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a b s t r a c t

Understanding the impact of geological events on diversification processes is central to evolutionary ecol-
ogy. The recent amalgamation between ecological niche models (ENMs) and phylogenetic analyses has
been used to estimate historical ranges of modern lineages by projecting current ecological niches of
organisms onto paleoclimatic reconstructions. A critical assumption underlying this approach is that
niches are stable over time. Using Notophthalmus viridescens (eastern newt), in which four ecologically
diverged subspecies are recognized, we introduce an analytical framework free from the niche stability
assumption to examine how refugial retreat and subsequent postglacial expansion have affected intra-
specific ecological divergence. We found that the current subspecies designation was not congruent with
the phylogenetic lineages. Thus, we examined ecological niche overlap between the refugial and modern
populations, in both subspecies and lineage, by creating ENMs independently for modern and estimated
last glacial maximum (LGM) newt populations, extracting bioclimate variables by randomly generated
points, and conducting principal component analyses. Our analyses consistently showed that when
tested as a hypothesis, rather than used as an assumption, the niches of N. viridescens lineages have been
unstable since the LGM (both subspecies and lineages). There was greater ecological niche differentiation
among the subspecies than the modern phylogenetic lineages, suggesting that the subspecies, rather than
the phylogenetic lineages, is the unit of the current ecological divergence. The present study found little
evidence that the LGM refugial retreat caused the currently observed ecological divergence and suggests
that ecological divergence has occurred during postglacial expansion to the current distribution ranges.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Geographic range contraction, fragmentation, and expansion
caused by Pleistocene glacial cycles all have had a major impact
on the spatial distribution of genetic variation across many taxa
(Avise et al., 1998; Hewitt, 2000; Zamudio and Savage, 2003; Steele
and Storfer, 2006; Walker et al., 2009). The prominence of such
geological events, particularly that of glacial retreat since the last
glacial maximum (LGM), has led to questions regarding their influ-
ence on evolutionary diversification. Our ability to address the
influence of geological processes on diversification has greatly

improved with the recent development of methods that facilitate
phylogenetic hypothesis testing coupled with the advent of ecolog-
ical niche models (ENMs). For example, ENMs offer means to eval-
uate phylogeographic inferences based on simulated past
distribution patterns (Knowles et al., 2007; Richards et al., 2007;
Peterson and Nyari, 2008; Walker et al., 2009), as well as to test
current niche divergence among closely related lineages (Graham
et al., 2004; Rissler and Apodaca, 2007; Pyron and Burbrink, 2009).

Predicting past ENMs is an attractive and promising tool for the
fields such as biogeography, evolutionary ecology, paleontology,
phylogenetics, and systematics. However, the current method of
developing historical ENMs relies on present-day species distribu-
tion data to predict past niches and thus rests on the assumption
that ecological niches of target organisms are stable through time
(Nogués-Bravo, 2009). This stable-niche assumption is problematic
for at least three reasons. First, without abundant paleoecological
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and paleontological evidence, it is often difficult to corroborate the
assumption of niche stability. Second, the increasing evidence for
ecological speciation (Nosil et al., 2009; Schluter, 2009) suggests
notable exceptions (but see Wiens, 2004; Wiens and Graham,
2005; Kozak and Wiens, 2010 for speciation via niche conserva-
tism). Finally, there is no quantifiable definition of what consti-
tutes a sufficiently ‘‘stable niche,’’ wherein current niche
variables can be appropriately used to predict past ENMs
(Nogués-Bravo, 2009). As a consequence of the difficulty in assess-
ing niche stability through time, there has been little attempt to
test for an ecological niche shift between the past (e.g., LGM) and
the present using ENMs. In response to environmental changes
typical of large scale geologic events such as the LGM, populations
must move, adapt, or suffer extinction.

Previous studies that integrate ENMs with phylogeographic
analyses generate past ENMs based on the stable-niche assump-
tion to evaluate inferences drawn from population genetic struc-
tures (Hugall et al., 2002; Carstens and Richards, 2007; Knowles
et al., 2007; Waltari et al., 2007; Peterson and Nyari, 2008;
Solomon et al., 2008; Jakob et al., 2009; Walker et al., 2009). While
results from these disparate analyses are often in general agree-
ment, Waltari et al. (2007) found that for 6 of 20 studied species,
predicted historical distributions showed significant discordance
between the predicted ENMs and phylogeographic analyses. More-
over, other studies found evidence of recent niche divergence be-
tween closely related taxa (Graham et al., 2004) and even within
a single species (Rissler and Apodaca, 2007; Pyron and Burbrink,
2009). Furthermore, remarkably rapid niche shifts (less than
120 yrs) have been detected in a principal-component environ-
mental space between the native and the invasive populations of
spotted knapweed Centaurea maculosa (Broennimann et al., 2007)
and Asian tiger mosquito Aedes albopictus (Medley, 2010). Indeed,
there is increasing empirical evidence that adaptation to novel
niches can occur rapidly, even potentially resulting in speciation
events (see reviews in Rundle and Nosil, 2005; Nosil et al., 2009;
Schluter, 2009). Thus, the assumption of stable ecological niches
since the Pleistocene is not universal, and should rather be an
empirical question. To this end, developing a framework for histor-
ical ENMs that are free from the stable-niche assumption would
advance research that explores the importance of geological events
in shaping ecological divergence of any species.

We used the North American eastern newt, Notophthalmus vir-
idescens, as a model to introduce a niche-stability free analytical
framework for examining the role of Pleistocene refugia in post-
LGM ecological niche divergence. Many wide-ranging species exhi-
bit considerable intraspecific phenotypic variation (e.g., elk [Cervus
canadensis], greenish warblers [Phylloscopus trochiloides], northern
cricket frog [Acris crepitans] and common kingsnake [Lampropeltis
getula]). Such phenotypic variation often reflects local adaptation
and thus offers opportunities for testing the effects of the LGM
on intraspecific ecological divergence. Notophthalmus viridescens
comprises four subspecies based on morphological variation and
ecological differentiation (Mecham, 1967; Fig. 1). The results from
the common garden experiments suggest that the ecological differ-
ences among the subspecies observed in nature are genetically-
based, rather than plastic; the subspecies differ in the expression
of the life history traits such as larval period, body mass at meta-
morphosis, and life cycle polyphenism (i.e., paedomorphic vs.
metamorphic adults; Takahashi and Parris, 2008; Takahashi et al.,
2011).

We focus on the LGM and the subsequent postglacial warming
as a potential catalyst of ecological niche divergence in N. virides-
cens. Hypotheses for the timing of recent niche divergence include:
(i) refugial retreat during the LGM, (ii) postglacial range expansion
to novel environments following the LGM, or (iii) a combination of
both. When fragmented populations that have retreated into

distinct refugia experience different selective pressures and be-
come adapted to different refugial environments, ecological diver-
gence can occur in allopatry during the LGM. The pattern of
ecological divergence attained during the LGM may still be main-
tained at present even after postglacial expansion reconnecting
the fragmented populations (i.e., secondary contact; Schluter,
2001). In such a scenario, the current ecological niches are pre-
dicted to be similar to those during the LGM and we should ob-
serve phylogenetic clustering in niche space. Alternatively,
postglacial range expansion following the LGM may allow organ-
isms to reach novel habitats and may facilitate adaptive divergence
(e.g., ecological speciation in postglacial fishes, Schluter, 1996).
This scenario predicts the ecological disparity between the LGM
and the current niches, suggesting the violation of the niche stabil-
ity assumption.

To test the hypotheses pertaining to the ecological niche diver-
gence of N. viridescens, we first tested phylogenetic predictions
resulting from the assumption that their subspecies are congruent
with phylogenetic lineages. We then adopt the statistical method
of Lemmon and Lemmon (2008) to estimate the geographic loca-
tion of ancestral populations in conjunction with paleoclimatic
reconstructions to create LGM niche models for refugial lineages.
Next, we quantitatively assess niche divergence by comparing con-
temporary to historical ENMs through principal component analy-
ses and niche overlap analyses. Our test of phylogenetic
concordance between refugial lineages and subspecies delineation
establishes a critical foundation for the subsequent construction of
the LGM ENMs and the niche comparison between the LGM popu-
lations and the current subspecies. Additionally, we tested for
niche shift between the refugial populations and the contemporary
phylogenetic lineages of N. viridescens when the current subspecies
designation was not congruent with refugial lineages.

2. Materials and methods

2.1. Study organism

The subspecific patterns of life-history variation within N. viri-
descens are associated with the environmental conditions of the
subspecies distributional ranges (Takahashi and Parris, 2008;
Takahashi et al., 2011). Larvae of the most terrestrial subspecies,
N. v. viridescens (the red-spotted newt), typically metamorphose
rapidly to leave ponds as terrestrial juveniles (called efts) and re-
turn to aquatic habitats as adults in 3–7 years. This subspecies,
which has two rows of distinct red spots on its dorsum, is predom-
inantly distributed within the Appalachian Highlands (Fig. 1)
where permanent wetlands are scarce, but ephemeral vernal pools
are common (Babbitt and Groat, 1998). These areas also offer ideal
woodland habitats for terrestrial salamanders as evidenced in the
abundance and diversity of terrestrial plethodontid salamanders
(Wilbur and Collins, 1973; Petranka, 1998). In contrast, N. v. piaro-
picola (the peninsula newt), which lacks any dorsal patternings,
typically completes its entire life cycle in aquatic habitats. This al-
most exclusively aquatic subspecies is distributed in the Florida
peninsula (Fig. 1) where relatively permanent wetlands are abun-
dantly available. The sandy and hot terrestrial environment of
Coastal Plain in Florida likely offers unsuitable habitats for terres-
trial salamanders. Notophthalmus v. dorsalis (the broken-striped
newt) with discontinuous two red lines on its dorsum and N. v. lou-
isianensis (the central newt) with small inconspicuous red spots on
its dorsum are distributed along the Interior and Coastal Plains
(Fig. 1) where wetlands are relatively abundant, but have widely
varying hydroperiods. These two subspecies have life-history char-
acteristics intermediate between N. v. viridescens and N. v. piaropi-
cola. Both subspecies exhibit life-cycle polyphenism (i.e.,
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developmental plasticity) in which larvae are able to metamor-
phose to terrestrial efts to leave drying aquatic habitats or, to re-
main in the water and directly mature into adults in ponds with
long hydroperiods.

2.2. Tissue samples, DNA isolation, amplification, and sequencing

Tail clips from adults or terrestrial juveniles of N. viridescens
were collected throughout its geographic range between 2004
and 2007 (Fig. 1, Table 1). Field-collected tissue samples were pre-
served in 95% ethanol and stored at �5 �C in the laboratory. As an
outgroup, we included one specimen of Taricha granulosa, the most
closely related genus to Notophthalmus (Weisrock et al., 2006). Di-
vergence between Taricha and Notophthalmus was assumed to be
roughly 35 Mya, following Zhang et al. (2008), and diversification
of crown-group Notophthalmus was assumed to occur ca. 11 Mya
(Zhang et al., 2008).

Genomic DNA was extracted using DNeasy tissue kit (Qiagen,
Valencia, CA). A segment of roughly 1585 bases of mitochondrial
DNA from part of the cytochrome b (cyt b) gene, part of subunit
two of NADH dehydrogenase (ND2) gene, tRNAAla, tRNAAsn, and
tRNATrp were amplified by polymerase chain reaction (PCR). We
amplified and cycle-sequenced cyt b using two primer combinations
that we designed for this study, Noto1 (50TGACCTACCAACACC AT-
CAAAT-30)-Noto2 (50GTATTTGG TGTTAATAGGGA AATT-30) and
NotoSeq1 (50-TTACACAAATTATTACGGCCTA-30)-NotoSeq2 (50-TAT-
GGGGTGAAATGCAATTTTGT-30), respectively. We amplified and cy-
cle-sequenced the other fragment consisting of tRNAAsn, tRNAAla,
tRNATrp, and ND2 using two primer combinations, L4437-H5934
and L4882a-H5692 following Weisrock et al. (2001). Amplification
of cyt b was conducted with denaturation at 94 �C for 30 s, annealing

at 50 �C for 30 s, sequence extension at 72 �C for 1 min per cycle for
30 cycles. Amplification of the continuous fragment of tRNAAsn,
tRNAAla, tRNATrp, and ND2 was conducted following the methods
in Weisrock et al. (2001). PCR products were purified using Qiaquick
PCR purification kit (Qiagen, Valencia, CA), cycle-sequenced using
BigDye Terminator (Life Technologies, Carlsbad, CA), and sequenced
with an Applied Biosystems 3730 automated sequencer. Cycle se-
quence reactions were run for both fragments with denaturation
at 96 �C for 10 s, annealing at 50 �C for 10 s, sequence extension at
60 �C for 4 min per cycle for 35 cycles.

2.3. Pleistocene refugia, topological phylogeography and subspecies
analyses

We generated 16 phylogeographically realistic predictions for
the eastern newt based on the number and coarsely-defined loca-
tion of Pleistocene refugia and pattern of the postglacial expansion
(Fig. 2). We identified up to four possible refugia in the eastern
United States based on previous studies. An Atlantic – Gulf genetic
discontinuity is commonly observed in various taxa (as in freshwa-
ter fish: Burgess and Yerger, 1986; amphibians: Church et al.,
2003; Pauly et al., 2007; reptiles: Walker and Avise, 1998; and
mammals:Ellsworth et al., 1994; also see review in Soltis et al.,
2006) presumably because organisms were fragmented and re-
treated into an Atlantic or eastern Gulf Coast refugia during the
LGM (Avise, 1992; Duellman, 1999; Church et al., 2003; Pauly
et al., 2007). Postglacial warming then allowed organisms to ex-
tend their ranges (Pielou, 1991; Williams et al., 2000). At least
two additional Pleistocene refugia in the eastern United States
have been suggested: an Appalachian Highland refugium (Church
et al., 2003; Zamudio and Savage, 2003; Soltis et al., 2006) and a

Fig. 1. Notophthalmus viridescens subspecies ranges (Mecham, 1967), physiographic natural regions, and sampling sites for the phylogeographic analyses. Physiographic
natural regions are delineated by heavy, solid lines and identified as follows: I = Interior Plains, II = Appalachian Highlands, III = Atlantic Coastal Plain, IV = Laurentian Upland,
and V = Ozark Plateaus.
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Western Gulf Coast refugium (Swenson and Howard, 2005; Walker
et al., 2009). All four refugia are within the current distributional
range of N. viridescens. The possibility of broad geographic expan-
sion out of a single refugium along the Atlantic Coast post-LGM
is suggested by a phylogeographic study of Ambystoma maculatum
(Zamudio and Savage, 2003). Applied to N. viridescens, this scenario
would suggest that intraspecific ecological divergence occurred en-
tirely during postglacial expansion and little effect of Pleistocene
refugial use on subspecific divergence (H1-I in Fig. 2). Given the
locations of the proposed Pleistocene refugia and the distribution
pattern of the subspecies, any scenarios in which four subspecies
independently arise from four different refugia are unrealistic.
Since the Atlantic Coast refugium is most likely used by newts as
in other amphibians widely distributed in eastern United States
(Church et al., 2003; Zamudio and Savage, 2003), we generated
two-refugium and three-refugium hypotheses by combining the
Atlantic Coast refugium and one or two other potential
refugia. As detailed in Fig. 2, support for any of six hypotheses
(H2-IV, H3-I, H3-VI, H3-VII, H4-I, H4-II) would suggest that Pleistocene
refugia and postglacial expansion together affected the formation
of the newt subspecies. Support for any of the remaining hypothe-
ses would suggest phylogenetic discordance with the classification
of the eastern newt subspecies

Relaxed-clock Bayesian analyses were conducted in Beast (vers.
1.4.8; Drummond and Rambaut, 2007) to test the 16 phylogeo-
graphic predictions. The nucleotide dataset was partitioned into

three subsets: for coding loci, a partition comprised first and sec-
ond codon positions; a second partition comprised all third-posi-
tions in codons; the last partition included all non-coding sites.
The general time-reversible model with gamma-distributed
among-site rate-heterogeneity (GTR + C) with estimated base-fre-
quencies was used to model sequence evolution for each partition.
Model parameters were assumed to be independent among parti-
tions. The C-distribution was discretized into four categories.
Using an uncorrelated lognormal prior on among-branch rate-var-
iation, fit of various coalescent models (i.e., constant size, logistic
growth, expansion growth, exponential growth; see Drummond
and Rambaut, 2007) were compared using log10 Bayes-factors
(hereafter, BFlog; Jeffreys, 1961; Suchard et al., 2001) in a prelimin-
ary analysis. We follow Kass and Raftery (1995) in criteria used to
judge relative support for hypotheses by Bayes factors, where a dif-
ference of BFlog > 3 is substantial evidence for the better supported
hypothesis (i.e., with 1000-fold more support). Having chosen
exponential growth as the most appropriate coalescent model by
Bayes-factor comparisons, phylogeographic hypothesis-testing
was conducted (see Fig. 2 for details of each hypothetical topolo-
gies). For topological tests hypothesizing coalescence for a set of
haplotypes at the LGM, we constrain tree-searches such that node
height of the root conformed to the prior distribution
�N(l = 35.2 Mya, r2 = 7.27), and node heights for Notophthalmus
sampled from the prior distribution �N(l = 11.4 Mya, r2 = 4.28).
These distributions span posterior ranges reported by Zhang

Table 1
Populations, subspecies designation, sample locality, sequenced sample size, and haplotypes of N. viridescens used in our phylogenetic analyses. Haplotypes are characterized as
follows: A.C. sub = Atlantic Coastal subclade; eastern G.C. sub = eastern Gulf Coastal subclade; A.H. = Appalachian Highland clade; and western G.C. = Western Gulf Coastal clade
(see Fig. 3).

Pop. no. Sample ID Subspecies State GPS (decimal) north; west Haplotypes No. sequenced Collectors

1 ABL dorsalis NC 33.99; 77.99 A.C. sub 1–6 10 A. Braswell
2 GSP dorsalis NC 34.92; 79.57 A.C. sub 7–14 8 M.K. Takahashi, Y. Takahashi
3 BS dorsalis NC 34.97; 79.35 A.C. sub 6, 13, 15–19 11 M.K. Takahashi
4 BFT dorsalis NC 35.07; 79.63 A.C. sub 13, 20–27 31 T. Sharp, M.K. Takahashi

A.H. 1
5 CFP dorsalis NC 35.08; 79.58 A.C. sub 13, 14, 20, 27, 29, 30 10 M.K. Takahashi

A.H. 15
6 MDSN louisianensis FL 30.26; 83.31 Eastern G.C. sub 11–15 8 P. Moler
7 LBTFL louisianensis FL 30.39; 84.66 Eastern G.C. sub 11 2 P. Moler
8 TAK louisianensis LA 30.48; 91.03 Western G.C. 1–2 10 T. Ohya, M.K. Takahashi
9 SRFL louisianensis FL 30.62; 86.80 Eastern G.C. sub 30 4 P. Moler
10 TSR louisianensis SC 32.48; 81.20 A.C. sub 31–38 10 M.K. Takahashi
11 FSPD louisianensis SC 32.93; 79.82 A.C. sub 39–42 4 M.K. Takahashi
12 ALT louisianensis MS 33.28; 88.78 Eastern G.C. sub 1–10 10 R. Altig
13 ARP louisianensis AR 35.97; 92.40 Eastern G.C. sub 16,17 10 M.K. Takahashi

A.H. 41
14 MO louisianensis MO 38.75; 92.19 Eastern G.C. sub 18,19 5 J. R. Johnson

A.H. 26
15 RBH louisianensis WI 43.09; 89.61 Eastern G.C. sub 20,21 6 R. Hay
16 GLDFL piaropicola FL 26.83; 81.47 A.C. sub 46–47 2 P. Moler
17 SRST piaropicola FL 27.20; 82.23 A.C. sub 48–50 3 P. Moler
18 HRND piaropicola FL 28.62; 82.35 A.C. sub 51–52 2 P. Moler
19 ALCFL piaropicola FL 29.53; 82.03 A.C. sub 53–58 10 P. Moler, G. Clark
20 PLM piaropicola FL 29.54; 81.84 A.C. sub 59–62 4 P. Moler
21 ZFX viridescens AL 34.92; 86.08 A.H. 27–30 7 Z. Felix, M.K. Takahashi
22 JFH viridescens SC 35.03; 83.07 Eastern G.C. sub 22 9 J. Humphries, M.K. Takahashi

Eastern G.C. sub 23–26
A.C. sub 43,44

23 CKP viridescens NC 35.07; 79.78 A.H. 1–3, 16–20 8 Y. Takahashi, M.K. Takahashi
24 ASH viridescens NC 35.75; 82.38 Eastern G.C. sub 22, 27–29 7 J. Petranka, M.K. Takahashi

A.C. sub 45
A.H. 21

25 CLB viridescens TN 36.40; 87.27 A.H. 31–34 4 M.K. Takahashi
26 KLG viridescens VA 37.37; 80.52 A.H. 4, 22–25, 36–38 12 K. L. Grayson
27 WVT viridescens WV 38.30; 82.33 A.H. 39 7 A. Mann, M.K. Takahashi
28 TRL viridescens PA 40.76; 78.01 A.H. 5–9, 40 15 T. Raffe
29 STT viridescens MA 42.38; 72.80 A.H. 10 4 S.G. Tilley
30 SEM viridescens NY 42.77; 76.98 A.H. 9–11 7 S. Myers
31 CRB viridescens ME 44.63; 69.92 A.H. 10, 12–14 6 C.R. Bevier
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et al. (2008) and incorporate an additional proportion (10 percent
of the mean) added to each end of that range.

If reduced to relatively small population size, as might be ex-
pected for refugial populations, gene coalescence ought to occur
rapidly (Kingman, 1982; Knowles and Maddison, 2002). We em-
ploy a distribution on the expected period of coalescence rather
than constrain to a point estimate for the LGM to account for sto-
chasticity of the coalescent process (Knowles et al., 2007). Thus, in
testing for coalescences attributable to the LGM, node-height sam-
pling for our constrained topological hypotheses conformed to the
uniform distribution of the interval 0–18 kya.

To assess support for each hypothesis, four independent Mar-
kov-chain Monte Carlo (MCMC) analyses were run, the first three
of which comprising 106 generations with subsampling every 103

generations; the fourth chain was 5 � 106 generations in length
and was subsampled every 104 generations. Redundant haplotypes
were retained to permit better estimates of coalescent parameters.
Tracer (vers. 1.4.8; Drummond and Rambaut, 2007) was used to as-
sess chain convergence, stationarity, and independence of MCMC
sampling (evaluated by effective sample sizes, ESSs). If indepen-
dent chains were not substantially different in marginal tree-like-
lihoods (|BFlog| 6 0.5), posterior samples from the four chains were
pooled with LogCombiner (Drummond and Rambaut, 2007). To
eliminate subjectivity, the first 1/5 of samples from each chain
was discarded as burnin. Convergence in likelihoods appeared

sufficient among chains, and stationarity appeared reached well
before the end of the burnin period. Concatenated samples were
then compared amongst all phylogeographic predictions, which in-
cluded the posterior sample from a topologically-unconstrained
analysis. Clade credibilities and summary trees were computed
using TreeAnnotator (version 1.4.6; Drummond and Rambaut,
2007) from the posterior distribution of trees for the topologi-
cally-unconstrained analysis (hereafter UCpdt) and for the most-
preferred constrained search (hereafter, PCpdt).

To attempt to replicate findings of subspecific non-monophyly
(see Gabor and Nice, 2004), the UCpdt was subjected to topological
filters in Paup* (Swofford, 2000), with each filter-constraint consis-
tent with the monophyly of a particular subspecies. Proportion of
trees consistent with each filter-constraint was interpreted as the
posterior probability (ppos) of subspecific monophyly.

2.4. Tests of Pleistocene refugia and post-glacial expansion

The posterior distributions of trees retained from the preferred
constrained-analysis in Beast were used to estimate likely geo-
graphic locations of coalescent events. If ancestors of particular
clades shared Pleistocene refugia, gene coalescence ought to have
occurred at around this period of severe range contraction (and
presumed reduction in effective population size). Trees were
pruned to leave only non-redundant haplotypes.

Fig. 2. A list of phylogeographically realistic predictions of N. viridescens topology that differ in the number and coarsely-defined location of Pleistocene refugia and the
pattern of the postglacial expansion. These predictions were generated based on current knowledge on Pleistocene refugia and the distribution patterns of N. viridescens
subspecies. Geographic regions are abbreviated as follows: AC = Atlantic Coastal Plain, APP = Appalachian Highlands, eGC = eastern Gulf Coastal Plains, IP = Interior Plains and
wGC = western Gulf Coastal Plains (see Fig. 1).
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We used Phylomapper (vers. 1b1; Lemmon and Lemmon, 2008)
to evaluate likely geographic positions of gene-coalescence events.
Phylomapper implements a stochastic model of populational
expansion across a landscape where geographic coordinates of
sampled populations are assumed to evolve through the tree by
Brownian motion (Lemmon and Lemmon, 2008). Given that genet-
ic data are often spatially autocorrelated, this implementation and
assumption seemed appropriate.

Ancestral coordinates were estimated for three non-nested
clades receiving high posterior support in the PCpdt. To accommo-
date topological uncertainty, locality estimates were computed
across the posterior distribution of 104 samples, with tree samples
drawn at random. In several cases, redundant haplotypes were
sampled in geographically distinct areas. As Phylomapper does
not permit zero-length edges (Lemmon and Lemmon, 2008), sev-
eral locality datasets were necessary to accommodate ‘uncertainty’
in the geographical location of each haplotype if redundant. If
redundant haplotypes were sampled within one degree of latitude
and longitude, values amongst redundant haplotypes were aver-
aged. Each potential combination of substantially different sam-
pling-localities of redundant haplotypes was used, however,
resulting in eight distinct locality datasets. For each dataset, 125
draws from the posterior distribution of trees were used for esti-
mates of ancestral localities. To express variance in locality-esti-
mates of coalescent events with respect to tree space, the R-
package (R Development Core, 2008) car (Fox, 2002) was used to
compute confidence ellipses for all phylogeographic groups of
interest. All R scripts used herein are available upon request.

As spatial distribution of genetic data can inform historical pat-
terns of movement and gene flow (Templeton et al., 1987; Knowles
and Maddison, 2002), the methodological procedure outlined by
Hafner et al. (2008) was adopted to assess radial orientation be-
tween redundant haplotypes. For instance, if all redundant haplo-
types are sampled along a NW–SE axis, a principal route of
historical migration is likely to have occurred along the same axis
(Hafner et al., 2008). If a particular refugium was used by ancestors
of a set of descendants, angular relationships between identical
haplotypes should conform to the directionality of expansion from
the refugial population – if migratory patterns are largely stable
through time. Using the R-package CircStats (Jammalamadaka
and SenGupta, 2001; Agostinelli, 2009), Rao’s (1976) spacing test
of uniformity was employed to determine if observed axial direc-
tions between redundant haplotypes provided signal for direction-
ality of population expansion, evidenced where more clustering of
axial connections occurs between haplotypes than is expected by
chance. Detection of directional postglacial expansion would sug-
gest possible biases in estimation of the LGM refugial locations
shifted toward such direction.

2.5. Ecological niche analyses

To compare environmental conditions of fundamental niches
between the modern and the LGM newt lineages, we first created
ecological niche models (EMNs) for the modern subspecies, the
modern phylogenetic lineages, and the LGM refugial populations.
Because the subspecies designations were not congruent with
the most preferred constrained tree from our phylogeographic
testing, we conducted separate analyses on the subspecies and
the modern lineages. The ENMs of the LGM populations were cre-
ated based on ancestral coordinates estimated through Phylomap-
per and reconstructions of the LGM climatic variables. We then
generated random points over each ecological niche model and ex-
tracted environmental variables by those random points. This pro-
cess was critical in that it transformed environmental conditions
represented only by occurrence and estimated ancestral coordi-
nates into the broader-spectrum dataset that represents newt’s

fundamental niche conditions. Finally, to test whether the ecolog-
ical niches of N. viridescens have shifted since the LGM, we per-
formed principal component analyses on the extracted
environmental variables and tested for differences using multivar-
iate analyses of variance and environmental space overlaps.

We constructed EMNs of the modern and the LGM lineages of N.
viridescens using Maxent version 3.3.3e (Phillips et al., 2006). We
used Maxent’s default settings for all parameters but chose cumu-
lative output, which is interpreted as predicted suitable conditions
for the organism above a threshold based on predicted omission
rate. We chose cumulative output because our interest was in hab-
itat suitability rather than probability of presence inferred from the
default logistic output. For the modern subspecies locality data, we
combined the locality records of our samples used in the phyloge-
netic analyses and museum records obtained through the HerpNet
database (http://herpnet.org). For records lacking GPS coordinates,
we georeferenced locations based on locality descriptions. We in-
ferred the distribution ranges of the modern phylogenetic lineages
for the assignment of the museum specimen locations by using
ArcGIS (ESRI, 2012) to subdivide the N. viridescens species range
based on spatial haplotype distributions derived from our phyloge-
netic analysis (Fig. 3). To create the lineage ranges, we gave each
phylogenetic sample location a value of 1 if the lineage was present
and 0 otherwise and used the Inverse Distance Weighted interpo-
lation procedure in ArcGIS to calculate an inverse square surface
for each lineage. Using a threshold value of 0.4, we converted the
gridded interpolation surfaces to polygons, clipped each to the N.
viridescens species range, and then extracted all museum specimen
locations falling within each lineage polygon to a separate lineage
point file. To construct the LGM refugial ENMs, we used ancestral
coordinates estimated from the preferred constrained-analysis in
Beast described above. To reduce the effects of spatial autocorrela-
tion, we treated localities within 0.1� of one another as duplicate
records, either of which was removed at random (Waltari et al.,
2007). This results in occurrence data files with 660 modern sub-
species occurrence records (20 N. v. dorsalis, 115 N. v. louisianensis,
21 N. v. piaropicola, and 504 N. v. viridescens), 677 modern lineage
occurrence records (133 Eastern, 513 Appalachian Highland, and
31 Western Gulf Coast), and 716 LGM refugial locality points
(214 Eastern, 362 Appalachian Highland, and 140 Western Gulf
Coast). The total number of the modern lineage data points was
greater than that of the subspecies because some locality points
were used multiple times due to the lineage range overlaps (Fig. 3).

For environmental variables, we obtained gridded 2.50 data sets
representing modern and LGM (21 kya) climate conditions from
the WorldClim database (Hijmans et al., 2005), which includes 19
bioclimatic variables (Table 2). The WorldClim LGM reconstruc-
tions were produced using the Community Climate System Model
(CCSM, Collins et al., 2006) and the Model for Interdisciplinary
Research on Climate (MIROC, Hasumi and Emori, 2004) for the
Paleoclimate Modeliing Intercomparison Project Phase II (PMIP2
http://pmip2.lsce.ipsl.fr/). Because WorldClim bioclimate variables
are often intercorrelated (e.g., Rissler and Apodaca, 2007), we gen-
erated correlation matrices to identify highly correlated (Pearson
correlation coefficient >0.8) pairs and chose the most biologically
meaningful and easily interpreted variables as Maxent inputs
(Table 2). To determine whether the ENMs generated by Maxent
were better than random predictions, the area under the Receiver
Operating Characteristic curve (AUC) is calculated for each ENM.
The AUC is a measure of model performance and varies from 0 to
1 with a value greater than 0.5 indicating that the model perfor-
mance was better than random prediction and 1.0 for perfect
predictability (Elith et al., 2006).

To prepare data sets for the principal components analysis, we
converted the 13 gridded ENMs (4 subspecies, 3 modern lineages,
3 CCSM refugia, and 3 MIROC refugia) to polygons. To minimize
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total errors resulting from both exclusion of potentially suitable
areas and inclusion of potentially unsuitable areas, we used as a
threshold the ENM value corresponding to the minimum value
for the summed omission rate and the fractional value of predicted
background provided in the Maxent output.

We then used a stratified systematic unaligned sampling pro-
cess (Berry and Baker, 1968) to generate random locality points

within 1000 km2 grid cells within each of the 13 ENM range poly-
gons and extracted the niche suitability score (i.e., cumulative out-
put score) for each point. Subsequently, we conducted a weighted
lottery to ensure that the density of random locality points was
proportional to niche suitability (i.e., more points from more suit-
able habitats) by selecting locality points that had suitability scores
greater than random suitability scores generated with the same

Eastern

Appalachian

Western Gulf

Fig. 3. Estimated distribution range of the modern phylogenetic lineages (Eastern, Appalachian Highland, and western Gulf Coast) of N. viridescens based on spatial haplotype
distributions.

Table 2
List of 19 BIOCLIM variables and selected variables based on correlation matrices for the ecological niche modeling of the modern and LGM lineages. The LGM climatic variables
are based on two reconstruction models, CCSM and MIROC (see Methods). These bioclimatic layers can be downloaded from Worldclim database (http://www.worldclim.org/
bioclim).

Modern LGM

CCSM MIROC

v v v BIO 1 Annual mean temperature
v v BIO 2 Mean diurnal range (mean of monthly (max temp–min temp))

v v BIO 3 Isothermality (BIO2/BIO7) (*100)
BIO 4 Temperature seasonality (standard deviation *100)
BIO 5 Max temperature of warmest month
BIO 6 Min temperature of coldest month
BIO 7 Temperature annual range (BIO5–BIO6)

v v v BIO 8 Mean temperature of wettest quarter
v v BIO 9 Mean temperature of driest quarter

BIO 10 Mean temperature of warmest quarter
BIO 11 Mean temperature of coldest quarter

v v v BIO 12 Annual precipitation
BIO 13 Precipitation of wettest month

v BIO 14 Precipitation of driest month
v v v BIO 15 Precipitation seasonality (coefficient of variation)

BIO 16 Precipitation of wettest quarter
BIO 17 Precipitation of driest quarter

v v v BIO 18 Precipitation of warmest quarter
BIO 19 Precipitation of coldest quarter
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mean and standard deviation as in the niche suitability scores. We
then extracted bioclimatic values from all 19 layers for each se-
lected locality point.

Using the extracted bioclimate values, we conducted principal
component analyses (PCA) followed by multivariate analyses of
variance (MANOVAs) to statistically evaluate the ecological niche
divergence of the newt lineages since the LGM (e.g., Graham
et al., 2004; Rissler and Apodaca, 2007). We conducted post hoc
multiple pairwise comparisons using MANOVAs with Bonfferoni
corrections to test niche separation by the first two principal axes.
With this analytical procedure, we first tested ecological niche
divergence among the subspecies to confirm that 19 bioclimate
variables demonstrated the predicted pattern of ecological diver-
gence among the subspecies of N. viridescens. In a principal-compo-
nent environmental space with the first two factors as axes, we
predicted that (1) the most terrestrial subspecies N. v. viridescens
and the most aquatic subspecies N. v. piaropicola would be most

differentiated, (2) ecologically similar subspecies, N. v. dorsalis
and N. v. louisianensis, would be nearest each other, and (3) these
ecological similar subspecies that exhibit intermediate life history
characteristics (see Introduction) would be placed between N. v.
viridescens and N. v. piaropicola. Subsequently, we tested ecological
niche divergence between the refugial populations and the subspe-
cies using the modern and two LGM bioclimatic layers (CCSM and
MICRO). We then repeated the same procedure to test niche
divergence between the LGM refugial populations and the modern
phylogenetic lineages. Finally, we calculated overlaps in principal-
component (PC hereafter) environmental spaces between any pos-
sible pairs within each analysis as area of pair-wise overlap in 95%
ellipses divided by the total area of the pair’s 95% ellipses. We did
not use statistical tools that test niche divergence based on ENM
range overlaps (e.g., ENM Tools: Warren et al., 2008) because it is
impossible to spatially compare between past and present distri-
bution models.

present20 tya40 tya60 tya

LGM

Eastern Gulf Coastal subclade

Atlantic Coastal subclade

N. v. louisianensis 
                  (eastern GC, pop. 6, 12, 13, & 15)

N. v. viridescens from Carolinas
(pop. 22 & 24)

N. v. louisianensis (pop. 7 & 9)

N. v. louisianensis 
(western GC, pop. 8)

N. v. viridescens 
  (pop. 28 ~ 31)

N. v. viridescens (pop. 25 ~ 27)

N. v. viridescens (pop. 3 & 26)

N. v. piaropicola 
(pop. 16 ~ 20)

N. v. dorsalis (pop. 1 ~ 4)

N. v. dorsalis from the subspecies boundary 
with N. v. viridescens (pop. 4)

N. v. louisianensis coastal SC
(pop. 10 & 11)

N. v. louisianensis from MO (pop. 14) 

N. v. dorsalis from the subspecies boundary 
with N. v. viridescens (pop. 5) 

N. v. louisianensis from AR (pop. 13)

N. v. viridescens from Carolinas (pop. 22 & 24)

N. v. viridescens (pop. 23 & 30)

0.95 - 1.00 p

0.50 - 0.79 p

0.80 - 0.94 p

pos

pos

pos

0

posterior support 

Western Gulf Coast

Eastern Lowland

estern Gulf CoasteW

astern LowlandsEa

Appalachian Highland

hypothesized refugia

Fig. 4. The most preferred topological prediction of N. viridescens phylogeny (H3-VI in Fig. 2) by log Bayes-factors with nodal supports indicated by the Bayesian posterior
probabilities. Three refugia were identified, namely Eastern Lowland, Appalachian Highland, and western Gulf Coast.
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3. Results

3.1. Topological hypothesis-testing

We obtained maximal lengths of 1585 concatenated nucleo-
tides of mtDNA sequence data for each of 246 individuals from
31 sampling localities. We identified 135 haplotypes (Cyt b
GenBank ID: KJ776842 - KJ776972; ND2 GenBank ID: KJ776973 -
KJ777103). Excluding the outgroup, there are 272 variable sites,
among which 175 were parsimony-informative.

The topology consistent with H3-VI (Fig. 4) was most preferred
by log Bayes-factors (Table 3) and was only slightly less supported
than the topologically unconstrained analysis (BFlog = 0.265). The
preferred constrained-analysis identified three major clades that
were statistically well supported: Appalachian Highlands, Eastern
Lowland, and Western Gulf Coast, corresponding to the three
hypothesized refugia in these areas (Fig. 5). The Eastern Lowland
clade is further split into two geographically cohesive units, the
Eastern Gulf Coastal and the Atlantic Coastal subclades.

The Appalachian Highland refugial population has predomi-
nantly formed N. v. viridescens with a few exceptions. Population
22 of N. v. viridescens in the Blue Ridge Mountains exclusively com-
prises haplotypes belonging to the Eastern Gulf Coastal subclade,
while the nearby population 24 of N. v. viridescens consists of both
the Eastern Gulf Coastal subclade and the Appalachian Highland
clade (Table 1, Fig. 4). The phylogenetic congruence between the
Appalachian Highland refugial population and the majority of
N. v. viridescens suggests that ecological divergence of this most
terrestrial subspecies may have occurred via adaptation to the
Appalachian Highland refugium during the LGM. This possibility
was tested by the ecological niche analyses (see below).

The remaining inferred refugial lineages (Eastern Lowland and
Western Gulf Coast) did not perfectly correspond with N. v. dorsalis,
louisianensis, or piaropicola. The Atlantic Coastal subclade com-
prises haplotypes from all four subspecies, within which N. v. dor-
salis and N. v. piaropicola each form well-supported monophyletic
groups. The populations of N. v. louisianensis within the Atlantic
Coastal subclade are all located east of the Suwannee River. The
Eastern Gulf Coastal subclade consists predominantly of N. v. loui-
sianensis distributed across the eastern Gulf coast and the Interior
Plains but also N. viridescens from the mountains of North and
South Carolina (Table 1). Finally, the Western Gulf Coastal clade
exclusively consists of haplotypes of N. v. louisianensis from
Louisiana.

Monophyly was strongly supported for N. v. piaropicola (Beast
ppos = 1.000) and fully lacking for N. v. viridescens, N. v. dorsalis
and N. v. louisianensis (i.e., all Beast ppos = 0.000). Two haplotypes
sampled from populations of N. v. dorsalis occur along the subspe-
cies boundary with N. v. viridescens appear to drive the non-mono-
phyly of N. v. dorsalis (NC viridescens 8 and NC dorsalis 30 in
Table 1). These haplotypes of N. v. viridescens found in the N. v. dor-
salis side of the subspecific boundary have likely resulted from
gene flow from N. v. viridescens. If these two haplotypes are al-
lowed to be positionally unconstrained, support for monophyly
in N. v. dorsalis is strong (Beast ppos = 1.000).

3.2. Pleistocene refugia and post-glacial expansion

The geography of estimated coalescent events at the root of
each phylogeographic group is largely congruent with results from
topological tests of phylogeography (Fig. 5). Coalescent areas are
geographically distinct, suggesting possible genetic differentiation
of N. viridescens through much of the Pleistocene glacial periods.
These coalescent areas are interpreted as likely sites for refugia
at the LGM, at least for the Appalachian Highland and Eastern Low-
land lineages, whose coalescent timing overlaps the LGM (Fig. 4).Ta
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Using Hafner et al.’s method (2008) for assessing radial orientation
between redundant haplotypes, there were no significant depar-
tures from expectations of randomness detected in tests of radial
directionality for these three phylogeographic groups (Rao’s U;
p > 0.10; Fig. 6).

3.3. Ecological niche analyses

The AUCs of all ENMs were close to 1.0 (i.e., perfect predictabil-
ity) with 0.973 being the lowest AUC, suggesting that our ENMs
were robust. PCA using 19 BIOCLIM variables supported the pre-
dicted pattern of ecological divergence among the subspecies of
N. viridescens in PC space with the first two factors (Wilks’ lambda:
F = 88.15, P < 0.0001, Fig. 7a). The most terrestrial subspecies N. v.
viridescens and the most aquatic subspecies N. v. piaropicola are
placed farthest from each other in environmental space with N.
v. louisianensis and with N. v. dorsalis falling between them. The lat-
ter two subspecies share similar life history characteristics that are
intermediate between N. v. viridescens and N. v. piaropicola (see
Introduction). The results of the pairwise comparisons suggest
that, overall, each subspecies occupies distinct niche while N. v.
dorsalis and N. v. louisianensis did not differ along the second prin-
cipal component axis (Fig. 7a). Loadings are summarized along the
axes in Fig. 7a. On average, there is 8.9% overlap in 95% ellipses of
PC environmental spaces between the subspecies (Table 4a).

PCA–MANOVA analyses based on both CCSM and MIROC paleo-
climatic reconstructions revealed significant niche divergence be-
tween the subspecies and the refugial populations (CCSM: Wilks’
lambda: F = 224.99, P < 0.0001, Fig. 7b; MIROC: Wilks’ lambda:

Appalachian Highland

Western Gulf Coast

Eastern Lowland

Fig. 5. Estimated ancestral geographic coordinates with confidence ellipses representing three potential LGM refugia for N. viridescens, Atlantic, Appalachian Highland, and
western Gulf Coast.

Appalachian Highland

Western Gulf Coast

Eastern Lowland

0

Fig. 6. The directional patterns of postglacial migration from each of the three LGM
refugia that were detected in the preferred phylogenetic tree of N. viridescens (see
Fig. 4). These migration patterns were estimated based on radial orientation
between redundant haplotypes. For instance, if all redundant haplotypes are
sampled along a N–S axis, a principal route of postglacial migration is likely to have
occurred along the same axis. In our analyses, we found no cases were significant
departures from expectations of randomness, suggesting that there were no
directional postglacial migrations.

220 M.K. Takahashi et al. / Molecular Phylogenetics and Evolution 76 (2014) 211–226



F = 132.14, P < 0.0001, Fig. 7c). On average, the 95% confidence
ellipses for subspecies overlap those of the refugial populations
only by 2.9% for the CCSM reconstruction and 3.3% for MIROC
(Table 4b and c). In contrast, average overlaps within subspecies

(10.5% in CCSM, 11.1% in MIROC) and within refugial populations
(3.8% in CCSM, 14.1% in MIROC) are relatively high. In both CCSM
and MIROC analyses, the PC 1 axis is primarily explained by sea-
sonality in temperature and precipitation. The PC 2 is explained
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by temperature-related variables; climatic environments of the
refugial populations were cooler than those of the subspecies.
While the CCSM and MIROC analyses showed similar results, there
are a few major differences. First, the environmental niches of the
refugial populations overlap more in the MIROC analysis than in
the CCSM analysis. Second, while the PC 2 axis is positively associ-
ated with temperature-related variables in the CCSM analysis, the
PC 2 axis in the MIROC analysis is negatively associated with tem-
perature-relative variables.

MANOVAs revealed statistical differences among the modern
phylogenetic lineages (Wilks’ lambda: F = 73.68, P < 0.0001,
Fig. 8a); however, their ecological niches are much less differenti-
ated than those of the subspecies (8.9% overlap between the sub-
species vs. 19.5% overlap between the lineages, Table 4a and d,
respectively). Both CCSM and MIROC analyses suggest significant
niche shift between the historical and modern lineages with the
overall shift in temperature-related PC 2 axis to warmer conditions
(CCSM: Wilks’ lambda: F = 293.47, P < 0.0001, Fig. 8b; MIROC: Wil-
ks’ lambda: F = 151.38, P < 0.0001, Fig. 8c). Once again, the overlap
between the historical and modern lineages in PC environmental
spaces is relatively small (5.0% in CCSM and 5.6% MIROC,
Table 4e and f), while the average overlaps within modern lineages
(24.4% in CCSM and 23.7% in MIROC) and within refugial popula-
tions (4.0% in CCSM and 15.0% in MIROC) are relatively high. The
notable difference between the CCSM and MIROC analyses is that
the PC 2 axis in the CCSM analysis is positively associated with
temperature-related variables while that in the MIROC analysis is
negatively associated with temperature-related variables.

4. Discussion

By using N. viridescens as a model, the present study shows that
the analytical framework that integrates phylogeographic tools
and ecological niche analyses of current and past lineages without
assuming niche stability is effective in exploring the historic pro-
cesses driving the current pattern of ecological divergence. When
tested as a hypothesis, rather than used as an assumption, our
work emphasizes that the niches of N. viridescens lineages have
been unstable since the LGM. Although the LGM refugial retreat
had a major impact on the spatial distribution of genetic variation
within N. viridescens, our data suggest that this vicariance event
had a little effect on the currently-observed pattern of ecological
divergence within N. viridescens. That is, postglacial adaptive
expansion to the current habitats has likely resulted in the ecolog-
ical divergence among the newt subspecies, instead of ecological
differentiation having persisted since the LGM refugial popula-
tions. Thus, the present study points the importance of environ-
mental characteristics, rather than vicariance events, in
facilitating ecological divergence within wide-ranging species.

4.1. Pleistocene Refugia, phylogeographic patterns, and subspecies
formation

Our evaluation of the 16 phylogeographic predictions suggests
that N. viridescens most likely retreated to at least three refugia
during the LGM, a Western Gulf Coast (southern Mississippi and

Table 4
Pairwise overlaps of 95% ellipses in principal-component environmental spaces. Sub-tables a, b, and c correspond to Fig. 7a–c while sub-tables d–f correspond to Fig. 8a–c
respectively.
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Louisiana) refugium, an Appalachian Highland (southern Kentucky
and eastern Tennessee) refugium, and an Eastern Lowland (north-
ern Georgia) refugium (Fig. 5). The role of Pleistocene glaciations in
forming intraspecific lineage sorting has been variable, although
some congruent phylogenetic patterns still exist (Austin et al.,
2004). The presence of southern Appalachian refugia (i.e., Appala-
chian Highland refugium in our study) is consistent with that re-
ported for the eastern tiger salamander Ambystoma t. tigrinum

(Church et al., 2003), spotted salamander A. maculatum (Zamudio
and Savage, 2003), and spring peeper Pseudacris crucifer (Austin
et al., 2004), all of which are widely distributed across the eastern
United States and have geographic ranges that overlap extensively
with that of N. viridescens. One study (Austin et al., 2004) that
examined two anuran species also identified the Western Gulf
Coast (i.e., Louisiana and its vicinity) and the area overlapping with
our Eastern Lowland refugium (northern Georgia) as Pleistocene
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refugia for the bullfrog, Lithobates catesbeiana. These works suggest
that wide-ranging amphibians in the eastern United States com-
monly retreated to southern Appalachian refugia, while retreats
to refugia in Louisiana and northern Georgia appear to vary
depending on species.

Three fragmented populations of N. viridescens between the
Atlantic and the Gulf of Mexico had likely persisted in isolation
during the LGM until postglacial warming allowed them to expand
to their current distribution ranges. Secondary contact zones be-
tween N. v. viridescens and surrounding subspecies have likely
formed via postglacial range expansion. In N. v. viridescens, popula-
tions in Pennsylvania, New York, Massachusetts, and Maine share
identical haplotypes (Table 1), suggesting that northward migra-
tion from the Appalachian Highland refugium occurred rapidly as
glaciers began retreating from these areas 18,000 kya (Pielou,
1991).

Modern river systems often remain barriers to contemporary
gene flow of amphibian populations (Lemmon et al., 2007; Pauly
et al., 2007), and the Apalachicola and Suwannee river systems ap-
pear to have been particularly important in fragmenting species
into separate Atlantic and eastern Gulf Coast refugia during the
LGM (Avise, 1992; Duellman, 1999; Church et al., 2003; Pauly
et al., 2007). In N. viridescens, however, we estimated the genetic
divergence between Atlantic – Gulf Coast lineages have occurred
during postglacial expansion, rather than during the LGM (Fig. 4).
The Suwannee River has likely been the major landscape barrier
reducing gene flow between the Atlantic Coastal and Gulf Coastal
lineages within one of the subspecies, N. v. louisianensis.

While the majority of current populations of N. v. viridescens
have seemingly originated from the Appalachian Highland refu-
gium, the multiple haplotypes found in populations 22 and 24
(Fig. 4, Table 1) represent two more distinct lineages contributing
to the formation of this subspecies. One of these lineages origi-
nated from the Atlantic Coastal subclade, the other from the Gulf
Coastal subclade, each of which formed a well-supported clade
within the Eastern Lowland refugial lineage. One possibility of this
finding, which needs further investigation with nuclear markers, is
that these two lineages independently migrated into the Appala-
chian Highland during postglacial expansion and joined not only
with each other but also with the Appalachian Highland lineage.
Dorsal patterning of populations 22 and 24 is typical of N. v. virides-
cens (personal observation, MK Takahashi), and outdoor mesocosm
experiments revealed that population 24 displayed the typical life
history of N. v. viridescens with rapid and obligate metamorphosis
to terrestrial efts (Takahashi and Parris, unpublished data). There-
fore, it is possible that adaptation to the current niche of N. v. vir-
idescens has occurred at least three times independently,
suggesting the potential role of parallel evolution in different
lineages.

Multiple distinct haplotypes found in two populations of N. v.
louisianensis may also suggest such convergent evolution. While
the Gulf Coastal subclade represents the vast majority of N. v. lou-
isianensis west of the Suwannee River, populations 13 and 14 in
Arkansas and Missouri contain both haplotypes of the Gulf Coastal
subclade and Appalachian Highland clade (Fig. 4, Table 1), suggest-
ing that a portion of the Appalachian Highland lineage has assum-
edly migrated and became part of N. v. louisianensis via adaptation
to the Interior Plains and the Ozark Plateaus.

4.2. Effect of glaciations and the origin of ecological niche divergence

Overall, our phylogeographic and ENM analyses suggest the
importance of ecology, rather than vicariance, in driving morpho-
logical and life history divergence within N. viridescens. Divergent
natural selection can facilitate the evolution of reproductive isola-
tion, leading to ecological speciation (Rundle and Nosil, 2005; Nosil

et al., 2009; Schluter, 2009). Divergent selection favoring different
life history strategies among the newt subspecies likely influences
subspecific variation in body size, which may play a role in poten-
tial assortative mating. Notophthalmus. v. viridescens reach larger
adult sizes by obligately metamorphosing to terrestrial efts and
exploiting rich woodland environments for longer periods (i.e., typ-
ically 3–7 yr) than the other subspecies. In contrast, the other sub-
species directly mature into smaller adults over short periods by
remaining in aquatic habitats (5–7 mon.; Harris, 1987; Takahashi
and Parris, 2008). Even when these subspecies metamorphose into
terrestrial efts, their terrestrial stages are typically short (�1 yr;
Harris et al., 1988), resulting in smaller adults. The short terrestrial
stage may be an adaptation to the Coastal Plains’ sandy soils and
hot, dry terrestrial environment. As a result, body size difference
is apparent between N. v. viridescens and the geographically proxi-
mal subspecies, N. v. louisianensis and N. v. dorsalis. Previous studies
found that male newts prefer larger females because of fecundity
advantages (Verrell, 1985, 1986), and larger males gain prior access
to larger females by winning male-male competition (Verrell, 1986;
Gabor et al., 2000), suggesting possibility of body-size assortative
mating. However, a recent study showed that body-size assortative
mating is probably not occurring (Takahashi et al., 2010). While lar-
ger males of N. v. viridescens gain prior access to larger females of
their own kind, males of smaller subspecies still have chances to
mate with female N. v. viridescens through sexual interference dur-
ing spermatophore deposition of larger males. Thus, natural selec-
tion is likely to be a major force driving and maintaining
ecological divergence among the newt subspecies while sexual
selection may be halting complete ecological speciation.

Testing phylogenetic congruence between a vicariance event
and coalescence timing has been a powerful method in inferring
the influence of vicariance on speciation processes (Avise, 1992;
Brant and Orti, 2003; Church et al., 2003; Lemmon et al., 2007;
Spellman et al., 2007). In this study, we added biological and phy-
logeographic realism to such a phylogenetic analysis by generating
and testing a nearly exhaustive list of topological scenarios based
on the estimated period of the LGM, the current understanding
of Pleistocene refugial locations, and contemporary N. viridescens
distribution patterns. Our phylogenetic analysis supported the sce-
nario in which the vast majority of N. v. viridescens is derived from
one of three Pleistocene refugia (i.e., the Appalachian Highland
refugium, Fig. 5), while the diversification of the other recognized
subspecies could not be attributed to any single refugial popula-
tion. These data suggest that ecological differentiation of N. v. vir-
idescens from the rest of the subspecies (see Fig. 7a) may have
occurred via adaptation to the Appalachian Highland refugial envi-
ronment in allopatry during the LGM. However, our ecological
niche analyses show significant differences in fundamental niches
and no overlaps in 95% ellipses in PC environmental spaces be-
tween N. v. viridescens and the Appalachian Highland refugium
(Fig. 7b and c; Table 4b and c). There is also little overlap in PC
environmental space between the modern subspecies and the
LGM populations, suggesting a niche shift since the LGM. Finally,
the comparisons in ENMs show that ecological niches have become
more overlapped among the modern than the historical lineages
(Table 4, Fig. 8) and there is more overlap in PC environmental
space among the modern lineages than among the subspecies
(Table 4, Fig. 7a, Fig. 8a). These results suggest that: (1) Pleistocene
glaciations had little effect on the current pattern of ecological
niche divergence within N. viridescens; (2) the ecological diver-
gence within the modern N. viridescens has occurred recently and
has likely formed during postglacial range expansion; (3) the unit
of divergence is likely to be the currently-recognized subspecies
rather than the phylogenetic lineages; and 4) a marked niche shift
of N. viridescens, particularly along temperature-related axis, has
occurred since the LGM.
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Poor estimation of Pleistocene refugial locations could also ex-
plain the niche divergence in PC environmental space between
the current and the refugial populations of N. viridescens. However,
we think that this interpretation is unlikely for three reasons. First,
our estimated refugial locations are supported by previous
amphibian studies (Appalachian Highland: tiger salamanders-
Church et al., 2003; spotted salamanders-Zamudio and Savage,
2003; spring peeper-Austin et al., 2004; Atlantic Coast: bullfrog-
Austin et al., 2004; Western Gulf Coast: bullfrog-Austin et al.,
2004). Second, estimation of Pleistocene refugial locations via phy-
logeographic analyses is based on the assumption that the refugia
existed within the current distributional range. This assumption is
likely accurate given the broad geographic extent of N. viridescens
likely encompassing the hypothesized Pleistocene refugia. And
third, estimated patterns of postglacial migration from all three
refugia were apparently random. Directional migration during
postglacial expansion could have biased the estimation of Pleisto-
cene refugial locations by shifting the centers of genetic diversity;
however, such patterns of expansion were not detected in our
analyses.

4.3. Current and LGM climatic conditions and life history evolution

The contemporary ecological niche of the most terrestrial sub-
species (N. v. viridescens) is characterized in PC environmental
space by cooler and drier environments with less seasonal precip-
itation as compared to that of the most aquatic subspecies (N. v.
piaropicola) which are characterized by warmer and wetter envi-
ronments with greater precipitation (Fig. 7a–c). The ecologically
similar subspecies, N. v. louisianensis and N. v. dorsalis, utilize both
terrestrial and aquatic habitats, and their niches fall in between the
former two species. These niche characteristics at least partially
explain the pattern of life history variation among the newt
subspecies. As evidenced in the abundance and diversity of di-
rect-developing, terrestrial plethodontid salamanders (Wilbur
and Collins, 1973; Kozak and Wiens, 2010), the cool, high altitude,
and persistently moist environment of the Appalachian Highlands
may be one of the characteristics favoring a terrestrial life history
among salamanders. On the other hand, greater precipitation likely
contributes to permanence or longer persistence of freshwater
habitats while severe dry seasons make terrestrial habitats unsuit-
able for salamanders. Thus, greater availability of permanent and
long-standing aquatic habitat together with severe dry season
likely selects for permanent (N. v. piaropicola) or plastic (N. v. dor-
salis and N. v. louisianensis) aquatic life history in Florida and in the
Coastal and Interior Plains.

Because there is little overlap in ecological niches between the
subspecies and the refugial populations, it is difficult to predict life
histories of the LGM refugial populations. Yet, the much colder
environment of the refugial populations suggests that they may
have been terrestrial because freshwater aquatic habitats, espe-
cially small and shallow fishless ponds, were likely to freeze in
the winter months during the LGM. Notophthalmus viridescens is
not freeze-tolerant and dies after 4 h of freezing at �2.5 �C (Storey
and Storey, 1992). Thus, the effect of winter freeze on newt life his-
tory is functionally equivalent to pond desiccation. Winter-freeze
avoidance behavior was observed in mountain Virginia, in which
newts repeatedly migrated from permanent ponds to terrestrial
winter hibernacula (Gill, 1978). While the modern ecological niche
of N. v. viridescens is markedly different from that of the Appala-
chian Highland refugium especially along the temperature-related
axis, adaptation to the refugial environment may have facilitated
subsequent expansion of N. v. viridescens to the current habitats
via a pre-adapted terrestrial life history.

As an environment undergoes significant changes, a population
migrates, adapts, or goes extinct. Without an approach free from

the niche-stability assumption, it is extremely difficult to test the
possibility of adaptation. Our approach enables us to examine
not only niche stability but also how the pattern of niche diver-
gence has changed over time, providing a vital tool for understand-
ing of the central question in evolutionary ecology.
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