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Introduction

By using a modular representationfor integers [3, Section 4.3.3] we can efficiently
perform certain arithmetic operations on parallel processors having a large number of
processing elements. Each processor simultaneously performs the addition, subtraction or
multiplication operation modulo a separate prime. However, since comparison and general
division are expensive when the operands are in modular representation (a conversion of
the operands to another representation must be performed), the modular representation has
been unattractive for use in integer greatest common divisor (GCD) algorithms.

Chapter 6 of [4] describes an algorithm to compute the greatest common divisor of two
n-bit integers using modular representation for intermediate values. As far as we know,
it was the first integer GCD algorithm to use a modular representation. This algorithm
avoids comparisons altogether, and relies only on special case integer divisions that can be
performed with the operands still in modular representation.

The reduction step of this algorithm is the same as used in Sorenson’s right-shiftk-ary
GCD algorithm [5], and as the reduction used when the intermediate values are nearly
the same size in the accelerated GCD algorithm, independently discovered by Jebelean
and Weber [1,2]. IfU andV represent the intermediate values whose GCD is equal to
that of the original input pair, then this reduction replacesU by (aU + bV )/m, where
|a|, |b| <

√
m and m is one of the moduli used to represent the intermediate valuesU

andV . This reduces the size of the problem by roughly log2 m/2 bits. However, spurious
factors are introduced that must be eliminatedafter converting the result back to standard
representation.

The new algorithm is based on the following reduction step. Suppose thatP is a set of
(odd) prime numbers relatively prime toV ; then the main loop of the new algorithm uses
the reduction stepU ← (U − bV )/p, wherep ∈P , andb ≡ U ·V −1 (modp) is chosen to
lie in the interval(−p/2,p/2). The modulusp is chosen so that|b| is minimal among all
moduli in P . This is very similar to the reduction used by Jebelean in the EDGCD algo-
rithm [6], and the reduction used by the accelerated algorithm when the difference in sizes
of U andV is large, except that in these cases a single fixed moduluspt is used, andb is
computed in the range[0,pt − 1]. Although this reduction is not as efficient as Sorenson’s
k-ary reduction is whenU andV are nearly the same size, “cleanup” of spurious factors is
not necessary. This allows the GCD operation to be used in combination with other arith-
metic operations to perform a larger calculation totally in modular representation before it
is necessary to convert back to standard representation.

An algebraic common CRCW PRAM, as described in [7], is a parallel random access
machine on which each processor can accessw-bit integers in a global shared memory, and
computew-bit addition, subtraction, comparison, multiplication, quotient and remainder
of integers, all in unit time. We define aw-bit modular common CRCW PRAM to be
an algebraic common CRCW PRAM with the additional capability of each processor to
computew-bit modular inverses in unit time.

In the worst case, the new algorithm runs on aw-bit modular commonCRCW PRAM
in O(n + 2w/2) time usingO(n + 2w/2) processors. At worst the main loop will never
iterate more thann + 2 times; experimental data taken from execution of a sequential im-
plementation of the algorithm suggests that in the average case the main loop will execute a
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little more than 2n/w times—as long as the moduli arew-bit primes, and there are at least
n+2w/2 moduli and processors. A heuristic model of the distribution of theb values allows
for an average case analysis that closely matches the experimental data. For enough mod-
uli, this analysis gives an average case running time ofO(n/ logn+2w/2) onO(n+2w/2)

processors, which translates toO(n/ logn) time andO(n logn log log logn) processors on
a bit common CRCW PRAM, whenw = Θ(logn). Thus the heuristic average case analy-
sis matches the fastest algorithms presently known—those of Chor and Goldreich [8],
Sorenson [5], and Sedjelmaci [9], whose worst-case analyses all giveO(n/ logn) time
on O(n1+ε) processors, whereε is any positive constant. We believe this new algorithm
has the potential to be better suited for massively parallel machines than any of these
algorithms, especially when embedded inside other computations using a modular rep-
resentation for intermediate values.

Throughout the sequel we usea modb, wherea is any integer andb is a positive odd
integer, to represent thesymmetricalmodular representation [10, Problem 10, p. 277]; that
is, the unique integerc ∈ (−b/2, b/2) such thatc ≡ a (modb). The expressionu/v modm

is, of course, another way to writeuv−1 modm, wherev−1 is the multiplicative inverse
of v in Z/mZ. In certain parts of this paper, the base of the log function is significant; we
use lnx = loge x and lgx = log2 x, as in [10], in order to eliminate ambiguity. An integer
t is a w-bit integer iff 2w−1 � t < 2w. Finally, we useπ(x) to represent the number of
primes less than or equal to the real numberx, andpk to represent thekth prime, where 2
is counted as the first prime.

In the next section the basic algorithm is presented and proven to correctly compute the
gcd. An upper bound for the number of iterations of the main loop is derived, and the av-
erage number of iterations is estimated via the heuristic model mentioned previously. The
full algorithm is presented in detail in the section following. The two sections after that are
devoted to an analysis of the complexity of the full algorithm: the first presents properties
of the modular commonCRCW PRAM, and the second uses those properties in the actual
analysis of the algorithm. Results from experiments with a sequential implementation are
then provided. We conclude with some miscellaneous remarks and ideas for future work.

Basic algorithm

A basic version of the algorithm, suppressing the modular representation for clarity,
is displayed in Fig. 1. A set of prime moduli is first selected according to criteria which
guarantee that the main loop will execute no more thann + 2 times. Then the algorithm
enters the main loop; in each iteration the reduction step (line 8) reduces the number of bits
in U andV , using one of theU/V modp values that is smallest in absolute value. The
division byp in the reduction step is exact, and can be performed in modular arithmetic,
as long as the divisor is relatively prime to all moduli; thusp must be eliminated fromQ
before the division occurs (line 7).

Our first concern is to show that the GCD of the original inputs is preserved throughout
the main loop.



Input: Positive integersU andV , with U � V

Output: gcd(U,V )

1 n ← �lgU� + 1
2 Q← a set of at leastn + 2 primes withπ(minQ) > max{n,9}
3 Repeat
4 P ← {q ∈ Q | V modq �= 0}
5 p ← an element ofP for which |U/V modp| is minimal
6 b ← U/V modp

7 Q ←Q− {p}
8 [U,V ] ← [V, (U − bV )/p]
9 Until V = 0

10 Return|U |
Fig. 1. The basic algorithm.

Lemma 1. Suppose thatp dividesU − bV , and letT = (U − bV )/p. If p and V are
relatively prime, thengcd(U,V ) = gcd(T ,V ).

Proof. Let g = gcd(U,V ) andg′ = gcd(T ,V ). Sinceg′ dividesV andTp = U − bV , it
is clear thatg′ also dividesU . Henceg′ dividesg. To show thatg dividesg′, note thatg
dividesU − bV = Tp. Taken with the fact that gcd(g,p) divides gcd(V ,p) = 1, we have
thatg dividesT in addition toV . �

We now show that the values ofU andV get smaller and smaller, and determine how
many iterations of the main loop are needed to makeV = 0. We shall use the following
notation throughout the remainder of the paper. LetU0,V0 andQ0 be the initial values of
U,V andQ; Ui,Vi, bi,Pi andQi the values ofU,V,b,P, andQ at the end of theith
iteration of the loop; andm = minQ0 andM = maxQ0.

Theorem 2. If Vi �= 0, then lg |Vi | < n − i + 2, and the loop will finish in no more than
n + 2 iterations.

Proof. First note that the upper bound on the number of iterations may be derived from
the inequality, since it implies that|Vi | = 1 afteri = n + 1 iterations, forcingVi+1 = 0. To
establish the inequality, one can prove by induction that

|Vi | < U0

2i

∏
p∈Q0−Qi

(
1+ 3

p

)
.

From this, and the fact that lg(1 + x) � x lg e for nonnegativex, we get lg|Vi | < n − i +
3 lgeSi , whereSi = ∑

p∈Q0−Qi
1/p. Let p̄i = pπ(m)−1+i andp̂ = p2π(m); sinceπ(m) >

n, we havep̄i < p̂ and

Si �
∑

p�p̄i

1

p
−

∑
p�m

1

p
+ 1

m
<

∑
p�p̂

1

p
−

∑
p�m

1

p
+ 1

m

for all 1 � i � n + 1, where the indexp in the sums takes on only prime values. One can
show that 3 lgeSi < 2 for all iterations of the loop and for all primesm � 29= p10 by
using this last inequality, together with the following three inequalities from Rosser and



Schoenfeld [11, ineqs. 3.6, 3.13, 3.17 and 3.20]:pk < k(lnk + ln lnk) for k � 6, π(x) <

1.25506x/lnx for x > 1, and

ln lnx + B − 1

2 ln2 x
<

∑
p�x

1

p
< ln lnx + B + 1

ln2 x

for x > 1, whereB is a real constant. �
The next lemma gives a lower bound on the size ofPi . Note that it also shows that the

choice ofQ0 guarantees thatPi is never empty.

Lemma 3. There will be at least‖Q0‖ − �i + (n + 3 − i)/ lgm − 1� � ‖Q0‖ − n − 1
elements inPi in any iteration of the main loop.

Proof. Let q1, . . . , qk be the primes inQi−1 that divideV = Vi−1. Clearly |Vi−1| �
q1 · · ·qk � mk . By Theorem 2, we have thatk lgm � lg |Vi−1| < n − (i − 1) + 2. The
result follows from this and the facts that‖Qi−1‖ = ‖Q0‖ − i + 1 and, by the previous
theorem,i � n + 2 for any iteration of the loop. �

The remainder of this section is dedicated toa heuristic analysis of the average number
of iterations required by the main loop. Experience with the experimental implementation
of the algorithm, discussed in Section 6, suggests that, when usingw-bit moduli, as long
as there are at least�2w/2 + n� moduli, and as long asUi−1 and Vi−1 each has more
than 2w bits, the values|Ui−1/Vi−1 mod p| for p ∈ Pi are fairly uniformly distributed
over the interval[0,p/2). This suggests that we may treat them as uniformly distrib-
uted, mutually independent random variables in order to obtain a first approximation to
the expected value E[|bi|] = E[minp∈Pi

{|Ui−1/Vi−1 modp|}]. Based on this assumption,
and the fact that the minimum ofν independent and identically distributed random sam-
ples from [0,1) has expected value 1/(ν + 1) (see [12, p. 182], for example), we get
E[|bi|] � 0.5M/(‖Pi‖+ 1) < 0.5M/‖Pi‖. We can now use this to provide an upper bound
on the average number of iterations of the main loop, provided we make one more simpli-
fying assumption: thatbi andVi−1 are independent as well. We will refer to the complete
set of assumptions as ourheuristic model.

Lemma 4. Based on our heuristic model, if the set of moduliQ is chosen so that‖Q0‖ �
n+ 1+ 0.5m−1/2M, then an upper bound on the average number of iterations of the main
loop is�2n/ lg(m/φ2)� + 1, whereφ = (1+ √

5)/2.

Proof. By combining Lemma 3 with the assumptions of this lemma, we get E[|bi|] <

m1/2. Using this as an upper bound for|bi|, and the assumption thatbi and Vi−1 are
independent, one can show by induction that|Vi | < U0φ

im−i/2 when |bi| achieves its
expected value. Then lg|Vi | < 1 wheni � 2n/ lg(m/φ2). At most one more iteration may
be needed to reduceV to zero. �

When�2w/2 + n� w-bit primes are used, then the bound above is approximately 2n/w.
This approximation closely matches the resultsobtained from our experimental implemen-



tation; see Fig. 5. If we use a set of 217 = 131,072 moduli between 231 and 232, we can
easily handle input sizes up to 216 = 65,536 bits, and still expect the average number of
iterations of the main loop to be roughlyn/16. These observations are formalized by the
following theorem, which can be obtained from the previous lemma.

Theorem 5. The heuristic model predicts that the number of iterations in the average case
is O(n/w) whenw � 4, ‖Q0‖ � n + 2w/2 and2w > M � m > 2w−1.

Modular algorithm

In Fig. 2 we give the full version of the algorithm, in which we finally include the details
of the modular representation. Step MGCD1 chooses a set ofw-bit primes for the moduli.
Note that the requirements in line 2 of Fig. 1 are met; we have‖Q‖ = �2w/2 + n� � n + 2
andπ(m) > π(2w−1) > π(2w) − π(2w−1) � max{n,9}, sinceπ(2x) < 2π(x) for x � 3
(from [13], quoting [14]). Step MGCD2 converts the input integersU andV into mod-
ular representation. The construct “For alli ∈ I do . . .” indicates parallel execution. Set
notation is used for indexing here because it does not implicitly specify an order of exe-
cution. Step MGCD3 is the actual reduction loop, resulting in a modular representation of
the greatest common divisor ofU andV . Step MGCD4 computes abalanced mixed-radix

Input: Positive integersU andV , with U � V

Output: gcd(U,V )

MGCD1: [Find suitable moduli]
1 n ← �lgU� + 1
2 w ← an integer satisfyingπ(2w) − π(2w−1) � max{�2w/2 + n�,9}
3 Q← the set of�2w/2 + n� largest primes less than 2w

MGCD2: [Convert to modular representation]
1 For allq ∈ Q do [uq, vq ] ← [U modq,V modq]
MGCD3: [Reduction loop]
1 Repeat
2 P ← {q ∈ Q | V modq �= 0}
3 p ← an element ofP for which |up/vp modp| is minimal.
4 b ← up/vp modp

5 Q ← Q− {p}
6 For allq ∈ Q do [uq , vq ] ← [vq , (uq − bvq )/p modq]
7 Until ∀q ∈Q, vq = 0

MGCD4: [Return standard representation]
1 G ← 0
2 Repeat
3 p ← an element ofQ
4 Q ← Q− {p}
5 G ← up + pG

6 For allq ∈ Q douq ← (uq − up)/p modq

7 Until ∀q ∈Q, uq = 0
8 Return|G|

Fig. 2. Modular GCD algorithm.



representation[10, ex. 10 soln., p. 586], using modular arithmetic, and simultaneously
produces a standard representation of the result from the mixed-radix representation.

There is a rather large supply ofw-bit primes. Using the approximationπ(x) ≈∫ x

2 dt/ ln t [10, pp. 366–367], we see that there are roughly 9.8 × 107 32-bit primes and
2.1× 1017 64-bit primes. In addition,w-bit primesandsmaller may be used, if necessary,
although the details for such a modification are left to the interested reader. Thus, for all
practical purposes, the number of available primes seems sufficient to utilize even the large
numbers of processors current research suggests will be available in future systems (see
[15], for example).

We close this section by showing that there will be enough primes left inQ to recon-
struct the standard representation of the result.

Theorem 6. LetN be the number of iterations of the loop in Step MGCD3. Then2|UN | <∏
q∈QN

q .

Proof. Note thatUN = VN−1 �= 0. By Theorem 2, lg|VN−1| < n − N + 3, so∏
q∈QN

q � 2(w−1)�2w/2+n−N� > 2n−N+4 > 2|VN−1|. �

Modular common CRCW PWAM

The full algorithm presented in the previous section seems naturally suited for imple-
mentation on the algebraic common concurrent read, concurrent write, parallel random
access machine (CRCW PRAM) used in [7], augmented by a constant-time modular in-
verse operation. In this section we show that the minimum needed on line 3 of MGCD3
can be computed inO(1) time on such a computational model, using only a small number
of processors. We also compute the additional costs for emulating on a bit common CRCW
PRAM an algorithm analyzed for this model.

Define aw-bit modularcommon CRCW PRAM to be an algebraic common CRCW
PRAM, in which each processor is capable of performingw-bit memory accesses and
w-bit integer arithmetic in unit time, and is also able to compute the inverse of aw-bit
integer modulo anotherw-bit integer in unit time.

Lemma 7. The maximum and minimum of a setA of integers in the range[0,2w − 1]
can be found inO(1) time on aw-bit modular common CRCW PRAM withmax{‖A‖,
2�w/4�(2�w/4� − 1)} processors.

Proof. Define A0 = A and Ai = {x ∈ A | fi(x) = maxy∈Ai−1{fi(y)}} for 1 � i � 4,
wherefi(x) = �x/2(4−i)�w/4��; then maxA = maxA4. Since aw-bit modular PRAM
compares twow-bit integers in unit time, it can be thought of as a comparison PRAM for
integers in the range[0,2w −1], allowing us to use an algorithm given in [16, p. 888] to find
the maximum of a set of 2k values inO(log log2k − log log(2k − 1)) + O(1) = O(1) time
on a comparison-PRAM with 2k(2k − 1) processors. ThenA1,A2,A3,A4, and maxA4 =



maxA can all be computed with a total cost ofO(1) time on max{‖A‖,2�w/4�(2�w/4�−1)}
processors. Since minA = 2w − 1 − maxa∈A{2w − 1 − a}, we get the same cost for the
minimum. �
Lemma 8. A w-bit modular common CRCW PRAM can be emulated on a bit com-
mon CRCW PRAM, usingO(w log logw) bit processors to emulate each modular
processor, and auxiliary tables of sizeO(w2w/2) bits which takeO(2w/4) time and
O(2w/4w log logw) bit processors to create.

Proof. According to the literature [5], additions, subtractions, moves and comparisons
can all be done inO(1) time usingO(w log logw) bit processors. Quotient and multi-
plication tables for integers in the range[0,2�w/4� − 1] can be built using only repeated
addition; each table hasO(2w/2) entries, requiringO(w2w/2) bits of global memory and
setup costs ofO(2w/4) time andO(2w/4w log logw) processors. After preparation of these
tables,w-bit multiplications, quotients and remainders can be computed inO(1) time using
O(w log logw) processors, by using naive arithmetic algorithms on five digit operands in
base 2�w/4�. Finally, modular inverses can be computed inO(1) time andO(w log logw)

bit processors by using an extended GCD algorithm constructed by applying the comments
of Sorenson [5, Section 7] to the EDGCD algorithm [6] with radixβ = 2�w/4�. This would
require construction of a table that would hold, for each integerx ∈ [1,2�w/4� −1], the val-
uesx−1 mod 2�w/4� and the largest integeri such that 2i dividesx. The costs to construct
the table isO(w2) time andO(2w/4w log logw) processors;O(w2w/4) bits of memory
are needed to store the table.�

Performance analysis

In this section we provide an asymptotic analysis of the performance of the full algo-
rithm. We first analyze the algorithm on thew-bit modularCRCW PRAM, then extend
the analysis to the bit-common CRCW PRAM model, as used in [5]. First we compute the
total cost of the algorithm on aw-bit modular commonCRCW PRAM.

Theorem 9. On a w-bit modular common CRCW PRAM the modular GCD algorithm
takesO(n+ 2w/2) time andO(n+ 2w/2) processors. The heuristic model forE[|bi|] gives
an average running time ofO(n/w + 2w/2) for the same number of processors.

Proof. The total worst-case cost is obtained by taking the maximum of the costs of the
major steps, which are cataloged below.

Step MGCD1 requiresO(2w/2) time andO(2w/2) processors
This can be done by emulating a sieve algorithm for an EREW PRAM, described by

Sorenson and Parberry [7], with no increase in time or number of processors [16, Sec-
tion 3].



Step MGCD2 requiresO(n/w) time andO(n + 2w/2) processors
A naive algorithm can be used to divide ann-bit integer by aw-bit integer inO(n/w)

time, so this step can be computed byfirst calculating one half of the 2�2w/2+n� divisions
simultaneously, then the other half.

Step MGCD3 requiresO(n) time andn + O(2w/2) processors
Each line in the main loop takesO(1) time on�2w/2 + n� processors. We get the cost

for line 3 by applying Lemma 7 twice; once to compute the minimum value, and once to
choose a prime for which the minimum is achieved. Note also that the universal quanti-
fier in line 7 can be calculated as the negation of an existential quantifier, which can be
computed as an inclusive-OR operation inO(1) time on an�2w/2 + n� processor common
CRCW PRAM [16, p.896]. By Theorem 2, the number of iterations in the worst case in
the main loop in Step MGCD3 is bounded byn + 2, thus giving the time and number of
processors listed.

Step MGCD4 requiresO(n/w) time andO(n + 2w/2) processors
Line 5 causes|G| � U0 to grow by no more thanw bits each iteration of the loop, so

the main loop can execute no more thann/w times. The multiplication on this line can
be performed inO(1) time byO(n) processors, by adapting a technique for bit common
CRCW PRAMs given in [8]. The remainder of the lines in the loop, as well as the lines
before and after the loop, can be performed in constant time, as in Step MGCD3. Note
particularly that the choice of an element ofQ in line 3 may be done inO(1) time using
O(n + 2w/2) processors, according to Lemma 7.

The average cost is obtained by using Theorem 5 to getO(n/w) iterations of the main
loop on average. �

By combining Lemma 8 with the previous theorem, and noting that the requirements
placed onw by Step MGCD1 are met whenw = Θ(logn), we get the following.

Theorem 10. On a bit common CRCW PRAM, the modular integer GCD algorithm takes
O(n+2w/2) time andO((n+2w/2)w log logw) processors. The heuristic model forE[|bi|]
gives an average running time ofO(n/w + 2w/2) for the same number of processors.
By choosingw = Θ(logn), the costs becomeO(n) for worst-case time,O(n/ logn) for
average-case time, andO(n logn log log logn) for the number of processors.

Experimental implementation

The following tables and graphs summarize the results obtained from experimentation
with a sequential implementation of the modular algorithm. The experimental implemen-
tation allows one to choosew and‖Q0‖ without requiring that‖Q0‖ � n+2w/2. The table
in Fig. 3 registers the average number of iterations required as a function of input sizen

and the average size, in bits, of the minimum of theb values. For each sizen the algo-
rithm was run with ten different pairs of input values, pseudorandomly chosen in the range
[0,2n), using‖Q0‖ = 217 consecutive prime moduli. The largest modulus was 232 − 5;



Input sizen Average number of iterations Averageb size

28 17.0 13.74
29 33.0 13.92
210 65.2 13.75
211 129.2 13.73
212 257.6 13.63
213 513.9 13.70
214 1026.2 13.68
215 2051.9 13.73

Fig. 3. Comparing 2n/wto number of iterations asn varies (w = 32,‖Q0‖ = 217).

the smallest modulus was 232 − 2,910,755. Notice that the averageb sizes are well below
the upper bound of 0.5M/‖Pi‖ ≈ 15 bits predicted by the heuristic model (see discus-
sion preceding Lemma 4). This strongly suggests that the heuristic model overestimates
the averageb sizes. The graph in Fig. 3 compares the number of iterations the algorithm
performs (diamonds) with 2n/w (solid line). Notice how closely the number of iterations
tracks 2n/w when‖Q0‖ � n+2w/2. This fits nicely with intuition, since one would expect
each iteration to shorten one ofU andV by w bits.

The table in Fig. 4 reveals the number of iterations the modular algorithm performs
with n fixed at 212 and‖Q0‖ at 217. We plot lg(w) vs the number of iterations and lg(w)

vs 2n/w in the graph in Fig. 4. Asw grows larger, the gap between the number of iterations



Size of moduliw Average number of iterations Averageb size

24 343.9 5.68
25 329.7 6.64
26 316.8 7.69
27 304.8 8.68
28 293.9 9.63
29 283.9 10.65
30 274.3 11.73
31 265.6 12.71
32 257.8 13.75
33 249.9 14.69
34 243.3 15.68
35 237.3 16.65
36 231.9 17.72
37 228.0 18.73
38 224.9 19.72
39 222.0 20.69
40 220.8 21.64

Fig. 4. Comparing 2n/wto number of iterations asw varies (n = 212, ‖Q0‖ = 217).

and 2n/w also grows. This is because the critical relationship‖Q0‖ � n+2w/2 is no longer
maintained for‖Q0‖ � 34.

The table in Fig. 5 presents the number of iterations executed by the modular algorithm
as a function of‖Q0‖, the number of moduli. In this table we fixw = 232 andn = 212



Number of moduli‖Q0‖ Average number of iterations Averageb size

29 412.4 22.51
210 356.2 20.93
211 323.7 19.78
212 299.6 18.69
213 280.8 17.68
214 268.0 16.69
215 261.7 15.73
216 258.4 14.71
217 257.6 13.63
218 257.1 12.65
219 257.0 11.69
220 257.0 10.63
221 257.0 9.77

Fig. 5. Comparing 2n/wto number of iterations as‖Q0‖ varies (w = 32,n = 212).

and vary the number of moduli. It shows that the number of iterations asymptotically ap-
proaches 2n/w as‖Q0‖ grows.

Figure 6 shows the ratio of the number ofiterations required by the accelerated algo-
rithm [1,2] to the number of iterations required by the modular algorithm for the tests
summarized in Fig. 3. This ratio is a useful measure of the relative performance of the
modular algorithm, since the accelerated algorithm is very efficient in the number of itera-
tions of the main loop; it uses thek-ary reduction [5] whenU andV are of similar sizes,



Input sizen Modular iterations Accelerated iterations

28 17.0 14.0
29 33.0 28.0
210 65.2 58.5
211 129.2 119.1
212 257.6 237.8
213 513.9 475.6
214 1026.2 949.4
215 2051.9 1824.7

Fig. 6. Ratio of accelerated iterations to modular iterations.

and the dmod reduction [1,2] when the sizes differ greatly. Note that the modular algorithm
compares favorably; for input sizes ranging from 2,048 bits to 16,384 bits the ratio is over
0.92.

Table 1 provides evidence that the values|U/V modp| are uniformly distributed over
their respective ranges[0, (p − 1)/2]. For each run of the algorithm registered in the table
in Fig. 3, we examined the distribution, at each iteration, of the size ofb, by counting
the number of times the size isi bits. Table 1 shows the percentage of these values for
i = 1, . . . ,17 for one particular (randomly chosen) iteration. Nearly 50% of theb values
lie between 230 and 231, 25% lie between 229 and 230, 12.5% between 228 and 229, and so
on. This is as one would expect for a uniform distribution of the values.



Table 1
Distribution of size ofb for one iteration, for varyingn

Size ofb Values ofn Expected for
uniform dist.28 29 210 211 212 213 214 215

1–15 0.001 0.000 0.002 0.002 0.000 0.001 0.002 0.004 0.001
16 0.003 0.003 0.000 0.002 0.002 0.003 0.003 0.002 0.002
17 0.002 0.002 0.001 0.229 0.003 0.001 0.000 0.005 0.003
18 0.005 0.012 0.005 0.006 0.003 0.005 0.005 0.005 0.006
19 0.012 0.019 0.014 0.013 0.009 0.010 0.013 0.017 0.012
20 0.026 0.018 0.027 0.019 0.023 0.029 0.020 0.022 0.024
21 0.050 0.054 0.052 0.047 0.053 0.047 0.048 0.044 0.049
22 0.108 0.105 0.816 0.110 0.092 0.093 0.086 0.105 0.098
23 0.191 0.217 0.208 0.221 0.202 0.201 0.192 0.218 0.195
24 0.355 0.385 0.373 0.414 0.392 0.396 0.394 0.397 0.391
25 0.744 0.791 0.761 0.804 0.787 0.737 0.785 0.779 0.781
26 1.609 1.632 1.578 1.616 1.557 1.547 1.525 1.540 1.563
27 3.138 3.166 3.126 3.190 3.153 3.153 3.151 3.088 3.125
28 6.357 6.316 6.216 6.241 6.237 6.252 6.217 6.144 6.25
29 12.471 12.553 12.479 12.411 12.698 12.492 12.492 12.613 12.5
30 24.940 24.769 25.121 24.862 24.915 24.965 24.917 25.013 25
31 49.989 49.951 49.933 49.976 49.822 50.038 50.095 49.829 50

Remarks and future work

We close with some miscellaneous remarks and ideas for future work relating to the
new algorithm.

The same techniques used to extend Sorenson’s GCD algorithm to also computeA and
B such thatG = AU + BV (see [5, Section 7]) can be used to extend the new modular
algorithm, withG, A, andB all expressed in modular representation before conversion
back to standard representation is done. More moduli, and hence, more processors, are
needed to assure recovery ofA andB, since they grow in size as the algorithm progresses.
Note also, that although the algorithm presented above restricts moduli to primes, a set of
relatively prime moduli should also suffice with only minor complications to the algorithm
(such as the test to see whether a modulus is relatively prime toV ).

Attempts to implement a parallel versionof the accelerated algorithm [17] on a shared
memory multiprocessor have been disappointing, mainly because the algorithm requires
fine-grain parallelism. For the same reason it seems likely that it would also be difficult
to provide good implementations of the three algorithms mentioned above on a shared
memory multiprocessor. The new modular algorithm would most likely suffer the same
problem; however, it seems particularly well suited to large SIMD or data-parallel sys-
tems that can perform arithmetic on 32-bit words or larger, and better suited to such a
system than the other three. Although SIMDarchitectures have suffered recently from
a lack of popularity, they are still popular in certain problem domains, and at least one
such architecture is commercially available at the present time [18]. Recent research in
micro-architectures [15] indicates that future architectures may very well be descendants
of today’s SIMD designs.



The major task remaining is to provide a more sophisticated analysis of the worst-case
and/or average case behavior; we believe that it can be proven that the algorithm can
be shown to execute inO(n/w + 2w/2) time in all cases by showing that the minimum
|U/V modp| is always small with respect to 2w. Another possibility for future work is
to compare the performance of the modular algorithm and the other three algorithms on
a data-parallel system. Finally, it may be possible to apply modular techniques to Schön-
hage’s algorithm; since it takesOB(M(n) logn) time [19, Section 8.10], whereM(n) is
the time it takes to computen-bit integer multiplication, it may be possible to use mod-
ular representation to reduce the complexity contributed by multiplication to the overall
problem’s complexity.
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