be obtained in the similar manner as in (5),

9F - + t
sor = D (Urdi—yd;.

i=1

Setting OF/0U* =0, we obtain the optimal U*'

U+ = YTY(1TY)™' = YT+, 9)
where
T+ = THITY)™. (10)

We note that T* is a fixed matrix since T=[d1, d3, . . ., dy] is a matrix
of column vectors of d;’s, which are the given desired system out-
puts.

2.2. The learning algorithm at the hidden layer

To develop the new optimization algorithm for the given single
hidden layer FNN, we consider least squares problem F(U*, W)=0.
Given an arbitrary initial weights (U(J*, Wp), we apply nonlinear
least squares methods to compute the target values at the hidden
layer. Suppose that we fix Ua’ and optimize Wy to W; for the error
function F, which gives (Ug, W7 ) ; then we fix W; and optimize Ug
to U for the error function F to obtain (U}, W1 ); fixed U} and opti-
mize W to W5 for the error function F, which gives (U, W, ). Repeat

the processes, we obtain a sequence of connection weight matrix
pairs in the following manner,

(Ug, Wo)
(Ug,wh)
(Uf, wy)
Uy, wa)

(U;5 WZ)
(11)
(U3, ws)

(UF, W3)

(U;—s W4)

with

F(U$, Wo) = F(U§, W1) = F(Uf,W1) = F(Uf , Wp) = --- >0 (12)
It can be summarized as the following sequence,

(U3, Wan), (U3, Wani), (U4, Wanygt), (Ug, 1 Wani2 )i (13)

Rename the sequence as {(U}, W)}, then {F(U[, W)} is a
bounded monotonic decreasing sequence. Thus, we have the follow
theorem.

Theorem 1. The learning algorithm associated with the con-
nection weight matrix pair sequence {(U;ka)}k is convergent.
Moreover, there exists a convergent subsequence {(Fs(U;, Wn)}n_o of
{F(U;", Wy)) associated with the learning algorithm.

Proof. First we need to show that the error function sequence
{F(U;", W)} is convergent. By the construction which performs
the optimization processes (12), the error function sequence
{F(Uk*, Wi )lkeo is bounded and monotonic decreasing. Thus, it
converges to a minimum. By the Bolzano-Weierstrass theorem,
{F(U,:’, Wi )lkeo has a convergent sequence. We can construct a
bounded and monotonic decreasing subsequence {Fs(U;}, Wp)},_o
from {F( U,j, Wi)}k—o, Which is also convergent to the minimum. O

Remarks. Itis worth to point out that the sequence of the matrix
pairs {(Uj, W)}k needs not to be convergent but the error func-
tion sequence {F (Uk+, Wi )}k=o is convergent. We have a convergent
learning algorithm associated with {F(U;\, Wy)},_o for the single
hidden layer FNN.

2.3. New optimization algorithm CCA

The learning algorithm that we obtained in Section 2.2 can be
further improved. In this subsection, we construct another optimal
learning algorithm CCA based on massaging the information in the
hidden layer.

For the given input and desired output pattern pairs (x;, d;)
and an arbitrary initial weights (Ug*, W), let Yo = o(W,X) be



the matrix of the column vectors y;, i=1, 2, ..., N, where X is the
matrix of the column vectors x; (the system inputs). For each i,
we define z;= U**d; and Z; be the matrix of the column vectors
of Uj*d;. Now Zg and Yy are expected information in hidden layer,
where T is the matrix of the column vectors d; as defined in (7). If Z
and Yy are equal, the error is zero and the FNN is exactly capable.
Otherwise, we adjust the weight matrices to fit their convex combi-
nation UT* =[aYy+ (1 —a)Zy]T* for some O<w <1, and minimize
the error function F, where T* = T{(TTt)~! is as defined in (10). Thus,
we update the matrix

U;rJr = [OtY() + (1 —(X)Zo]T+.

We assume that o~ 1([aYo + (1 — )Zp]) exists for each iteration,
then we update WO+ by minimizing the error function F associated
with the equation

Wi X = o 1([aYo + (1 - a)Z]),

where X=[x1, X2, ..., xn] is the matrix of column input vectors of
x; . Continue the processes, we obtain the following sequences of
connection matrices {(U;", W,")}_; iteratively,

YOZO’(WJX), (14)
Zo=U*T, (15)
1
FUST W) - FUS - W) = 5

L i=1

N

N —

i=1

v

U,{*:l = [aYy + (1 — a)Z,]TT, (16)

WX = o aYy + (1 — a)Zy]).

In general, we may choose different «’s in the above learning
algorithm, say take 0< 8<1 in above equation, i.e.

WX = o Y([BYi+ (1 - B)Z]). (17)

We called this optimization algorithm associated with
{(US, W )l the CCA. Since T=[dy, dy, . . ., dy], which implies T*
= TY(TT")~! is a fixed matrix and it can be computed directly after
the pattern pairs are given in batch learning. Hence, we can evalu-
ate U * from U™ and update U;™" efficiently. No gradients need
to be computed during the learning processes. Moreover, the CCA
algorithm is convergent since the error functions {F(U!*, W,")}
is a bounded monotonic decreasing sequence as it has been
constructed.

]%[u(u;* — UFH)T = (6(WX) — oW X)) = 21(USHT - o (WS X))

’ (%) [@l(Zi = Z*) = (Yie = Y¥)I = 212" — Y™ — (1 — a)Z* )]

We have the following convergence theorem of the learning
algorithm CCA.

Theorem 2.

(i) The CCA learning algorithm associated with the connection weight
matrix pair sequence {F(U}™, W)} is convergent.

(ii) The parameter o with 0<a <1, defined as in (16), can be adjusted
to speed up the rate of convergence of the optimization algorithm
CCA.

Proof. By our construction of CCA, where

FU§*, W¢) = FUTT, W) = FUF*, W)= >0 (18)

(i) follows.
(ii) Let lin})F(Uﬁ*,Wﬁ):F(Uﬁ*,Wj). By the definition of F,
n

—

(14)-(16), we have

N
D Ut di = (W12 — U d; cf(WJX)nz]

D (U di+ o (WEX)NULd; — o(Wi X )|)]

(U — UFHT = (6(WX) — oW X)) + (UHT — oW X)) + U T — o (W, X)[112

(19)

(3) 1@ - 29~ (Y= Y - 20v* =22 )P

where Z* = US*T, Y* =o(W;X), and 0<a<1. Note that as

k— oo,

F(US, W) — F(US, W) — 0,

which implies Y — Z', the desired output matrix. Moreover,
the sequence will converge faster when o — 0" . We finish the
proof. O

Remarks.

(i) There is an interesting observation about the sequence {U,j+}.
Consider



U++ _ U’:rJr —

ka1 [aY + (1 - a)Z, — oYy, + (1 - a)Z_4 IT*

= [V =Yy )+ (1 —a)(Zy — Zp_1)IT
= [a(Ye =Y )TH+ (1 —a) Uit - U )ITT
= [a(Y =Y )TT + (1 —a) U - U]

= [o(Yi = Vi )T + (1 = o)([ Vi1 = Vi) +

(20)

(1 —a)(Zg1 = Zk_)ITT)]

= [o(Ye— Y1) +a(l —a)(Yi 1 — Y )ITH +(1 - )X (U, - Ui)

= (Ve — Vi) +a(l—a)Ye 1 = Yea)+---+ (1 - ) (Y1 = Yo)IT + (1 - a)f (U + — U

We notice that {U; "} converges if and only if {Y; = o(W, X)}
converges.

(ii) Yam and Chow (1997) provided an analysis of the convergence
rate for an extended least squares based algorithm for train-
ing multi-layer FNNs. Their result showed that the learning
rat is depending on the correlation between the negative error
gradient and the previous weight update of that layer. The ana-
log analysis can be applied to our optimization algorithm CCA
by replacing the the negative error gradient term to ratio of
[Yks1 =Y /Il Y =Y | * for some 2> 0.

Numerical experiment

We have tested the above learning algorithm based on the least
squares problem. The first numerical experiment is as follows:
given the monthly data sunspot series data from 1900 to 2009, we
normalize the values of the series as s(k), 1 <k <1320, between
—1 and 1. Then we use twelve successive subsequence data, s(k),
s(k+1), ..., s(k+11) as input data to approximate the coming 6
month data s(k+13), s(k+14), ...,s(k+18).

We generate the input and output pair by shift 10 months data,
i.e.s(k+11),s(k+7),...,s(k+24)to approximate s(k +25), s(k +26),
..., S(k+30) as the next pattern pair.

Ermor Plot with aipha = 0.5
20 ' - T — T

e e e
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We partition the sequence s(k) into 100 data patterns for sim-
plicity. A FNN with 12 input units, 12 hidden units and 6 linear
output is used to approximate these patterns. The initial state of
the neural parameters (Ug, Wp) are randomly generated integers
between -5 and 5, and then updated as the learning algorithm
described above. The initial error is 234.335. We tested 3 typical
«=0.382,0.5 and 0.618 In all cases, the errors F(U*, W) converge to
2.6107 x 1011, 7.4758 x 1010 and 3.6877 x 10~8 respectively in
2000 iterations. All numerical experiments used Matlab program
and finished within a few seconds. Since the error converges in a
similar pattern, we just show one error plot for «=0.5.

In fact, deterministic learning algorithm is much more efficient
than GA in practice. It will be good to have hybrid algorithm in
optimization that improves on the efficiency as well as avoiding
local minima. As our method converges much faster than those
classical learning algorithms based on the gradient descent meth-
ods, it may be good to use GA for new initial starting point search
and then employ our proposed method that converges in a few
hundred iterations. If the solution is not within the prescribed tol-
erance, then we use GA again to move on another initial starting
point till satisfactory.

The second example came from the soldering process in man-
ufacture process. We took the handy normalized data in Table III
of Kwong et al. [7]. We use a FFN with 4 inputs that represents
the pressure, needle inner diameter, short size and dwell time,
respectively. The inputs consist of two levels only, and we mod-
ify the inputs as +1 in our experiment instead of 0 and 1 in the
original table. The hidden layer consists of 6 units. The FFN has
3 linear output units that represent the fuzzy solder spot diame-
ters. Thus, the system outputs try to capture the mean, the left and
right variations of the machine in soldering. There are 16 desired
data.

We assume «=0.75 and B=0.7. Also, we randomly choose the
connection weights and thresholds between +2 and the initial error
norm is 9.2445. Our PC took a few seconds to finish 10,000 itera-
tions. The error norm was down to 4.0892 x 10-1°, As the error
converges in the same manner as the above experiment, we omit
the error plot here.

Concluding remarks

A new optimization algorithm CCA has been proposed that may
be viewed as a combination of a GA algorithm and a modified back
propagation learning. The numerical experiments demonstrated
some impressive results that the CCA has good exploration and
exploitation capabilities in searching for the optimal weight in
training the single hidden layer FNN. This algorithm has the advan-
tage that no computation of the derivative is required because we
have decoupled the weight matrices. On the other hand, it achieves
the desired properties of convergence, high learning speed, and
easy generalization capability to tackle real-world problems.
For future research, we may also consider other error function
such as



N
1
GU* W) =5l (U*d) - W
i=1

that decouple the weight matrices. In fact, the computation
efficiency of this algorithm is enhanced because after we obtain
T+ = T(TTY)~! in (9), T* can be used repeatedly in all iterations.
Furthermore, the optimization algorithm CCA can be extended
to FNN having two or more hidden layers. Nevertheless, it is an
interesting problem and will need a lot of efforts in applying GA
to this particular structure FNN. Our proposed method converges
in a few hundred iterations but might be trapped by local minima.
It is good to integrate with GA to search for a good initial starting
point, then use our method to find a minimum as a hybrid learning
method [17].
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