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A modular integer GCD algorithm

Kenreth Weberyilmar Trevisan, Luiz Felipe Martins

Introduction

By using a modular representatioffior integers [3, Section.3.3] we can efficiently
perform certain arithmetic operations on parallel processors having a large number of
processing elements. Each processor simultaneously performs the addition, subtraction or
multiplication operation modulo a separate peirhlowever, since comparison and general
division are expensive when the operands are in modular representation (a conversion of
the operands to another representation must be performed), the modular representation has
been unattractive for use in integer greatest common divisor (GCD) algorithms.

Chapter 6 of [4] describes an algorithm to compute the greatest common divisor of two
n-bit integers using modular representation for intermediate values. As far as we know,
it was the first integer GCD algorithm to use a modular representation. This algorithm
avoids comparisons altogether, and relies only on special case integer divisions that can be
performed with the operands still in modular representation.

The reduction step of this algorithm is the same as used in Sorenson'’s righit-ahyft
GCD algorithm [5], and as the reduction used when the intermediate values are nearly
the same size in the accelerated GCD algaritindependently discovered by Jebelean
and Weber [1,2]. IfU and V represent the intermediate values whose GCD is equal to
that of the original input pajrthen this reduction replacds by (aU + bV)/m, where
lal, |b| < «/m andm is one of the moduli used to represent the intermediate values
andV. This reduces the size of the problem by roughlyl@g?2 bits. However, spurious
factors are introduced &t must be eliminatedfter converting the result back to standard
representation.

The new algorithm is based on the following reduction step. Suppos®tlsaa set of
(odd) prime numbers relatively prime 16; then the main loop of the new algorithm uses
the reduction step/ < (U —bV)/p, wherep € P, andb = U - V~1 (modp) is chosen to
lie in the interval(—p/2, p/2). The modulug is chosen so thdb| is minimal among all
moduli in . This is very similar to the reduction used by Jebelean in the EDGCD algo-
rithm [6], and the reduction used by the accated algorithm when the difference in sizes
of U andV is large, except that in these cases a single fixed modhilisused, and is
computed in the rang®, p’ — 1]. Although this reduction is not as efficient as Sorenson’s
k-ary reduction is whel/ andV are nearly the same size, “cleanup” of spurious factors is
not necessary. This allows the GCD operation to be used in combination with other arith-
metic operations to perform a larger calculation totally in modular representation before it
is necessary to convert back to standard representation.

An algebraic common CRCW PRAM, as described in [7], is a parallel random access
machine on which each processor can aceeb#t integers in a global shared memory, and
computew-bit addition, subtraction, compagds, multiplication, quotient and remainder
of integers, all in unit time. We define @-bit modularcommon CRCW PRAM to be
an algebraic common CRCW PRAM with the additional capability of each processor to
computew-bit modular inverses in unit time.

In the worst case, the new algorithm runs ow-#®it modular commorCRCW PRAM
in O(n + 2*/2) time usingO (n + 2*/2) processors. At worst the main loop will never
iterate more than + 2 times; experimental data taken from execution of a sequential im-
plementation of the algorithm suggests that in the average case the main loop will execute a



little more than 2 /w times—as long as the moduli anebit primes, and there are at least
n+2*/2 moduli and processors. A heuristic model of the distribution obtiialues allows

for an average case analysis that closelyalmes the experimental data. For enough mod-
uli, this analysis gives an average case running time @i/ logn + 2*/2) on O (n + 2*/2)
processors, which translates@qr / logn) time andO (n logn logloglogn) processors on

a bit common CRCW PRAM, whew = ® (logn). Thus the heuristic average case analy-

sis matches the fastest algorithms prélyeknown—those of Chor and Goldreich [8],
Sorenson [5], and Sedjelmaci [9], whose worst-case analyses all(givglogn) time

on O(n'*#) processors, whereis any positive constant. We believe this new algorithm
has the potential to be better suited for massively parallel machines than any of these
algorithms, especially when embedded inside other computations using a modular rep-
resentation for intermediate values.

Throughout the sequel we ugemodb, whereq is any integer and is a positive odd
integer, to represent tleymmetricamodular representation [10, Problem 10, p. 277]; that
is, the unique integere (—b/2, b/2) such that = a (modb). The expression/v modm
is, of course, another way to writew—* modm, wherev—1 is the multiplicative inverse
of vin Z/mZ. In certain parts of this paper, the base of the log function is significant; we
use Inx = log, x and Igx =log, x, as in [10], in order to eliminate ambiguity. An integer
¢ is aw-bit integeriff 2¥~1 <+ < 2%, Finally, we user (x) to represent the number of
primes less than or equal to the real numbeand p; to represent théth prime, where 2
is counted as the first prime.

In the next section the basic algorithm is presented and proven to correctly compute the
gcd. An upper bound for the number of iterations of the main loop is derived, and the av-
erage number of iterations is estimated via the heuristic model mentioned previously. The
full algorithm is presented in detail in the section following. The two sections after that are
devoted to an analysis of the complexity of the full algorithm: the first presents properties
of the modular commo@RCW PRAM, and the second uses those properties in the actual
analysis of the algorithm. Results from experiments with a sequential implementation are
then provided. We conclude with some miscellaneous remarks and ideas for future work.

Basic algorithm

A basic version of the algorithm, suppressing the modular representation for clarity,
is displayed in Fig. 1. A set of prime modus§ first selected according to criteria which
guarantee that the main loop will execute no more than?2 times. Then the algorithm
enters the main loop; in each iteration the retéhrestep (line 8) reduces the number of bits
in U andV, using one of thd//V mod p values that is smallest in absolute value. The
division by p in the reduction step is exact, and can be performed in modular arithmetic,
as long as the divisor is relatively prime to all moduli; thusnust be eliminated fron®
before the division occurs (line 7).

Our first concern is to show that the GCD of the original inputs is preserved throughout
the main loop.



Input:  Positive integerd/ andV, with U > V
Output: gcdU, V)

ln<|lgUuj+1

2 Q <« asetof at least + 2 primes withsr (min Q) > max{n, 9}
3 Repeat

4 P <«{qeQ|V modg+#0}

p < an element of? for which |U/V mod p| is minimal
b« U/V modp

Q< Q—{p}

8 [U,V]<[V,(U-bV)/p]

9 Until V=0

10 Return|U|

~N o o

Fig. 1. The basic algorithm.

Lemma 1. Suppose thap dividesU — bV, and letT = (U — bV)/p. If p andV are
relatively prime, themycd U, V) = gcdT, V).

Proof. Letg =gcdU, V) andg’ = gcdT, V). Sinceg’ dividesV andTp =U — bV, it
is clear thatg’ also dividesU. Henceg’ dividesg. To show thafg dividesg’, note thatg
dividesU — bV = Tp. Taken with the fact that ged, p) divides gcdV, p) = 1, we have
thatg dividesT in additiontoV. O

We now show that the values 6f andV get smaller and smaller, and determine how
many iterations of the main loop are needed to méke 0. We shall use the following
notation throughout the remainder of the paper. UgtVo and Qg be the initial values of
U,V andQ; U;, V;, b;, P; and Q; the values ofU, V, b, P, and Q at the end of théth
iteration of the loop; and: = min Qg and M = maxQp.

Theorem 2. If V; #0, thenlg|V;| < n —i 4+ 2, and the loop will finish in no more than
n + 2 iterations.

Proof. First note that the upper bound on the number of iterations may be derived from
the inequality, since it implies thaV;| = 1 afteri = n + 1 iterations, forcing/; 1 = 0. To
establish the inequality, one can prove by induction that

U 3
wvil< 2 T1 <1+ )
2 p
peQo—Q;
From this, and the fact that{fj+ x) < xIge for nonnegativer, we getlgV;| <n —i +
3lges;, whereS; = ZPEQO*Qi 1/p. Let pi = pr(my—1+i @and p = paqm); sincen (m) >
n, we havep; < p and

1 1 1 1 1 1
SED VRS U D I
p<ni P pm "GP g
forall 1 <i <n+ 1, where the indey in the sums takes on only prime values. One can

show that 3lgsS; < 2 for all iterations of the loop and for all primes > 29= p1o by
using this last inequality, together with the following three inequalities from Rosser and



Schoenfeld [11, inegs. 3.6, 3.13, 3.17 and 3.2Q]< k(Ink + InInk) for k > 6, 7 (x) <
1.25506x Anx for x > 1, and

1 1 1
Inlnx + B — < <Inlnx 4+ B+
21Inx Zp In?

P<X .

for x > 1, whereB is a real constant. O

The next lemma gives a lower bound on the sizépfNote that it also shows that the
choice ofQg guarantees th&®; is never empty.

Lemma 3. There will be at least|Qo|| — i + (n +3—i)/lgm — 1] > ||Qoll —n — 1
elements irP; in any iteration of the main loop.

Proof. Let ¢1,...,qr be the primes inQ;_1 that divideV = V;_1. Clearly |V;_1| >
g1---qx > m*. By Theorem 2, we have thatigm <Ig|V;_1| <n — (i — 1) + 2. The
result follows from this and the facts tha©; 1|l = ||Qoll — i + 1 and, by the previous
theorem; < n + 2 for any iteration of the loop. O

The remainder of this section is dedicatectbeuristic analysis of the average number
of iterations required by the main loop. Experience with the experimental implementation
of the algorithm, discussed in Section 6, suggests that, when usbigmoduli, as long
as there are at lea$2”/2 + n] moduli, and as long a&;_1 and V;_; each has more
than 2w bits, the valuesU;_1/V;—1 mod p| for p € P; are fairly uniformly distributed
over the intervallO, p/2). This suggests that we may treat them as uniformly distrib-
uted, mutually independent random variables in order to obtain a first approximation to
the expected value[B; |] = E[min,cp, {|U;-1/V;—1 mod p|}]. Based on this assumption,
and the fact that the minimum ofindependent and identically distributed random sam-
ples from|[0, 1) has expected value/lv + 1) (see [12, p. 182], for example), we get
E[16i]1<0.5M /(|| P;|| + 1) < 0.5M/| P;||. We can now use this to provide an upper bound
on the average number of iterations of the main loop, provided we make one more simpli-
fying assumption: thak; andV;_, are independent as well. We will refer to the complete
set of assumptions as olueuristic model

Lemma 4. Based on our heuristic model, if the set of modilis chosen so thatQol| >
n+ 1+ 0.5m~1/2M, then an upper bound on the average number of iterations of the main
loopis[2n/1g(m/$?)] + 1, wherep = (1 + +/5)/2.

Proof. By combining Lemma 3 with the assumptions of this lemma, we d&t E <
m'/2. Using this as an upper bound fgr;|, and the assumption that and V;_; are
independent, one can show by induction thdt < Up¢’m /2 when |b;| achieves its
expected value. Then |§;| < 1 wheni > 2n/lg(m/¢$?). At most one more iteration may
be needed to redudéto zero. O

When[2*/2 4+ n7 w-bit primes are used, then the bound above is approximaighy 2
This approximation closely matches the resalitained from our experimental implemen-



tation; see Fig. 5. If we use a set 0f’2= 131,072 moduli between® and 22, we can
easily handle input sizes up td%= 65,536 bits, and still expect the average number of
iterations of the main loop to be roughty16. These observations are formalized by the
following theorem, which can be obtained from the previous lemma.

Theorem 5. The heuristic model predicts that the number of iterations in the average case
is O(n/w) whenw >4, | Qoll > n +2*/2and2¥ > M >m > 2*~1.

Modular algorithm

In Fig. 2 we give the full version of the algorithm, in which we finally include the details
of the modular representation. Step MGCD1 chooses a sethof primes for the moduli.
Note that the requirements in line 2 of Fig. 1 are met; we Ha@¢ = [2¥/24+n] >n + 2
andz(m) > 7(2¥ 1) > 7(2%) — 7(2*~1) > max(n, 9}, sincer (2x) < 27 (x) for x >3
(from [13], quoting [14]). Step MGCD2 converts the input integ&rand V into mod-
ular representation. The construct “For at Z do ...” indicates parallel execution. Set
notation is used for indexing here because it does not implicitly specify an order of exe-
cution. Step MGCD3 is the actual reducti@wop, resulting in a modular representation of
the greatest common divisor 6f andV . Step MGCD4 computestzalanced mixed-radix

Input:  Positive integers/ andV, withU >V
Output: gcdU, V)

MGCD1: [Find suitable moduli]

1 n<lgU]+1

2 w < aninteger satisfying (2%) — 7 (2*~1) > maxq[2¥/2 + n], 9}
3 Q « the set off2%/2 + n] largest primes less thar’2

MGCD2: [Convert to modular representation]
1 Forallg € @do[ug,vy] < [U modg, V modqg]

MGCD3: [Reduction loop]
1 Repeat
P« {qeQ|V modg #0}
p < an element of® for which |u /v, mod p| is minimal.
b < up/vp modp
Q<+~ Q—{p}
Forallg € Q do[ug, vg] < [vg, (ug — bvg)/p modq]
Until Vg € Q, vy =0

2

3

4

5

6

7
MGCD4: [Return standard representation]
1 G<«O0

2 Repeat

3 p < an element o

4 Q< 9—{p}

5 G <up+pG

6 Forallg € Q douy < (ug —up)/p modg
7 Untilvg e Q,ug =0

8 Return|G|

Fig. 2. Modular GCD algorithm.



representatior{10, ex. 10 soln., p. 586], using modular arithmetic, and simultaneously
produces a standard representation of the result from the mixed-radix representation.
There is a rather large supply af-bit primes. Using the approximation(x) ~
fzx dr/Inz [10, pp. 366—-367], we see that there are rough8/>910’ 32-bit primes and
2.1 x 107 64-bit primes. In additiory-bit primesand smaller may be used, if necessary,
although the details for such a modification are left to the interested reader. Thus, for all
practical purposes, the number of available primes seems sufficient to utilize even the large
numbers of processors current research suggests will be available in future systems (see
[15], for example).
We close this section by showing that there will be enough primes le®} io recon-
struct the standard representation of the result.

Theorem 6. Let N be the number of iterations of the loop in Step MGCD3. T2iéhy| <
[geoy -

Proof. Note thatUy = Vy_1 # 0. By Theorem 2, I§Vy_1] <n — N + 3, s0

1—[ q> o(W=1)[2"/24n=N1 _ on—N+4 _ 2|Vy_1]. O
q€Qn

Modular common CRCW PWAM

The full algorithm presented in the previous section seems naturally suited for imple-
mentation on the algebraic common concurrent read, concurrent write, parallel random
access machine (CRCW PRAM) used in [7], augmented by a constant-todelan in-
verse operation. In this section we show that the minimum needed on line 3 of MGCD3
can be computed i® (1) time on such a computational model, using only a small number
of processors. We also compute the additional costs for emulating on a bit common CRCW
PRAM an algorithm analyzed for this model.

Define aw-bit modularcommon CRCW PRAM to be an algebraic common CRCW
PRAM, in which each processor is capable of performindit memory accesses and
w-bit integer arithmetic in unit time, and is also able to compute the inverseupbd
integer modulo anotheap-bit integer in unit time.

Lemma 7. The maximum and minimum of a sétof integers in the rang¢0, 2% — 1]
can be found inO (1) time on aw-bit modular common CRCW PRAM withax{||.A|,
2Lw/4l(2lw/4l _ 1)} processors.

Proof. Define Ao = A and A; = {x € A| fi(x) = maxeq, {fi(W}} for 1 <i <4,
where f; (x) = |x/2@D/4] | then max4 = maxAs. Since aw-bit modular PRAM
compares twap-bit integers in unit time, it can be thought of as a comparison PRAM for
integers in the rang@®, 2 — 1], allowing us to use an algorithm givenin [16, p. 888] to find
the maximum of a set of*values inO (loglog Z — loglog(2* — 1)) + O (1) = O (1) time

on a comparison-PRAM with*22% — 1) processors. Thers, Az, As, Az, and maxd, =



max.A can all be computed with a total cost@{1) time on max||.A|, 2L*/4 (2Lw/4 — 1)}
processors. Since mifh = 2% — 1 — max,c4{2¥ — 1 — a}, we get the same cost for the
minimum. 0O

Lemma 8. A w-bit modular common CRCW PRAM can be emulated on a bit com-
mon CRCW PRAM, usin@ (wloglogw) bit processors to emulate each modular
processor, and auxiliary tables of siz@(w2*/2) bits which takeO(2*/%) time and

0 (2"/*wloglogw) bit processors to create.

Proof. According to the literature [5], additions, subtractions, moves and comparisons
can all be done im0 (1) time using O (wloglogw) bit processors. Quotient and multi-
plication tables for integers in the rang@ 21/ — 1] can be built using only repeated
addition; each table hag(2*/?) entries, requiring? (w2*/?) bits of global memory and
setup costs ob (2¥/4) time andO (2*/4w loglogw) processors. After preparation of these
tablesw-bit multiplications, quotientsrad remainders can be computediil) time using

O (wloglogw) processors, by using naive arithmetic algorithms on five digit operands in
base 2¢/4. Finally, modular inverses can be computedinl) time andO (w loglogw)

bit processors by using an extended GCD algorithm constructed by applying the comments
of Sorenson [5, Section 7] to the EDGCD algorithm [6] with radlix 21*/4!, This would
require construction of a tablbat would hold, for each integere [1, 21*/4] — 1], the val-
uesx 1 mod 2*/4! and the largest integérsuch that 2dividesx. The costs to construct

the table isO (w?) time and O (2*/*w loglogw) processorsp (w2¥/4) bits of memory

are needed to store the tablen

Performance analysis

In this section we provide an asymptotic analysis of the performance of the full algo-
rithm. We first analyze the algorithm on thebit modularCRCW PRAM, then extend
the analysis to the bit-common CRCW PRAM model, as used in [5]. First we compute the
total cost of the algorithm on a-bit modular commoiCRCW PRAM.

Theorem 9. On a w-bit modular common CRCW PRAM the modular GCD algorithm
takesO (n + 2*/?) time andO (n 4+ 2*/?) processors. The heuristic model fib;|] gives
an average running time a (n/w + 2*/2) for the same number of processors.

Proof. The total worst-case cost is obtained by taking the maximum of the costs of the
major steps, which are cataloged below.

Step MGCD1 require® (2*/2) time andO (2*/?) processors

This can be done by emulating a sieve algorithm for an EREW PRAM, described by
Sorenson and Parberry [7], with no increase in time or number of processors [16, Sec-
tion 3].



Step MGCD2 require® (n/w) time andO (n + 2*/2) processors

A naive algorithm can be used to divide atbit integer by aw-bit integer inO (n/w)
time, so this step can be computedfigt calculating one half of the[2*/2 4+ n7 divisions
simultaneously, then the other half.

Step MGCD3 require® (n) time andn + O (2%/2) processors

Each line in the main loop taka3(1) time on[2¥/2 4 n] processors. We get the cost
for line 3 by applying Lemma 7 twice; once to compute the minimum value, and once to
choose a prime for which the minimum is achieved. Note also that the universal quanti-
fier in line 7 can be calculated as the negation of an existential quantifier, which can be
computed as an inclusive-OR operatiorchgl) time on an[2*/2 + n] processor common
CRCW PRAM [16, p.896]. By Theorem 2, the number of iterations in the worst case in
the main loop in Step MGCD3 is bounded by 2, thus giving the time and number of
processors listed.

Step MGCD4 require® (n/w) time andO (n + 2*/2) processors

Line 5 causes$G| < Up to grow by no more tham bits each iteration of the loop, so
the main loop can execute no more thgfw times. The multiplication on this line can
be performed in0 (1) time by O (n) processors, by adapting a technique for bit common
CRCW PRAMSs given in [8]. The remainder of the lines in toep, as well as the lines
before and after the loop, can be performed in constant time, as in Step MGCD3. Note
particularly that the choice of an element@fin line 3 may be done i (1) time using
O (n + 2*/2) processors, according to Lemma 7.

The average cost is obtained by using Theorem 5 tajel w) iterations of the main
loop on average. O

By combining Lemma 8 with the previous theorem, and noting that the requirements
placed onw by Step MGCD1 are met whan = ©(logn), we get the following.

Theorem 10. On a bit common CRCW PRAM, the modular integer GCD algorithm takes
0 (n+2"/?) time andO ((n +2*/?)w loglogw) processors. The heuristic model ffi5; |]
gives an average running time @f(n/w + 2*/?) for the same number of processors.
By choosingw = ®(logn), the costs becomé@ (n) for worst-case timeQ (n/logn) for
average-case time, and(n logn loglog logn) for the number of processors.

Experimental implementation

The following tables and graphs summarize the results obtained from experimentation
with a sequential implementation of the modular algorithm. The experimental implemen-
tation allows one to choose and|| Q|| without requiring that| Qo || > n + 2/2. The table
in Fig. 3 registers the average number of iterations required as a function of input size
and the average size, in bits, of the minimum of thealues. For each size the algo-
rithm was run with ten different pairs of input values, pseudorandomly chosen in the range
[0, 2), using || Qoll = 217 consecutive prime moduli. The largest modulus w&&s-25;
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2048 -

1024 - b

512 b

256 b

Number of iterations

128 b

64 - .

32 T

1 6 1 1 1 1 1 1
256 512 1024 2048 4096 8192 16384 32768
Input size n

Input sizen  Average number of iterations  Averagesize

28 170 13.74
29 330 13.92
210 652 13.75
211 1292 13.73
212 2576 13.63
213 5139 13.70
214 10262 13.68
215 20519 13.73

Fig. 3. Comparing 2n/uto number of iterations asvaries w = 32, || Qoll = 217).

the smallest modulus was2— 2,910,755. Notice that the averagesizes are well below
the upper bound of 6M/||P;|| ~ 15 bits predicted by the heuristic model (see discus-
sion preceding Lemma 4). This strongly suggestat the heuristic model overestimates
the averagé sizes. The graph in Fig. 3 compares the number of iterations the algorithm
performs (diamonds) with/2w (solid line). Notice how closely the number of iterations
tracks 2:/w when||Qo|| > n +2%/2. This fits nicely with intuition, since one would expect
each iteration to shorten one &fandV by w bits.

The table in Fig. 4 reveals the number of iterations the modular algorithm performs
with n fixed at 22 and || Qo| at 217. We plot Igw) vs the number of iterations and(lg)
vs 2n/win the graphin Fig. 4. Aw grows larger, the gap between the number of iterations



360 T T T T T T T
lterations ¢

2n/w  +
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320 - B

300 - b

280 b

260 - B

240 | ¢ .

+Q
+ o

220 | + A

200 1 1 1 1 1 1 1
24 26 28 30 32 34 36 38 40
Modulus size w

Size of moduliw  Average number of iterations  Averagesize

24 343.9 5.68
25 329.7 6.64
26 316.8 7.69
27 304.8 8.68
28 293.9 9.63
29 283.9 1065
30 274.3 1173
31 265.6 1271
32 257.8 1375
33 249.9 1469
34 243.3 1568
35 237.3 1665
36 231.9 1772
37 228.0 18.73
38 224.9 19.72
39 222.0 2069
40 220.8 2164

Fig. 4. Comparing 2n/uto number of iterations as varies ¢ = 212, | Q|| = 217).

and 2/w also grows. This is because the critical relationgt@p|| > n +2*/?is no longer
maintained fol| Qo|| > 34.

The table in Fig. 5 presents the number of iterations executed by the modular algorithm
as a function of| Qp||, the number of moduli. In this table we fix = 232 andn = 212
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° lterations ¢
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360 B
340 B
320 i
300 ° —
280 o i

260 © -
2n/w © .

240 I I Il 1 1 1
1024 4096 16384 65536 262144 1048576
Number of moduli |

Number of modulil| Qg||  Average number of iterations  Averagesize

29 412.4 2251
210 356.2 20.93
211 323.7 19.78
212 299.6 18.69
213 280.8 17.68
214 268.0 16.69
215 261.7 15.73
216 258.4 1471
217 257.6 13.63
218 257.1 12,65
219 257.0 11.69
220 257.0 10.63
221 257.0 9.77

Fig. 5. Comparing 2n/wo number of iterations asQg|| varies (v = 32,n = 212),

and vary the number of moduli. It shows that the number of iterations asymptotically ap-
proaches 2/w as| Qoll grows.

Figure 6 shows the ratio of the numberitdrations required by the accelerated algo-
rithm [1,2] to the number of iterations required by the modular algorithm for the tests
summarized in Fig. 3. This ratio is a useful measure of the relative performance of the
modular algorithm, since the accelerated algaoniik very efficient in the number of itera-
tions of the main loop; it uses theary reduction [5] wherV andV are of similar sizes,
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Accelerated iterations/Modular iterations
o
o2}
[e¢]
T
1

082 1 1 1 1 1 1
256 512 1024 2048 4096 8192 16384 32768
Input size n

Input sizen  Modular iterations  Accelerated iterations

28 170 14.0
29 330 28.0
210 652 585
211 1292 1191
212 2576 2378
213 5139 4756
214 10262 9494
215 20519 18247

Fig. 6. Ratio of accelerated iterations to modular iterations.

and the dmod reduction [1,2] when the sizes differ greatly. Note that the modular algorithm
compares favorably; for input sizes ranging from 2,048 bits to 16,384 bits the ratio is over
0.92.

Table 1 provides evidence that the valygg V mod p| are uniformly distributed over
their respective rangd®, (p — 1)/2]. For each run of the algorithm registered in the table
in Fig. 3, we examined the distribian, at each iteration, of the size 6f by counting
the number of times the size isbits. Table 1 shows the percentage of these values for
i =1,...,17 for one particular (randomly chosen) iteration. Nearly 50% ofitivalues
lie between 3% and 21, 25% lie between? and 20, 12.5% between?® and 2°, and so
on. This is as one would expect for a uniform distribution of the values.



Table 1
Distribution of size of for one iteration, for varying

Size ofb Values ofn Expected for
28 29 210 211 212 213 214 215 uniform dist.
1-15 0001 0000 0002 Q002 0000 0001 0002 0004 0001
16 0003 0003 0000 Q002 0002 0003 0003 0002 0002
17 0002 0002 0001 0229 0003 0001 0000 0005 0003
18 0005 0012 0005 Q006 0003 0005 0005 0005 0006
19 0012 0019 0014 Q013 0009 0010 0013 0017 0012
20 0026 0018 0027 Q019 0023 0029 0020 0022 0024
21 0050 0054 0052 Q047 0053 0047 0048 0044 0049
22 0108 0105 0816 Q110 0092 0093 0086 0105 0098
23 0191 0217 0208 Q221 0202 0201 0192 0218 0195
24 0355 0385 0373 Q414 0392 0396 0394 0397 0391
25 0744 0791 0761 0804 0787 0737 0785 0779 0781
26 1609 1632 1578 1616 1557 1547 1525 1540 1563
27 3138 3166 3126 3190 3153 3153 3151 3088 3125
28 6357 6316 6216 6241 6237 6252 6217 6144 625
29 12471 12553 12479 12411 12698 12492 12492 12613 125
30 24940 24769 25121 24862 24915 24965 24917 25013 25
31 49989 49951 49933 49976 49822 50038 50095 49829 50

Remarksand futurework

We close with some miscellaneous remarks and ideas for future work relating to the
new algorithm.

The same techniques used to extend Sorenson’s GCD algorithm to also cofrgnde
B such thatG = AU + BV (see [5, Section 7]) can be used to extend the new modular
algorithm, withG, A, and B all expressed in modular representation before conversion
back to standard representation is done. More moduli, and hence, more processors, are
needed to assure recovery4fandB, since they grow in size as the algorithm progresses.
Note also, that although the algorithm presented above restricts moduli to primes, a set of
relatively prime moduli should also suffice with only minor complications to the algorithm
(such as the test to see whether a modulus is relatively priri@.to

Attempts to implement a parallel versiofithe accelerated algorithm [17] on a shared
memory multiprocessor have been disappointing, mainly because the algorithm requires
fine-grain parallelism. For the same reason it seems likely that it would also be difficult
to provide good implementations of the three algorithms mentioned above on a shared
memory multiprocessor. The new modulagalithm would most likely suffer the same
problem; however, it seems particularly well suited to large SIMD or data-parallel sys-
tems that can perform arithmetic on 32-bit words or larger, and better suited to such a
system than the other three. Although SIMiEchitectures have suffered recently from
a lack of popularity, they are still popular in ¢ain problem domains, and at least one
such architecture is commercially availakdt the present time [18]. Recent research in
micro-architectures [15] indates that future architectures may very well be descendants
of today’s SIMD designs.



The major task remaining is to provide a more sophisticated analysis of the worst-case
and/or average case behavior; we believe that it can be proven that the algorithm can
be shown to execute i (n/w + 2*/?) time in all cases by showing that the minimum
|U/V mod p| is always small with respect td“2 Another possibility for future work is
to compare the performance of the modular algorithm and the other three algorithms on
a data-parallel system. Finally, it may be possible to apply modular techniques to Schon-
hage’s algorithm; since it take@p (M (n) logn) time [19, Section 8.10], wher#f (n) is
the time it takes to compute-bit integer multiplication, it may be possible to use mod-
ular representation to reduce the complexity contributed by multiplication to the overall
problem’s complexity.
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