
Bucknell University Bucknell University

Bucknell Digital Commons Bucknell Digital Commons

Faculty Journal Articles Faculty Scholarship

2015

The Module Isomorphism Problem Reconsidered The Module Isomorphism Problem Reconsidered

Peter A. Brooksbank
Bucknell University, pbrooksb@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ

 Part of the Algebra Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Brooksbank, Peter A.. "The Module Isomorphism Problem Reconsidered." Journal of Algebra (2015) :
541-559.

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It
has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital
Commons. For more information, please contact dcadmin@bucknell.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bucknell University

https://core.ac.uk/display/216951269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_journ
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_journ?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

Journal of Algebra 421 (2015) 541–559

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The module isomorphism problem reconsidered

Peter A. Brooksbank a, James B. Wilson b,∗

a Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
b Department of Mathematics, Colorado State University, Ft. Collins,
CO 80523, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 April 2014
Available online 16 September 2014
Communicated by William M.
Kantor and Charles Leedham-Green

Keywords:
Isomorphism
Modules
Conjugacy

Algorithms to decide isomorphism of modules have been
honed continually over the last 30 years, and their range of ap-
plicability has been extended to include modules over a wide
range of rings. Highly efficient computer implementations of
these algorithms form the bedrock of systems such as GAP
and Magma, at least in regard to computations with groups
and algebras. By contrast, the fundamental problem of testing
for isomorphism between other types of algebraic structures
– such as groups, and almost any type of algebra – seems to-
day as intractable as ever. What explains the vastly different
complexity status of the module isomorphism problem?
This paper argues that the apparent discrepancy is explained
by nomenclature. Current algorithms to solve module iso-
morphism, while efficient and immensely useful, are actually
solving a highly constrained version of the problem. We report
that module isomorphism in its general form is as hard as al-
gebra isomorphism and graph isomorphism, both well-studied
problems that are widely regarded as difficult. On a more
positive note, for cyclic rings we describe a polynomial-time al-
gorithm for the general module isomorphism problem. We also
report on a Magma implementation of our algorithm.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: pbrooksb@bucknell.edu (P.A. Brooksbank), James.Wilson@ColoState.Edu

(J.B. Wilson).

http://dx.doi.org/10.1016/j.jalgebra.2014.09.004
0021-8693/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2014.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:pbrooksb@bucknell.edu
mailto:James.Wilson@ColoState.Edu
http://dx.doi.org/10.1016/j.jalgebra.2014.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2014.09.004&domain=pdf

542 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Dedicated to the memory of Ákos Seress

1. Introduction

In the field of computational algebra, the problem of testing isomorphism of modules
stands apart from isomorphism tests for other algebraic structures. Decades of progress
has brought improvements to existing methods, and new ideas that have broadened
the scope of module isomorphism tests [4,5,15,17,23,24,27]. Tools for computing with
modules are now an integral part of the infrastructure of systems such as GAP [6] and
Magma [1]. By contrast, testing isomorphism of other algebraic structures, such as finite
groups, rings, and Lie and Jordan algebras, has remained extremely difficult.

In this note, we propose that the current state of play is due not to the relative ease of
module isomorphism as an algorithmic problem, but rather to the fact that the problem
widely referred to as “module isomorphism” is, in reality, a rather constrained version of
the one your typical algebraist would likely write down. We show that, framed in a more
general (and, we contend, quite natural) form, the module isomorphism problem is at
least as hard as the better known graph isomorphism problem (Theorem 1.2). While thus
suggesting that a satisfactory solution to our “general” module isomorphism problem will
not soon be forthcoming, we also exhibit useful instances that do admit efficient solutions
(Theorem 1.3).

It is important to stress that our intent here is not to imply that the computational
algebra community has hitherto been interested in the wrong problem. On the contrary,
the algorithms that underlie the accepted module isomorphism tests are among the most
efficient and widely used in the entire field. It is rather that we foresee a demand for
solutions to problems that are most accurately framed as module isomorphism problems
of a more general flavor. In fact, as we explain briefly in the concluding section, this work
grew from a particular application of such a problem to testing isomorphism of finite
p-groups [3].

A motivating example. Suppose M and N are both 1-dimensional modules over a com-
mon field, say GF(9). Up to isomorphism there is only one such module, so we would
expect any test of module isomorphism to confirm that M ∼= N .

Consider the experiment in Fig. 1, conducted using the Magma system. The same
experiment may also be carried out in GAP with the same results.

We note that in systems such as GAP and Magma, as well as in the literature [4,
5,14,24], an A-module M is input by providing a list (X1, . . . , X�) of (n × n)-matrices
over a field k, where n = dimk M . These matrices correspond to the action by a fixed
generating set of A on the underlying k-vector space M . Thus, the code represents the
field GF(9) as a ring of (2 × 2)-matrices over the field k = GF(3), namely

A = B =
{[

a b

−b a

]
: a, b ∈ k

}
.

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 543

Fig. 1. An illustration within Magma of testing module isomorphism with (possibly) confusing results.

Evidently, Magma confirms that A and B are the same algebra. The two modules M and
N are determined by the action of A and B, respectively, on an identical 2-dimensional
k-vector space: not only are A and B equal, so are M and N as k-spaces. So, M and
N are indeed 1-dimensional (unital) vector spaces over GF(9). Why, then, does Magma

report that M and N are nonisomorphic?
The result of the experiment will not surprise those who regularly use these tools,

but some explanation is needed for those who do not. The function IsIsomorphic is
designed to solve the following problem.

ModuleIsok

Given: (n × n)-matrices X1, . . . , X� and Y1, . . . , Y� over a field k.
Find: an invertible matrix Φ such that Φ−1XiΦ = Yi for all 1 � i � �,

or prove no such Φ exists.

This problem has been settled in remarkably decisive terms.

Theorem 1.1 (Brooksbank–Luks). (See [4].) There is a deterministic algorithm to solve
ModuleIsok that uses O(n6) operations in k.

The only restriction on k in Theorem 1.1 is that one is able to carry out basic arith-
metic operations; the result applies even to modules over infinite fields. Recently this
result was extended to finite coefficient rings k that are not fields [27].

Now we can see why the test in Fig. 1 “failed”. Though we gave the same module, we
used different generators. Indeed,

A = k

〈[
1 0
0 1

]
,

[
0 1
2 0

]〉
B = k

〈[
1 0
0 1

]
,

[
1 1
2 1

]〉
.

The minimum polynomials of the ordered pairs of generators are (x − 1, x2 − 2) and
(x − 1, x2 − 2x − 1), respectively. So these lists of generators are not conjugate. In fact,
we could even have used the same generating set but in a different order and the test
would still have failed.

Thus, our hypothetical unwitting user receives the “wrong” answer not because of a
defect in the algorithm, but because the wrong question was asked.

544 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Module isomorphism reconsidered. Certainly every A-module can be described by one
fixed generating set for A. When building A-modules, however, it may not always be
possible to maintain one common generating set. Moreover, as we saw above, the alge-
bra A is not given as part of the input of a module isomorphism test (more about this in
Section 5). Thus, one cannot retroactively adjust the generators of one module to agree
with those of another.

To properly solve instances of module isomorphism without carefully selected gener-
ators we focus on the following generalization.

GenModuleIsok

Given: (n × n)-matrices X1, . . . , X� and Y1, . . . , Ym over k.
Find: an invertible matrix Φ that conjugates the subalgebra

k〈X1, . . . , X�〉 to the subalgebra k〈Y1, . . . , Ym〉.

Note that any map returned as a solution of ModuleIsok is a legitimate solution
to GenModuleIsok, but an algorithm solving the latter would find that the modules
constructed in Fig. 1 are, indeed, isomorphic. In this sense, we have formulated a more
general module isomorphism test.

Unfortunately, our first result (proved in Section 2) rather suggests that a satisfactory
solution to the new problem will not easily be found.

Theorem 1.2. GenModuleIsok is at least as hard as isomorphism testing of finite-
dimensional unital associative k-algebras, and at least as hard as graph isomorphism
testing.

Thus, freed from its traditional constraints, the module isomorphism problem seems
no less difficult than its analogues for other algebraic structures. The news is less bleak,
however, if we restrict to special instances of the general problem. We prove the following
result in Section 3.

Theorem 1.3. For finite fields k, there are Las Vegas polynomial-time algorithms that
solve the following:

(i) given A � Endk(V), where V is a finite-dimensional k-space, return an epimor-
phism k[x] → A or prove none exists; and

(ii) instances of GenModuleIsok for which one of the given subalgebras, say
k〈X1, . . . , X�〉, is an epimorphic image of k[x].

As finite fields are cyclic rings, Theorem 1.3 may be used to decide isomorphism of
finite vector spaces (which of course clears up the confusion in Fig. 1).

In Section 4, we report on a prototype implementation of our algorithms in Magma.
While lacking decades of performance adjustments, our prototype algorithm takes only
twice as long as existing (finely-tuned) Magma functions, and at the same time admits
a substantially broader class of problems.

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 545

Conventions and terminology. We assume throughout that all rings are associative and
unital, and that all modules are faithful. We further stipulate that all rings and modules
are vector spaces over a fixed finite field k, although this can be relaxed to arbitrary
commutative rings for most of Section 2. We shall assume that k-module isomorphism is
decideable in polynomial time. Thus, we ultimately depend only on the assumption that
we can efficiently decide isomorphism of finitely generated (Z/p)-modules. This permits
us, in particular, to focus on the problems that emerge after the abelian structures have
been recognized.

We assume that a finite-dimensional k-vector space, V , is encoded as a row space. We
also assume that an algebra A � Endk(V) is specified by a finite generating set, S, of
matrices: writing A = k〈S〉, we understand that A is the image of the free algebra of
rank |S| evaluated at S. Note, we do not assume that S is a basis for A as a k-space.
This is the standard model for computing with algebras of endomorphisms.

We also briefly consider a more general input method for algebras, known as the
structure constant model. Here, one specifies A via its underlying k-module Ak and, for
a fixed k-basis B = {β1, . . . , βn} of Ak, one provides coefficients cij� ∈ k such that βiβj =∑

� cij�β�. This tacitly assumes, of course, that one is able to list a basis for A, a constraint
which is not imposed on our model for A-modules. Algebras given by structure constants
need not be associative.

We will be concerned with the relative difficulty of algorithmic problems. A problem
is said to be in polynomial time if it is solvable in O(mc) steps where m is the size
of a reasonable encoding of the input. In saying that a problem P is polynomial-time
reducible to a problem P ′, informally we mean that if P ′ is in polynomial time, then P
is in polynomial time; thus, P ′ is at least as hard as P. More precisely, reducibility is
established by providing a polynomial-time procedure that maps any instance of P to an
instance of P ′, whereby any solution of the latter may efficiently be adapted to produce
a solution of the former. The reader is referred to [7] for a comprehensive treatment of
these fundamental notions.

2. Isomorphism testing for general modules is hard

We now establish connections between our general version of the module isomorphism
problem and other well-studied problems. We are interested in constructive versions of
isomorphism problems: in the event that two structures are found to be isomorphic, we
also require an explicit isomorphism from one to the other.

Evidently, the decision versions of isomorphism problems that concern us here are
all in NP, since any alleged isomorphism may efficiently be verified. With the exception
of ModuleIsok, however, none is known to be in P. The main objective of this sec-
tion is to show that isomorphism problems for standard algebraic structures (notably
GenModuleIsok) are at least as hard as the graph isomorphism problem. We remark,
moreover, that the current best known algorithms to solve “algebraic” isomorphism prob-
lems have running time O(2cm) for standard inputs of size m, whereas graph isomorphism

546 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

can be solved in O(2c
√
m) time. While this suggests that algebraic problems may be

strictly harder than graph isomorphism, none are known to be NP-complete.
In order to proceed quickly to the essential problem, we begin by phrasing GenMod-

uleIsok in the language of algebras.

EndoConjk

Given: a k-module, V , and generators for k-subalgebras A and B of
Endk(V).

Find: ϕ ∈ Autk(V) conjugating A to B, or prove no such ϕ exists.

EndoConjk seems a natural problem to study, independent of its connection to
module isomorphism.

The matrix algebras to which EndoConjk applies can usually be described succinctly
using small generating sets. Often, however, one wishes to compute with algebras for
which no faithful linear representation is readily available. The structure constant model
is the one most commonly used in such situations, and the following isomorphism problem
is therefore fundamental.

AlgebraIsok

Given: structure constants for associative k-algebras A and B.
Find: a k-algebra isomorphism A → B, or prove A � B.

This is generally regarded as a hard problem; we will be more explicit about this soon.
Our immediate goal is to prove the following.

Proposition 2.1. AlgebraIsok is polynomial-time reducible to EndoConjk.

Proof. Let (A, B) be an instance of AlgebraIsok. We may assume that A and B are
isomorphic as k-modules (the isomorphism type is determined by the size of the input
k-basis). Thus, we may assume that A = B = V as k-modules.

Let ρ: A → Endk(V) and σ: B → Endk(V) be the regular representations of A and B
(obtained via right multiplication). As our algebras are unital these representations are
faithful. Hence, A ∼= Aρ and B ∼= Bσ, so we may consider instead the problem of testing
for isomorphism between Aρ and Bσ.

Evidently, if Aρ and Bσ are conjugate in Endk(V), then the two algebras are iso-
morphic. On the other hand, if ϕ: Aρ → Bσ is an isomorphism of k-algebras, then
ϕ ∈ Autk(V). Further, if v, a ∈ V , then v(ρaϕ) = (va)ϕ = (vϕ)(aϕ) = v(ϕσaϕ). Thus,
ϕ−1ρaϕ = σaϕ for all a ∈ V , so Aρ is conjugate to Bσ. Hence, EndoConjk applied to
(Aρ, Bσ) solves AlgebraIsok for (A, B). �

Proposition 2.1 tells us that EndoConjk is at least as hard as AlgebraIsok. The
latter has connections to other well-studied problems. Recently, for example, Saxena
established a link to the well-studied graph isomorphism problem:

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 547

GraphIso

Given: a finite set V , and subsets E and F of V × V ;
Find: a permutation of V sending E onto F , or prove none exists.

Despite important breakthroughs in special cases (see, for example, [22]) the deci-
sion version of GraphIso remains in the tantalizing complexity region between P and
NP-complete; see [20] for a survey. In [25, Theorem 2.2], Saxena proved the following
result.

Theorem 2.2 (Saxena). GraphIso is polynomial-time reducible to AlgebraIsok.

Taken together with Proposition 2.1, this result proves Theorem 1.2. Furthermore,
these results immediately establish a connection with one version of the isomorphism
problem for finite groups. Recall, Cayley’s theorem states that every finite group G can
be faithfully represented on the set G by the regular representation h �→ (g �→ gh). The
following version of the group isomorphism problem continues to generate interest in
certain research circles.

CayleyGroupIso

Given: regular (Cayley) representations of finite groups G and H.
Find: an isomorphism G → H, or prove G � H.

Corollary 2.3. CayleyGroupIsok is polynomial-time reducible to GenModuleIsok.

Proof. Miller showed CayleyGroupIso is polynomial-time reducible to GraphIso; see
[20, p. 18]. The result now follows from Theorem 2.2 and Proposition 2.1. �

We have argued here that there are several (at least two) versions of the module
isomorphism problem, and that the tractability of the problem differs strikingly with
the choice of computational model. It would be remiss of us not to mention that a
similar situation exists among isomorphism problems for finite groups.

It is never the case, in practical settings, that a group is specified in the redundant
manner of CayleyGroupIso, namely by providing its full multiplication table. On the
contrary, finite groups are usually input far more concisely via small sets of permutations
or matrices, or perhaps abstractly using one of various kinds of special presentations.

It has been shown, for such concise models, that the group isomorphism problem
is at least as hard as GraphIso, and is likely substantially harder. Such observations
arise from the work of Heineken and Liebeck [13], and Soules [26], with the topic being
addressed in complexity terms by Garzon and Zalcstein [8, p. 247].

3. Module isomorphism over cyclic algebras

Since a polynomial-time solution to GenModuleIsok is unlikely for arbitrary input,
we consider the more tractable problem of isomorphism testing for k[x]-modules, k a finite

548 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

field, where k[x] denotes the ring of polynomials. We prove this case can be handled
efficiently, hence proving Theorem 1.3.

A k-algebra is cyclic if it is a homomorphic image of k[x]. The multiplicative aspect
makes cyclic algebras rather distinct from their group counterparts. For instance, Z/2 ⊕
Z/2 is a cyclic (Z/2)-algebra because it is isomorphic to (Z/2)[x]/(x2 − x), whereas its
underlying abelian group is clearly not cyclic. More generally, if a1, . . . , an are distinct
elements of k, then kn ∼= k[x]/(

∏n
i=1(x − ai)); in particular, for every n there is a finite

field k such that kn is cyclic.
Cyclic rings often have nontrivial radicals, and can have quotients onto multiple ex-

tension fields. Thus, while they are very far from arbitrary rings, cyclic rings exhibit
many of the ring-theoretic properties that seem to influence the difficulty of fundamen-
tal algorithmic problems for rings.

As one might expect, our algorithms for cyclic algebras make essential use of canonical
forms. In particular, we will use the following version of the Rational Canonical Form
(RCF) of a linear transformation.

For f(x) = xn − an−1x
n−1 − · · · − a0 ∈ k[x], and positive integer �, the companion

matrix, Cf , and generalized Jordan block, J�(f), are as follows:

Cf =

⎡
⎢⎢⎣

0 1
.

0 1
a0 a1 . . . an−1

⎤
⎥⎥⎦ ∈ Mn(k), J�(f) =

⎡
⎢⎢⎢⎣

Cf In
.

. . . In
Cf

⎤
⎥⎥⎥⎦ ∈ Mn�(k).

If λ = [�1, . . . , �m] is a weakly decreasing list of positive integers (a partition), then
Jλ(f) = diag(J�1(f), . . . , J�m(f)). If X is any matrix over k, with minimal polynomial
factorized over k as f1(x)e1 · · · fa(x)ea , then X is conjugate to diag(Jλ1(f1), . . . , Jλa

(fa))
for some partitions λ1, . . . , λa [18, Sections 3.10–3.11]. This is what we shall refer to as
the RCF of X.

Crucially, there is a Las Vegas polynomial-time algorithm that, given a matrix X over
a finite field, returns an invertible matrix U such that U−1XU is in RCF [10, Section 5.3];
see also [11, Theorems 5.2–5.3].

3.1. Recognizing cyclic algebras

Our task, then, is to provide an efficient algorithm to solve EndoConjk whenever one
of the input algebras is cyclic. Before we can tackle that problem, however, we must be
sure that we can recognize when a given algebra is cyclic, since we do not presume that
a cyclic generator is provided. We require an efficient solution to the following problem.

IsCyclick

Given: A � Endk(V), where V is a finite-dimensional k-module.
Find: s ∈ A such that A = k〈s〉, or prove that A is not cyclic.

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 549

There are effective solutions to IsCyclick when A is known to be a field: in deter-
ministic polynomial time one can find a normal basis basis for A over k, for example,
and use it to find a cyclic generator [21, Theorem 3.1].

Our extension to the general problem uses a Wedderburn–Mal’cev decomposition
(henceforth a WM-decomposition for short) of an algebra A, namely a decomposition
A = J ⊕ B, where J is the Jacobson radical of A, and B is a semisimple subring of A.
We note that all such B are conjugate in A [19, Section 6.11].

Lemma 3.1. Let A be a commutative k-algebra, and A = J ⊕ B a WM-decomposition
of A. Then A is cyclic if, and only if, B is cyclic and J/J2 is a cyclic B-module.

Proof. Suppose that A = k〈s〉 is cyclic. Let f1(x)e1 . . . fn(x)en ∈ k[x] be the factorization
of the minimal polynomial of s into irreducibles. A WM-decomposition, A = J⊕B, with
B cyclic is obtained from the RCF of s, wherein B = B1⊕. . .⊕Bn and Bi

∼= k[x]/(fi(x)) is
an extension of k. Furthermore, J = J1⊕. . .⊕Jn, with Ji/J2

i a 1-dimensional Bi-module.
Hence, J/J2 is a cyclic B-module.

Conversely, let A be a commutative k-algebra, and A = J ⊕B a WM-decomposition
of A such that B = k〈t〉 is cyclic, and J/J2 is a cyclic B-module with generator u + J2,
for some u ∈ J . Put s := t + u. We claim that A = k〈s〉.

Let B = B1 ⊕ . . . ⊕ Bn be the decomposition of B into simple rings. As A is
commutative, each Bi is a field extension of k. Let K be an extension of k, with
|K| = pm exceeding the nilpotence degree of J , that contains all Bi as subfields. Then,
sp

m = (t + u)pm = tp
m + upm = t ∈ k〈s〉, so B ⊆ k〈s〉. Also, u = s − t ∈ k〈s〉, so

k〈s〉 contains a generator for J/J2. Thus, J = Bu + J2 and, by Nakayama’s lemma,
J = Bu ⊆ k〈s〉. Hence, A = J ⊕B ⊆ k〈s〉, and the claim follows. �

We also require an effective way to build irreducible polynomials in k[x]. More pre-
cisely, we need the following result.

Lemma 3.2. There is a polynomial-time Las Vegas algorithm that, given I ⊂ k[x],
a nonempty set of monic irreducible polynomials of degree n, returns an irreducible poly-
nomial of degree n not in I, or reports that no such exists.

Proof. Our approach varies according to the nature of I. (Note that the input length is
n|I| log |k|.)

Special case: |I| � |k|n/2 or |k|n � 16. Form the list Pn of all monic polynomials in
k[x] of degree n. For each f(x) ∈ Pn \I, test whether f(x) is irreducible: if so, stop, and
return f(x). If no such f(x) exists, report that I already contains all of the irreducible
polynomials of degree n.

General case: 0 < |I| < |k|n/2. Here, a classical result of Gauss ensures the existence
of an irreducible polynomial of degree n not in I, and the following is a Las Vegas
procedure to find one.

550 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Fix f(x) ∈ I, and construct the field K = k[x]/(f(x)). For each g(x) ∈ I, factor
g(x) completely in K (using, for example, the methods of [28, Chapter 14]). In this way,
construct the set

R :=
{
α ∈ K: ∃g(x) ∈ I such that α is a root of g(x)

}
⊂ K.

Repeat the following steps until an appropriate h(x) is found: choose ω ∈ K \ R at
random; construct the minimal polynomial, h(x) ∈ k[x], of ω; if deg h = n, stop and
return h(x); else continue.

We now analyze the two cases in turn. For convenience, let � = |I| and q = |k|.
That the special case works as advertized is obvious. We merely remark that |Pn| =

O(�2): as irreducibility testing is polynomial time, our approach yields a polynomial-time
algorithm.

Next, consider the general case. As there are � distinct irreducible polynomials in |I|,
there are n� < qn, elements in R. Furthermore, there are at most logn divisors of n,
so there are at most this many proper subfields L of K, each having size at most qn/2.
Hence,

|(K \R) \ (
⋃

|K/L|>1 L)|
|K \R| � qn − n�− qn/2 log n

qn − n�
= 1 − qn/2 logn

qn − n�
.

As 1 � � < qn/2, we have 1 − qn/2 log n
qn−n� � 1 − log n

qn/2−n
, which exceeds 0.1 whenever qn > 16.

It follows that each independent choice of ω ∈ K \R lies outside a proper subfield with
probability at least 0.1. The minimal polynomial of any such ω is irreducible of degree n

lying outside I.
Clearly then, the algorithm for the general case exits only when it has identified an

irreducible polynomial, h(x), of degree n, lying outside I, and such h(x) is found, with
positive probability, after a polynomial number of steps. �
Remark 3.3. There is a convenient way to produce new irreducible polynomials from old:
given f(x) ∈ I, choose c ∈ k, and see if the irreducible polynomial f(x − c) is in I. This
will often be the most effective approach in practical settings.

We can now present our recognition algorithm for cyclic rings.

Proposition 3.4. There is a polynomial-time Las Vegas algorithm to solve IsCyclick.

Proof. If A = k〈S〉 is not commutative, then it is not cyclic. Commutativity of A is
determined by commutativity among the elements of S. Thus, we may now assume that
A = k〈S〉 is commutative.

Use [9] to compute a WM-decomposition, A = J ⊕ B, and to find extension fields
B1, . . . , Bn of k such that B = B1 ⊕ . . . ⊕ Bn. Note, if B is an epimorphic image of

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 551

k[x] with kernel I, then I = (f1(x) · · · fn(x)) with each fi(x) irreducible and deg fi =
[Bi : k].

We first proceed iteratively through the fields Bi to construct a cyclic generator for B,
if such exists. Initialize i := 1.

Using [21, Theorem 3.1], construct t1 ∈ B1 with B1 = k〈t1〉, and compute the mini-
mum polynomial, m1(x), of t1 in its restriction to the support of B1.

Suppose 1 � i � n − 1, and that we have built ti such that B1 ⊕ . . . ⊕ Bi = k〈ti〉.
Suppose, further, that we have computed the minimum polynomial, mi(x), of the re-
striction of ti to the support of B1 ⊕ · · · ⊕ Bi. (Hence, the assignment x �→ ti yields an
isomorphism from k[x]/(mi(x)) to B1 ⊕ · · · ⊕Bi.)

Find bi+1 ∈ Bi+1 such that Bi+1 = k〈bi+1〉, and compute the minimum polynomial,
fi+1(x), for the restriction of bi+1 to the support of Bi+1.

If fi+1(x) � mi(x), put ti+1 := ti+bi+1, and mi+1(x) := mi(x)fi+1(x). Now, increase i

by 1 and iterate.
Else, use Lemma 3.2 to select h(x) ∈ k[x] irreducible with h(x) � mi(x) and deg h =

deg fi+1. If no such h(x) exists, then exit, reporting that B (and hence A) is not cyclic.
Otherwise, factor h(x) in the field Bi+1 and locate a root w ∈ Bi+1. Put bi+1 := w,
fi+1(x) := h(x), ti+1 := ti + bi+1, and mi+1(x) := mi(x)fi+1(x). Again, increase i by 1
and iterate.

If we reach i = n, then we have constructed an element tn ∈ B, which we prove below
is a generator for B.

Finally, construct J/J2 as a B-module, and use [5, Theorem 1] to construct a cyclic
vector u ∈ J \ J2 if such exists. If there is no such vector, report that A is not cyclic.
Otherwise, return s := tn + u.

The correctness of the procedure is a scholium to Lemma 3.1 provided we can show
that B = k〈tn〉. To that end, we observe that the cyclicity of B1 ⊕ . . . ⊕ Bi remains
invariant under the iterative step. For, at the end of a fixed iteration i, we always have
fi+1(x) � mi(x) (unless we exited the loop to report failure). Hence, (mi(x)) +(fi+1(x)) =
k[x] and, by the Chinese Remainder Theorem,

k[x]/
(
mi(x)fi+1(x)

)
= k[x]/

(
mi(x)

)
⊕ k[x]/

(
fi+1(x)

) ∼= (B1 ⊕ · · · ⊕Bi) ⊕Bi+1,

with the isomorphism induced by the assignment x �→ ti+1 = ti + bi+1. �
3.2. Conjugating cyclic algebras

Now that we can recognize cyclic algebras, we return to the conjugacy problem. The
obvious first case to consider is when the given cyclic algebras are fields. A determin-
istic, polynomial-time algorithm to solve this problem for fields described by structure
constants was first given by Lenstra [21, Theorem 1.2]. For completeness, we include the
following elegant solution communicated to us by W.M. Kantor.

552 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Lemma 3.5 (Kantor). There is a polynomial-time algorithm that, given s, t ∈ Endk(V)
acting irreducibly on V , returns c ∈ Autk(V) with sc ∈ k〈t〉.

Proof. Construct the minimal polynomial, m(x), of s over k, and factor it in the poly-
nomial ring k〈t〉[x]. If (x − z) ∈ k〈t〉[x] is any one of the linear factors, then s and z are
conjugate in Autk(V). One finds c ∈ Autk(V) conjugating s to z, and hence k〈s〉 to k〈t〉,
by first conjugating s and z to their common RCF. �

Before presenting our extension to arbitrary cyclic algebras, we stress an important
point. Suppose {s} and {t} are given as an instance of ModuleIsok, where s, t ∈
Endk(V) are arbitrary. Then an output of “true” is expected if, and only if, s and t are
conjugate as elements in Autk(V). The latter is determined easily from the RCFs of s
and t. Deciding whether k〈s〉 and k〈t〉 are conjugate algebras is, however, a substantively
different problem.

Proposition 3.6. There is a polynomial-time algorithm that, given s, t ∈ Endk(V), returns
c ∈ Autk(V) such that k〈sc〉 = k〈t〉, if such c exists.

Proof. The proof uses the RCFs of s and t. Intuitively, it is clear that the canonical
forms of s and t are required to be, in a certain sense, “compatible”; our proof shows
that this compatibility is also a sufficient condition for conjugacy.

Suppose, first, that s is primary, namely s has minimal polynomial f(x)e ∈ k[x], where
f(x) is irreducible. Let n = deg f , and Cf ∈ Mn(k) denote the companion matrix of f(x).
Then the RCF of s is Jλ(f) for some partition λ = [�1, . . . , �a]. Evidently, d/n =

∑a
i=1 �i,

where d = dimk V . For use later on, we associate to s the integer sequence

μ(s) = μ(s, f) = (n, �1, . . . , �a),

which we regard as the signature of s. For 1 � i � a, the subalgebra k〈J�i〉 has a
WM-decomposition Ui ⊕ Si, where Si = k〈diag(Cf , . . . , Cf)〉 � Mn�i is a field extension
of k of degree n, and Ui (the Jacobson radical of k〈J�i〉) is nilpotent of degree �i−1. Thus,
A has a WM-decomposition A = U ⊕S, where U = U1⊕ . . .⊕Ua, and S = S1⊕ . . .⊕Sa.

Next consider t. Clearly, k〈s〉 is conjugate to k〈t〉 only if t is also primary, having min-
imal polynomial say g(x)e, g(x) irreducible. If c ∈ GL(d, k) conjugates k〈s〉 to k〈t〉, then
c conjugates each WM-decomposition of k〈s〉 to one for k〈t〉. As WM-decompositions
of k〈t〉 are conjugate in k〈t〉, we have μ(t, g) = μ(s, f).

We now show that if μ(s, f) = μ(t, g) then we can find c with k〈s〉c = k〈t〉.
Assume s and t are written in RCF. Using Lemma 3.5, find Y ∈ GL(n, k) with

D := Y −1CfY ∈ k〈Cg〉. For 1 � i � a, put yi := diag(Y, Y, . . . , Y) ∈ GL(�in, k), and
c := diag(y1, y2, . . . , ya) ∈ GL(d, k). Then,

c−1sc = diag
(
y−1
1 J�1y, y

−1
2 J�2y2, . . . , y

−1
a J�aya

)
,

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 553

and, for 1 � i � a,

y−1
i J�i(f)yi =

⎡
⎢⎢⎢⎣

D In
.

. . . In
D

⎤
⎥⎥⎥⎦ .

Write J�i(f) = ui + ni and J�i(g) = vi + ni, where ni is the (common) nilpotent part
of J�(f) and J�(g), ui = diag(Cf , . . . , Cf), and vi = diag(Cg, . . . , Cg). Since D ∈ k〈Cg〉,
we have y−1

i uiyi ∈ k〈vi〉 ⊆ k〈vi + ni〉 (for the last inclusion see Lemma 3.1). Hence,
y−1
i J�i(f)yi = y−1

i uiyi + ni ∈ k〈J�i(g)〉. Thus, c−1sc ∈ k〈t〉, as required.
We turn now to the general case. Let s, t ∈ Endk(V) be arbitrary, and assume that s

and t are already in RCF. We test whether or not there exists c ∈ GL(d, k) with sc ∈ k〈t〉
as follows.

First, compute the minimal polynomial of s, and factorize as f1(x)d1 . . . fms
(x)dms

with fi irreducible. Likewise write the minimal polynomial of t as g1(x)e1 . . . gmt
(x)emt

with gi irreducible. For k〈s〉 and k〈t〉 to be conjugate, the number of primary components
in their respective k[x]-modules must agree, and so ms must equal mt. If this is not the
case we return “false”; else put m := ms = mt.

Next, compute the list, μ(s, f1), μ(s, f2), . . . , μ(s, fm), of primary signatures of s (easily
read off from the RCF of s). Let τ(s) denote the permutation that sorts the list into
lexicographic order. Similarly, compute μ(t, g1), μ(t, g2), . . . , μ(t, gm), and corresponding
permutation τ(t).

Put π := τ(s)τ(t)−1. If k〈s〉 is conjugate to k〈t〉, then μ(s, fi) = μ(t, giπ) for all
1 � i � m. Hence, if this is not the case, we return “false”. Otherwise, use a block
permutation matrix for π to rearrange the blocks in the RCF of t. Thus, we may assume
that π is the identity.

Finally, for each 1 � i � m, use the primary case to find an invertible matrix yi that
conjugates the ith primary component of s into the algebra generated by the ith primary
component of t. It is now immediate that c := diag(y1, . . . , ym) conjugates k〈s〉 to k〈t〉,
as required. �
Proof of Theorem 1.3. Part (i) of Theorem 1.3 is just Proposition 3.4.

For part (ii), suppose X1, . . . , X�, Y1, . . . , Ym is an instance of GenModuleIsok. As
k〈X1, . . . , X�〉 is presumed cyclic, using Proposition 3.4 we can now find a cyclic gener-
ator, say s, for this subalgebra. (Note, our algorithm will detect if it’s not cyclic.) Next,
use Proposition 3.4 again to test whether k〈Y1, . . . , Ym〉 is cyclic. If it is not, then the
two algebras are clearly not conjugate. If it is cyclic, then the algorithm also returns a
cyclic generator, say t, for k〈Y1, . . . , Ym〉. Now use Proposition 3.6 to test whether k〈s〉
and k〈t〉 are conjugate. �

554 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Fig. 2. 100 randomized trials of our general module isomorphism test of modules over cyclic algebras.

4. Implementation and performance

Prototypes of the algorithms presented in Section 3 have been implemented by the
authors in the computer algebra system Magma. The code currently uses generic
functions to handle certain computations with matrix algebras, and we expect that
implementations of algorithms such as [9,16] would improve its performance signifi-
cantly. Nevertheless, even on test examples that are built to allow comparisons with
standard module isomorphism machinery in Magma, our functions fare reasonably
well. (Remember that our algorithms are designed to solve the more general problem
GenModuleIsok.) We now describe some performance tests that we ran, and remark
on opportunities for improvement. All tests were conducted on a computer with an Intel
i5-2400 processor (four cores, 3.1 GHz) running Magma Version 2.19–10.

Our first test, summarized in Fig. 2, examines the performance of our module isomor-
phism test for k[x]-modules over k = GF(2). For a random d in the range {100, . . . , 250},
we selected a random c ∈ Md(k). We then formed a set S, of size roughly 2�log d
, con-
sisting of elements selected at random from k〈c〉 until A = k〈S〉 = k〈c〉. By choosing
a larger generating set for A, we are forcing the computer to forget that it is cyclic.
We formed another such set, T0, of roughly the same size as S, chose a random invertible
matrix g, and then put T = T g

0 and B = k〈T 〉. Finally, we used our implementation to
confirm, first, that A and B are cyclic and, second, that they are conjugate.

The timing in the first test was dominated by the cost of verifying, constructively,
that our algebras are both cyclic. The large variance that one sees in the runtimes arises
from the fact that the code currently uses generic Magma functions for matrix algebras
to compute a WM-decomposition A = J ⊕ S. The efficiency of this step can vary quite
dramatically depending on the dimension of the Jacobson radical, J . As alluded to earlier,
however, an implementation of the methods of [9,16] would likely improve that aspect
of the test significantly, and a more thoughtful exploitation of the fact that our algebras

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 555

Fig. 3. Comparison, for 500 isomorphism tests of modules over cyclic rings, of our implementation with
Meat-Axe methods. Note, the Meat-Axe is designed for a special computational model, so this test had to
use quite restricted inputs.

may be assumed commutative would certainly improve the overall performance of our
cyclicity test.

Our second test compared the performance of our implementation against standard
Magma machinery for carrying out similar tasks. The comparison is somewhat artificial
since we had to force the input to be compatible with both settings, but nevertheless
illustrates the practical potential of our implementation.

For this test we fixed k = GF(9), and let d vary in the range {10, . . . , 100}. Again, we
started with a random c ∈ Md(k). We then selected a random sequence S = [s1, . . . , sn]
from k〈c〉 (we fixed n = 2�log d
), and computed T = [t1, . . . , tn], where ti = sgi for
a random g ∈ GL(d, k). We then put A = k〈S〉 and B = k〈T 〉, again both cyclic
algebras that have forgotten they are cyclic. Hence, this represents a valid input to both
ModuleIsok and GenModuleIsok.

We next verified conjugacy of A and B in two ways.
First, we used the standard Magma function IsIsomorphic to construct an isomor-

phism from the module defined by A to the module defined by B. Thus, as in Fig. 1 in
Section 1, we are asking Magma to solve the problem ModuleIsok; clearly, the isomor-
phism it returns conjugates A to B. It does this, in practice, using a suite of functions
known collectively as the Meat-Axe; these are founded on implementations of [15].

Second, we used our own functions to verify conjugacy. Again, the code first verifies
that the given cyclic algebras are indeed cyclic.

The graphs in Fig. 3 show runtimes for the Meat-Axe functions, and for the various
components of our own functions. We are, on average, only twice as slow as the Meat-Axe,
which seems as good as one might reasonably expect, given that we test cyclicity twice
(once for A and once for B). Note that the time needed to conjugate the cyclic algebras
(once they are confirmed cyclic) is negligible. Thus, once we have found that our algebras
are cyclic, our conjugacy algorithm is substantially faster than Meat-Axe methods for
conjugacy.

556 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

Our final test focused just on conjugacy testing, and was designed to examine the
effect of increasing block size in a semisimple cyclic algebra while decreasing the num-
ber of blocks. The experiment indicated that conjugacy of fields dominates the overall
performance of the algorithm: the larger the irreducible blocks appearing in the RCFs
of the cyclic generators, the worse the performance.

5. Concluding remarks

We close with some remarks on related work, and briefly mention a particular appli-
cation of our results that first prompted us to consider more general forms of module
isomorphism. We also comment on unfaithful modules.

5.1. Comparing with Lie module isomorphism

Recently, J. Grochow studied the problem of conjugacy of Lie subalgebras of gln(k).
He proves the following result in [12, Corollary II.3].

Theorem 5.1 (Grochow). In an arithmetic model with an oracle for factoring polynomials,
deciding conjugacy of diagonalizable Lie subalgebras of gln(k) (given by generators) is as
hard as graph isomorphism.

This shows that Lie algebra isomorphism and Lie module isomorphism will likely be
hard. At first glance, in view of the graph isomorphism obstruction, Grochow’s result
appears to accord with our own observations on testing conjugacy of associative subal-
gebras. A second read may, however, give some cause for alarm, since we have proved a
seemingly conflicting result:

Theorem 5.2. If |k| > d, then deciding conjugacy of diagonalizable associative algebras
of Md(k) is in polynomial time.

Proof. If |k| > d then all diagonalizable subalgebras of Md(k) are cyclic. The result now
follows from Proposition 3.6. �

Despite their cosmetic similarity, however, the isomorphism problems for diagonal-
izable Lie, and diagonalizable associative algebras are largely unrelated. Abelian Lie
k-algebras are nothing more than k-vector spaces (the product is trivial), so any sub-
space of kn is also a Lie subalgebra. This leads to a reduction, first to the problem of
“code equivalence”, and ultimately to graph isomorphism. On the other hand the unital
associative diagonalizable subalgebras have nontrivial products and, up to conjugacy,
their number is bounded by the number of partitions of n which is at most 2n and thus
substantially more constrained than the 2Θ(n2) graphs on Θ(n) vertices or the |k|Θ(n2)

subspaces of kn.

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 557

We remark that our proof of Theorem 1.2 shows that graph isomorphism is an ob-
struction to isomorphism and conjugacy testing of nilpotent Lie algebras, just as it is for
associative algebras.

5.2. Testing isomorphism of p-groups

The work in Section 3 was motivated by a particular problem that arose in connection
to testing isomorphism of p-groups. In [2], we developed a strategy for constructing the
automorphism group of a p-group, P , by instead using automorphisms of an associated
(Z/p)-algebra, A(P). In order to adapt that strategy to a test for isomorphism between
groups P and Q, we must first conjugate A(P) to A(Q), if this is possible [3]. This
accounts for our interest in EndoConjk. In key instances, moreover, the algebras A(P)
and A(Q) that arise are centralizers of cyclic algebras. As those centralizers are conjugate
if, and only if, their centers are conjugate, Theorem 1.3 now solves our problem. Hence,
the results of Section 3 provide a foundation for a new approach to isomorphism testing
in important classes of p-groups.

5.3. Unfaithful modules

The algorithms presented in the foregoing sections presume that the given A-modules
are faithful. We caution that, when applied to unfaithful modules, our algorithms are
likely to produce incorrect answers.

For example, let A = k⊕ k, and define two 1-dimensional representations ρ1, ρ2: A →
Endk(k) = k, where ker ρ1 = k ⊕ 0, and ker ρ2 = 0 ⊕ k. As the annihilators are unequal,
the modules are certainly not isomorphic; yet, Aρ1 = Aρ2, so GenModuleIsok would
find that they are.

If we adhere to the specifications of the standard algorithms to solve ModuleIsok, the
unfaithful modules described above may be distinguished without difficulty. For, suppose
that we fix generators s1 = (1, 0) and s2 = (0, 1) for A. Then the first module is input
by the list [0], [1] ∈ M1(k), while the second is specified by [1], [0]. Clearly, ModuleIsok

would correctly determine that they are nonisomorphic.
For a completely general module isomorphism test, we could insist that A, and the

maps ρi: A → Endk(V), be passed as input to the algorithm. The difficulty is that we
often wish to compute with A-modules for which it is not easy to specify A for input,
or for which the standard ring operations are prohibitively expensive. For instance, one
can compute effectively with the 248-dimensional module of the group algebra kG for
G = E8(q), but one would not wish to work within kG as it has dimension roughly
q248. For this reason one can easily see why it is desirable to ask just for the image of a
representation. On the other hand that requires the unreasonable assumption that every
user will agree on these same generators.

It is clear, then, that for unfaithful modules GenModuleIsok actually tests for a
form of module equivalence that is weaker than isomorphism. We call this semilinear

558 P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559

isomorphism: given representations ρ: A → Endk(M) and τ : B → Endk(N), there exists
ϕ: M → N such that, for all m ∈ M , and for all a ∈ A, ϕ(ma) = ϕ(m)aσ, where
σ: Aρ → Bτ is an induced algebra isomorphism.

Acknowledgments

Both authors are indebted to Ákos Seress for his kindness, his counsel, and especially
his friendship over many years.

We also kindly thank the referee for a number of insightful comments, references, and
corrections that have contributed substantially to the quality of the paper.

This work was partially supported by a grant from the Simons Foundation (#281435
to Peter Brooksbank).

The project was also partially supported by the National Security Agency under Grant
Number H98230-11-1-0146. The United States Government is authorized to reproduce
and distribute reprints not-withstanding any copyright notation herein.

References

[1] Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system. I. The user language,
in: Computational Algebra and Number Theory, London, 1993, J. Symbolic Comput. 24 (3–4) (1997)
235–265, MR1484478.

[2] Peter A. Brooksbank, James B. Wilson, Groups acting on tensor products, J. Pure Appl. Algebra
218 (2014) 405–416.

[3] Peter A. Brooksbank, James B. Wilson, Reducing the futility of group isomorphism testing, preprint.
[4] Peter A. Brooksbank, Eugene M. Luks, Testing isomorphism of modules, J. Algebra 320 (11) (2008)

4020–4029, MR2464805 (2009h:16001).
[5] Alexander Chistov, Gábor Ivanyos, Marek Karpinski, Polynomial time algorithms for modules over

finite dimensional algebras, in: Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, Kihei, HI, ACM, New York, 1997, pp. 68–74.

[6] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4, http://www.gap-
system.org, 2014.

[7] Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, 1979.

[8] Max Garzon, Yechezkel Zalcstein, On isomorphism testing of a class of 2-nilpotent groups, J. Com-
put. System Sci. 42 (2) (1991) 237–248, MR1103249 (92k:20063).

[9] Patrizia Gianni, Victor Miller, Barry Trager, Decomposition of algebras, in: Symbolic and Algebraic
Computation, Rome, 1988, in: Lecture Notes in Comput. Sci., vol. 358, Springer, Berlin, 1989,
pp. 300–308, MR1034741 (91e:12009).

[10] M. Giesbrecht, Nearly optimal algorithms for canonical matrix forms, PhD thesis and U. of Toronto
Technical Report 268/93, 1993.

[11] Mark Giesbrecht, Nearly optimal algorithms for canonical matrix forms, SIAM J. Comput. 24 (5)
(1995) 948–969, MR1350753 (96f:65180).

[12] J.A. Grochow, Matrix Lie algebra isomorphism, in: IEEE Conference on Computational Complexity
(CCC), Porto, June 2012, 2012, pp. 203–213.

[13] Hermann Heineken, Hans Liebeck, The occurrence of finite groups in the automorphism group of
nilpotent groups of class 2, Arch. Math. (Basel) 25 (1974) 8–16, MR0349844 (50 #2337).

[14] Derek F. Holt, Bettina Eick, Eamonn A. O’Brien, A Handbook of Computational Group Theory,
Discrete Math. Appl., Chapman & Hall/CRC, Boca Raton, FL, 2005, MR2129747 (2006f:20001).

[15] Derek F. Holt, Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1)
(1994) 1–16, MR1279282 (95e:20023).

[16] Gábor Ivanyos, Fast randomized algorithms for the structure of matrix algebras over finite fields,
in: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation,
St. Andrews, ACM, New York, 2000, pp. 175–183 (electronic), MR1805121.

http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4D61676D61s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4D61676D61s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4D61676D61s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib42573A6175746F746F7069736Ds1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib42573A6175746F746F7069736Ds1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib424C3A69736F6Ds1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib424C3A69736F6Ds1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib43494Bs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib43494Bs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib43494Bs1
http://www.gap-system.org
http://www.gap-system.org
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47617265794A6F686E736F6Es1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47617265794A6F686E736F6Es1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib475As1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib475As1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib474D54s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib474D54s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib474D54s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47696573627265636874s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47696573627265636874s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47726F63686F77s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib47726F63686F77s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib484Cs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib484Cs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib48454Fs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib48454Fs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4852s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4852s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4976616E796F73s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4976616E796F73s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4976616E796F73s1

P.A. Brooksbank, J.B. Wilson / Journal of Algebra 421 (2015) 541–559 559

[17] Gábor Ivanyos, Klaus Lux, Treating the exceptional cases of the MeatAxe, Experiment. Math. 9 (3)
(2000) 373–381, MR1795309 (2001j:16067).

[18] Nathan Jacobson, Basic Algebra. I, W.H. Freeman and Co., San Francisco, CA, 1974, MR0356989
(50 #9457).

[19] Nathan Jacobson, Basic Algebra. II, W.H. Freeman and Co., San Francisco, CA, 1980, MR571884
(81g:00001).

[20] Johannes Köbler, Uwe Schöning, Jacobo Torán, The Graph Isomorphism Problem: Its Struc-
tural Complexity, Progress Theoret. Comput. Sci., Birkhäuser Boston, Inc., Boston, MA, 1993,
MR1232421 (95b:05154).

[21] H.W. Lenstra Jr., Finding isomorphisms between finite fields, Math. Comp. 56 (193) (1991) 329–347,
MR1052099 (91d:11151).

[22] Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time,
J. Comput. System Sci. 25 (1) (1982) 42–65, MR685360 (84a:68063).

[23] Klaus M. Lux, Magdolna Szőke, Computing homomorphism spaces between modules over finite
dimensional algebras, Experiment. Math. 12 (1) (2003) 91–98, MR2002676.

[24] R.A. Parker, The computer calculation of modular characters (the Meat-Axe), in: Computational
Group Theory, Durham, 1982, Academic Press, London, 1984, pp. 267–274, MR760660 (85k:20041).

[25] Nitin Saxena, Morphisms of rings and applications to complexity, PhD thesis, Indian Institute of
Technology, Kanpur, 2006.

[26] Panagiotis C. Soules, Construction of finite p-groups with prescribed group of noncentral automor-
phisms, Rend. Semin. Mat. Univ. Padova 76 (1986) 75–88, MR881561 (88k:20048).

[27] Iuliana C. Teodorescu, The module isomorphism problems for finite rings and related results,
preprint.

[28] Joachim von zur Gathen, Jürgen Gerhard, Modern Computer Algebra, 2nd ed., Cambridge Univer-
sity Press, Cambridge, 2003, MR2001757 (2004g:68202).

http://refhub.elsevier.com/S0021-8693(14)00491-8/bib494Cs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib494Cs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4A6163s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4A6163s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4A616332s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4A616332s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib67726170682D626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib67726170682D626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib67726170682D626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C656E73747261s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C656E73747261s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C75s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C75s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C53s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib4C53s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib5061726B6572s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib5061726B6572s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib536178656E61s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib536178656E61s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib536F756C6573s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib536F756C6573s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib767A47s1
http://refhub.elsevier.com/S0021-8693(14)00491-8/bib767A47s1

	The Module Isomorphism Problem Reconsidered
	Recommended Citation

	The module isomorphism problem reconsidered
	1 Introduction
	2 Isomorphism testing for general modules is hard
	3 Module isomorphism over cyclic algebras
	3.1 Recognizing cyclic algebras
	3.2 Conjugating cyclic algebras

	4 Implementation and performance
	5 Concluding remarks
	5.1 Comparing with Lie module isomorphism
	5.2 Testing isomorphism of p-groups
	5.3 Unfaithful modules

	Acknowledgments
	References

