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This paper examines abstract regular polytopes whose au-
tomorphism group is the projective special linear group 
PSL(4, Fq). For q odd we show that polytopes of rank 4 ex-
ist by explicitly constructing PSL(4, Fq) as a string C-group 
of that rank. On the other hand, we show that no abstract 
regular polytope exists whose group of automorphisms is 
PSL(4, F2k ).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Abstract polytopes are incidence structures that generalize certain discrete geometric 
objects, the most famous being the Platonic solids. The study of these objects has its 
roots in classical theory – notably in Coxeter’s work [8] – but has evolved in various 
ways in recent years. The book of McMullen and Schulte [18] is an excellent resource for 
a detailed study of these structures and their history.
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The starting point for this paper is an equivalent group-theoretic formulation of ab-
stract regular polytopes in terms of distinguished sets of involutions that generate their 
automorphism groups (see sections 2B and 2D of [18]). From this viewpoint, no reference 
to the polytope as a combinatorial object is needed: to show that a given group G acts 
on an abstract regular polytope of a given rank r, one just exhibits a generating set of r
involutions of G that satisfies certain properties (see Section 2 for details). It is natural, 
then, to consider common families of finite groups and ask which members of a particular 
family can be generated in this way.

In the case of rank 3 (the analogue of classical polyhedra) the relevant question was 
first posed for all finite simple groups by Mazurov [16]. His question was settled for 
simple groups of Lie type by Nuzhin [19,20], and (ultimately) by himself for sporadic 
simple groups [17].

Moving to rank 4 and higher, the question becomes much more difficult. The main 
obstacle is that a certain “intersection property” on the generating involutions becomes 
nontrivial to verify in higher ranks. The most significant result to date was proved by the 
second author in joint work with Fernandes [9]: for n ! 4 and every r ∈ {3, . . . , n − 1}
there is an abstract regular polytope of rank r whose group of automorphisms is Sn. 
A similar result for alternating groups is obtained in [10].

A natural question that arises is whether or not some analogue of these results holds 
for families of linear groups over finite fields. Specifically, we ask:

For each integer r ! 4, is there an infinite family of groups, G, satisfying PSL(d, Fq) "
G " PΓL(d, Fq), such that G is the group of automorphisms of an abstract regular 
polytope of rank r?

The groups PSL(2, Fq) and their variants have been extensively studied [13,14], cul-
minating in the results of [6]. In the latter work it is shown that an infinite family of 
abstract regular polytopes of rank 4 exists for the groups PSL(2, q2) ! ⟨τ⟩, where τ is a 
certain field automorphism (a Baer involution). These groups, together with Sn and An, 
are the only infinite families of (almost) simple groups that are known to act on abstract 
regular polytopes of rank higher than 3.

Of course, PSL(2, Fq) is rather too small a group to expect to find large, highly 
constrained, generating sets of involutions. One might expect greater joy by moving up 
in dimension. Surprisingly, however, three-dimensional linear groups and their projective 
variants yield no new abstract polytopes of any rank [3].

This paper considers four-dimensional linear groups and provides a first contribution 
to the question above. We prove the following result.

Theorem 1.1. If q = pk for odd p, then PSL(4, Fq) is the group of automorphisms of an 
abstract regular polytope of rank 4.

The first hints that this result may be true emerged from a computer search for 
very small values of q. (In fact, the data suggest that PSL(4, Fq) likely has many non-
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isomorphic abstract regular polytopes of rank 4.) Of course, the computer offers little 
help in proving a theorem of this type. Moreover, although exhaustive computer searches 
have been invaluable in earlier efforts to construct and classify polytopes [7,11,15], the 
groups we are now interested in are so large that machines can tell us almost nothing of 
value. Furthermore, unlike the situation with PSL(2, Fq) and its variants, we have noth-
ing like a complete description of the subgroup structure of PSL(4, Fq). The methods 
of [13,14,6] are therefore simply not scalable, and new ideas are needed.

Although the complete subgroup lattice of the almost simple linear groups is out of 
reach – not to mention unusable even if we had it – it is nevertheless helpful to know 
something about the maximal subgroups of the groups we are working with. In trying 
to build polytopes of rank r for a group G, the maximal subgroups of G are natural 
candidates to attempt to generate as polytopes of rank r − 1. To prove Theorem 1.1, 
for example, we start by building a polytope of rank 3 for a subgroup PΩ−(4, Fq) – 
close to being a maximal subgroup of PSL(4, Fq) – where two of the chosen involutions 
generate a maximal dihedral subgroup. These choices make it easy for us to verify the 
intersection property when we extend by a suitable involution. We warmly acknowledge 
the considerable efforts of Bray, Holt, and Roney-Dougal in making available information 
on maximal subgroups of the classical groups of low rank [2].

We gain the most traction, however, by exploiting geometric properties of involutions 
in their action on the natural modules of SL(4, Fq), or those of their orthogonal equiv-
alents Ω+(6, Fq). More precisely, commutativity of involutions in these groups may be 
understood in terms of configurations of certain subspaces of the module, which in turn 
allows us to impose heavy restrictions on the putative polytopes upon which our groups 
can act. As an illustration of the efficacy of this approach, we can easily show that no 
polytopes of any rank exist for the groups PSL(4, F2k) (Corollary 4.5) by showing that 
any subgroup of Ω+(6, F2k) arising as a quotient of a string Coxeter group necessarily 
acts reducibly on the natural module of Ω+(6, F2k) (Theorem 4.4). Similar ideas were 
used in [3] and we expect them to remain useful when considering classical simple groups 
of higher Lie rank.

2. String C-groups

Abstract regular polytopes and string C-groups are essentially the same mathematical 
objects; see, for example, [18, Section 2]. For our purpose, the string C-group view-
point is most useful. A C-group is a group G generated by pairwise distinct involutions 
ρ0, . . . , ρn−1 which satisfy the following intersection property:

∀J,K ⊆ {0, . . . , n− 1}, ⟨ρj | j ∈ J⟩ ∩ ⟨ρk | k ∈ K⟩ = ⟨ρj | j ∈ J ∩K⟩. (2.1)

A C-group (G, {ρ0, . . . , ρn−1}) is a string C-group if its generators also satisfy:

(ρjρk)2 = 1G for all j, k ∈ {0, . . . n− 1} with | j − k |! 2. (2.2)
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A string C-group (G, {ρ0, . . . , ρn−1}) has rank n and its Schläfli type is the sequence

[|ρi−1ρi| : i ∈ {1, . . . , n− 1}]

where |g| is the order of the element g ∈ G.

3. Linear groups and geometric spaces

The family of groups we consider here, namely the groups PSL(4, Fq), are of course 
(quotients of) linear groups. We will also work with groups that act as isometries on 
geometric spaces equipped with certain reflexive forms. Accordingly, we now set up some 
standard notation for these groups that will be useful throughout; see [21, Chapter 7]
for further details.

Let Fq be the field of q elements, and V a vector space of dimension d over Fq. Denote 
by GL(V ) or GL(d, Fq) the group of invertible linear transformations of V . We often 
switch between regarding elements of GL(V ) as linear transformations and as matrices 
relative to some basis. We shall make no further comment on this except to describe the 
basis we are using for the matrix view. We denote by SL(V ) or SL(d, Fq) the subgroup 
of elements of determinant 1.

For g ∈ GL(V ), the subspace [V, g] = {v − vg : v ∈ V } is the support of g. For a 
subgroup H of GL(V ), we put [V, H] = {v − vh : v ∈ V, h ∈ H}. Observe that if H is 
generated by g1, . . . , gn, then [V, H] = [V, g1] + . . . + [V, gn]. If H acts irreducibly on V , 
then [V, H] = V .

For g ∈ GL(V ), λ ∈ Fq, Eλ(g) = {v ∈ V : vg = λv} is the λ-eigenspace of g.
A quadratic form on V is a function ϕ : V → Fq such that:

(i) ϕ(αv) = α2ϕ(v) for all α ∈ Fq, v ∈ V ; and
(ii) (u, v) := ϕ(u + v) − ϕ(u) − ϕ(v) is a nondegenerate bilinear form on V .

For a subspace U " V , define U⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U}. We say that U is 
nondegenerate if U ∩ U⊥ = 0, and that U is totally singular if ϕ(U) = 0.

A space V equipped with a nondegenerate quadratic form is called an orthogonal 
space, and the group {g ∈ GL(V ) : ϕ(vg) = ϕ(v) for all v ∈ V } of isometries of ϕ is an 
orthogonal group. In even dimension there are, up to isometry, two types of quadratic 
forms, which we distinguish by ϵ ∈ {+, −}, and denote the corresponding groups by 
GOϵ(V ). If U " V is nonsingular of type ϵ and dimension n, we will often write U = V ϵ

n . 
We will be interested in the group SOϵ(V ) = GOϵ(V ) ∩ SL(V ), and especially in a 
particular subgroup Ωϵ(V ) " SOϵ(V ), which in our case will always be the derived 
group of SOϵ(V ).

We shall work briefly with groups associated to alternating bilinear forms, where 
(v, v) = 0 for all v ∈ V . An alternating form is symmetric if, and only if, Fq has 
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characteristic 2. The isometry group {g ∈ GL(V ) : (ug, vg) = (u, v) for all u, v ∈ V } is 
called a symplectic group and denoted Sp(V ).

4. The Klein correspondence

We shall occasionally exploit a correspondence first observed by Felix Klein in his 
PhD thesis [12] to switch to a 6-dimensional representation of SL(4, Fq). Let S denote 
the space of skew-symmetric 4 × 4 matrices with entries in Fq of the form

M =

⎡

⎢⎢⎢⎣

0 x12 x13 x14
−x12 0 x23 x24
−x13 −x23 0 x34
−x14 −x24 −x34 0

⎤

⎥⎥⎥⎦
. (4.1)

Then the map A *→ (M *→ AtrMA) is a homomorphism f : GL(4, Fq) → GL(S). If 
A ∈ SL(4, Fq), then f(A) preserves the quadratic form

ϕ(M) = x12x34 − x13x24 + x14x23

on S, and f restricts to a map SL(4, Fq) → Ω+(6, Fq). As |Z(SL(4, Fq))| = gcd(4, q− 1), 
we have Ω+(6, Fq) ∼= PSL(4, Fq) except when q ≡ 1(mod 4), in which case Z(Ω+(6, Fq)) =
{±I6}.

We are concerned here principally with (non-central) involutions so we now describe 
involution classes in Ω+(6, Fq) and their relevant properties.

Let V = V +
6 now denote the natural module for G := Ω+(6, Fq), ϕ : V → Fq the 

quadratic form it preserves, and ( , ) the associated symmetric form on V . We consider 
fields of odd and even characteristic separately.

|Fq||Fq||Fq| is odd. There are two classes of non-central involutions in G. Suppose that ρ = f(A)
is such an involution for some A ∈ SL(4, Fq). Then an easy computation shows that 
E1(ρ) ⊕E−1(ρ) is a decomposition V = V2 ⊥ V4 into nondegenerate subspaces of the same 
isometry type. If A is an involution of SL(4, Fq), then E1(ρ) = V +

2 and E−1(ρ) = V +
4 . 

Else, A has order 4, A2 = −1, and E1(ρ) = V ±
4 and E−1(ρ) = V ±

2 according as 4 | (q±1). 
In both cases CG(ρ) is the full stabilizer in G of this decomposition.

We record a property of involutions of the first type that will be useful later on.

Lemma 4.2. If A and B are involutions of SL(4, Fq) such that AB = −BA, then 
E−1(ρ(A)) and E−1(ρ(B)) intersect in a 3-dimensional subspace of V +

6 .

Proof. As |A| = 2, we have a decomposition of F 4
q = E1(A) ⊕ E−1(A) into 2-spaces. 

Relative to any basis that respects this decomposition, A has matrix 
[
I2 0
0 −I2

]
. As AB =

−BA, B interchanges E1(A) and E−1(A). Indeed, we can refine our basis choice so that 
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B has matrix 
[

0 I2
I2 0

]
. One now checks by direct calculation that the intersection of the 

−1-eigenspaces of A and B in their action on S is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

0 0 α β

0 0 β γ

−α −β 0 0
−β −γ 0 0

⎤

⎥⎥⎥⎦
: α,β, γ ∈ Fq

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

and the result follows. ✷

|Fq||Fq||Fq| is even. In fields of characteristic 2, involutions of Ω+(6, Fq) occur within “pseudo-
transvection groups”, which in turn correspond to certain lines in the projective geometry. 
Specifically, let ℓ = ⟨e, b⟩ with ϕ(e) = 0 = (e, b), and define

Rℓ = {v *→ v + α[(v · b)e− (v · e)b] + α2ϕ(b)(v · e)e : α ∈ Fq}. (4.3)

Then [V, Rℓ] = ℓ and Rℓ
∼= F+

q is the subgroup of G that induces the identity on ℓ⊥ and 
on V/ℓ. All involutions occur within these groups and there are again two involution 
classes: elements of the first class belong to some R⟨e,b⟩ with ϕ(b) = 0 (so ℓ = ⟨e, b⟩ is 
totally singular), and those of the second class to R⟨e,b⟩ with ϕ(b) ̸= 0.

The following relations are easily verified for ρ ∈ Rℓ and σ ∈ Rm:

• If [ρ, σ] = 1, then ℓ meets m; and
• If [ρ, σ] ̸= 1, then either ℓ and m are skew, or ℓ = ⟨e, b⟩, m = ⟨f, b⟩, with ϕ(e) =

ϕ(f) = 0, ϕ(b) ̸= 0, and (e, f) ̸= 0.

We now use this geometric interpretation of involutions in to establish a heavy constraint 
on string C-subgroups of PSL(4, F2k).

Theorem 4.4. If ρ0, ρ1, . . . , ρr−1 is a sequence of involutions in Ω+(6, F2k) satisfying 
condition (2.2), then H := ⟨ρ0, . . . , ρr−1⟩ acts reducibly on the module V +

6 .

Proof. The result is clear for r < 3. If r = 3, then ρ0 and ρ2 commute, so [V, ρ0] ∩
[V, ρ2] ̸= 0. It follows that [V, H] = [V, ρ0] + [V, ρ1] + [V, ρ2] is at most 5-dimensional. If 
r = 4, then [V, ρ0] + [V, ρ2] and [V, ρ1] + [V, ρ3] are both 3-dimensional. Also, [V, ρ3] ∩
[V, ρ0] ̸= 0, so [V, H] is again at most 5-dimensional.

We may therefore assume that r > 4. For i = 0, . . . , r − 1, let ℓi = [V, ρi]. If ℓ0 and 
ℓ1 are skew then, since ℓj meets both of these lines for all j ! 3, it follows that ℓj lies 
within ⟨ℓ0, ℓ1⟩, and hence that [V, H] is at most 5-dimensional. Thus, we may assume 
that ℓ0 meets ℓ1 at a point ⟨b⟩ with ϕ(b) ̸= 0; note that ⟨ℓ0, ℓ1⟩ " ⟨b⟩⊥. Similarly, if ℓ1
and ℓ2 are skew, then ℓj lies within ⟨ℓ1, ℓ2⟩ for each j ! 4, so once again [V, H] is at 
most 5-dimensional. We may therefore assume that ℓ2 meets ℓ1 at ⟨c⟩ with ϕ(c) ̸= 0. As 
ℓ2 meets ℓ0 as well, there are two possibilities: first that ⟨c⟩ = ⟨b⟩, and secondly that 
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⟨c⟩ ̸= ⟨b⟩ in which case ℓ2 lies within ⟨ℓ0, ℓ1⟩ " ⟨b⟩⊥. In either case, ⟨ρ0, ρ1, ρ2⟩ fixes ⟨b⟩. 
Now, if ρ is any involution commuting with both ρ0 and ρ1, and ℓ = [V, ρ], then either 
⟨b⟩ lies on ℓ, or ℓ lies within ⟨ℓ0, ℓ1⟩. Again, in either case, ρ fixes ⟨b⟩ and the result 
follows. ✷

Nuzhin noted in [19, Proposition 4] that there are no string C-groups of rank 3 for 
PSL(4, F2k). The following extension to higher ranks follows immediately from Theo-
rem 4.4.

Corollary 4.5. PSL(4, F2k) is not the group of automorphisms of an abstract regular 
polytope of any rank.

5. Proof of Theorem 1.1

We restrict now to fields Fq of odd characteristic, and describe an explicit construction 
of PSL(4, Fq) as a string C-group of rank four, thereby establishing Theorem 1.1. More 
precisely, we prove the following result, which also describes the Schläfli types of the 
corresponding abstract regular polytopes.

Theorem 5.1. For each odd prime power q ! 5, the group PSL(4, Fq) has a string C-
generating sequence ρ0, ρ1, ρ2, ρ3 such that:

(i) |ρ0ρ1| = q − 1, |ρ1ρ2| = q2+1
2 , and |ρ2ρ3| = e, where e = p, or e divides q ± 1, i.e. 

the string C-group has Schläfli type [q − 1, q
2+1
2 , e];

(ii) ⟨ρ0, ρ1, ρ2⟩ ∼= Ω−(4, Fq) ∼= PSL(2, Fq2); and
(iii) ⟨ρ1, ρ2, ρ3⟩ is isomorphic to a subgroup PSp(4, Fq).2.

Remark 5.2. One readily sees that no such generating sequence of this type may exist 
for PSL(4, 3) as in that case q−1 = 2 which implies that ρ0 commutes with all the other 
generators and hence the generated group is not simple. However, the online version3

of the Atlas of abstract regular polytopes [15] gives several examples of rank 4 abstract 
regular polytopes for that group.

A polyhedron of type [q − 1, q2+1
2 ][q − 1, q2+1
2 ][q − 1, q2+1
2 ] for PSL(2,Fq2)PSL(2,Fq2)PSL(2,Fq2). For q an odd prime power, we work 

with a tower of fields Fq ⊂ Fq2 ⊂ Fq4 . Put m = q2+1
2 . We first use the construction 

in [5, Proposition 2.3] to obtain matrices R, S ∈ SL(2, Fq2) of orders 2(q − 1) and 2m, 
respectively, such that RS = −1. Following [5], for projective orders (q−1, m, 2) we build 
a representative triple (R, S, T = RS) having representative orders (2(q − 1), 2m, 4).

Fix elements a and b of Fq4 of orders 2(q − 1) and 2m, respectively. Let t : Fq4 → Fq4

be the map sending x *→ x + 1/x. Since

3 See http :/ /www .math .auckland .ac .nz /~dleemans /polytopes.

http://www.math.auckland.ac.nz/~dleemans/polytopes
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t(x) = t(y) ⇐⇒ (x− y)(1 − 1/(xy)) = 0 ⇐⇒ y = x or y = x−1,

clearly t is a 2-to-1 function. Also, bq2 = 1/b, so t(b) = b + bq
2 is the usual trace map 

from Fq4 to Fq2 , whence t(b) ∈ Fq2 . Following [5, Proposition 2.3], put

R = R(a) =
[
a 0
0 1/a

]
and S = S(a, b) =

[
−ct(b)/a −cD

c ca t(b)

]
,

where D = t(a)2 + t(b)2 − 4 = t(a2) + t(b2) ∈ Fq2 \ Fq, and c = 1/(a − 1/a). Clearly 
R, S ∈ SL(2, Fq2), and by construction |R| = 2(q − 1), |S| = q2 + 1, and RS = −1.

Next, in [5, Proposition 3.2], it is shown that there is a unique Z ∈ SL(2, Fq) inverting 
both R and S (here, Fq denotes the algebraic closure of Fq), and in fact

Z = Z(a, b) =
[

0 δD

δ 0

]
,

where δ = −1/
√
−D ∈ Fq4 . Since −1 is a square in Fq2 , evidently Z ∈ SL(2, Fq2) if, and 

only if, D has a square root in Fq2 . As one might expect, this seems to occur about half 
of the time for an arbitrary choice of a and b. To be certain that a suitable choice of a
and b is always available, however, we use the following special case of [4, Corollary 4.1].

Theorem 5.3. Let K be a finite field, and A, B ⊆ K. The number of solutions of

x + y = z2 (x ∈ A, y ∈ B, z ∈ K)

is |A||B| + θ
√
|A||B||K| for some θ with |θ| " 1.

Applying this result to our situation, we can show that good choices of a and b do 
indeed exist.

Corollary 5.4. Let q > 3 be an odd prime power. Let A0 and B0 be the subsets of F∗
q4

consisting, respectively, of elements of order (q − 1) and m = q2+1
2 . Then

t(A0) + t(B0) = {t(x0) + t(y0) : x0 ∈ A0, y0 ∈ B0} ⊆ Fq2

contains an element whose square roots also lie in Fq2.

Proof. We apply Theorem 5.3 to A = t(A0) and B = t(B0) and K = Fq2 . Put n = |A||B|. 
As we require only one triple (x, y, z) with x = t(x0) ∈ A, y = t(y0) ∈ B and z ∈ Fq2 such 
that x +y = z2, it suffices to show that n > q2. Note, |A0| = ϕ((q2+1)/2) > q2/6 log log q, 
while |B0| = ϕ(q − 1) > q/3 log log q. Thus, n = |A||B| = |A0||B0|/4 > q3/72(log log q)2, 
so n certainly exceeds q2 provided that q > 200. The existence of suitable triples (x, y, z)
for smaller values of q can easily be verified using Magma [1]. ✷
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We can now prove the result that we need.

Proposition 5.5. For q > 3, there are involutions t0, t1, t2 ∈ PSL(2, Fq2) with [t0, t2] = 1, 
|t0t1| = q − 1, |t1t2| = (q2 + 1)/2, and ⟨t0, t1, t2⟩ = PSL(2, Fq2).

Proof. Choose elements a0 and b0 of Fq4 of order q− 1 and q
2+1
2 , respectively, such that 

t(a0) + t(b0) has a square root in Fq2 . Let a be a square root of a0 of order 2(q− 1), and 
let b be a square root of b0 of order q2+1. The reckoning above ensures that the elements 
R(a), S(a, b) and Z(a, b) all lie in SL(2, Fq2). Then the elements T0 = RZ, T1 = Z and 
T2 = ZS project onto elements t0, t1 and t2 of the stated type. The order properties 
follow immediately from the foregoing discussion, and the fact that q− 1 and (q2 + 1)/2
are coprime ensures that the triple generates PSL(2, Fq2). ✷

From PSL(2,Fq2)PSL(2,Fq2)PSL(2,Fq2) to Ω−(4,Fq)Ω−(4,Fq)Ω−(4,Fq). We next use a well-known construction to embed 
PSL(2, Fq2) in SL(4, Fq) as the group Ω−(4, Fq). Let H denote the Fq-space of 2 ×2 Hermi-
tian matrices with entries in Fq2 , namely all M ∈ M2(Fq2) such that M = M tr, where M
denotes the image of M under the Frobenius automorphism α *→ αq applied to the entries 
of M . The map A *→ (M *→ A

tr
MA) is a homomorphism g : GL(2, Fq2) → GLFq (H). 

Furthermore, H is an orthogonal space of type V −
4 – with quadratic form given by the 

determinant map – and g restricts to an epimorphism SL(2, Fq2) → Ω−(4, Fq) with 
kernel {±1}.

Thus, if T0, T1, T2 are the elements of SL(2, Fq2) constructed in the proof of Propo-
sition 5.5, and ρi = g(Ti) for i = 0, 1, 2, then H := ⟨ρ0, ρ1, ρ2⟩ is a subgroup of SL(4, Fq)
isomorphic to Ω−(4, Fq) ∼= PSL(2, Fq2). Furthermore [ρ0, ρ2] = 1, |ρ0ρ1| = q − 1, and 
|ρ1ρ2| = (q2 + 1)/2, as required.

Constructing ρ3ρ3ρ3. We have built, for each q > 3, a polyhedron H = ⟨ρ0, ρ1, ρ2⟩ of G =
SL(4, Fq) isomorphic to Ω−(4, Fq). It remains to construct an involution ρ3 ∈ G behaving 
as in Theorem 5.1.

We continue to work with V = F4
q as an orthogonal space of Witt index 1 equipped 

with the quadratic form ϕ preserved by H. As h := ρ0ρ1 ∈ Ω−(4, Fq) has order q − 1, 
it preserves a decomposition V = V +

2 ⊥ V −
2 , where V +

2 is a nondegenerate hyperbolic 
line upon which h induces an element of order q − 1, and V −

2 is an anisotropic line 
upon which h induces ±1. Observe that neither V +

2 nor V −
2 is an eigenspace of ρ0 or 

ρ1; otherwise both subspaces would necessarily be eigenspaces for both involutions, in 
which case ρ0 = ±ρ1.

Let 0 ̸= e ∈ V +
2 with ϕ(e) = 0. Then ⟨eρ0⟩ ̸= ⟨e⟩, and both ρ0 and ρ1 interchange ⟨e⟩

and ⟨eρ0⟩. Next, choose any u ∈ V −
2 such that uρ0 /∈ ⟨u⟩. Let ρ3 be the involution whose 

1-eigenspace is ⟨e, u⟩, and whose −1-eigenspace is ⟨e, u⟩ρ0. Then, by construction, both ρ0
and ρ1 interchange the eigenspaces of ρ3, so that [ρ0, ρ3] = −1 = [ρ1, ρ3]. Note, ϕ(uρ3) =
ϕ(u) ̸= 0, but ϕ(e + eρ0) = (e, eρ0) ̸= 0 and ϕ((e + eρ0)ρ3) = ϕ(e − eρ0) = −(e, eρ0), so 
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ρ3 does not preserve ϕ even up to scalar multiple. Since the extension of SO−(4, Fq) by 
scalars is maximal in SL(4, Fq) [2, Table 8.8], it follows that ⟨ρ0, ρ1, ρ2, ρ3⟩ = SL(4, Fq).

We record one last consequence of our construction. The element ρ2ρ3 skew-commutes 
with ρ0. Therefore, ρ2ρ3 interchanges the eigenspaces of ρ0, and hence lies inside a 
subgroup of GL(4, Fq) isomorphic to (GL(2, Fq) × GL(2, Fq)) ! C2. It follows that 
gcd(|ρ1ρ2|, |ρ2ρ3|) = 1.

Lemma 5.6. There is a nondegenerate alternating form on F 4
q such that

(uρi, vρi) = −(u, v) for all u, v ∈ F 4
q and for all i ∈ {1, 2, 3}.

In particular, ⟨ρ1, ρ2, ρ3⟩ is a subgroup of Sp(4, Fq).2.

Proof. As in Section 4, consider the action on S, the Fq-space of skew-symmetric ma-
trices, via the Klein correspondence f : SL(4, Fq) → Ω+(S). As ρi is an involution of 
SL(4, Fq), each eigenspace E−1(f(ρi)) has dimension 4 in S. Furthermore, by Lemma 4.2, 
E−1(f(ρ0)) ∩ E−1(f(ρ2)) has dimension 3. Hence, 

⋂2
i=0 E−1(f(ρi)) has dimension at 

least 1, so there exists 0 ̸= M ∈ S such that ρtr
i Mρi = −M for i ∈ {0, 1, 2}. The al-

ternating form represented by any such M is nondegenerate (i.e. M is nonsingular) for, 
otherwise, it has a (necessarily 2-dimensional) radical, and so its group of isometries acts 
reducibly on F 4

q and hence contains no element of order |ρ1ρ2| = (q2 + 1)/2. ✷

We now have all of the ingredients we need to complete the proof of our main theorem.

Proof of Theorem 5.1. Let G = SL(4, Fq) and G = G/Z(G) = PSL(4, Fq). For g ∈ G, 
put g := gZ(G) ∈ G. Let ρ0, ρ1, ρ2, ρ3 the involutions of G constructed above. We have 
already shown that G = ⟨ρ0, ρ1, ρ2, ρ3⟩. It remains to show that (G, {ρ0, ρ1, ρ2, ρ3}) is a 
string C-group with properties listed in Theorem 5.1.

The group ⟨ρ0, ρ1, ρ2⟩ ∼= PSL(2, Fq2) was built as a polyhedron. We have also shown 
that ⟨ρ1, ρ2, ρ3⟩ is isomorphic to a subgroup of PSp(4, Fq).2, as stated. Furthermore, 
since |ρ1ρ2| and |ρ2ρ3| are coprime, ⟨ρ1, ρ2⟩ ∩ ⟨ρ2, ρ3⟩ = ⟨ρ2⟩. Hence, ⟨ρ1, ρ2, ρ3⟩ satisfies 
the intersection condition and is therefore a polyhedron. Finally, since ⟨ρ1, ρ2⟩ ∼= Dq2+1
is maximal in ⟨ρ0, ρ1, ρ2⟩ ∼= PSL(2, q2), it follows that ⟨ρ0, ρ1, ρ2⟩ ∩⟨ρ1, ρ2, ρ3⟩ = ⟨ρ1, ρ2⟩. 
Thus, by [18, Proposition 2E16], the intersection condition holds for (G, {ρ0, ρ1, ρ2, ρ3}). 
It follows that (G, {ρ0, ρ1, ρ2, ρ3}) is a string C-group of rank 4, as required. ✷

Remark 5.7. Magma functions that construct the family of string C-groups described 
in Theorem 5.1 are available upon request from either author.
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