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a b s t r a c t

Flavor evaluation is influenced by learning from experience with foods. One main influence is flavor-
nutrient learning (FNL), a Pavlovian process whereby a flavor acts as a conditioned stimulus (CS) that
becomes associated with the postingestive effects of ingested nutrients (the US). As a result that flavor
becomes preferred and intake typically increases. This learning powerfully influences food choice and
meal patterning. This paper summarizes how research elucidating the physiological and neural sub-
strates of FNL has progressed in parallel with work characterizing how FNL affects perception, motiva-
tion, and behavior. The picture that emerges from this work is of a robust system of appetition (a term
coined by Sclafani in contrast to the better-understood satiation signals) whereby ingested nutrients
sensed in the gut evoke positive motivational responses. Appetition signals act within a meal to promote
continued intake in immediate response to gut feedback, and act in the longer term to steer preference
towards sensory cues that predict nutritional consequences.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Sensory evaluation is an important influence in determining
which foods to choose and howmuch of them to eat. It is practically
self-evident that we prefer foods that “taste good,” although that's
an imprecise use of the term “taste.” The complex combination of
basic primary tastes plus odors, textures, and trigeminal sensations
creates the experience of “flavor” (Small, 2012; Stevenson, 2009)
which is a large part of what makes foods attractive and rewarding.
Importantly, flavor evaluation is neither innate nor fixed. Humans
(and the rodents which co-evolved with us and serve as laboratory
models) are born possessing only a few general reactions to basic
taste stimuli, such as a generalized liking for sweetness and dislike
of bitter (Ganchrow, Steiner, & Daher, 1983; Hall & Bryan, 1981;
Rosenstein & Oster, 1988). But the vast array of complex flavors in
foods e the piquant zestiness of pepperoni pizza, the complex,
aromatic tang of chicken tikka masala, the fruity, toothsome qual-
ities of apple pie e take on value based on individuals' experiences
with them (Capaldi, 1996; Myers, 2015; Sclafani, 2004; Yeomans,
2006). This helps explain why food preferences differ among

individuals and vary so much geographically that members of
different cultures enjoy foods that are unappealing or even
downright revolting to outsiders. Understanding how flavor pref-
erences are established by experience becomes increasingly
important in light of the obesity epidemic, now that modern food
processing brings us an array of manufactured foods with carefully
engineered sensory properties and unnaturally high energy den-
sity. These learning systems may hold the key to the motivational
processes driving overconsumption, but may also be used to pro-
mote choice of healthier options.

There are several ways that experience shapes flavor preference,
and most of them are described in the framework of Pavlovian
conditioning. A flavor can be conceptualized to act as a conditioned
stimulus (CS) that, although initially arbitrary, comes to be evalu-
ated more positively or negatively by result of its association with
other biologically significant events (unconditioned stimuli, US)
that occur with consumption. The powerful phenomenon of
conditioned food aversions is a recognizable example for most
people. When a flavor (CS) is followed by severe nausea (US), that
flavor-illness association is learned and that flavor is subsequently
regarded as disgusting.

While conditioned aversions had been a well-studied topic in
the empirical analysis of basic learning mechanisms, Holman
(1975) demonstrated that associative learning could produce
strong positive reactions to flavors as well. In one experiment rats

* Department of Psychology, O'Leary Center, Bucknell University, Lewisburg, PA
17837, USA.

E-mail address: kmyers@bucknell.edu.

Contents lists available at ScienceDirect

Appetite

journal homepage: www.elsevier .com/locate/appet

http://dx.doi.org/10.1016/j.appet.2017.03.048
0195-6663/© 2017 Elsevier Ltd. All rights reserved.

Appetite 122 (2018) 36e43

mailto:kmyers@bucknell.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.appet.2017.03.048&domain=pdf
www.sciencedirect.com/science/journal/01956663
www.elsevier.com/locate/appet
http://dx.doi.org/10.1016/j.appet.2017.03.048
http://dx.doi.org/10.1016/j.appet.2017.03.048
http://dx.doi.org/10.1016/j.appet.2017.03.048


consumed two distinct flavors (e.g., almond and banana), one in a
very sweet saccharin solution and the other in a less sweet solution.
They subsequently preferred the flavor paired with higher sweet-
ness even when it was no longer as sweet. Another experiment
showed that a flavor became more strongly preferred when it was
followed by delayed consumption of glucose (sweet and nutritious)
compared to delayed saccharin (sweet but not nutritious). The
distinction between those two experiments was crucial. Holman
demonstrated two distinct types of preference learning: a flavor
can become preferred by association with an already preferred
taste/flavor (sweetness), or by association with nutritional conse-
quences. These came to be called “flavor-flavor” (or, more precisely
“flavor-taste”) learning and “flavor-nutrient” learning (hereafter
abbreviated FNL), respectively.

These two types of learning can work independently, but may
also interact with one another (Capaldi & Privitera, 2007; Warwick
& Weingarten, 1994; Yeomans, Leitch, Gould, & Mobini, 2008)
which presents a methodological challenge. During ordinary
eating, flavor-flavor and flavor-nutrient learning can presumably
both occur, either independently or in combination. If an individual
shows increased preference for a flavor after consuming it in a
sugary food, it's not clear whether the flavor has become associated
with the rewarding taste of the sugar or with its nutritive proper-
ties, or both. An experimental method for specifically focusing on
the mechanisms of FNL in lab animals was developed by Tony
Sclafani, called the “electronic esophagus” method (Elizalde &
Sclafani, 1990). Rats' consumption of a distinctively flavored but
non-nutritive solution is accompanied by direct intragastric (IG)
infusion of either a nutrient (e.g., glucose) or non-nutritive solution
(water) through an infusion catheter. Intake of the solution could be
monitored with an electronic lick detector interfaced to a computer
that in turn controlled the IG infusion pump, enabling IG infusion to
be matched to the rats' oral intake. In a typical experiment, training
alternated between to two flavors (e.g., grape and cherry), with one
flavor (CSþ) accompanied by IG nutrient and the opposite (CSe)
paired with IG water. Thus, if rats subsequently responded more
positively to the CSþ flavor it reflected the learned association
between that flavor and the postingestive effects of the nutrient.

The early studies using thismethod (Drucker, Ackroff,& Sclafani,
1993; Drucker, Ackroff, & Sclafani, 1994; Elizalde & Sclafani, 1988,
1990; Perez, Lucas, & Sclafani, 1995) demonstrated that FNL can
produce two main changes in behavior. One is conditioned prefer-
ence: in a choice between a CSþ and CSe flavor (for which the rats
had been initially indifferent before training) they strongly favor
the CSþ. The second is increased acceptance: rats learn to consume
larger amounts of the CSþ flavor, mainly by taking progressively
larger meals. These two behavioral outcomes of FNL reflect its
adaptive value for foraging animals (and ancestral humans) who
ought to preferentially seek out cues signaling potential caloric
advantage. The adaptive significance of FNL is underscored by the
speed of acquisition and resistance to extinction (Ackroff, Dym,
Yiin, & Sclafani, 2009; Drucker et al., 1994; Myers, 2007). This
learning is relevant in the modern situation by helping to explain
how high-calorie foods become so attractive and capable of pro-
moting overeating.

Though at first glance some of the findings from the Sclafani
group's original electronic esophagus studies may have suggested
FNL as a relatively simple mechanism for shifting flavor evaluation,
work that followed revealed FNL to be quite physiologically and
psychologically complex, with diverse effects on food evaluation,
meal size, and meal patterning. The goal of the following sections is
to outline some key areas of progress in understanding FNL,
including its physiological and neurobiological substrates and the
ways that the learning shapes the psychological drivers of eating
behavior. My intention is to focus on areas in which our

understanding of the behavioral mechanisms of FNL has converged
with and illuminated the search for its underlying neurobiological
signals and circuitry. This work has been chiefly led by Tony Scla-
fani, who, along with his many trainees and collaborators, has
pursued a careful and systematically organized exploration driven
by three central questions:

1) What sensor (or sensors) detect the ingested/infused nutrient
post-orally to generate the reward signal for FNL?

2) How is that signal conveyed to the central nervous system?
3) How is that information integrated into the central neural cir-

cuitry governing ingestive behavior to produce lasting changes
in CS flavor evaluation?

2. Central circuits in FNL

I will begin with the last of those three questions, only because
that's where the focus was when I joined the Sclafani lab as a
postdoc in 1999. The search for central neural circuits that process
flavor-nutrient associations is conceptually linked to the psycho-
logical question of how those associations impinge on the
perceptual and/or motivational controls of behavior. That is, when a
CS flavor becomes associated with calories, how is it perceived
differently than before? Does it actually start to “taste better?” We
should expect the nature of the psychological experience to provide
clues to CNS pathways mediating the behavior.

This work was heavily influenced by Berridge's model (Berridge,
1996) of “wanting and liking” which emphasized the dissociability
of incentive motivation (attention towards a source of anticipated
reward and focused effort towards obtaining it) from hedonic
evaluation (the experience of sensory pleasure). The former is
generally governed by dopaminergic signaling in mesolimbic and
mesocortical pathways, while the latter is attributable primarily to
opioid and endocannabinoid signaling in the limbic system. Of
course this model has been continually updated to reflect the in-
teractions between the two systems, (e.g., Berridge, Robinson, &
Aldridge, 2009; Castro & Berridge, 2014; Smith, Berridge, &
Aldridge, 2011), but the dichotomy between liking and wanting
continues to have considerable heuristic value for understanding
the controls of complex, motivated behaviors.

FNL was sometimes called “hedonic shift” learning (Mehiel &
Bolles, 1988; Mehiel, 1991), although it's not necessarily the case
that a nutrient-paired CSþ flavor is preferred because it becomes
more palatable. Stimulation of intake could instead reflect incentive
motivational effects (i.e., ‘wanting’ instead of, or in addition to,
‘liking’ in Berridge’s (1996) parlance). Using the taste reactivity test,
which quantifies the automatic, stereotyped orofacial reactions rats
exhibit in response to small intraoral infusions as the gold-standard
measure of ‘liking’ (see Berridge, 2000; Grill & Norgren, 1978), we
found that rats did indeed react to a saccharin-sweetened CSþ that
had been paired with IG glucose as more palatable than an equally-
sweet CSe flavor that had been paired with water (Myers &
Sclafani, 2001a). The learned shift in CSþ palatability relative to
the CSewas approximately the same as seenwhen shifting from 3%
to 16% sugar solution. A companion study showed differences in
CSþ and CSe lick microstructure consistent with CSþ palatability
enhancement (Myers & Sclafani, 2001b), further indicating that
FNL can influence ‘liking.’

While this may have seemed to settle the question of the he-
donic nature of FNL, a follow-up study complicated that conclusion
considerably. Instead of saccharin-sweetened flavors, which were
initially moderately palatable and became more so with flavor-
nutrient pairing, we studied rats' reactions to bitter or sour solu-
tions which were initially unacceptable to rats. When a bitter or
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sour solution was paired with IG glucose and the opposite paired
with IG water, rats showed very strong preference learning and
progressively increased their intake of the nutrient-paired solution,
but taste reactivity tests revealed no change in hedonic evaluation
of the CSþ (Myers& Sclafani, 2003). Despite voluntarily consuming
relatively large amounts of a previously unacceptable solution, rats
showed no indication they regarded it as any ‘better tasting’ than
before. Thus apparently FNL learning can increase palatability but it
does not necessarily do so, and may perhaps only do so under
limited circumstances.

By showing that preferences and increased intake can some-
times result from FNL in the absence of any hedonic shift, this latter
study suggests a non-hedonic, motivational process is crucial for
FNL. Indeed, subsequent studies provided additional examples that
nutrient-paired flavors come to exert control of incentive motiva-
tion. For instance rats will work harder to obtain small tastes of the
CSþ in a progressive ratio task (Sclafani& Ackroff, 2006), a behavior
the investigators interpreted as a non-hedonic, incentive effect.

At around the same time, another line of work directed by Tony
Sclafani with Rich Bodnar and Khalid Touzani focused on brain
pathways responsible for acquiring and using flavor-nutrient as-
sociations. Ultimately these corresponding neural investigations
dovetailed with the conclusion that shifting palatability evaluation
may not be the primary mechanism of FNL, instead implicating
forebrain dopaminergic pathways linked to the motivational con-
trols of “incentive salience,” not sensory pleasure.

Several pharmacological manipulations of endogenous opiate
signaling ultimately found no critical role for opiates in FNL. Sys-
temic blockade of endogenous opiates is known to suppress intake
of sweet solutions by decreasing perceived palatability (Kirkham &
Cooper, 1988; Parker, Maier, Rennie, & Crebolder, 1992). But in the
standard FNL paradigm the opiate blocker naltrexone suppressed
CS intake non-specifically. That is, rats still preferred a nutrient-
paired CSþ over CSe but simply consumed less of both (Azzara,
Bodnar, Delamater, & Sclafani, 2000). A similar non-specific
pattern was subsequently found with microinfusions of
naltrexone in the nucleus accumbens shell, while naltrexone in the
accumbens core was without effect (Bernal et al., 2010). The
persistent CSþ preference during opiate blockade in the accumbens
shell is notable given that it is evidently a critical site for opiate
mediation of palatability (Peci~na & Berridge, 2000). Thus, to the
extent that endogenous opiate activity can be viewed as a neural
currency of pleasure, this work underscored the conclusion from
our taste reactivity studies that, while a palatability shift may occur
under some circumstances, it is apparently dispensable and not the
fundamental basis of FNL.

Dopamine (DA) plays a more critical role in FNL, although even
for DA the precise mechanisms are incompletely mapped. Dopa-
minergic involvement was foreshadowed by an early study in
which rats exhibited increased DA efflux in the striatum when
tested with a taste cue that had previously been paired with IG
sugar infusion (Mark, Smith, Rada, & Hoebel, 1994). Subsequent
work focused on separately manipulating DA receptor sub-types
with receptor-specific antagonist drugs administered systemically
or microinfused into specific sites in the mesolimbic and meso-
cortical dopaminergic pathways. These studies taken altogether
find that D1-like but not D2-like signaling is necessary for rats to
learn to prefer a CS flavor when it is associated with post-oral
nutrient sensing (see Sclafani, Touzani, and Bodnar (2011);
Touzani, Bodnar, and Sclafani (2010a, 2010b) for detailed re-
views). This is not because D1 antagonismmerely prevents animals
from consuming enough to learn the flavor-nutrient relationship,
because strong preferences are still learned in placebo-treated
animals whose training intakes are limited to the low levels
consumed by the D1 antagonist group. Thus D1 antagonists appear

to block learning, possibly by preventing rats from detecting the
postingestive US signal, or from forming a memory of its associa-
tion with the flavor.

Several brain sites participate in this effect. Blockade of D1-like
receptors in the amygdala (Touzani, Bodnar, & Sclafani, 2009),
nucleus accumbens shell or core (Touzani, Bodnar, & Sclafani,
2008), or medial prefrontal cortex (Touzani et al., 2010a, 2010b)
blocks FNL, at least as measured by preference. Importantly, when
D1 blockade is administered in any of these sites during FNL
training, rats subsequently still show attraction to both CS flavors
and consume substantial amounts of both, they just do not prefer
the CSþ.

In sum, the psychopharmacological studies of opioid and
dopamine signaling and the taste reactivity studies together point
to a conclusion somewhat at odds with prior thinking about FNL. It
had often been assumed CSþ preference and acceptance reflect
altered palatability, and FNL was often assumed to represent “he-
donic shift learning” (Mehiel& Bolles, 1988; Mehiel, 1991) Efforts to
extend the animal model to humans by producing de novo FNL in
controlled experiments often reflected this assumption by using
liking ratings as their main dependent measure (e.g., reviews by
Brunstrom (2005); Yeomans (2006, 2012)). The dopamine circuits
which are essential for FNL may be only minimally involved in
subjective pleasure, reprising the finding that palatability shifts are
not necessary for strong CSþ acceptance and preference. “Liking” is
much more strongly linked to endogenous opiates (Castro &
Berridge, 2014), which appear uninvolved in FNL (Azzara et al.,
2000). While these systems interact in complex ways beyond this
simple dichotomy, a straightforward summary would be that FNL
learning appears to drive food choice and meal patterning by
making a CSþ flavor more “interesting” or more “attention-grab-
bing,” but not necessarily more “pleasant” or “palatable.”

These interpretations remain tentative, however, as the central
neural circuity for FNL has only begun to be mapped. One consis-
tent but puzzling observation is that manipulations of midbrain
dopamine function reliably affect acquisition of FNL but have
consistently failed to interfere with expression of FNL that had been
previously acquired (Touzani et al., 2008, 2009, 2010). In other
words, dopamine signaling is necessary for learning a new flavor-
nutrient association, but not to remember and use that associa-
tion later. This is paradoxical, since other studies have shown that
increased striatal dopamine efflux is part of the ordinary response
to a nutrient-paired sensory cue (Mark et al., 1994). Most studies of
dopaminergic substrates of FNL have focused on preference for
CSþ over CSe, and not on more subtle effects on meal size or meal
patterning. It may be that conditioned DA efflux in the striatum is in
fact triggered by a CSþ flavor, but affects other aspects of behavior
like absolute intake or sensitivity to satiation feedback, not choice
per se. An exciting possibility emerging from recent human fMRI
work links midbrain dopamine activity to learning about “biolog-
ical utility,” showing that nucleus accumbens activation by a
nutrient-paired flavor is not associated with reported flavor liking,
but instead to the metabolic impact predicted by the flavor,
measured as change in plasma glucose that followed the flavor
during training (de Araujo, Lin, Veldhuizen, & Small, 2013).

Only preliminary work has considered several other central
transmitter systems (GABA, glutamate, cannabanoids, NPY) that
could modulate FNL. Further the ability of several neuroendocrine
signals reflecting the state of bodily energy stores or recent eating
(e.g., leptin, insulin, GLP-1) to modulate the acquisition or expres-
sion of FNL is largely unaddressed, although the ability of those
signals to interact with central reward and motivational circuitry
(Davis, Choi, & Benoit, 2010; Hayes & Schmidt, 2016) suggest that
learned responses to nutrient-predictive cues may be one way
these peripheral signals modulate food seeking. Recently it has
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been reported that melanin concentrating hormonemay play a role
in learned responses to a taste cue paired with nutrient sensing
(Domingos et al., 2013), yet FNL is apparently normal in MCH-1
receptor null mice (Sclafani, Adamantidis, & Ackroff, 2016). The
evidence available to date suggests a complex, distributed network
of circuits involved in FNL.

3. What nutrient sensors generate the US for FNL?

Another fundamental goal of FNL research has been to identify
where and how the postingestive effects of ingested nutrients are
detected and transduced into a “reward” signal that supports FNL.
In other words, what is the actual physiological US that becomes
associated with the CSþ flavor?

Meal consumption triggers a complex cascade of chemical and
neural events in the gut as food is digested, and throughout the
periphery as fuels are absorbed and metabolized. Just as the mouth
is lined with taste receptors for various nutrient molecules, the
intestinal lumen is lined withmany of the same sensors, such as the
receptors encoded by the TAS1R and TAS2R gene families, and re-
ceptors for various fatty acids and amino acids, e.g., (Dyer, Salmon,
Zibrik, & Shirazi-Beechey, 2005; Efeyan, Comb, & Sabatini, 2015;
Miyauchi, Hirasawa, Ichimura, Hara, & Tsujimoto, 2010; Rozengurt,
2006). Unlike the distinct taste sensations generated by these re-
ceptors in the mouth, there is no evidence that neural signals
arising from these “gut taste” sensors produce any conscious sen-
sory experience, but they undoubtedly serve functions in coordi-
nating GI motility, hormonal, and metabolic responses to ingested
foods. Molecules involved in active transport across the intestinal
epithelium, including SGLT1 and GLUT2, may also serve signaling
functions (Daniel & Zietek, 2015). Once absorbed into circulation
nutrients trigger a range of biochemical reactions in peripheral
tissues, most notably in the liver, as the relative balance shifts from
catabolic to anabolic pathways (Efeyan et al., 2015). Conceivably
any of these ways that ingested nutrients interact with the nervous
system could be the source of a reward signal that becomes asso-
ciated with the CS flavor. Alternatively, or in addition, FNL could
result when nutrients or the products of nutrient metabolism are
sensed directly in the brain (Blouet & Schwartz, 2010; Levin,
Magnan, Dunn-Meynell, & Le Foll, 2011).

Some clues to identifying a particular sensor first came from the
observation that not all macronutrients are equally effective in
producing FNL. This line of work (much of it performed by Karen
Ackroff in Tony Sclafani's group, see (Ackroff, 2008)) demonstrated
that glucose and glucose polymers (maltodextrins like Polycose)
generate strong FNL whereas fructose is largely ineffective despite
having equivalent energy value. Rats do acquire a preference for a
flavor paired with IG fat, but it appears to produce a weaker reward
signal than equicaloric glucose, such that learning is slower and
requires more training (Ackroff et al., 2009; Lucas & Sclafani, 1999;
Revelle & Warwick, 2009). This further demonstrates that the oft-
used descriptor “flavor-calorie learning” is not really accurate, as
it is not energy value that produces FNL, but some physiological
action(s) of only some nutrient molecules.

While much work on this question by Sclafani's group system-
atically evaluated various candidates for the reward signal using
physiologically manipulations, in my own lab I took a comple-
mentary (I hoped) behavioral approach. My goal was to help
identify which post-oral sensing mechanisms might produce the
US signal in FNL by asking when rats appeared to be detecting it.
These studies trained rats with one flavor occurring in the first half
of the meal and another in the second half, with both accompanied
by IG glucose infusion. This experiment relied on the principal of
temporal contiguity in Pavlovian learning: if the postingestive US
signal arising from the glucose infusion was acting late in the meal

or even after it ended, it should become most strongly associated
with the flavor in the second half of the meal. But contrary to that
prediction, rats learned a strong preference for the early flavor,
suggesting that the US signal was detected within 10 min of meal
initiation (Myers & Whitney, 2010).

The picture for fat was different than for glucose, as rats learned
a stronger preference for flavors occurring at the end of the meal,
consistent with the view that the rewarding postingestive effects of
fat arise more slowly (Myers, 2013). This finding was consistent
with other evidence suggesting fat is a weaker US for FNL, but
helped clarify the possible reason. The differential effectiveness of
various nutrients in producing FNL could be explained by a single
nutrient-sensing mechanism primarily responsible for the reward
signal for FNL, with different nutrients being differently effective at
stimulating it. But the alternative which better fits the data is that
there are several sensing pathways involved, with different path-
ways being stimulated at different points in time during or after a
meal, and with different nutrient molecules stimulating a different
subset of these pathways. Conceivably, then, postingestive glucose
sensing is a powerful US for FNL because it stimulates several
redundant pathways, whereas fat is less effective because it stim-
ulates only some, and only the ones occurring after some delay.

The findings from these studies that for glucose, the critical
post-oral reward signal for FNL is acting within the first several
minutes of the meal coincided with the parallel demonstration in
mice (Zukerman, Ackroff, & Sclafani, 2011; Zukerman, Ackroff, &
Sclafani, 2013a, 2013b) and my own subsequent studies in rats
(Myers, Taddeo, & Richards, 2013) that when animals were accus-
tomed to drinking a neutral CSe flavor accompanied only by IG
water, upon their very first encounter with a CSþ flavor pairedwith
IG glucose infusion they increased their licking rate (relative to the
control flavor baseline) by about the 6e7 min mark of that first
meal.

This behavioral evidence for a rapidly-onsetting within-meal
feedback signal which promotes ongoing intake fits well with
several physiological observations about gut nutrient sensing in
FNL. Confining the infused nutrient to the stomach by closing a
pyloric cuff makes it ineffective for producing FNL (Drucker &
Sclafani, 1997), as does bypassing pre-absorptive sensors alto-
gether by infusing nutrients intravenously (Ackroff, Yiin,& Sclafani,
2010). Thus some pre-absorptive sensor within the intestinal
lumen appears to be critical. This sensor is likely concentrated in
the proximal portion of the intestines, as nutrient infusion into the
duodenum or ileum is superior to infusion into the jejunum
(Ackroff et al., 2010). This narrows the field of candidates since
nutrient-sensitive receptors vary across the length of the GI tract.
Further, the fact that some non-metabolizable sugar analogs can be
effective in FNL (Zukerman et al., 2013a, 2013b) provides additional
evidence for a pre-absorptive site of action.

The ongoingwork in Sclafani's lab has used several physiological
approaches to identify the critical post-oral sensor(s) supporting
FNL, especially taking advantage of several newly available
genetically-manipulated mouse models. The genetic knockout
method was initially successful in unambiguously ruling out some
prime candidates. For instance, discovery that the T1R2þT1R3
heterodimeric receptor known to act as the sugar taste receptor in
the mouth is also expressed in the intestinal lumen (Margolskee
et al., 2007) had the tantalizing implication that it could generate
the US in FNL, analogous to how sugar tasted in the mouth is the US
for flavor-flavor learning. However, mice lacking functional
T1R2þT1R3 receptors are quite normal in tests of FNL, acquiring a
strong preference for a flavor paired with IG sugar infusion
(Sclafani, Glass, Margolskee, & Glendinning, 2010). Intact FNL
abilities are also found in mice lacking the Trpm5 element of the
signaling pathway used in taste-like cells (Zukerman, Glendinning,
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Margolskee, & Sclafani, 2013).
A recent finding suggests (at least when the nutrient is a

glucose-containing carbohydrate) an important role of the SGLT1
transporter that carries glucose from the intestinal lumen into
enterocytes. SGLT1 knockout mice do not learn to prefer a flavor
paired with IG glucose infusions (Sclafani, Koepsell, & Ackroff,
2016). Importantly, these mice do not act as if glucose in the gut
is aversive, which suggests a muting of the normal postingestive
reward effect. But the role of SGLT1 is still not entirely clear cut, as
the SGLT1 inhibitor phizordoin does not entirely abolish glucose-
mediated FNL (Zukerman et al., 2013a, 2013b). Nonetheless this
lack of post-oral reinforcement by glucose in SGLT1 knockout mice
is noteworthy, in that no other genetic manipulation or physio-
logical disruption of peripheral nutrient-sensing pathways tested
to date has had the effect of entirely abolishing FNL for glucose. As
is the case with the central neural circuitry, identification of pe-
ripheral sensors involved in FNL has seen much progress in recent
decades, but is still incompletely understood.

4. Route of gut-brain communication for FNL reward signals

A third guiding question is closely related to the previous one
and concerns how the US signal for FNL is communicated to the
brain. The evidence described above implicates one or more pre-
absorptive sensing mechanisms in the proximal intestines, as
opposed to direct sensing of circulating nutrients or energy balance
by the brain itself. There are a several routes such a gut-brain signal
could take, the main alternatives being neural or humoral. There is
now strong evidence that gut nutrient sensing (or some other
metabolic event that closely follows) stimulates mesolimbic DA
signaling independently of any contribution of taste or oral
sensation (De Araujo et al., 2008; Tellez et al., 2016). DA efflux in the
dorsal striatum in particular appears to reflect the energy content of
a gut carbohydrate infusion. Since lesion studies have found mes-
olimbic DA activity to be essential for FNL during acquisition, this
“gut-brain dopaminergic axis” (de Araujo, Ferreira, Tellez, Ren, &
Yeckel, 2012) could play a critical role in the rapid, within-meal
feedback effect described in the previous section. But no specific
route has been identified for how that information reaches the
brain.

The key evidence pointing to a humoral rather than neural
signal comes from experiments showing that the vagus nerve is
apparently uninvolved. Reducing afferent vagal communication
from the viscera to the brain with capsaicin treatment, or
completely abolishing it with total or selective afferent vagotomy
have virtually no effect on FNL for a flavor paired with intra-
duodenal carbohydrate or with fat infusion (Lucas & Sclafani, 1996;
Sclafani& Lucas,1996; Sclafani, Ackroff,& Schwartz, 2003). Further,
for a vagal signal about viscosensory information to reach asso-
ciative circuits in the forebrain it would presumably relay from the
caudal nucleus of the solitary tract through the parabrachial nu-
cleus, but parabrachial lesions leave FNL intact (Sclafani, Azzara,
Touzani, Grigson, & Norgren, 2001).

It is more likely, then, that one ormore humoral signals from gut
nutrient sensing are involved. Several possibilities remain to be
explored but would need to coincide with existing evidence about
the importance of intralumenal sensing in the proximal intestines
as well as the relatively rapid within-meal time course of the
feedback effect on intake.

Some recent work has pointed to prandial insulin as an impor-
tant factor. Based on the observations that peripheral insulin may
act to stimulate striatal dopamine release, and that striatal dopa-
mine is essential for acquisition of FNL, Catherine Woods (Woods
et al., 2016) investigated whether manipulating prandial insulin
would affect FNL. This work confirmed that insulin receptor

signaling is detected in the nucleus accumbens following intra-
gastric glucose infusion at roughly the same time course as the
acceleration in licking previously reported during animals' first
meal of a novel flavor accompanied by IG glucose. Further,
administering an insulin antibody into the nucleus accumbens
prior to flavor-nutrient training prevented preference for the
CSþ flavor. This exciting finding does not, however, demonstrate
the insulin itself is acting to convey the US value of the nutrient, and
it is challenging to identify a role for insulin considering that
streptozotocin-diabetic rats show significant FNL, albeit weaker
than rats with normal insulin function (Ackroff, Sclafani, & Axen,
1997). Instead insulin could be playing a modulatory role, for
instance through an incentive or attentional effect that makes the
flavor CS easier to associate with some other nutrient-related US
signal from the gut, or altering the response to signals from shifts in
glucose trafficking occurring throughout the periphery. Similarly,
human fMRI studies demonstrate a change in accumbens response
to a flavor cue that is correlated with blood glucose dynamics
during the flavorþnutrient pairing (de Araujo et al., 2013).

Though the precise role of insulin and other potential signals
requires further exploration, the effects seen with insulin are
consistent with observations about the time course of behavioral
changes seen during flavor-nutrient training. As mentioned previ-
ously, learned preference for a flavor that occurred in the early half
of a nutritive meal (Myers & Whitney, 2010) along with the
increased licking observed within the first several minutes of fla-
vorþIG nutrient pairing (Myers et al., 2013; Zukerman et al., 2011,
2013, 2013) all indicate a rapid feedback mechanism. But impor-
tantly, further behavioral observations also indicate that the feed-
back signal rapidly endows the flavor with motivational
significance, consistent with a mesolimbic DA effect.

This is illustrated by an experiment in which hungry rats
consumed a flavored saccharin solution accompanied either by IG
glucose infusion or water (Myers et al., 2013). After the first few
minutes of the meal the bottle was removed and replaced with
another, which contained either the same flavor or a different fla-
vor. When no gut nutrient sensing was occurring (IG water infu-
sion) rats appeared rather indifferent to the flavor switch,
consuming a similar amount from the second bottle irrespective of
flavor. But, when gut nutrient sensing accompanied the first bottle,
the flavor began tomatter. Intake of the second bottle increased if it
was the same flavor as the first, but decreased if the flavor was
changed. In other words, rats acted as if they were already
“attributing” nutrient in the gut to the flavor in the first bottle. It
remains to be determined if that rapid motivational shift attached
to the flavor truly represents the initial formation of the flavor-
nutrient association that is remembered across subsequent en-
counters. But it contributes to a view of FNL as a rapidly-acting
process that acts within the span of a single meal to promote
ongoing ingestion when nutrients are sensed in the gut.

5. Future directions and caveats

In light of an obesity epidemic that fundamentally involves the
powerful attraction to cues for energy density, it is of interest to
determine how FNL acting on individual meals is related to over-
eating in the long run, and perhaps ultimately to obesity. A moti-
vating assumption has long been that FNL evolved as a mechanism
guiding adaptive behavior in animals foraging for food that was
scarce and of relatively low energy density, but that in the modern
environment it is now acting as an obesogenic influence. By
fundamentally steering preference andmotivating increased intake
of high-energy foods, it seems obvious that FNL inherently pro-
motes weight gain, or at least biases appetite control in that di-
rection. Yet the links between obesity and the neural substrates of
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FNL may be more complex. Only recently has there been direct
investigation in animal models of whether flavor-nutrient learning
is altered in diet-induced obesity. The results so far have been
conflicting, with studies finding both enhanced and impaired FNL
in obese animals (Wald & Myers, 2015; Woods et al., 2016).
Furthermore, studies linking FNL and obesity face an inherent
causality dilemma, with individual differences in FNL potentially
reflecting a pre-existing influence or a consequence of the obese
state.

As research continues on the three central questions identified
in previous sections, there are a few caveats that will be useful to
heed, especially in connecting the psychological and behavioral
impacts to underlying physiological substrates.

First, there appear to be notable species differences in some of
the gut sensing pathways. Basic FNL effects have been demon-
strated across diverse phylogenetic taxa, from fruit flies to domestic
livestock to humans (Burritt& Provenza,1992; Figueroa, Sol�a-Oriol,
Borda, Sclafani, & P�erez, 2012; Fujita & Tanimura, 2011; Ralphs,
Provenza, Wiedmeier, & Bunderson, 1995; Yeomans et al., 2008).
In recent decades much work has shifted from rats to mouse
models to make use of genetic techniques. But there are several
indications that the mechanisms of flavor-nutrient learning may
differ substantially even between rats and mice, especially in the
gut sensors that respond to different nutrients. For example, the
monosaccharide galactose is an ineffective reinforcer in rats and
can even produce learned avoidance of a paired flavor (Sclafani &
Williams, 1999), while it appears to have at least moderately
rewarding effects in mice (Zukerman et al., 2013a, 2013b). Mice
show a rapid response to IG fat infusions (Zukerman et al., 2011)
whereas rats' responses to fat are weaker and much slower to
appear, requiring several training sessions (Ackroff et al., 2009;
Lucas & Sclafani, 1999; Revelle & Warwick, 2009). In general it
appears mice respond positively to a wider variety of macronu-
trient molecules in FNL paradigms than rats do, suggesting differ-
ences in peripheral sensing mechanisms. Given that the
physiological and psychological mechanisms of flavor-nutrient
learning were presumably adapted to the dietary and metabolic
demands of different species, caution is warranted when general-
izing even between mouse and rat models.

Another caveat also concerns cross-species generalization:
further experimental attention is required to address the trans-
lation to human behavior. Despite animal work that finds consis-
tent effects on food choice and meal patterning, analogous effects
in well-controlled laboratory studies of adult humans have proven
a bit more elusive (see reviews Brunstrom (2005, 2007); Yeomans
(2012)). Examples of experimentally produced de novo shifts in
flavor preference/acceptance by controlled flavor-nutrient training
are relatively rare, and there are several null results, which is
indeed puzzling when effects in animalmodels are so robust. While
some of the difficulty is surely attributable to the considerable
methodological limitations in controlling experience and
measuring outcomes precisely, those same limitations have not
hampered progress in other areas of human eating research. For
basic animal work on FNL to have translational value, those of us
who study animal models must take this dilemma seriously. It has
been proposed that the modern environment which includes su-
pernormal food variety and considerable flavor-nutrient inconsis-
tency acts to impair the basic mechanisms of flavor-nutrient
learning. There is some evidence of such effects in learned controls
of satiety (Martin, 2016), but in terms of acceptance/preference
learning evidence for this view is still lacking and some evidence
contradicts it (Palframan & Myers, 2016). An alternative is that the
extreme dietary variety already encountered by most Western
adults makes it near impossible for an experimenter to provide
anything genuinely novel to learn about. In any case, not only

should researchers remainmindful of this limitation, it is likely that
work aimed directly at resolving it will yield useful insights.

A third caveat concerns the largely unaddressed issue of
conditioned satiation. It has long been recognized that associations
between sensory properties of food and its postingestive conse-
quences can be manifest in learned control of both appetite (pref-
erence and increased intake) and satiety. But little work has directly
addressed how these two apparently opposing systems interact
(Warwick & Weingarten, 1996). It's not obvious how or why two
independent, parallel learning systemse one promoting intake and
the other limiting intake e would be simultaneously engaged
during eating. Presumably some principles are yet to be discovered
to explain which system predominates in different circumstances.
For instance, they could be differentially involved with foods of
relatively high vs low energy densities, or when individuals are in
different states of energy balance. In recent years, research on
learned satiation has primarily focused on how sensory-nutrient
inconsistency in the diet leads to overeating, ostensibly due to
impaired learned satiety (Davidson & Swithers, 2004; Hardman,
Ferriday, Kyle, Rogers, & Brunstrom, 2015). But the findings from
those paradigms are difficult to directly relate to flavor-nutrient
preference/acceptance learning, in which inconsistent predictive
relationships between a flavor CS and nutrient US would cause
decreased intake, not increased intake. It is especially important to
pursue the interactions between these two parallel learning sys-
tems given the implications for energy balance and weight gain.

6. “Appetition” within meals and beyond

The work on FNL has consistently demonstrated it to be a
powerful influence on food choice. In recent years the highly
replicable demonstrations of rapid, within-meal positive feedback
effects from the gut on meal microstructure and sensory evaluation
require that we reconsider some ideas about the biopsychology of
meals. A basic observation about the physiology of appetite is that
ingested nutrients entering the gut trigger several negative feed-
back signals that progressively inhibit further eating and eventually
bring the meal to an end. These satiation signals have dominated
research on gut-brain communication, yet even as we come to
understand more about the mechanisms of satiation, an obesity
epidemic grows unabated. It appears that the central dogma of gut
feedback e that signals arising from nutrient sensing in the gut are
exclusively inhibitory e had overlooked something important. The
effort led by Tony Sclafani to combine physiological, genetic, and
behavioral approaches to characterize FNL has shown it is not
merely a nudge that makes one food more attractive than another.
That's just one output of a robust and extensive motivational sys-
tem that powerfully influences food choice, meal size and meal
patterning on a number of levels. The term “appetition” as a
converse to “satiation” (Sclafani, 2012) refers to these positive,
intake-promoting influences of gut nutrient sensing.

Since first establishing that FNL was a mechanism by which the
energy content of food influences choice and intake, Sclafani's work
has convincingly shown that the well-known satiating signals from
nutrients in the gut were not the source of the reward signal that
produced FNL. The satiating potency of different macronutrients is
broadly unrelated to effectiveness in FNL, and increasing the con-
centration of a carbohydrate infusion accelerates satiation but can
weaken preference learning (Lucas, Azzara, & Sclafani, 1997; Lucas
& Sclafani, 1999; Sclafani, Fanizza, & Azzara, 1999; Sclafani &
Ackroff, 2004). Several physiological manipulations that impair
satiation such as vagal deafferentation leave FNL unaffected (Lucas
& Sclafani, 1996; Sclafani & Lucas, 1996; Sclafani et al., 2003). These
findings support the view of a gut-brain appetition system wholly
separate from satiation.
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Until recently, none of the findings on FNL necessarily contra-
dicted the conventional view of exclusively inhibitory gut feedback,
because FNL was interpreted as nutrients in one meal affecting
intake in subsequent meals. That is, upon the next encounter with a
CSþ flavor, meal size may be increased by retrieved memory of the
nutrient's positive effects. But several recent demonstrations of
within-meal appetition responses to ingested or infused nutrients
do challenge the conventional view, showing direct intake stimu-
lation by nutrient sensing (Sclafani & Ackroff, 2012). Because these
immediate feedback signals specifically affect flavor evaluation
(Myers et al., 2013), it may be that flavor-nutrient associative
memories are formed within minutes of meal onset. That remains
to be explored, as the neurophysiological overlap between within-
meal appetition effects and memory-mediated effects on subse-
quent meals are unknown. But nonetheless the evidence is now
clear that nutrients in a meal produce appetition signals that can
promote ongoing intake and can increase meal size by enhancing
evaluation of orosensory stimuli.

In sum, the major findings on appetition which have emerged
from work on FNL serve to underscore, first, the importance of
sensory evaluation in the orchestration of ingestive behavior, and,
second, that the hallmark of sensory evaluation is its experience-
dependent plasticity. When considered in addition to classic sati-
ation signals, the short- and long-term positive post-oral effects of
nutrients on intake provide a fuller explanation of how psycho-
logical responses to the flavors of specific foods are adjusted based
on energetic and metabolic impacts. As it represents one major
nexus between energy influx and the motivational controls of food
intake, further study of the appetition system promises new insight
into the causes of overeating. As has been the case to date, future
work on the appetition system will benefit from considering the
underlying physiological and neural substrates along the gut-brain
axis in conjunction with the psychological manifestations of
appetition which incorporate perception, motivation, and memory.
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