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Algorithms to decide isomorphism of modules have been 
honed continually over the last 30 years, and their range of ap-
plicability has been extended to include modules over a wide 
range of rings. Highly efficient computer implementations of 
these algorithms form the bedrock of systems such as GAP
and Magma, at least in regard to computations with groups 
and algebras. By contrast, the fundamental problem of testing 
for isomorphism between other types of algebraic structures 
– such as groups, and almost any type of algebra – seems to-
day as intractable as ever. What explains the vastly different 
complexity status of the module isomorphism problem?
This paper argues that the apparent discrepancy is explained 
by nomenclature. Current algorithms to solve module iso-
morphism, while efficient and immensely useful, are actually 
solving a highly constrained version of the problem. We report 
that module isomorphism in its general form is as hard as al-
gebra isomorphism and graph isomorphism, both well-studied 
problems that are widely regarded as difficult. On a more 
positive note, for cyclic rings we describe a polynomial-time al-
gorithm for the general module isomorphism problem. We also 
report on a Magma implementation of our algorithm.
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Dedicated to the memory of Ákos Seress

1. Introduction

In the field of computational algebra, the problem of testing isomorphism of modules 
stands apart from isomorphism tests for other algebraic structures. Decades of progress 
has brought improvements to existing methods, and new ideas that have broadened 
the scope of module isomorphism tests [4,5,15,17,23,24,27]. Tools for computing with 
modules are now an integral part of the infrastructure of systems such as GAP [6] and
Magma [1]. By contrast, testing isomorphism of other algebraic structures, such as finite 
groups, rings, and Lie and Jordan algebras, has remained extremely difficult.

In this note, we propose that the current state of play is due not to the relative ease of 
module isomorphism as an algorithmic problem, but rather to the fact that the problem 
widely referred to as “module isomorphism” is, in reality, a rather constrained version of 
the one your typical algebraist would likely write down. We show that, framed in a more 
general (and, we contend, quite natural) form, the module isomorphism problem is at 
least as hard as the better known graph isomorphism problem (Theorem 1.2). While thus 
suggesting that a satisfactory solution to our “general” module isomorphism problem will 
not soon be forthcoming, we also exhibit useful instances that do admit efficient solutions 
(Theorem 1.3).

It is important to stress that our intent here is not to imply that the computational 
algebra community has hitherto been interested in the wrong problem. On the contrary, 
the algorithms that underlie the accepted module isomorphism tests are among the most 
efficient and widely used in the entire field. It is rather that we foresee a demand for 
solutions to problems that are most accurately framed as module isomorphism problems 
of a more general flavor. In fact, as we explain briefly in the concluding section, this work 
grew from a particular application of such a problem to testing isomorphism of finite 
p-groups [3].

A motivating example. Suppose M and N are both 1-dimensional modules over a com-
mon field, say GF(9). Up to isomorphism there is only one such module, so we would 
expect any test of module isomorphism to confirm that M ∼= N .

Consider the experiment in Fig. 1, conducted using the Magma system. The same 
experiment may also be carried out in GAP with the same results.

We note that in systems such as GAP and Magma, as well as in the literature [4,
5,14,24], an A-module M is input by providing a list (X1, . . . , X�) of (n × n)-matrices 
over a field k, where n = dimk M . These matrices correspond to the action by a fixed 
generating set of A on the underlying k-vector space M . Thus, the code represents the 
field GF(9) as a ring of (2 × 2)-matrices over the field k = GF(3), namely

A = B =
{[

a b

−b a

]
: a, b ∈ k

}
.
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Fig. 1. An illustration within Magma of testing module isomorphism with (possibly) confusing results.

Evidently, Magma confirms that A and B are the same algebra. The two modules M and 
N are determined by the action of A and B, respectively, on an identical 2-dimensional 
k-vector space: not only are A and B equal, so are M and N as k-spaces. So, M and 
N are indeed 1-dimensional (unital) vector spaces over GF(9). Why, then, does Magma

report that M and N are nonisomorphic?
The result of the experiment will not surprise those who regularly use these tools, 

but some explanation is needed for those who do not. The function IsIsomorphic is 
designed to solve the following problem.

ModuleIsok

Given: (n × n)-matrices X1, . . . , X� and Y1, . . . , Y� over a field k.
Find: an invertible matrix Φ such that Φ−1XiΦ = Yi for all 1 � i � �, 

or prove no such Φ exists.

This problem has been settled in remarkably decisive terms.

Theorem 1.1 (Brooksbank–Luks). (See [4].) There is a deterministic algorithm to solve 
ModuleIsok that uses O(n6) operations in k.

The only restriction on k in Theorem 1.1 is that one is able to carry out basic arith-
metic operations; the result applies even to modules over infinite fields. Recently this 
result was extended to finite coefficient rings k that are not fields [27].

Now we can see why the test in Fig. 1 “failed”. Though we gave the same module, we 
used different generators. Indeed,

A = k

〈[
1 0
0 1

]
,

[
0 1
2 0

]〉
B = k

〈[
1 0
0 1

]
,

[
1 1
2 1

]〉
.

The minimum polynomials of the ordered pairs of generators are (x − 1, x2 − 2) and 
(x − 1, x2 − 2x − 1), respectively. So these lists of generators are not conjugate. In fact, 
we could even have used the same generating set but in a different order and the test 
would still have failed.

Thus, our hypothetical unwitting user receives the “wrong” answer not because of a 
defect in the algorithm, but because the wrong question was asked.
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Module isomorphism reconsidered. Certainly every A-module can be described by one 
fixed generating set for A. When building A-modules, however, it may not always be 
possible to maintain one common generating set. Moreover, as we saw above, the alge-
bra A is not given as part of the input of a module isomorphism test (more about this in 
Section 5). Thus, one cannot retroactively adjust the generators of one module to agree 
with those of another.

To properly solve instances of module isomorphism without carefully selected gener-
ators we focus on the following generalization.

GenModuleIsok

Given: (n × n)-matrices X1, . . . , X� and Y1, . . . , Ym over k.
Find: an invertible matrix Φ that conjugates the subalgebra 

k〈X1, . . . , X�〉 to the subalgebra k〈Y1, . . . , Ym〉.

Note that any map returned as a solution of ModuleIsok is a legitimate solution 
to GenModuleIsok, but an algorithm solving the latter would find that the modules 
constructed in Fig. 1 are, indeed, isomorphic. In this sense, we have formulated a more 
general module isomorphism test.

Unfortunately, our first result (proved in Section 2) rather suggests that a satisfactory 
solution to the new problem will not easily be found.

Theorem 1.2. GenModuleIsok is at least as hard as isomorphism testing of finite-
dimensional unital associative k-algebras, and at least as hard as graph isomorphism 
testing.

Thus, freed from its traditional constraints, the module isomorphism problem seems 
no less difficult than its analogues for other algebraic structures. The news is less bleak, 
however, if we restrict to special instances of the general problem. We prove the following 
result in Section 3.

Theorem 1.3. For finite fields k, there are Las Vegas polynomial-time algorithms that 
solve the following:

(i) given A � Endk(V ), where V is a finite-dimensional k-space, return an epimor-
phism k[x] → A or prove none exists; and

(ii) instances of GenModuleIsok for which one of the given subalgebras, say 
k〈X1, . . . , X�〉, is an epimorphic image of k[x].

As finite fields are cyclic rings, Theorem 1.3 may be used to decide isomorphism of 
finite vector spaces (which of course clears up the confusion in Fig. 1).

In Section 4, we report on a prototype implementation of our algorithms in Magma. 
While lacking decades of performance adjustments, our prototype algorithm takes only 
twice as long as existing (finely-tuned) Magma functions, and at the same time admits 
a substantially broader class of problems.
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Conventions and terminology. We assume throughout that all rings are associative and 
unital, and that all modules are faithful. We further stipulate that all rings and modules 
are vector spaces over a fixed finite field k, although this can be relaxed to arbitrary 
commutative rings for most of Section 2. We shall assume that k-module isomorphism is 
decideable in polynomial time. Thus, we ultimately depend only on the assumption that 
we can efficiently decide isomorphism of finitely generated (Z/p)-modules. This permits 
us, in particular, to focus on the problems that emerge after the abelian structures have 
been recognized.

We assume that a finite-dimensional k-vector space, V , is encoded as a row space. We 
also assume that an algebra A � Endk(V ) is specified by a finite generating set, S, of 
matrices: writing A = k〈S〉, we understand that A is the image of the free algebra of 
rank |S| evaluated at S. Note, we do not assume that S is a basis for A as a k-space. 
This is the standard model for computing with algebras of endomorphisms.

We also briefly consider a more general input method for algebras, known as the 
structure constant model. Here, one specifies A via its underlying k-module Ak and, for 
a fixed k-basis B = {β1, . . . , βn} of Ak, one provides coefficients cij� ∈ k such that βiβj =∑

� cij�β�. This tacitly assumes, of course, that one is able to list a basis for A, a constraint 
which is not imposed on our model for A-modules. Algebras given by structure constants 
need not be associative.

We will be concerned with the relative difficulty of algorithmic problems. A problem 
is said to be in polynomial time if it is solvable in O(mc) steps where m is the size 
of a reasonable encoding of the input. In saying that a problem P is polynomial-time 
reducible to a problem P ′, informally we mean that if P ′ is in polynomial time, then P
is in polynomial time; thus, P ′ is at least as hard as P. More precisely, reducibility is 
established by providing a polynomial-time procedure that maps any instance of P to an 
instance of P ′, whereby any solution of the latter may efficiently be adapted to produce 
a solution of the former. The reader is referred to [7] for a comprehensive treatment of 
these fundamental notions.

2. Isomorphism testing for general modules is hard

We now establish connections between our general version of the module isomorphism 
problem and other well-studied problems. We are interested in constructive versions of 
isomorphism problems: in the event that two structures are found to be isomorphic, we 
also require an explicit isomorphism from one to the other.

Evidently, the decision versions of isomorphism problems that concern us here are 
all in NP, since any alleged isomorphism may efficiently be verified. With the exception 
of ModuleIsok, however, none is known to be in P. The main objective of this sec-
tion is to show that isomorphism problems for standard algebraic structures (notably 
GenModuleIsok) are at least as hard as the graph isomorphism problem. We remark, 
moreover, that the current best known algorithms to solve “algebraic” isomorphism prob-
lems have running time O(2cm) for standard inputs of size m, whereas graph isomorphism 
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can be solved in O(2c
√
m ) time. While this suggests that algebraic problems may be 

strictly harder than graph isomorphism, none are known to be NP-complete.
In order to proceed quickly to the essential problem, we begin by phrasing GenMod-

uleIsok in the language of algebras.

EndoConjk

Given: a k-module, V , and generators for k-subalgebras A and B of 
Endk(V ).

Find: ϕ ∈ Autk(V ) conjugating A to B, or prove no such ϕ exists.

EndoConjk seems a natural problem to study, independent of its connection to 
module isomorphism.

The matrix algebras to which EndoConjk applies can usually be described succinctly 
using small generating sets. Often, however, one wishes to compute with algebras for 
which no faithful linear representation is readily available. The structure constant model 
is the one most commonly used in such situations, and the following isomorphism problem 
is therefore fundamental.

AlgebraIsok

Given: structure constants for associative k-algebras A and B.
Find: a k-algebra isomorphism A → B, or prove A � B.

This is generally regarded as a hard problem; we will be more explicit about this soon. 
Our immediate goal is to prove the following.

Proposition 2.1. AlgebraIsok is polynomial-time reducible to EndoConjk.

Proof. Let (A, B) be an instance of AlgebraIsok. We may assume that A and B are 
isomorphic as k-modules (the isomorphism type is determined by the size of the input 
k-basis). Thus, we may assume that A = B = V as k-modules.

Let ρ: A → Endk(V ) and σ: B → Endk(V ) be the regular representations of A and B
(obtained via right multiplication). As our algebras are unital these representations are 
faithful. Hence, A ∼= Aρ and B ∼= Bσ, so we may consider instead the problem of testing 
for isomorphism between Aρ and Bσ.

Evidently, if Aρ and Bσ are conjugate in Endk(V ), then the two algebras are iso-
morphic. On the other hand, if ϕ: Aρ → Bσ is an isomorphism of k-algebras, then 
ϕ ∈ Autk(V ). Further, if v, a ∈ V , then v(ρaϕ) = (va)ϕ = (vϕ)(aϕ) = v(ϕσaϕ). Thus, 
ϕ−1ρaϕ = σaϕ for all a ∈ V , so Aρ is conjugate to Bσ. Hence, EndoConjk applied to 
(Aρ, Bσ) solves AlgebraIsok for (A, B). �

Proposition 2.1 tells us that EndoConjk is at least as hard as AlgebraIsok. The 
latter has connections to other well-studied problems. Recently, for example, Saxena 
established a link to the well-studied graph isomorphism problem:
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GraphIso

Given: a finite set V , and subsets E and F of V × V ;
Find: a permutation of V sending E onto F , or prove none exists.

Despite important breakthroughs in special cases (see, for example, [22]) the deci-
sion version of GraphIso remains in the tantalizing complexity region between P and 
NP-complete; see [20] for a survey. In [25, Theorem 2.2], Saxena proved the following 
result.

Theorem 2.2 (Saxena). GraphIso is polynomial-time reducible to AlgebraIsok.

Taken together with Proposition 2.1, this result proves Theorem 1.2. Furthermore, 
these results immediately establish a connection with one version of the isomorphism 
problem for finite groups. Recall, Cayley’s theorem states that every finite group G can 
be faithfully represented on the set G by the regular representation h �→ (g �→ gh). The 
following version of the group isomorphism problem continues to generate interest in 
certain research circles.

CayleyGroupIso

Given: regular (Cayley) representations of finite groups G and H.
Find: an isomorphism G → H, or prove G � H.

Corollary 2.3. CayleyGroupIsok is polynomial-time reducible to GenModuleIsok.

Proof. Miller showed CayleyGroupIso is polynomial-time reducible to GraphIso; see 
[20, p. 18]. The result now follows from Theorem 2.2 and Proposition 2.1. �

We have argued here that there are several (at least two) versions of the module 
isomorphism problem, and that the tractability of the problem differs strikingly with 
the choice of computational model. It would be remiss of us not to mention that a 
similar situation exists among isomorphism problems for finite groups.

It is never the case, in practical settings, that a group is specified in the redundant 
manner of CayleyGroupIso, namely by providing its full multiplication table. On the 
contrary, finite groups are usually input far more concisely via small sets of permutations 
or matrices, or perhaps abstractly using one of various kinds of special presentations.

It has been shown, for such concise models, that the group isomorphism problem 
is at least as hard as GraphIso, and is likely substantially harder. Such observations 
arise from the work of Heineken and Liebeck [13], and Soules [26], with the topic being 
addressed in complexity terms by Garzon and Zalcstein [8, p. 247].

3. Module isomorphism over cyclic algebras

Since a polynomial-time solution to GenModuleIsok is unlikely for arbitrary input, 
we consider the more tractable problem of isomorphism testing for k[x]-modules, k a finite 
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field, where k[x] denotes the ring of polynomials. We prove this case can be handled 
efficiently, hence proving Theorem 1.3.

A k-algebra is cyclic if it is a homomorphic image of k[x]. The multiplicative aspect 
makes cyclic algebras rather distinct from their group counterparts. For instance, Z/2 ⊕
Z/2 is a cyclic (Z/2)-algebra because it is isomorphic to (Z/2)[x]/(x2 − x), whereas its 
underlying abelian group is clearly not cyclic. More generally, if a1, . . . , an are distinct 
elements of k, then kn ∼= k[x]/(

∏n
i=1(x − ai)); in particular, for every n there is a finite 

field k such that kn is cyclic.
Cyclic rings often have nontrivial radicals, and can have quotients onto multiple ex-

tension fields. Thus, while they are very far from arbitrary rings, cyclic rings exhibit 
many of the ring-theoretic properties that seem to influence the difficulty of fundamen-
tal algorithmic problems for rings.

As one might expect, our algorithms for cyclic algebras make essential use of canonical 
forms. In particular, we will use the following version of the Rational Canonical Form 
(RCF) of a linear transformation.

For f(x) = xn − an−1x
n−1 − · · · − a0 ∈ k[x], and positive integer �, the companion 

matrix, Cf , and generalized Jordan block, J�(f), are as follows:

Cf =

⎡
⎢⎢⎣

0 1
. . . . . .

0 1
a0 a1 . . . an−1

⎤
⎥⎥⎦ ∈ Mn(k), J�(f) =

⎡
⎢⎢⎢⎣

Cf In
. . . . . .

. . . In
Cf

⎤
⎥⎥⎥⎦ ∈ Mn�(k).

If λ = [�1, . . . , �m] is a weakly decreasing list of positive integers (a partition), then 
Jλ(f) = diag(J�1(f), . . . , J�m(f)). If X is any matrix over k, with minimal polynomial 
factorized over k as f1(x)e1 · · · fa(x)ea , then X is conjugate to diag(Jλ1(f1), . . . , Jλa

(fa))
for some partitions λ1, . . . , λa [18, Sections 3.10–3.11]. This is what we shall refer to as 
the RCF of X.

Crucially, there is a Las Vegas polynomial-time algorithm that, given a matrix X over 
a finite field, returns an invertible matrix U such that U−1XU is in RCF [10, Section 5.3]; 
see also [11, Theorems 5.2–5.3].

3.1. Recognizing cyclic algebras

Our task, then, is to provide an efficient algorithm to solve EndoConjk whenever one 
of the input algebras is cyclic. Before we can tackle that problem, however, we must be 
sure that we can recognize when a given algebra is cyclic, since we do not presume that 
a cyclic generator is provided. We require an efficient solution to the following problem.

IsCyclick

Given: A � Endk(V ), where V is a finite-dimensional k-module.
Find: s ∈ A such that A = k〈s〉, or prove that A is not cyclic.
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There are effective solutions to IsCyclick when A is known to be a field: in deter-
ministic polynomial time one can find a normal basis basis for A over k, for example, 
and use it to find a cyclic generator [21, Theorem 3.1].

Our extension to the general problem uses a Wedderburn–Mal’cev decomposition 
(henceforth a WM-decomposition for short) of an algebra A, namely a decomposition 
A = J ⊕ B, where J is the Jacobson radical of A, and B is a semisimple subring of A. 
We note that all such B are conjugate in A [19, Section 6.11].

Lemma 3.1. Let A be a commutative k-algebra, and A = J ⊕ B a WM-decomposition 
of A. Then A is cyclic if, and only if, B is cyclic and J/J2 is a cyclic B-module.

Proof. Suppose that A = k〈s〉 is cyclic. Let f1(x)e1 . . . fn(x)en ∈ k[x] be the factorization 
of the minimal polynomial of s into irreducibles. A WM-decomposition, A = J⊕B, with 
B cyclic is obtained from the RCF of s, wherein B = B1⊕. . .⊕Bn and Bi

∼= k[x]/(fi(x)) is 
an extension of k. Furthermore, J = J1⊕. . .⊕Jn, with Ji/J2

i a 1-dimensional Bi-module. 
Hence, J/J2 is a cyclic B-module.

Conversely, let A be a commutative k-algebra, and A = J ⊕B a WM-decomposition 
of A such that B = k〈t〉 is cyclic, and J/J2 is a cyclic B-module with generator u + J2, 
for some u ∈ J . Put s := t + u. We claim that A = k〈s〉.

Let B = B1 ⊕ . . . ⊕ Bn be the decomposition of B into simple rings. As A is 
commutative, each Bi is a field extension of k. Let K be an extension of k, with 
|K| = pm exceeding the nilpotence degree of J , that contains all Bi as subfields. Then, 
sp

m = (t + u)pm = tp
m + upm = t ∈ k〈s〉, so B ⊆ k〈s〉. Also, u = s − t ∈ k〈s〉, so 

k〈s〉 contains a generator for J/J2. Thus, J = Bu + J2 and, by Nakayama’s lemma, 
J = Bu ⊆ k〈s〉. Hence, A = J ⊕B ⊆ k〈s〉, and the claim follows. �

We also require an effective way to build irreducible polynomials in k[x]. More pre-
cisely, we need the following result.

Lemma 3.2. There is a polynomial-time Las Vegas algorithm that, given I ⊂ k[x], 
a nonempty set of monic irreducible polynomials of degree n, returns an irreducible poly-
nomial of degree n not in I, or reports that no such exists.

Proof. Our approach varies according to the nature of I. (Note that the input length is 
n|I| log |k|.)

Special case: |I| � |k|n/2 or |k|n � 16. Form the list Pn of all monic polynomials in 
k[x] of degree n. For each f(x) ∈ Pn \I, test whether f(x) is irreducible: if so, stop, and 
return f(x). If no such f(x) exists, report that I already contains all of the irreducible 
polynomials of degree n.

General case: 0 < |I| < |k|n/2. Here, a classical result of Gauss ensures the existence 
of an irreducible polynomial of degree n not in I, and the following is a Las Vegas 
procedure to find one.
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Fix f(x) ∈ I, and construct the field K = k[x]/(f(x)). For each g(x) ∈ I, factor 
g(x) completely in K (using, for example, the methods of [28, Chapter 14]). In this way, 
construct the set

R :=
{
α ∈ K: ∃g(x) ∈ I such that α is a root of g(x)

}
⊂ K.

Repeat the following steps until an appropriate h(x) is found: choose ω ∈ K \ R at 
random; construct the minimal polynomial, h(x) ∈ k[x], of ω; if deg h = n, stop and 
return h(x); else continue.

We now analyze the two cases in turn. For convenience, let � = |I| and q = |k|.
That the special case works as advertized is obvious. We merely remark that |Pn| =

O(�2): as irreducibility testing is polynomial time, our approach yields a polynomial-time 
algorithm.

Next, consider the general case. As there are � distinct irreducible polynomials in |I|, 
there are n� < qn, elements in R. Furthermore, there are at most logn divisors of n, 
so there are at most this many proper subfields L of K, each having size at most qn/2. 
Hence,

|(K \R) \ (
⋃

|K/L|>1 L)|
|K \R| � qn − n�− qn/2 log n

qn − n�
= 1 − qn/2 logn

qn − n�
.

As 1 � � < qn/2, we have 1 − qn/2 log n
qn−n� � 1 − log n

qn/2−n
, which exceeds 0.1 whenever qn > 16. 

It follows that each independent choice of ω ∈ K \R lies outside a proper subfield with 
probability at least 0.1. The minimal polynomial of any such ω is irreducible of degree n

lying outside I.
Clearly then, the algorithm for the general case exits only when it has identified an 

irreducible polynomial, h(x), of degree n, lying outside I, and such h(x) is found, with 
positive probability, after a polynomial number of steps. �
Remark 3.3. There is a convenient way to produce new irreducible polynomials from old: 
given f(x) ∈ I, choose c ∈ k, and see if the irreducible polynomial f(x − c) is in I. This 
will often be the most effective approach in practical settings.

We can now present our recognition algorithm for cyclic rings.

Proposition 3.4. There is a polynomial-time Las Vegas algorithm to solve IsCyclick.

Proof. If A = k〈S〉 is not commutative, then it is not cyclic. Commutativity of A is 
determined by commutativity among the elements of S. Thus, we may now assume that 
A = k〈S〉 is commutative.

Use [9] to compute a WM-decomposition, A = J ⊕ B, and to find extension fields 
B1, . . . , Bn of k such that B = B1 ⊕ . . . ⊕ Bn. Note, if B is an epimorphic image of 
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k[x] with kernel I, then I = (f1(x) · · · fn(x)) with each fi(x) irreducible and deg fi =
[Bi : k].

We first proceed iteratively through the fields Bi to construct a cyclic generator for B, 
if such exists. Initialize i := 1.

Using [21, Theorem 3.1], construct t1 ∈ B1 with B1 = k〈t1〉, and compute the mini-
mum polynomial, m1(x), of t1 in its restriction to the support of B1.

Suppose 1 � i � n − 1, and that we have built ti such that B1 ⊕ . . . ⊕ Bi = k〈ti〉. 
Suppose, further, that we have computed the minimum polynomial, mi(x), of the re-
striction of ti to the support of B1 ⊕ · · · ⊕ Bi. (Hence, the assignment x �→ ti yields an 
isomorphism from k[x]/(mi(x)) to B1 ⊕ · · · ⊕Bi.)

Find bi+1 ∈ Bi+1 such that Bi+1 = k〈bi+1〉, and compute the minimum polynomial, 
fi+1(x), for the restriction of bi+1 to the support of Bi+1.

If fi+1(x) � mi(x), put ti+1 := ti+bi+1, and mi+1(x) := mi(x)fi+1(x). Now, increase i

by 1 and iterate.
Else, use Lemma 3.2 to select h(x) ∈ k[x] irreducible with h(x) � mi(x) and deg h =

deg fi+1. If no such h(x) exists, then exit, reporting that B (and hence A) is not cyclic. 
Otherwise, factor h(x) in the field Bi+1 and locate a root w ∈ Bi+1. Put bi+1 := w, 
fi+1(x) := h(x), ti+1 := ti + bi+1, and mi+1(x) := mi(x)fi+1(x). Again, increase i by 1 
and iterate.

If we reach i = n, then we have constructed an element tn ∈ B, which we prove below 
is a generator for B.

Finally, construct J/J2 as a B-module, and use [5, Theorem 1] to construct a cyclic 
vector u ∈ J \ J2 if such exists. If there is no such vector, report that A is not cyclic. 
Otherwise, return s := tn + u.

The correctness of the procedure is a scholium to Lemma 3.1 provided we can show 
that B = k〈tn〉. To that end, we observe that the cyclicity of B1 ⊕ . . . ⊕ Bi remains 
invariant under the iterative step. For, at the end of a fixed iteration i, we always have 
fi+1(x) � mi(x) (unless we exited the loop to report failure). Hence, (mi(x)) +(fi+1(x)) =
k[x] and, by the Chinese Remainder Theorem,

k[x]/
(
mi(x)fi+1(x)

)
= k[x]/

(
mi(x)

)
⊕ k[x]/

(
fi+1(x)

) ∼= (B1 ⊕ · · · ⊕Bi) ⊕Bi+1,

with the isomorphism induced by the assignment x �→ ti+1 = ti + bi+1. �
3.2. Conjugating cyclic algebras

Now that we can recognize cyclic algebras, we return to the conjugacy problem. The 
obvious first case to consider is when the given cyclic algebras are fields. A determin-
istic, polynomial-time algorithm to solve this problem for fields described by structure 
constants was first given by Lenstra [21, Theorem 1.2]. For completeness, we include the 
following elegant solution communicated to us by W.M. Kantor.
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Lemma 3.5 (Kantor). There is a polynomial-time algorithm that, given s, t ∈ Endk(V )
acting irreducibly on V , returns c ∈ Autk(V ) with sc ∈ k〈t〉.

Proof. Construct the minimal polynomial, m(x), of s over k, and factor it in the poly-
nomial ring k〈t〉[x]. If (x − z) ∈ k〈t〉[x] is any one of the linear factors, then s and z are 
conjugate in Autk(V ). One finds c ∈ Autk(V ) conjugating s to z, and hence k〈s〉 to k〈t〉, 
by first conjugating s and z to their common RCF. �

Before presenting our extension to arbitrary cyclic algebras, we stress an important 
point. Suppose {s} and {t} are given as an instance of ModuleIsok, where s, t ∈
Endk(V ) are arbitrary. Then an output of “true” is expected if, and only if, s and t are 
conjugate as elements in Autk(V ). The latter is determined easily from the RCFs of s
and t. Deciding whether k〈s〉 and k〈t〉 are conjugate algebras is, however, a substantively 
different problem.

Proposition 3.6. There is a polynomial-time algorithm that, given s, t ∈ Endk(V ), returns 
c ∈ Autk(V ) such that k〈sc〉 = k〈t〉, if such c exists.

Proof. The proof uses the RCFs of s and t. Intuitively, it is clear that the canonical 
forms of s and t are required to be, in a certain sense, “compatible”; our proof shows 
that this compatibility is also a sufficient condition for conjugacy.

Suppose, first, that s is primary, namely s has minimal polynomial f(x)e ∈ k[x], where 
f(x) is irreducible. Let n = deg f , and Cf ∈ Mn(k) denote the companion matrix of f(x). 
Then the RCF of s is Jλ(f) for some partition λ = [�1, . . . , �a]. Evidently, d/n =

∑a
i=1 �i, 

where d = dimk V . For use later on, we associate to s the integer sequence

μ(s) = μ(s, f) = (n, �1, . . . , �a),

which we regard as the signature of s. For 1 � i � a, the subalgebra k〈J�i〉 has a 
WM-decomposition Ui ⊕ Si, where Si = k〈diag(Cf , . . . , Cf )〉 � Mn�i is a field extension 
of k of degree n, and Ui (the Jacobson radical of k〈J�i〉) is nilpotent of degree �i−1. Thus, 
A has a WM-decomposition A = U ⊕S, where U = U1⊕ . . .⊕Ua, and S = S1⊕ . . .⊕Sa.

Next consider t. Clearly, k〈s〉 is conjugate to k〈t〉 only if t is also primary, having min-
imal polynomial say g(x)e, g(x) irreducible. If c ∈ GL(d, k) conjugates k〈s〉 to k〈t〉, then 
c conjugates each WM-decomposition of k〈s〉 to one for k〈t〉. As WM-decompositions 
of k〈t〉 are conjugate in k〈t〉, we have μ(t, g) = μ(s, f).

We now show that if μ(s, f) = μ(t, g) then we can find c with k〈s〉c = k〈t〉.
Assume s and t are written in RCF. Using Lemma 3.5, find Y ∈ GL(n, k) with 

D := Y −1CfY ∈ k〈Cg〉. For 1 � i � a, put yi := diag(Y, Y, . . . , Y ) ∈ GL(�in, k), and 
c := diag(y1, y2, . . . , ya) ∈ GL(d, k). Then,

c−1sc = diag
(
y−1
1 J�1y, y

−1
2 J�2y2, . . . , y

−1
a J�aya

)
,
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and, for 1 � i � a,

y−1
i J�i(f)yi =

⎡
⎢⎢⎢⎣

D In
. . . . . .

. . . In
D

⎤
⎥⎥⎥⎦ .

Write J�i(f) = ui + ni and J�i(g) = vi + ni, where ni is the (common) nilpotent part 
of J�(f) and J�(g), ui = diag(Cf , . . . , Cf ), and vi = diag(Cg, . . . , Cg). Since D ∈ k〈Cg〉, 
we have y−1

i uiyi ∈ k〈vi〉 ⊆ k〈vi + ni〉 (for the last inclusion see Lemma 3.1). Hence, 
y−1
i J�i(f)yi = y−1

i uiyi + ni ∈ k〈J�i(g)〉. Thus, c−1sc ∈ k〈t〉, as required.
We turn now to the general case. Let s, t ∈ Endk(V ) be arbitrary, and assume that s

and t are already in RCF. We test whether or not there exists c ∈ GL(d, k) with sc ∈ k〈t〉
as follows.

First, compute the minimal polynomial of s, and factorize as f1(x)d1 . . . fms
(x)dms

with fi irreducible. Likewise write the minimal polynomial of t as g1(x)e1 . . . gmt
(x)emt

with gi irreducible. For k〈s〉 and k〈t〉 to be conjugate, the number of primary components 
in their respective k[x]-modules must agree, and so ms must equal mt. If this is not the 
case we return “false”; else put m := ms = mt.

Next, compute the list, μ(s, f1), μ(s, f2), . . . , μ(s, fm), of primary signatures of s (easily 
read off from the RCF of s). Let τ(s) denote the permutation that sorts the list into 
lexicographic order. Similarly, compute μ(t, g1), μ(t, g2), . . . , μ(t, gm), and corresponding 
permutation τ(t).

Put π := τ(s)τ(t)−1. If k〈s〉 is conjugate to k〈t〉, then μ(s, fi) = μ(t, giπ) for all 
1 � i � m. Hence, if this is not the case, we return “false”. Otherwise, use a block 
permutation matrix for π to rearrange the blocks in the RCF of t. Thus, we may assume 
that π is the identity.

Finally, for each 1 � i � m, use the primary case to find an invertible matrix yi that 
conjugates the ith primary component of s into the algebra generated by the ith primary 
component of t. It is now immediate that c := diag(y1, . . . , ym) conjugates k〈s〉 to k〈t〉, 
as required. �
Proof of Theorem 1.3. Part (i) of Theorem 1.3 is just Proposition 3.4.

For part (ii), suppose X1, . . . , X�, Y1, . . . , Ym is an instance of GenModuleIsok. As 
k〈X1, . . . , X�〉 is presumed cyclic, using Proposition 3.4 we can now find a cyclic gener-
ator, say s, for this subalgebra. (Note, our algorithm will detect if it’s not cyclic.) Next, 
use Proposition 3.4 again to test whether k〈Y1, . . . , Ym〉 is cyclic. If it is not, then the 
two algebras are clearly not conjugate. If it is cyclic, then the algorithm also returns a 
cyclic generator, say t, for k〈Y1, . . . , Ym〉. Now use Proposition 3.6 to test whether k〈s〉
and k〈t〉 are conjugate. �
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Fig. 2. 100 randomized trials of our general module isomorphism test of modules over cyclic algebras.

4. Implementation and performance

Prototypes of the algorithms presented in Section 3 have been implemented by the 
authors in the computer algebra system Magma. The code currently uses generic 
functions to handle certain computations with matrix algebras, and we expect that 
implementations of algorithms such as [9,16] would improve its performance signifi-
cantly. Nevertheless, even on test examples that are built to allow comparisons with 
standard module isomorphism machinery in Magma, our functions fare reasonably 
well. (Remember that our algorithms are designed to solve the more general problem 
GenModuleIsok.) We now describe some performance tests that we ran, and remark 
on opportunities for improvement. All tests were conducted on a computer with an Intel 
i5-2400 processor (four cores, 3.1 GHz) running Magma Version 2.19–10.

Our first test, summarized in Fig. 2, examines the performance of our module isomor-
phism test for k[x]-modules over k = GF(2). For a random d in the range {100, . . . , 250}, 
we selected a random c ∈ Md(k). We then formed a set S, of size roughly 2�log d
, con-
sisting of elements selected at random from k〈c〉 until A = k〈S〉 = k〈c〉. By choosing 
a larger generating set for A, we are forcing the computer to forget that it is cyclic. 
We formed another such set, T0, of roughly the same size as S, chose a random invertible 
matrix g, and then put T = T g

0 and B = k〈T 〉. Finally, we used our implementation to 
confirm, first, that A and B are cyclic and, second, that they are conjugate.

The timing in the first test was dominated by the cost of verifying, constructively, 
that our algebras are both cyclic. The large variance that one sees in the runtimes arises 
from the fact that the code currently uses generic Magma functions for matrix algebras 
to compute a WM-decomposition A = J ⊕ S. The efficiency of this step can vary quite 
dramatically depending on the dimension of the Jacobson radical, J . As alluded to earlier, 
however, an implementation of the methods of [9,16] would likely improve that aspect 
of the test significantly, and a more thoughtful exploitation of the fact that our algebras 
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Fig. 3. Comparison, for 500 isomorphism tests of modules over cyclic rings, of our implementation with 
Meat-Axe methods. Note, the Meat-Axe is designed for a special computational model, so this test had to 
use quite restricted inputs.

may be assumed commutative would certainly improve the overall performance of our 
cyclicity test.

Our second test compared the performance of our implementation against standard
Magma machinery for carrying out similar tasks. The comparison is somewhat artificial 
since we had to force the input to be compatible with both settings, but nevertheless 
illustrates the practical potential of our implementation.

For this test we fixed k = GF(9), and let d vary in the range {10, . . . , 100}. Again, we 
started with a random c ∈ Md(k). We then selected a random sequence S = [s1, . . . , sn]
from k〈c〉 (we fixed n = 2�log d
), and computed T = [t1, . . . , tn], where ti = sgi for 
a random g ∈ GL(d, k). We then put A = k〈S〉 and B = k〈T 〉, again both cyclic 
algebras that have forgotten they are cyclic. Hence, this represents a valid input to both
ModuleIsok and GenModuleIsok.

We next verified conjugacy of A and B in two ways.
First, we used the standard Magma function IsIsomorphic to construct an isomor-

phism from the module defined by A to the module defined by B. Thus, as in Fig. 1 in 
Section 1, we are asking Magma to solve the problem ModuleIsok; clearly, the isomor-
phism it returns conjugates A to B. It does this, in practice, using a suite of functions 
known collectively as the Meat-Axe; these are founded on implementations of [15].

Second, we used our own functions to verify conjugacy. Again, the code first verifies 
that the given cyclic algebras are indeed cyclic.

The graphs in Fig. 3 show runtimes for the Meat-Axe functions, and for the various 
components of our own functions. We are, on average, only twice as slow as the Meat-Axe, 
which seems as good as one might reasonably expect, given that we test cyclicity twice 
(once for A and once for B). Note that the time needed to conjugate the cyclic algebras 
(once they are confirmed cyclic) is negligible. Thus, once we have found that our algebras 
are cyclic, our conjugacy algorithm is substantially faster than Meat-Axe methods for 
conjugacy.
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Our final test focused just on conjugacy testing, and was designed to examine the 
effect of increasing block size in a semisimple cyclic algebra while decreasing the num-
ber of blocks. The experiment indicated that conjugacy of fields dominates the overall 
performance of the algorithm: the larger the irreducible blocks appearing in the RCFs 
of the cyclic generators, the worse the performance.

5. Concluding remarks

We close with some remarks on related work, and briefly mention a particular appli-
cation of our results that first prompted us to consider more general forms of module 
isomorphism. We also comment on unfaithful modules.

5.1. Comparing with Lie module isomorphism

Recently, J. Grochow studied the problem of conjugacy of Lie subalgebras of gln(k). 
He proves the following result in [12, Corollary II.3].

Theorem 5.1 (Grochow). In an arithmetic model with an oracle for factoring polynomials, 
deciding conjugacy of diagonalizable Lie subalgebras of gln(k) (given by generators) is as 
hard as graph isomorphism.

This shows that Lie algebra isomorphism and Lie module isomorphism will likely be 
hard. At first glance, in view of the graph isomorphism obstruction, Grochow’s result 
appears to accord with our own observations on testing conjugacy of associative subal-
gebras. A second read may, however, give some cause for alarm, since we have proved a 
seemingly conflicting result:

Theorem 5.2. If |k| > d, then deciding conjugacy of diagonalizable associative algebras 
of Md(k) is in polynomial time.

Proof. If |k| > d then all diagonalizable subalgebras of Md(k) are cyclic. The result now 
follows from Proposition 3.6. �

Despite their cosmetic similarity, however, the isomorphism problems for diagonal-
izable Lie, and diagonalizable associative algebras are largely unrelated. Abelian Lie 
k-algebras are nothing more than k-vector spaces (the product is trivial), so any sub-
space of kn is also a Lie subalgebra. This leads to a reduction, first to the problem of 
“code equivalence”, and ultimately to graph isomorphism. On the other hand the unital 
associative diagonalizable subalgebras have nontrivial products and, up to conjugacy, 
their number is bounded by the number of partitions of n which is at most 2n and thus 
substantially more constrained than the 2Θ(n2) graphs on Θ(n) vertices or the |k|Θ(n2)

subspaces of kn.
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We remark that our proof of Theorem 1.2 shows that graph isomorphism is an ob-
struction to isomorphism and conjugacy testing of nilpotent Lie algebras, just as it is for 
associative algebras.

5.2. Testing isomorphism of p-groups

The work in Section 3 was motivated by a particular problem that arose in connection 
to testing isomorphism of p-groups. In [2], we developed a strategy for constructing the 
automorphism group of a p-group, P , by instead using automorphisms of an associated 
(Z/p)-algebra, A(P ). In order to adapt that strategy to a test for isomorphism between 
groups P and Q, we must first conjugate A(P ) to A(Q), if this is possible [3]. This 
accounts for our interest in EndoConjk. In key instances, moreover, the algebras A(P )
and A(Q) that arise are centralizers of cyclic algebras. As those centralizers are conjugate 
if, and only if, their centers are conjugate, Theorem 1.3 now solves our problem. Hence, 
the results of Section 3 provide a foundation for a new approach to isomorphism testing 
in important classes of p-groups.

5.3. Unfaithful modules

The algorithms presented in the foregoing sections presume that the given A-modules 
are faithful. We caution that, when applied to unfaithful modules, our algorithms are 
likely to produce incorrect answers.

For example, let A = k⊕ k, and define two 1-dimensional representations ρ1, ρ2: A →
Endk(k) = k, where ker ρ1 = k ⊕ 0, and ker ρ2 = 0 ⊕ k. As the annihilators are unequal, 
the modules are certainly not isomorphic; yet, Aρ1 = Aρ2, so GenModuleIsok would 
find that they are.

If we adhere to the specifications of the standard algorithms to solve ModuleIsok, the 
unfaithful modules described above may be distinguished without difficulty. For, suppose 
that we fix generators s1 = (1, 0) and s2 = (0, 1) for A. Then the first module is input 
by the list [0], [1] ∈ M1(k), while the second is specified by [1], [0]. Clearly, ModuleIsok

would correctly determine that they are nonisomorphic.
For a completely general module isomorphism test, we could insist that A, and the 

maps ρi: A → Endk(V ), be passed as input to the algorithm. The difficulty is that we 
often wish to compute with A-modules for which it is not easy to specify A for input, 
or for which the standard ring operations are prohibitively expensive. For instance, one 
can compute effectively with the 248-dimensional module of the group algebra kG for 
G = E8(q), but one would not wish to work within kG as it has dimension roughly 
q248. For this reason one can easily see why it is desirable to ask just for the image of a 
representation. On the other hand that requires the unreasonable assumption that every 
user will agree on these same generators.

It is clear, then, that for unfaithful modules GenModuleIsok actually tests for a 
form of module equivalence that is weaker than isomorphism. We call this semilinear 
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isomorphism: given representations ρ: A → Endk(M) and τ : B → Endk(N), there exists 
ϕ: M → N such that, for all m ∈ M , and for all a ∈ A, ϕ(ma) = ϕ(m)aσ, where 
σ: Aρ → Bτ is an induced algebra isomorphism.
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