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remediation, from site investigation to project closeout. Sustain
able remediation was defined as a remedy or combination of
remedies whose net benefit on human health and the environ
ment is maximized through the judicious use of limited resour
ces [9]. Environmental protection agency (EPA) identified five
core elements of a GSR to assist with the selection of remedia
tion technologies and approaches. These elements include
[10];
1. Minimize total energy use and maximize use of renew

able energy,
2. Minimize air pollutants and greenhouse gas emissions,
3. Minimize water use and impacts to water resources,
4. Reduce, reuse, and recycle material and waste, and
5. Protect land and ecosystems

In this work, the effort is directed to review advances in
NORM and TENORM regulation in different countries, high
light recent trends in remediation technologies and identify
knowledge gaps.

RECENT ADVANCES IN THE REGULATION OF NORM TENORM

IAEA had indicated that the regulators and operators are
facing a variety of new challenges with NORM regulations,
these challenges are attributed to the nature of traditional
industries and their capabilities to deal with radioactive
wastes [11]. Bad management of uranium mine and mills tail

ings can cause soil and groundwater pollution, to address
this issue, regulatory bodies in different countries have
issued national regulations. In 2011, UK have published
guidelines from management of NORM in this guide, indus
trial activities that generate NORM were classified into two
categories; activities that employ uranium or thorium and
activities in which NROM presence is incidental. The concen
tration limit to include NORM as radioactive material was
identified for different radionuclides, for example, if 226Ra
exceed 0.5 bq=g in solid or relevant liquid for first category,
NORM will be treated as radioactive wastes [12].

In Canada, NORM management is not regulated by the
Canadian nuclear safety commission, but it fall under juris
diction of the provinces and territories. To eliminate cross
jurisdictional boundaries among radiation protection stand
ards, new guidelines were developed in 2000. In these
guidelines, industries that generate NORM in significant
amount to yield in radiation doses require the application of
radiation protection practice were identified to include min
eral extraction and processing: oil and gas production, metal
recycling: forest products and thermal electric production,
water treatment facilities: and tunneling and underground
workings [13]. The guideline recommended the release
NORM from regulatory requirements if the associated dose
was found less than 0.3mSv=y

In USA, NRC issued regulations to reduce emanations of
radon from tailings, prevent the spreading of tailings through
erosion, reduce contamination by seepage, and setting out
requirements to perform risk assessment [14]. The regulation
specified the utilization of passive disposal with a minimum
life time of 200 year, the average maximum permissible
radon concentration was recommended to be less than 5
pci=g. The goals of the remediation activities were indicated
within the regulation to achieve radon decay product con
centration less than 0.03 working level and gamma radiation
level not exceeding 20 mR=h above background.

The Spanish limiting criteria for releasing NORM
contaminated land are utilizing the following dose rate limit;
doses should not exceed 300 lSv= yr (excluding radon
doses), 222Rn concentrations in hypothetical future dwellings
should not exceed 200 Bq=m3; and finally ALARA (as low as
reasonable achievable) principals should be applied [15].
Michalik et al. concluded that irrespective of the final form
of further European regulation, the evolution of the
approach to protect the environment against ionizing radia
tion will force the radiological protection community to face
the problem of how to quantify, in a convincing manner, the
environmental impacts when an assessment is needed [16].
When there is no severe environmental impact it is enough
for the provision of scientifically well justified evidence that
the actual presence of radioactivity does not cause any effect
on the environment.

Table 1. Activities that may lead to NORM contaminated
residues and sites [2].

Mineral ores
and extracted
materials

Other processing=
manufacturing

Copper Titanium Water treatment
Aluminum

(bauxite)
Tungsten Sewage treatment

Fluorspar Vanadium Spas
Gypsum Zircon Paper and pulp
Iorn Coal (and

coal ash)
Ceramics manufacture

Molybdenum Oil and gas Paint and pigment
manufacture

Phosphate Geothermal
energy

Metal foundry

Phosphorous Thorium Optics
Potassium Incandescent gas mantles
Rare earth Refractory and

abrasive sands
Uranium Electronics manufactures
Tin Building materials

Table 2. IAEA radiological criteria to support remediation decision making [5, 6].

Band
Need for remediation

actions Acceptability of release
Range of

annual doses

6 Remediation or prevent use Not suitable for release, > 100 mSv=a
5 Remediation or restrict use Not suitable for release, 10 100 mSv=a
4 Remediation decisions based

on justification= optimization
May be released, but subject to

regular review of situation
1 10 mSv=a

3 Remediation unlikely unless
constrained

Released, but may need occasional review 0.1 1 mSv=a

2 Remediation unlikely to be necessary
on the basis of radiological risks

Likely released, review is needed
only if a problem becomes apparent

10 100 lSv=a

1 No remediation necessary Can be released without controls < 10 lSv=a



Recently the Korean government had started to establish
a regulatory framework for natural radiation including
NORM=TENORM. The main motivation was the rapid eco
nomic growth in Korea that consume huge amount of raw
materials, including NORM and TENORM [17].

RECENT ADVANCES IN RADIOLOGICAL ASSESSMENT OF TENORM

TENORM from Fertilizers Industry
To comply with radiation protection and environmental

regulation there is a need to perform accurate and reliable
assessment of the contamination and=or pollution extent.
Fertilizers industry produces phosphogypsum, which is the
principal TENORM waste product, the radio contaminant
flow through the phosphoric acid production using wet
sulphoric acid method is illustrated in Figure 1 [2].

Recently, the interest in evaluating the extent of NORM and
TENORM in these industrial wastes and its radiological
impact on human and the environment have been contin
ued. This section is devoted to review these researches
methodology and their most important findings. A new
phosphogypsum reference material was produced and cer
tified to assist in the validation of analytical methods and
quality assurance of generated analytical results [18]. Sam
ple preparation methodology, material homogeneity assess
ment, characterization campaign results and assignment of
property values, and associated uncertainties were deter
mined. The reference values and associated uncertainties
for 210Pb, 226Ra, 230Th, 234U and 238U were established
based on consensus values calculated from analytical
results reported by three National Metrology Institutes and
five expert laboratories.

Table 3. IAEA remediation technology evaluation matrix [5, 6].

Evaluation factor Exemplary Acceptable Unacceptable

Performance Near 100% removal Removes contaminants to
desired limit

Mobilized or additional
contaminant

Reliability Near 100% reliable Available without excessive
down time

Unreliable

Maintenance Minimal Occasional Unavailable suppliers or at
great cost

Cost Costs recoverable against
credits

Cost within acceptable levels Excessive cost

Infrastructure support
technology

Not needed or fully available
and already in place

Available Unavailable or requires
significant expense to provide

Availability Well proven Demonstrated and available in
short time frame

Unproven=early in
development

Risk No risk to public or operators Risk to public or operators
within regulatory guidelines

More risk than if nothing
done

Impact on environment Clean and green Little effect on overall
ecosystem

Significant pollution= damage

Regulatory acceptance Exceeds regulatory standards Meets regulatory standards Fails regulatory standards
Community acceptance Wholehearted acceptance

without reservation
Acceptance with two way

dialogue
Unacceptable

Figure 1. Radiocontaminant flow through phosphoric acid production [2]. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]



To evaluate the radiological impact of a phosphoric acid
factory located in the south western Spain, the distribution
and levels of radionuclides in the materials involved in the
production process have been analyzed. The flow of radio
nuclides at each step was assessed and locations of possible
radionuclide accumulation were identified. A set of samples
collected along the whole production process were analyzed
to determine their radionuclide content by both alpha
particle and gamma spectrometry techniques. The radionu
clide fractionation steps and enrichment sources have been
located, allowing the establishment of their mass (activity)
balances per year [19].

The radiological characterizations of disposed phospho
gypsum were determined, the outdoor storage and transport
radiological impacts and phosphogypsum usage as additive
and filling materials in construction sectors were studied [20].
It was found that the mean activity concentrations of 226Ra,
232Th and 40K measured for the studied samples were in the
range 436.0 125.0, 15.1 9.4 and 13.0 7.5 Bq=kg respectively.
These values were concluded to fall below recommended
safety limits for usability of phosphogypsum as aggregate in
roads constructions sector in Turkey. Generic exposure sce
nario was used to evaluate the radiological impact on public
members and workers, the results indicated that the eval
uated mean annual effective doses were lower than the
annual limit of 1mSv=y.

The chemical and radiochemical composition of a solid
waste generated in phosphoric acid production plant were
determined using analytical methods [21]. The analysis and
leaching of samples containing 210Pb, and 210Po mixed with
high activity concentration of uranium isotopes using gamma
spectrometry and radiochemical methods showed a very low
quantity of 226Ra. To evaluate the leachability of U isotopes,
210Pb and 210Po, sequential extraction method consisting of
five operational defined fractions was used. The results indi
cated that the average leaching potential was 97.6% for 238U,
93.2% for 210Pb and 82.4% for 210Po. Moreover the study
showed that 210Pb and 210Po are leachable under extreme
conditions, where U isotopes are more soluble.

During a preliminary survey at the area of an abandoned
fertilizer plant, increased levels of radioactivity were meas
ured at places, buildings, constructions and materials. The
extent of the contamination was determined and the affected
areas were characterized as controlled areas. After quantita
tive and qualitative determination of the contaminated mate
rials, decontamination program was planned and performed
step by step: the contaminated materials were categorized
according to their physical characteristics (scrap metals, plas
tic pipes, scales and residues, building materials, etc) and
according to their level of radioactivity. Depending on the
material type, different decontamination and disposal options
were proposed; the most appropriate technique was chosen
based on technical factors, legal requirements, radiation pro
tection standards, the opinion of stakeholders. After remov
ing the biggest amount of the contaminated materials, an
iterative process consisting of surveys and decontamination
actions were performed in order to remove the residual
traces of contamination from the area. During the final sur
vey, no residual surface contamination was detected; some
sparsely distributed low level contaminated materials deeply
immersed into the soil were found and removed [22].

TENORM from Water Treatment
In southeast Queensland, Australia, an assessment of

TENORM generation during the treatment of water supplies
was performed. Radioactivity concentrations of 238U, 232Th,
226Ra, 222Rn, and 210Po in surface water and groundwater
samples were examined both pre and post treatment. The
treatment of processes applied to surface water included

such as sedimentation, flocculation, coagulation, and filtra
tion while cation exchange, reverse osmosis, and activated
charcoals are used to treat groundwater. The secondary
waste generated after treatment were identified to include
sludges, exhausted ion exchangers, filtration media, back
wash and wastewaters and their activity concentration were
measured. The measured activity concentrations were used
as input parameters to model the radiological impact of the
secondary wastes. The results indicated that the water treat
ment practice in Australia does not pose a significant radio
logical risk [23].

TENORM from Oil and Gas Industry
Oil and gas industries represent the main source for TEN

ORM, the flow of radiocontaminants in different parts of the
oil and gas production site and refining plants is illustrated
in Figure 2 [2]. The distribution of radon gas and radiation
exposure rates were evaluated in four natural gas treatment
facilities in Syria [24]. The radiation exposure rates at the
equipment area were found within the natural levels (0.09
0.1 lSv=h) except for the reflex pumps where a dose rate
value of 3 lSv=h was recorded. The concentrations of Radon
in Syrian natural gas are in the range 15.4 1141Bq=m3; the
concentration is higher in the associated natural gas than that
of the non associated gas. The concentrating and pressuriz
ing processes in the central processing facilities were found
to be responsible for the detected high radon concentration.
The lowest detected 222Rn concentration was found in the
natural gas fraction equals 80 Bq=m3. On the other hand,
maximum observed radon gas and its decay product concen
trations were found to be high in the gas analysis laborato
ries (equal 458 Bq=m3). However, the reported levels in the
studied stations were below the 1000 Bq=m3 limit set by
IAEA for radon chronic exposure [24].

Karen et al. highlighted the interest of both industry and
regulators in identifying cost effective disposal alternatives
that provide adequate protection of human health and the
environment. One such alternative, currently allowed in
Michigan with restrictions, is the disposal of TENORM wastes
in nonhazardous waste landfills. The disposal of petroleum
industry wastes containing 226Ra in nonhazardous landfills
was modeled to evaluate the potential radiological doses and
health risks to workers and the public. Multiple scenarios
were considered in evaluating the potential risks associated
with landfill operations and the future use of the property.
The scenarios were defined to evaluate Michigan policy; sen
sitivity analyses were conducted to evaluate the impact of
key parameters on potential risks. The results indicated that
the disposal of petroleum TENORM wastes in nonhazardous
landfills in accordance with Michigan policy and existing
landfill regulations presents a negligible risk to most of the
considered potential receptors [25].

The characterization of TENORM from the oil and gas
industry in Egypt were overviewed, the average activity con
centrations of 226Ra in scale and sludge samples were found
to change between 5.9 and 68.9 kBq=kg (dry weight) in the
waste samples from Gabal El Zeit field and Abu Rudeis
fields, respectively. The mean activity concentrations of 232Th
were 25.4, 2.6, and 7.2 kBq=kg and those of 40K were 1.3,
0.96, and 2.3 kBq=kg, for Abu Rudeis, granular Gabal El Zeit,
and massive Gabal El Zeit [26].

TENORM from Uranium Mining
As a benchmark for the old uranium mining sites reme

diation, the radiological health risk on the basis of dose
assessment for naturally occurring uranium geochemical
anomalies as a representative of Iberian Massif (Portuguese
section) was conducted. Uranium, thorium and potassium
radioactive series were measured in 52 samples taken from



different environmental compartments: soils, stream sedi
ments, water, foodstuff (vegetables) and air; external radiation
was also measured through a square grid of 10310m, with a
total of 336 measurements. The results showed that some
radioisotopes have high activities in all the environmental
compartments as well as a large variability, namely for those
of the uranium decay chain, which is a common situation in
the regional geological setting. Isotopic disequilibrium is also
common and led to an enrichment of several isotopes in the
different pathways, as is the case of 226Ra; maximum values of
1.76 Bq=L (water), 986 Bq=kg (soils), and 18.9 Bq=kg (in a
turnip sample) were measured. On the basis of a realistic sce
nario combined with the experimental data, the effective dose
from exposure to ionizing radiation for two groups of popula
tion (rural and urban) was calculated; the effective dose is
variable between 8.0 and 9.5 mSv=y, which is 3 4 times higher
than the world average [27].

Monitoring in situ leaching uranium mine groundwater,
based on the monitoring of groundwater quality and the bot
tom value of groundwater pollution control was recently
studied [28]. It was found that the operation of acid leaching
mining area can led to groundwater contamination with sul
fate and nitrate. The determination of the current range of
contaminant concentration is considered the basic data for
the groundwater remediation.

REMEDIATION TECHNOLOGY

A wide range of remediation technologies is available to
deal with contaminated sites, this section will highlight
recent remediation researches applicable for remediating
sites contaminated with NORM and TENORM such as passive
barriers, pump and treat, electokinetic, and bioremediation.

Barrier Technology
Permeable reactive barrier (PRB) is a class of passive

engineering barriers that is installed to remediate contami
nated groundwater. The basic idea of this technology is to
place suitable material that has chemical reactivity toward

one or more contaminant in the contaminated groundwater
path. As groundwater passes through the barrier, contami
nants are removed by adsorption, exchange, oxidation
reduction, or precipitation mechanisms of the barrier material
[10]. Precipitation of phosphate minerals is one of the tech
nological options used to remediate groundwater contami
nated with uranium. The thermodynamic calculations for
potassium and calcium uranyl phopsphates, meta ankoleite
and autunite showed that uranium concentrations will
exceed the maximum contaminant level (0.13 lM for U) at
any pH, unless phosphate concentrations is maintained
higher than the sub lM levels typically found in groundwater
[29]. Tokunaga et al. indicated that potassium uranyl vana
date can control uranium concentrations below regulatory
limits in slightly acidic to neutral solutions. The calculations
showed that maintaining uranium concentrations below the
maximum contaminant level could be achieved by precipitat
ing carnotite (K2(UO2)2V2O8.) in oxidizing waters (pH
5.5 7) [29]. Experimental results for solutions at pH 6.0 and
7.8 were used to identify the optimum conditions to drop
uranium concentration below MCL to provide contact within
1 5 days with oxidizing solutions containing 0.2 10 mM K,
and 0.1 20 lM V(V).

Column experiments on remediation of acid seepage
water from uranium containing debris using slated lime and
silica sand mixture as permeable reactive barrier have been
conducted [30]. The results showed that the studied mixture
gave good results; i.e., the utilization of one unit volume of
the mixture can neutralize 108.3, 53.5, and 45.9 unit volume
of acid seepage water (pH 3.12) with 1:5, 1:7, and 1:9 slated
lime to sand mass ratio. That work indicated that for contam
ination less than 0.05 mg=L uranium concentration in filtrate
at pH < 6.5, the performance of uranium removal is good
and fade removal performance for sulfate radical. The per
meability of the mixture with 1:5 mass ratio was decreased
from 10.9 m=d to 6.1 m=d, but the other two had no obvi
ously change.

In Romania, there were three uranium mining areas,
Banat region in southwest Romania, Apuseni Mountains in

Figure 2. Radiocontaminants flow through gas and oil industry [2].



the west, and Crucea in the north. The operation of these
mines has led to pollution problems. The application of
nanoparticles zero valent iron (nano Fe0) and nanoparticles
magnetite (nano Fe3O4) for uranium removal from
carbonate rich water taken from Lişava valley, Banat, Roma
nia was performed. Nanoparticles were introduced to Lişava
groundwater with a uranium VI. Liquid and nanoparticulate
samples were collected and analyzed periodically over 84
days [31]. That study indicated that uranium 98% removal
was achieved by nano Fe0 systems within 2 h of reaction,
which reduce uranium concentration below EPA and WHO
specified drinking water regulations. The results of X ray
photoelectron spectroscopy analysis of the nanoparticulate
solids confirmed the partial chemical reduction of uranium
VI to Uranium IV, which is the most stable form. This result
was attributed to the presence of Fe0 core that achieve near
total removal of aqueous uranium even with the presence of
competing ions. Over extended reaction periods (nearly 1
week) uranium VI was completely removed using nano Fe0.

Experimental studies using mine waters from Banat
Romania area, in discontinuous single contact of phases was
performed to select optimal reactive materials based on the
distribution coefficient [32]. The results concluded the distri
bution coefficient of activated carbon type AC20G is the
highest followed by that of apatite, while natural zeolites and
zero valent iron had the lowest distribution coefficients. The
fixed bed studies of these materials indicated that for an ini
tial uranium concentration of 1.72 mg=L, the water could be
decontaminated to less than 0.048 mg=L after 120 h.

Acid mine water from Straz pod Ralskem, Czech Republic,
was remediated in by nanoparticles zero valent iron (nano
Fe0). Toxicity of the remediated water was attributed to the
presence of aluminum and sulphates in a high concentration,
and the micro contaminants e.g. As, Cd, Cr, U, V, and Zn.
Batch results showed significant decrease in pollutant con
centrations due to pH enhancement and the decrease in
oxidation reduction potential related to an application of
nano Fe0. The contaminants were concluded to be removed
be different mechanisms including cations precipitation in
lower oxidation state, precipitation due to pH enhancement
and coprecipitation with the formed iron oxyhydroxides [33].

Permeable reactive barriers for remediating acid mine
drainage with low level uranium was studied [34]. In that
work, 721 mine located in Jiangxi province were considered.
The results showed that this remediation technique reduced
uranium concentration to meet radioactive wastewater dis
charged standard, and acidity meets guide standard [34].

Pump and Treat Technology
Pump and treat technology is one of the commonly used

techniques for groundwater remediation. The development of
unconfined groundwater flow and transport model using
mesh free point collection method was presented by Mate
gaonkar et al. [35]. The developed models are coupled to get
an effective simulation=optimization model for the ground
water remediation design using pump and treat technology.
The simulation=optimization model was applied to the reme
diation design of an unconfined field aquifer polluted by Total
Dissolved Solids (TDS) using pump and treat and flushing.
The model provides an effective remediation design of pump
ing rate for the selected wells and costs of remediation [35].

Remediation of the Site Brook waterway was based on
the need to remove contaminated floodplain soil and sedi
ments while limiting the impacts on the surrounding ecologi
cal environment. The Site Brook remediation included soil
and=or sediment excavation from wetlands, the wetland
buffer zone, and upland areas. During the planning phase,
characterization data were plotted and evaluated from histor
ical surveys. In addition to the in stream surveys, workers

collected sediment samples using a hand auger from each
grid where an elevated count rate greater than background
was identified. For excavation of areas within the stream
channel, a surface water diversion system was installed to
convey stream flow around the excavation area and elimi
nate the flow of surface water through the excavation. A
sump installed in the excavation area collected groundwater
recharge into the excavation area and pumped it into a hold
ing tank for radiological sampling and analysis prior to treat
ment via filtration and discharge to the Publicly Owned
Treatment Works [36].

Electrokinetic Remediation
Electokinetic remediation is a relatively new physicochemi

cal method used to mobilize ionic pollutants for removal in
subsurface. Soil contaminated with organic and heavy metal
pollutants could be remediated using this technology. The
major drawback of this technology is the precipitation of
reduced contaminants around the electrodes which implies
the utilization of washing systems or adding augmenting fluids
to prevent precipitates formation. The utilization of integrated
bioelectrochemical system was proposed to overcome these
drawbacks [37]. A microbial fuel cell was selected for studying
the remediation of heavy metals such as uranium and chro
mium. The main factors that affect the performance of this
technology were characterized. The results showed that the
removal of hexavalent chromium is highly dependent on soil
condition and the initial concentration.

To overcome the precipitation of reduced contaminants,
improvements were carried out on the pilot scale electroki
netic equipment in Korean nuclear facility sites. These
improvements include; immersion washing device, metal
oxide separator, and circulation system. The aim from using
the immersion washing device is cleaning the metal oxides
from the cathode plate. The separator is used to remove the
oxide particles below 0.075 mm. Finally, the circulation sys
tem is used to control pH and ensure waste solution move
ment. The pH in the cathode room is adjusted at 1 2, to
prevent the generation of metal hydroxide and circulates
waste solution to prevent the increase of metal oxides due to
its stagnancy. After the remediation experiment for 25 days
using improved pilot scale electrokinetic equipment, the
removal efficiency of uranium from the soil was 96.8%, and
its residual uranium concentration was 0.81 Bq=g. When the
initial uranium concentration of the soil was 50 Bq=g, the
electrokinetic remediation time required to remediate the
uranium concentration below clearance concentration of
1.0 Bq=g was about 34 days. When the initial uranium con
centration of soil was 75 Bq=g, the electrokinetic remediation
time required to remediate below 1.0 Bq=g was about
42 days. When the initial uranium concentration of soil was
100 Bq=g, the electrokinetic remediation time required to
remediate below 1.0 Bq=g was 49 days [38].

The treatment uranium leachate generated from the elec
trokinetic remediation was studied by using mixing and
cohesion, precipitation, concentration, and filtration [39]. The
leachate characteristics were performed and the results indi
cated that U concentration was 180 ppm. By using sodium
hydroxide as a precipitant it was found that, the precipitation
velocity was reduced and the precipitate particle size was
increased. In several respects, sodium hydroxide was found
to be more efficient as a precipitant than ammonium and cal
cium hydroxides. The results showed that a mixture of
NaOH, alum, and magnetite (having weight ratio of 20:4:3) is
optimal for filtration [39].

Biological Treatments
Natural uranium and 226Ra removal from contaminated

waters by rhizofiltration was tested using Helianthus annuus



L. (sunflower) seedlings growing in a hydroponic medium
[40]. The optimum age of the seedlings was studied and
radionuclides removals using sunflower roots were tested.
The results revealed that the seedlings induced the formation
of precipitate that contains U and Ra. Contaminated water
was remediated successfully using four week old seedlings
for 2 days. 50% of the U and 70% of Ra were fixed in the
roots, and the rest were detected in the precipitate [40].

Optimum conditions for penatron and soil mixing, and
the soil pH of were studied using different bioremediations
with soil contaminated by U and Ra. It was found that an
optimum mixing ratio of penatron for bioremediation of ura
nium soil was 1%. Also, the optimum pH condition for biore
mediation of soil contaminated with U and Ra was 7.5.
Removal efficiencies from higher concentration of contami
nated soil were reduced in comparison with those from
lower concentration of soil. Meanwhile, the removal of ura
nium and radium in concrete by bioremediation is possible
but the removal rate from concrete was slower than that
from soil. The removal efficiencies of uranium and radium
from soil under injection of 1% penatron at pH 7.5 for 120
days were 81.2 and 81.6%, respectively, and the removal effi
ciencies of uranium and radium from concrete under the
same condition were 63.0 and 45.2%, respectively. Beyond
30 days, removal rates of uranium and radium from soil and
concrete by bioremediation was very slow [41].

Uranyl ions biosorption on three types of alga: Nostok
linckia, Porphyridium cruentum, and Spirulina platensis was
studied. These ions were supplied either from a pure solu
tion of uranyl nitrate, or after uranium ore leaching, or from
the purification sludge. The retention degree versus contact
time and afterwards the Langmuir and Freundlich biosorp
tion isotherms of uranyl ions on the three alga types were
investigated. The retention of contaminants ions on alga was
proved through FTIR investigations. From the experimental
data it was found that regardless of origin of uranyl ions, the
retention degree on alga decreased in the series. Spirulina
platensis t; Porphyridiumcruentum � Nostoklinckia [42].

Geobacter mediated reductive immobilization of uranium
is a novel bioremediation technique. While several reactive
transport models have been developed to represent
Geobacter mediated bioremediation of uranium, these mod
els often lack the detailed quantitative description of the
microbial process (e.g., biomass buildup in both ground
water and sediments, electron transport system, etc.) and the
interaction between biogeochemical and hydrological pro
cess. A recent study devoted to the development of a novel
multi scale model by integrating a recent model on electron
capacitance of Geobacter with a comprehensive simulator of
coupled fluid flow, hydrologic transport, heat transfer, and
biogeochemical reactions. This mechanistic reactive transport
model accurately reproduces the experimental data for the
bioremediation of uranium with acetate amendment. The
proposed model captured significant contributing factors
across time and space, thereby improving the structure and
parameterization of the comprehensive reactive transport
model. The global sensitivity analysis also provides a poten
tially useful tool to evaluate uranium bioremediation strategy.
The simulations suggest that under difficult environments
(e.g., highly contaminated with U(VI) at a high migration
rate of solutes), the efficiency of uranium removal can be
improved by adding Geobacter species to the contaminated
site (bioaugmentation) in conjunction with the addition of
electron donor (biostimulation). The simulations also high
light the interactive effect of initial cell concentration and
flow rate on U(VI) reduction [43].

The utilization of phytoextraction for remediating soils
contaminated with uranium has received increasing attention
recently. The remediation of 10 cm soil depth having 1.5
kg dm 3density contaminated with Cs, Sr, and U by using

phytoextraction was studied. The annual removal percent for
these contaminants were found 3.3, 5, and 9.3%, respectively
which entailed the application of this method for 23, 10, and
7 years for each contaminant for the removal of 50% without
the consideration of decay [44,45]. The feasibility of using cit
ric acid, oxalic acid, nitrilotriacetic acid, and EDTA for phy
toremediation of uranium tailings by Indian mustard was
tested [46]. The tailings were mixed with garden soils at 1:3
ratio and four different chelators concentrations were added
to the mixture. EDTA was found to produce maximum
growth depression where nitrilotriacetic acid gives the mini
mum. The minimum growth inhabitation observed was with
nitrilotriacetic acid which was followed by oxalic acid, citric
acid and finally EDTA. Another study devoted to investigate
the effect of citrate, EDTA, and EDDS on the removal of
radium from a granitic soil [47]. The removal process for all
the studied chelators were found dependent on the substrate
pH. The highest radium removal was obtained for citrate
amendment at 50mmol=kg and the maximum removal was
attained on the first day after amendment while using citrate
will lead to delay till the fourth Day.

CONCLUSIONS

This work aimed to highlight the scientific community
interest in important topics that affect the selection of reme
diation technology. From this review the following conclu
sions could be drawn
1. Different materials have been tested for their potential

use as reactive barriers to remediate uranium from conta
minated groundwater, these include Potassium Uranyl
Vanadate, slated lime and silica sand mixture, iron zero
valent, magnetite, activated carbon, apatite, natural
zeolites.

2. zero valent iron has received a great attention recently,
but there is still a need to investigate how to improve the
retention of inorganic contaminants in chemically com
plex environmental

3. Laboratory scale researches have been extensively per
formed but the pilot scale results were not adequately
presented. So there is a need to study and=or model the
effect of upscaling on the obtained experimental results.

4. Large uncertainties associated the fundamental process
that governs bioreactor operation, i.e. transport and bio
catalysis mechanisms, these uncertainties need to be
addressed.
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20. Gezer, F., Turhan, S., Uĝur, F.A., G€oren, E., Kurt, M.Z., &
Ufuktepe, Y. (2010). Natural radionuclide content of dis
posed phosphogypsum as TENORM produced from

phosphorus fertilizer industry in Turkey, Ann. Nucl.
Energy., 50, 33 37.

21. Desideri, D., Roselli, C., Meli, M.A., & Feduzi, L. (2008).
Analytical methods for the characterization and the leach
ability evaluation of a solid waste generated in a phos
phoric acid production plant, Microchem. J., 88, 67 73.

22. Stamatis, V., Seferlis, S., Kamenopoulou, V.; Potiriadis, C.,
Koukouliou, V., Kehagia, K., Dagli, C., Georgiadis, S., &
Camarinopoulos, L. (2010). Decommissioning a phos
phoric acid production plant: A radiological protection
case study, J. Environ. Radioact., 101, 1013 1023.

23. Kleinschmidt, R., & Akber, R. (2008). Naturally occurring
radionuclides in materials derived from urban water treat
ment plants in southeast Queensland, Australia, J. Envi
ron. Radioact., 99, 607 620.

24. Al Masri, M.S., & Shwiekani, R. (2008). Radon gas distri
bution in natural gas processing facilities and workplace
air environment, J. Environ. Radioact, 99, 574 580.

25. Smith, K.P., Arnish, J.J., Williams, G.P., & Blunt, D.L.
(2003). Assessment of the disposal of radioactive petro
leum industry waste in nonhazardous landfills using risk
based modelling, Environ. Sci. Technol., 37, 2060 2066.

26. Attallah, M.F., Awwad, N.S., & Aly, H.F. (2012). Environ
mental radioactivity of TE NORM waste produced from
petroleum industry in Egypt: Review on characterization
and treatment, In Natural Gas Extraction to End Use, S.
Borra Gupta (Ed.), InTech: Rijeka, Croatia, pp 75 98.

27. Pereira, A.J.S.C., & Neves, L.J.P.F. (2012). Estimation of
the radiological background and dose assessment in
areas with naturally occurring uranium geochemical
anomalies A case study in the Iberian Massif (Central
Portugal), J. Environ. Radioact., 112, 96 107.

28. Chen, J., & Liu, J. Study on sulphate and nitrate pollution
in groundwater of a leaching uranium mine. Proceedings
of2nd International Conference on Remote Sensing, Envi
ronment and Transportation Engineering, RSETE 2012 ,
Nanjing, Jiangsu, China, art. no. 6260751.

29. Tokunaga, T.K., Kim, Y., & Wan, J. (2009). Potential
remediation approach for uranium contaminated ground
waters through potassium uranyl vanadate precipitation,
Environ. Sci. Technol, 43, 5467 5471.

30. Lv, J., Jia, F., Zhang, X., & Feng, Z. Column experiments
on remedy acid seepage water from U containing debris
with PRB. Proceedings of International Conference on
Remote Sensing, Environment and Transportation Engi
neering, RSETE 2011 Nanjing, Jiangsu, China. art. no.
5965177, 3925 3929.

31. Crane, R.A., Dickinson, M., Popescu, I.C., & Scott, T.B.
(2011). Magnetite and zero valent iron nanoparticles for
the remediation of uranium contaminated environmental
water, Water Res, 45, 2931 2942.

32. Panturu, E., Groza, N., Filcenco Olteanu, A., Jinescu, G.,
& Panturu, R. I. (2009). In situ decontamination of the
mine waters from uranium mining activities Revista de
Chimie 60, 1318 1323.

33. Klimkova, S., Cernik, M., Lacinova, L., Filip, J., Jancik, D.,
& Zboril, R. (2011). Zero valent iron nanoparticles in
treatment of acid mine water from in situ uranium leach
ing. Chemosphere, 82, 1178 1184.

34. Gao, B., & Lin, Y. (2010). Laboratory evaluation of permea
ble reactive barriers to treat water impact by acid low level
uranium drainage, Adv. Mater. Res., 113 116, 1342 1344.

35. Mategaonkar, M, & Eldho, T.I. (2012). Groundwater
remediation optimization using a point collocation
method and particle swarm optimization, Environ. Mod
ell. Softw., 32, 37 48.

36. Shephard, E., Walter, N., Downey, H., Collopy, P., &
Conant, J. (2012). Remediation of uranium impacted sedi
ments in a watercourse, Radwaste Solutions, 19, 12 17.



37. Hsu, L., Thacher, R., Yokota Joshi, A., Wong, A., Nealson,
K.H., Pirbazari, M., & Astani, S. Evaluation of a novel bio
remediation process coupling an electrokinetic system
with microbial fuel cell technology. Proceedings of
10AIChE 2010 AIChE Annual Meeting, Conference, 7 12
Nov. 2012. 723c.

38. Gye Nam, K., Dong Bin, S., Hye Min, P., Ki Won, L., &
Un Soo, C. (2011). Development of pilot scale electroki
netic remediation technology for uranium removal, Sep.
Purif. Technol., 80, 67 72.

39. Kim, G. N., Shon, D. B., Park, H. M., Choi, W. K., & Lee,
K. W. (2011). The development of precipitation filtering
technology for uranium electrokinetic Leachate, Sep.
Purif. Technol., 79, 144 150.

40. Vera Tom�e, F., Blanco Rodr�ıguez, P., & Lozano, J.C.
(2008). Elimination of natural uranium and 226Ra
from contaminated waters by rhizofiltration using
Helianthus annuus L., Sci. Total Environ., 393(2 3),
351 357.

41. Kim, G. N., Kim, S.S., Park, H.M., Kim, W.S., Park, U.R.,
& Moon, J.K. (2012). Remediation of soil=concrete conta
minated with uranium and radium by biological method,
J. Radioanal. Nucl. Chem., 1 8.

42. Cecal, A., Humelnicu, D., Rudic, V., Cepoi, L., Ganju, D.,
& Cojocari, A. (2012). Uptake of uranyl ions from ura
nium ores and sludges by means of Spirulina platensis,
Porphyridium cruentum and Nostok linckia alga, Biore
sour. Technol., 118, 19 23.

43. Zhao, J., Scheibe, T.D., & Mahadevan, R. (2011). Model
based analysis of the role of biological, hydrological and
geochemical factors affecting uranium bioremediation,
Biotechnol. Bioeng., 108, 1537 1548.

44. Hildegarde, V. Phytoremediation options for radioactively
contaminated sites evaluated, Ann. Nucl. Energy, 2013
http:==dx.doi.org=10.1016=j.anucene.2013.02.005

45. International Atomic Energy Authority, Handbook of
parameter values for the prediction of radionuclide trans
fer in terrestrial and freshwater environments. TRS 472,
IAEA: Vienna, Austria, 2010.

46. Bhagawatilal, J., & Anubha, S. (2013). Optimization of
chelators to enhance uranium uptake from tailings for
phytoremediation, Chemosphere 91, 692 696.

47. Prieto, C., Lozano, J.C., Blanco Rodriguez, P., & Vera
Tome, F. (2013). Enhancing radium solubilization in soils
by citrate, EDTA, and EDDS chelating Amendments,
J. Hazard. Mater, 250 251, 439 446.

Post-print standardized by MSL Academic Endeavors, the imprint of the Michael Schwartz Library at Cleveland State University, 2017 


	Cleveland State University
	EngagedScholarship@CSU
	7-1-2014

	Remediation of NORM and TENORM Contaminated Sites—Review Article
	R.O. Abdel Rahman
	Mohamed Elmesawy
	I. Ashour
	Yung Tse Hung
	Publisher's Statement
	Recommended Citation


	tmp.1503085704.pdf.q0o37

