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The conference entitled “The Neurosciences and Music-IV: Learning and Memory” was held at the University of
Edinburgh from June 9–12, 2011, jointly hosted by the Mariani Foundation and the Institute for Music in Human
and Social Development, and involving nearly 500 international delegates. Two opening workshops, three large
and vibrant poster sessions, and nine invited symposia introduced a diverse range of recent research findings and
discussed current research directions. Here, the proceedings are introduced by the workshop and symposia leaders on
topics including working with children, rhythm perception, language processing, cultural learning, memory, musical
imagery, neural plasticity, stroke rehabilitation, autism, and amusia. The rich diversity of the interdisciplinary
research presented suggests that the future of music neuroscience looks both exciting and promising, and that
important implications for music rehabilitation and therapy are being discovered.
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Introduction

Music neuroscience research has expanded beyond
recognition in recent years, driven not only by in-
creasingly advanced, available, and affordable brain
imaging technology and analysis software, but also
by a growing interest in musical behavior within the
wider disciplines of neuroscience and psychology.
The field is diversifying to such an extent that what
used to be considered specialized topics can now
be considered entire research areas, from specific
aspects of music (such as rhythm or imagery) to
focused population groups (such as infants or pa-
tients), to state-of-the-art techniques (such as EEG,

MEG, TMS, or MRI). Students are entering the field
with both undergraduate and postgraduate training
in music psychology and music neuroscience, some-
thing that could hardly have been imagined ten years
ago. There is increasing scientific and public inter-
est in how music neuroscience research can poten-
tially inform, and be informed by, the disciplines of
music therapy, music education, and music perfor-
mance. The future of such research clearly captures
the imagination and is not showing any signs of
diminishing.

A substantial contributing factor to this success-
ful expansion of the field of music neuroscience is,
of course, the long-standing support of the Mariani
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Foundation, a charity dedicated to child neurology.
The Mariani Foundation’s pioneering conferences
have created unique opportunities for researchers
in the field, attracting students and professors alike
from around the globe. Beginning with The Biologi-
cal Foundations of Music1 in New York City in 2000,
followed by The Neurosciences and Music2 in Venice
in 2002, The Biological Foundations of Music: From
Perception to Performance3 in Leipzig in 2005, and
The Neurosciences and Music III: Disorders and
Plasticity4 in Montreal in 2008, these international
conferences have become key events, providing an
invaluable opportunity for meeting like-minded sci-
entists, exchanging recent findings, and developing
new collaborations. The contribution to the expan-
sion of music neuroscience from some key individ-
uals behind these conferences (Maria Majno, Luisa
Lopez, and Giuliano Avanzini), along with the con-
tinued support of Annals of the New York Academy
of Sciences in publishing the proceedings, has been
hugely significant.

For the Neurosciences and Music-IV conference,
hosted by the Institute for Music in Human and
Social Development (IMHSD) at the University of
Edinburgh in June 2011, the theme of learning and
memory was selected as the central aspect of musical
experience. Symposia and posters were invited un-
der four key topics: infants and children, adults: mu-
sicians and nonmusicians, disability and aging, and
therapy and rehabilitation. Professor Richard Mor-
ris gave an opening welcome to nearly 500 interna-
tional delegates, and, according to tradition, this was
followed by an afternoon of methods workshops,
this year on the topic of working with children.
The following three days included a keynote lecture
from Professor Alan Baddeley, “Human Memory;”
nine platform symposia; three large and vibrant
poster sessions; and a range of concerts in some
of Edinburgh’s most beautiful university buildings.
Here, we introduce the proceedings of The Neu-
rosciences and Music IV: Learning and Memory,
with each section of the volume introduced by the
organizers.

Methods I: Working with children—
experimental methods

Katie Overy
Working with children is essential in order to im-
prove our understanding of the development of mu-
sical skills and the potential impact of early musi-

cal experiences. Learning and memory are crucial
throughout life, but particularly during early de-
velopment. Noninvasive imaging techniques have
been both difficult and rare in research with in-
fants and young children, but technological ad-
vances in functional magnetic resonance imaging
(fMRI), electroencephalography (EEG), and mag-
netoencephalography (MEG) are making such re-
search easier. The design of age-appropriate behav-
ioral protocols and measures are also vital, from
task and stimuli design to child-friendly environ-
ments and procedures to help discourage movement
during imaging. This collection of papers outlines
current experimental techniques for working with
children, from preterm infants to kindergarten chil-
dren, and includes head-turning techniques, behav-
ioral protocols, fMRI, and EEG.

McMahon and Lahav5 begin with a specific dis-
cussion of the problematic noise environment of a
neonatal intensive care unit (NICU), which has the
potential to negatively affect preterm infant audi-
tory development. After a detailed outline of the
key milestones of auditory development in utero,
the authors discuss the nature of auditory plasticity
at critical periods, the potential impact of being de-
prived of maternal sounds after a premature birth,
and evidence suggesting that noise exposure in the
NICU can negatively influence the neurodevelop-
ment of a child. A range of solutions is offered for
reducing high noise levels and increasing exposure
to natural sounds, such as offering “kangaroo care”
and playing recordings of the mother’s voice.

Trainor6 continues with an in-depth discussion
of current EEG and MEG methods for research
with infants and young children. The paper begins
by explaining the source of EEG and MEG activ-
ity, how they are measured, and the specific ad-
vantages of these techniques when working with
children. Trainor then describes some of the is-
sues and complexities that can arise, from dif-
ficulties with short attention spans and physical
movements, to the changing morphology of wave-
forms with age, to potential artifacts in the data
and how to deal with these. A series of research
examples are provided, which show how differ-
ent data analysis techniques have been used to
explore specific questions about musical develop-
ment, such as the effects of exposure to differ-
ent musical timbres or the development of beat
perception.

2 Ann. N.Y. Acad. Sci. 1252 (2012) 1–16 c© 2012 New York Academy of Sciences.
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Trehub7 presents a range of behavioral meth-
ods for working with infants, alongside key find-
ings regarding infant music perception abilities.
Trehub emphasizes that the expansion of neu-
roimaging technology should not replace good
behavioral methods, which can offer important in-
sights into how infants perceive and remember mu-
sical information. Trehub explains the advantages
and disadvantages of different behavioral methods,
regarding issues such as stimuli duration, trial num-
bers, and attrition rates. Infant attention is identified
as the key factor that must be both attracted and
observed in experimental procedures, and Trehub
points to the benefits of ecologically valid stimuli
such as infant-directed singing. In addition, Trehub
suggests that ecologically valid infant responses are
of potential importance, such as measuring rhyth-
mic movements to music rather than looking be-
haviors. In conclusion, Trehub advises that future
research in this area must use convergent measures
and should yield conceptually as well as statistically
significant findings.

Finally, Gaab and colleagues provide an exten-
sive and invaluable survey of structural and fMRI
techniques and protocols developed for infants and
young children over the last 20 years.8 Some key
challenges are outlined, such as participant anxiety,
movement restrictions in the scanner environment,
and the availability of child-appropriate equipment
and pediatric brain templates. The authors go on
to review a wide and detailed range of solutions to
such challenges, from preparation sessions with a
mock scanner to effective data-acquisition proto-
cols. A strong emphasis is placed on the need for
young children to be comfortable, familiar with the
environment, and engaged in the tasks presented.
The ethical implications of such research are also
considered, including the fact that research findings
with infants and children can potentially influence
public policy, education, and family life.

Methods II: Working with children—social,
“real world” methods

Maria Majno and Nigel Osborne
A commonly held view, in many differing world
cultures and at many different times, is that the ex-
perience of music has both a significant effect on
an individual’s mind, body, and relationships with
other human beings, and plays a useful role in the
social, “real world.” Whereas some societies have

had systems of belief that offer an accounting for
this effect (e.g., the neo-Platonists in Europe,9 or
theorists such as Ibn Sina in the early medieval Is-
lamic world10), the world of contemporary science
has, until recently, struggled somewhat to find con-
vincing explanations and structures for reflection.

More recently, neuroscience has begun to make
major contributions in terms of hard evidence and
useful understanding—something particularly wel-
come to educationalists, music therapists, and oth-
ers who seek to develop reflection on their method-
ologies and to argue the case for music’s social,
real-world usefulness. What has certainly helped is
that music is quite “neuroscience friendly.” It is a
rich, whole-brain, whole-body information that is
highly accountable. Music is communicated mostly,
but not exclusively, through sound, which is a rela-
tively slow mechanical energy that may be measured
scrupulously in frequencies of pitch and rhythm,
precisely to the microsecond in duration, and cap-
tured in Fourier transforms, spectrograms, fractals,
and other representations of harmonicity, rhyth-
micity, and turbulence.11 This highly accountable
information is processed by the fastest-firing neural
system of the brain,12 while the mechanical energy
of sound is perhaps the only energy a human being
may “emit” in any consciously controlled, commu-
nicative way.

The valuable insights neuroscience offers to mu-
sic, and music’s “friendliness” to neuroscience, point
to important agendas for the future. It may be pre-
mature to speak of an “applied music neuroscience,”
but it is clear that many areas of social, real-world
musical activity exist in which neuroscience may in-
form practice and where practical experience may
inform neuroscience.

In the opening paper,13 Majno discusses the
psychosocial, and to some extent, political and
economic significance of the “Sistema” initiative.
The paper traces its progress from its origins in
Venezuela, where ubiquitous centers provide irre-
sistible musical opportunities to street children and
others (including children with disabilities) as a
structured alternative to the temptation of violence
and crime, to the implementation of its methods
in Italy and other European countries (e.g., the
Raploch project in Scotland14), where community
development and social organization have been pri-
mary objectives. Sistema is characterized by rigor,
deep learning, high standards, joy, and the premise

Ann. N.Y. Acad. Sci. 1252 (2012) 1–16 c© 2012 New York Academy of Sciences. 3
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that music education should become accessible to
all at no cost. The psychosocial benefits in terms of
social cohesion, sense of identity, and self-respect
are predicated upon issues of sense of self, empathy,
synchronization, emotional intelligence, memory,
cognitive development, and motor skills, all close to
the domain of music neuroscience.

Uibel describes the very focused whole-child, ed-
ucational, and social approach of the Musikkinder-
garten Berlin,15 a project initiated by Daniel Baren-
boim and intended to use music not just as an “add-
on,” but rather as the central medium for day-to-day
learning. The kindergarten provides an education
in music, including a refreshing range of group cre-
ative and developmental activities, and with music,
including, for example, familiar partners in drama
and movement. But most radical is the work through
music, where music leads interdisciplinary initia-
tives in areas such as topic-based learning, language
development, and numeracy.

Overy16 raises the thorny issue of negative mu-
sical learning experiences and contrasts the human
musicality of expert instrumental performance with
the more ubiquitous nonexpert human musicality
of group singing. Referring to the shared affective
motion experience (SAME) model of emotional re-
sponses to music,17,18 which emphasizes motor and
social aspects of musical behavior, Overy proposes
that the essential and powerful nature of a musical
experience lies not just in the sound, but also in the
physical and human origins of the sound, creating a
sense of shared experience. Referring to traditional
music education methods, Overy suggests alterna-
tives to instrumental training when investigating the
nature and impact of musical learning.

Osborne considers the influence of developments
in neuroscience on reflection on practice in the use
of music to support children who are victims of
conflict.19 This paper locates the work within an en-
hanced bio-psycho-social framework. Although the
standard diagnostic instruments for PTSD (post-
traumatic stress disorder) are concerned with is-
sues such as traumatic events, traumatic recall,
avoidance, and hypervigilance, there are signifi-
cant physiological symptoms, such as raised heart
rate, respiratory problems, hyperactive or sluggish
movement repertoires, and the dysregulation of
endocrine systems (including the hypothalamic–
pituitary–adrenal axis) and neurotransmission. Os-
borne further traces a circle around the bio-psycho-

social framework to include aspects of communica-
tive musicality, emotional communication, empa-
thy, self-belief, creativity, and identity, relating each
to emerging research in neuroscience. It is impor-
tant for any music intervention to avoid inappro-
priate invasion of the physical and mental lives of
traumatized children. But evidence from work in
neuroscience and related disciplines with nontrau-
matized populations has been applied to support
critical reflection on experimental methodologies
seeking to use music to help regulate, for example,
motor activity, the autonomic nervous system, and
endocrine and respiratory systems.20

Symposium 1: Mechanisms of rhythm and
meter learning over the life span

Erin Hannon
Dancing and moving in time with music are uni-
versal capacities that constitute a crucial compo-
nent of human musical experience. Growing ev-
idence suggests that rhythm and beat perception
rely on integration of information across multiple
sensory modalities and a broad network of brain
regions.21–23 A fundamental goal of research on
rhythm and meter perception is to understand the
conditions under which a beat or hierarchical met-
rical structure can be inferred from a given stimu-
lus, the mechanisms underlying perception of a beat
or meter, and the extent to which metrical percep-
tion depends on casual listening experience, formal
music training, or simply emerges from the interac-
tion between the brain and the stimulus itself. This
symposium attempted to tackle these fundamental
questions using various methodological approaches
and technologies, and testing individuals of differ-
ent ages and/or abilities.

McAuley24 uses fMRI to examine neural corre-
lates of beat perception. The study uses a sequence-
timing paradigm that typically produces large indi-
vidual differences in sensitivity to the implied beat;
however, beat sensitivity declines as the stimulus is
presented at slower and slower tempos. By com-
paring brain responses under conditions of high
and low beat sensitivity, the study provides evi-
dence for specific brain networks that are associated
with beat- versus interval-based temporal process-
ing. Honing25 tackles the question of whether hi-
erarchical metrical representations arise automat-
ically in the brain or require extensive listening
experience or formal music training. The paper

4 Ann. N.Y. Acad. Sci. 1252 (2012) 1–16 c© 2012 New York Academy of Sciences.



Altenmüller et al. Introduction

provides a tutorial on developing optimal rhyth-
mic stimuli and tasks that may demonstrate hierar-
chical beat perception through EEG by measuring
a mismatch-negativity (MMN) response to stimu-
lus omissions. It reviews evidence from EEG studies
with adults and newborn infants that suggest hierar-
chical beat perception may be possible with minimal
prior experience or training. Hannon, der Nederlan-
den, and Tichko 26 also explore the role of experience
in meter and beat perception. They use similarity
judgments to examine how well American children
and adults detect beat-disrupting changes to famil-
iar (Western) simple-meter and foreign (Balkan)
complex-meter folk songs before and after at-home
exposure to foreign complex-meter music. The find-
ings indicate that listening exposure dramatically
changes how children under age 10 perform in the
judgment task, with accuracy improving for com-
plex meters but declining for simple meters. By
contrast, adults and older children consistently per-
form more accurately in the simple- than in the
complex-meter conditions, and this trend is vir-
tually unchanged by at-home listening experience.
This suggests that at least some of the metrical rep-
resentations that contribute to beat perception un-
dergo slow developmental change over the course
of childhood and that listening experience can fine-
tune these representations during early but not late
childhood or adulthood.

Together, the three papers raise important ques-
tions about the nature of beat-based perception.
On the one hand, rhythmic patterns appear to ac-
tivate beat-based expectancies even in highly inex-
perienced newborn listeners.25 On the other hand,
these expectancies are obviously influenced by lis-
tening experience and presumably by the acquisi-
tion of culture-specific musical knowledge.26 As re-
search continues to illuminate our understanding
of the neural underpinnings of beat-based process-
ing,24,25 it may be possible to disentangle the var-
ious processes and mechanisms that contribute to
our subjective experiences of beat and meter.

Symposium 2: Impact of musical expertise
on cerebral language processing

Mathias S. Oechslin
In cognitive neuroscience, the question of whether
musical expertise affects or facilitates language pro-
cessing has been increasingly addressed. In this sym-
posium, we introduced new studies that observe

the influence of musical expertise on various as-
pects of neural language processing—making use of
several brain imaging and cognitive measurements,
such as event-related brain potentials (ERP), fMRI,
and behavioral performance data. This spectrum of
methodological approaches characterized by both
time and spatial sensitivity enables a deeper under-
standing of musicians’ neural processing of fine-
grained acoustic language properties. Together, the
papers in this section provide insight into language
processing, ranging from basic auditory segmen-
tal speech information to suprasegmental decoding
mechanisms at word and sentence level.

Disclosing cortical plasticity by focusing on basal
auditory functioning, previous studies have un-
veiled that musical expertise alters structure and
functional mechanisms of various brain areas that
are involved in processing of both speech and mu-
sic.27–30 Therefore, it is reasonable to assume that
neural encoding in the former domain could ben-
efit from the expertise in the latter—even though
percepts of speech and music are phenomenologi-
cally completely distinct.

Regarding basal auditory functioning, two re-
cent studies31,32 have demonstrated preliminary but
compelling evidence that musical training induced
plasticity in segmental speech processing. Perform-
ing an auditory (phoneme discrimination) cate-
gorization task, musicians and nonmusicians were
asked to identify voiced and unvoiced consonant–
vowel (CV) syllables with either natural or broad-
band noise acoustic spectra. The fMRI study re-
vealed higher accuracy in identifying CV-syllables
with manipulated spectra, flanked by a leftward
hemispheric asymmetry and overall enhanced acti-
vation of the planum temporale in musicians com-
pared to nonmusicians.32 Moreover, using the same
experimental paradigm, electrophysiological data
revealed that N1 amplitudes and corresponding to-
pography were identical in voiced and unvoiced
stimuli in musicians but not in nonmusicians. Ac-
cordingly, in their paper, Meyer et al. comprehen-
sively discuss the role of the planum temporale for
speech processing as a function of musical exper-
tise.33 Taken together, these results suggest that mu-
sical expertise leads to a honed auditory capacity in
spectrotemporal analysis that goes far beyond the
domain of music. In this context, Besson et al.34

have argued that “enhanced sensitivity to acoustic
features that are common to music and speech, and
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that imply domain-general processes, allow mu-
sicians to construct more elaborated percepts of
speech processing than nonmusicians. . .[and] fa-
cilitates stages of speech processing that are speech-
specific.”

Moving on along this line to the processing of
linguistic structures (word segmentation level), the
influence or interaction of such sensory plasticity
with expertise-dependent top–down modulations
(see later) is not yet clear and should be observed
in more detail. However, it has been demonstrated
that the nature of implicit knowledge in music and
language, in general,35 and learning of linguistic
structures and musical structures, in particular, are
closely related:36 by analyzing behavioral data of a
statistical learning paradigm, performance in a lin-
guistic test has been found to be positively correlated
with performances in a musical test (based on con-
catenated results of Refs. 37 and 38). In the latter
ERP study,38 musicians and nonmusicians were ini-
tially presented with sequences of artificial (sung)
language. Then participants were asked to make fa-
miliarity ratings of musical and speech sound pairs,
indicating whether the first or the second item re-
sembled the previously presented sung sequence.
Most interestingly, Francois and Schön found en-
hanced N400 amplitudes in musicians compared to
nonmusicians, elicited by both the linguistic and
the music task, concluding for musicians an advan-
tage in stream segmentation or in lexical storage or
both. The authors of this paper provide valuable
insight into technical details of statistical learning
paradigms.39

In a recent publication, Patel40 systematically ad-
dressed the prerequisites of such possible transfer
effects from musical training to neural encoding of
speech. In what is formulated as the OPERA hypoth-
esis, Patel concluded that overlapping brain net-
works processing shared acoustic features in speech
and music are the ultimate essentials for possible
transfer effects. Furthermore, to end up with a ben-
efit in speech encoding, according to Patel, three
additional conditions have to be fulfilled, including
aspects of musical processing demands, training in-
tensity, and emotional arousal. Here, Patel presents
his most recent view featuring the fundamental as-
pects of different precision demands in music and
speech processing.41 Originally, the OPERA hypoth-
esis mainly referenced studies that observe musical
training-induced subcortical plasticity driven by de-

scending auditory projections.42 By analyzing such
brainstem responses, it has been revealed that mu-
sical expertise yields enhanced auditory frequency
representation,43 increased accuracy in encoding
linguistic pitch patterns,44 and facilitation of hearing
speech in noise.45 Moreover, the latter acuity is sup-
ported by cognitive mechanisms, such as enhanced
tonal working memory45 and auditory attention46

in musicians compared to nonmusicians. Accord-
ingly, topographical ERP analyses confirmed that
prefrontal responses are considerably altered (lower
prefrontal auditory response variability) as a func-
tion of musical expertise during a selective auditory
attention task.46 In other words, this result signi-
fies advantages for musical experts in situations that
require sustained auditory attention. In their paper,
Kraus et al. specifically focus on musicians’ auditory
advantages and the mediating role of auditory work-
ing memory.47 In fact, previous fMRI research found
that attention driven top–down modulations facili-
tate basal auditory speech processing.48 This frame-
work lucidly implies that future research is needed
to disentangle the potential influence of musical ex-
pertise on interactions among structural brain char-
acteristics, cognitive functions, and the architecture
of cerebral language processing.

This ensemble of studies that addresses the same
topic from different directions is clearly indicative of
the increasing relevance of research on transfer ef-
fects from music to language mechanisms at several
levels of complexity.

Symposium 3: Cultural neuroscience
of music

Steven M. Demorest
The goal of the study of the cognitive neuroscience
of music is to explain how brain structure and func-
tion interact with and shape musical thought and
behavior. Research in this area has been dominated
by Western thought regarding the nature of music
perception and performance, a bias that has the po-
tential to limit the scope of our theories regarding
music and brain function. The implicit learning of
one’s culture or enculturation seems to affect virtu-
ally every area of human thought, and the relatively
new field of cultural neuroscience49 is beginning
to document the important influence of culture in
shaping brain function. Given that music is one of
the primary agents of cultural transmission, it stands
to reason that certain aspects of musical thinking are

6 Ann. N.Y. Acad. Sci. 1252 (2012) 1–16 c© 2012 New York Academy of Sciences.
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mediated by culture. This symposium explored cur-
rent research in the cultural neuroscience of music
and how findings in this field might clarify the role
of culture in music development, cognition, and
learning.

Previous research in infant music perception
has identified that encultured responses to music
emerge at around 12 months of age.50 Here, Trainor
et al. document how early musical experiences can
hasten culturally biased responses in infants.51 In a
series of experiments, they explored the effect of ac-
tive participation in Kindermusik classes and other
formal music exposures that influence infants’ be-
havioral and brain responses to Western rhythm,
timbre, and tonality. Vuust et al. also present data
showing learning-based changes in brain responses,
but in adult populations,52 they used an innovative
MMN paradigm to differentiate the responses of
performers from different genres of Western music
to acoustic changes in a complex musical stimu-
lus. Tervaniemi and her coworkers extend research
on classical musicians’ ERP responses to harmonic
violations53 to Finnish folk musicians,54 whose re-
sponses reflect highly specialized sensitization to
harmonic violations. Large and Almonte propose
a new theory of tonality that seeks to uncover the
basic neurodynamic principles that underlie tonal
cognition and perception. They provide evidence
that auditory neurons respond to tonal relation-
ships in predictable ways and discuss the possibility
of general neurodynamic principles that underlie all
tonal cognition.55

Demorest and Wong both explore how implicit
learning of culture influences adults’ neurological
responses to music of different cultures using ERP
and fMRI methodologies, respectively. The first pa-
per explores crosscultural music cognition by track-
ing ERP responses to melodic expectancy viola-
tions in culturally familiar and unfamiliar music.56

As in previous research,57 Western listeners exhib-
ited a P600 response to scale deviations in West-
ern melodies. They exhibited a smaller P600 when
hearing similar deviations in north Indian classical
melodies, which may reflect a cultural general sen-
sitivity to statistical properties of tonal sequences
or possible areas of overlap between the two tonal
systems under study. In the second paper, Wong
et al. explore fMRI responses to affective judgments
across two musical cultures and how they differ be-
tween monomusicals and bimusicals.58 In addition

to confirming earlier findings of different behav-
ioral responses,59 they found significant group dif-
ferences in the connectivity of a temporal–limbic
network. This provides evidence of qualitatively dif-
ferent brain function as a result of exposure to two
culturally distinct musical systems. The papers pre-
sented here touch on some of the central issues in
cultural neuroscience, including the interaction of
enculturation, formal training, and development.

Symposium 4: Memory and learning
in music performance

Caroline Palmer and Peter Q. Pfordresher
The study of music performance has important im-
plications for understanding basic mechanisms of
memory and learning. In contrast to listeners, who
acquire vast implicit knowledge resources accumu-
lated during years of perceptual experience, individ-
uals differ greatly in the explicit and implicit knowl-
edge they have acquired for performance. These
individual differences in performance knowledge
leave open the possibility for studying the develop-
ment of performance-specific learning and memory
in cross-sectional and longitudinal contexts, with
child and adult populations. In addition, music per-
formance typically requires the execution of long,
rapid sequences typically performed from memory,
thus providing a rich context in which to study the
development of sensorimotor learning, as perform-
ers learn to map auditory and visual feedback to
specific actions. Finally, disorders that affect per-
formers offer an excellent venue in which to study
music’s role in rehabilitation from sensory and mo-
tor disorders.

The first paper in this section, by Bailey and Pen-
hune,60 explores the acquisition of musical skills
at different points in the life span to determine
whether this is a “sensitive period” for musical
skill acquisition. In keeping with the assumption
of a sensitive period for musical development, adult
musicians who began training early in life exhib-
ited better synchronization ability than adult non-
musicians or musicians who began training later
in life. Music performance is fundamentally inte-
grative, involving the online coordination of ac-
tions with the perception of feedback from those
actions.

The next two papers consider the role of per-
ceptual feedback in performance. Pfordresher ad-
dresses how musical training influences the role of
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auditory feedback in nonmusicians.61 Contrary to
a purely associationist view, nonmusicians do not
approach the novel task of music performance as
“blank slates” but instead build on preexisting sen-
sorimotor associations, based on their broader ex-
perience of perception/action associations, that are
refined through musical training. Zimmerman and
Lahav’s review62 focuses on the neural underpin-
nings of multisensory associations that are enhanced
by musical training. They argue that the multisen-
sory processing that is enhanced by music listening
and performance underlies the success that music-
related therapy has had for rehabilitation.

The fourth paper, by Palmer et al.,63 discusses the
time course of retrieval failures and their sensori-
motor consequences during performance. They re-
port the results of an experiment in which pianists
practiced and performed novel musical pieces at
fast and slow tempi. Both pitch errors and the cor-
rectly produced events immediately prior to those
errors were produced with lower intensities and re-
duced tempo from other correctly produced tones,
consistent with the view that performers covertly
monitor for production errors prior to response
selection.

The final paper, by Felix Strübing and Maria
Herrojo Ruiz,64 examines how sensorimotor pre-
diction is implemented in healthy and dystonic pi-
anists by recording neural responses to errors using
event-related potentials (ERPs). Results suggested
degraded error processing among dystonic patients,
even preceding error production. Together, these
papers intersect with the developmental, skill acqui-
sition, and rehabilitory themes of the other papers
in this volume to elucidate the neural foundations
of memory for musical experience.

Symposium 5: Mind and brain in musical
imagery

Andrea R. Halpern and Robert J. Zatorre
Mental imagery refers to a type of memory repre-
sentation that is rich in perceptual detail. For in-
stance, when asked to describe one’s living room,
most people can report the spatial layout, colors of
the walls, and textures of the furniture. Auditory
images also contain perceptual information. The
reader is invited to imagine a piece of familiar music,
perhaps “Happy Birthday.” Musicians and nonmu-
sicians alike can report auditory characteristics of
tunes, such as the pitch, rhythm, and tempo.65 Thus

the experience can be quite vivid, sometimes so vivid
that the auditory experience takes the form of a per-
sistent repetitive memory, colloquially referred to as
“earworms.”66 In addition to vividness, in several
meaningful ways auditory imagery for music can
also be said to capture qualities of the actual piece
and is thus a veridical representation. For instance,
people are willing to set a metronome to the tempo
of an imagined familiar tune, or indicate on a key-
board the starting pitch they habitually assign to the
tune, which they will replicate reliably over multi-
ple trials.67,68 People without absolute pitch abilities
can fairly accurately report the opening pitch or key
of familiar recorded music.69,70

In addition to behavioral research, a number of
studies have documented the similarity of neural
mechanisms in imagery and perception. In a prior
review,71 Zatorre and Halpern examined the sub-
stantial evidence that the secondary auditory cortex
is active when people imagine music, again suggest-
ing that we co-opt perceptual mechanisms when
retrieving these vivid and veridical experiences. The
review also noted that these experiences are not con-
fusable, and that many studies find additional acti-
vation in the frontal cortex during imagery that is
absent in perception, suggesting an important mod-
erating influence of executive and memory func-
tions on the auditory cortex.

This symposium at the conference examined new
research in auditory imagery that extends earlier
studies on basic aspects of auditory imagery. Among
the four speakers, a number of methodological ap-
proaches were represented: behavioral studies, com-
puter simulations, measurement of electrical activ-
ity from the brain surface (ERP), and measurement
of relative blood oxygenation as a proxy for neural
activity (fMRI). The variety of approaches reminds
us of the importance of both “mind” and “brain” in
our symposium title.

Three types of extensions to earlier work were
evident among our speakers. First, several speakers
presented tasks that required experimental partic-
ipants to make rather fine distinctions during im-
agery tasks. This is perhaps most evident in Janata’s
paper on the accuracy with which people can make
in-tune and out-of-tune judgments in imagined
tones.72 Halpern reports here on the ability to make
moment-to-moment judgments on emotional as-
pects of imagined music using a continuous scale,73

and Zatorre reports on neural correlates of subtle
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key-distance effects during mental transformations
of music.74

Second, many of the studies discussed required
fairly complex processing, particularly regarding the
extent to which working memory was required for
successful completion. As one example, Halpern
reports a study in which people learned pairs of
tunes and were required to anticipate the second
pair member upon presentation of the first.73 Keller
reports studies of several aspects of musical perfor-
mance that need to be maintained in parallel for
successful execution.75 Arguably, the most difficult
study in the set, reported by Zatorre, was asking
people to imagine tunes in reverse note order!74

This imposes a very high working memory load
and was reflected in extensive frontal and parietal
activations.

Third, several speakers framed their tasks in
the context of the adaptive usefulness of auditory
imagery. The most obvious example of this was
Keller’s exploration of the role of auditory imagery
in synchronization of movements among musical
performers.75 Janata also suggested that auditory
imagery actually enhances the fine pitch judgments
required in the tasks he presented, and Halpern
noted that the ability to extract emotion from imag-
ined music adds to the enjoyment of remembered
experience.73

Overall, the talks in the symposium showed that
considerable progress has been made in extending
the breadth and depth of knowledge about the qual-
ity and richness of the musical sounds we hear and
manipulate in our minds, despite the essentially pri-
vate nature of mental imagery.

Symposium 6: Music-induced adaptive
and maladaptive brain plasticity in health
and disease

Eckart Altenmüller
Emerging research over the last decade has shown
that long-term music training and the associated
sensorimotor skill learning can be a strong stim-
ulant for neuroplastic changes both in the devel-
oping and adult brains, affecting both white and
gray matter as well as cortical and subcortical brain
structures.76 Making music, including singing and
dancing, leads to a strong coupling of perception and
action mediated by sensory, motor, and multimodal
brain regions and affects, either in a top–down or
bottom–up fashion, important relay stations in the

brainstem and thalamus.77 Furthermore, listening
to music and making music provokes motions and
emotions, increases between-subject communica-
tions and interactions, and is experienced as a joy-
ous and rewarding activity through activity changes
in the amygdala, ventral striatum, and other com-
ponents of the limbic system.78 Music is a powerful
tool in rehabilitation, providing an alternative entry
point into compromised neural circuits due to brain
damage.79 Music thus can remediate impaired neu-
ral processes or neural connections by engaging and
linking brain regions with each other that might
otherwise not be linked together. The pleasurable
power of listening to favorite music can even reverse
maladaptive changes in the auditory cortex, caus-
ing the torturing tinnitus percept.80 On the other
hand, music-induced brain plasticity has its dark
sides. Prolonged practice, high workload, overuse,
and extreme demands on sensorimotor skills in pro-
fessional musicians may result in a degradation of
exactly these fine motor abilities, a condition termed
musician’s dystonia.81

The aim of this symposium was to summarize
the latest research concerning the powerful impact
of music on brain plasticity in both directions—
adaptive and maladaptive. In the first article, Schulze
and Koelsch present a review of behavioral and
neuroimaging findings on similarities and differ-
ences between verbal and tonal working memory in
musicians and nonmusicians.82 They demonstrate
the impact of musical training on verbal memory
and its consequences for verbal learning in chil-
dren and adolescents. Novel results are discussed
that imply the existence of a tonal and a phono-
logical loop in musicians, based on partly differ-
ing neural networks underlying verbal and tonal
working memory. Finally, the authors propose that
both verbal and tonal auditory working memory are
based on the knowledge of how to produce the to-
be-remembered sounds, and therefore sensorimo-
tor representations are involved in the temporary
maintenance of auditory information in working
memory.

In the second article, Pantev presents a novel
and promising method to reduce chronic tonal
tinnitus.83 There is evidence that maladaptive au-
ditory cortex reorganization may contribute to the
generation and maintenance of this torturing con-
dition, which can be conceived as a permanent
cortical memory trace. Because behavioral training
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can modify cortical organization, an approach was
chosen to expose chronic tinnitus patients to self-
chosen, enjoyable music, which was manipulated to
contain no energy in the frequency range of the indi-
vidual tinnitus, thus promoting lateral inhibition to
the brain area generating tinnitus and overwriting
the dysfunctional cortical memory.

The third article, authored by Zipse et al. from the
laboratory of Schlaug, presents an impressive case
report on rehabilitation of an adolescent stroke pa-
tient suffering from Broca’s aphasia.84 Using a mod-
ified version of melodic intonation therapy (MIT),
the behavioral improvements were accompanied by
functional MRI changes, demonstrating that the
right frontal lobe takes over language functions. This
case study not only provides further evidence for the
effectiveness of this rehabilitation strategy, but also
indicates that intensive treatment can induce func-
tional and structural changes in a right hemisphere
frontotemporal network.

Jäncke presents in his article on the dynamic
audio-motor system in pianists a pilot study based
on the theoretical assumption that continuous
closed-loop audio–motor control could be disad-
vantageous for pianists.85 He argues that the func-
tional relationship between the intracerebral electri-
cal activations in the auditory and premotor cortex
should be rhythmically decreased and increased. To
test this hypothesis, activations and connectivity of
the auditory and premotor cortices were estimated
using a novel method to analyze EEG time series
and their causal relationship, similar to the “dy-
namic causal modeling” approach used in fMRI.
The analysis revealed a “causal relationship” from
the auditory cortex to the premotor cortex, which
was considerably stronger during piano playing and
weaker during rest. Interestingly, this relationship
varied rhythmically during the course of piano play-
ing, thus delivering evidence that in professional pi-
anists, the functional coupling between the auditory
and premotor cortex is instable, highly dynamic, and
extremely adaptive.

Finally, Altenmüller et al. focus on musician’s dys-
tonia as a syndrome of dysfunctional brain plas-
ticity.86 This condition is characterized by a loss
of fine motor control of extensively practiced and
highly skilled movement patterns in professional
musicians. On a neurophysiological level, this phe-
nomenon is due to fusion of sensorimotor recep-
tive fields in the cerebral cortex and to a lack of

lateral inhibition to adjacent body parts. In their
paper, the authors demonstrate that behavioral fac-
tors can trigger the manifestation of this disabling
disorder. The interplay between genetic predisposi-
tion, psychological and behavioral factors, such as
perfectionism, anxiety, and over-specialization, pre-
dominantly in classical reproductive musicians, is
elucidated, and its important role in finally causing
this neurological condition is convincingly demon-
strated.

Symposium 7: The role of music in stroke
rehabilitation—neural mechanisms and
therapeutic techniques

Takako Fujioka and Teppo Särkämö
Neuroplasticity is a key mechanism underlying
learning new skills and relearning lost skills dur-
ing rehabilitation. Recent cognitive neuroscience
research has shown that training in music mak-
ing can enhance neural processing in sensory, mo-
tor, executive, and affective brain systems and fa-
cilitate interactions between those brain systems
in healthy children and adults.87–90 This is likely
due to the fact that the massed practice associated
with music making requires enormous resources
within each specific brain system as well as ex-
tensive coordination between the systems. Impor-
tantly, music making also involves social interac-
tion and induces strong emotional experiences. Even
simply listening to music can have a short-term
positive effect on arousal, attention, memory, and
mood.91–93

The next question is how these findings can be
incorporated and translated into the rehabilitation
of the damaged brain. One of our strong allies in
answering this question is the music therapy com-
munity, which has accumulated and practiced theo-
ries on how music can be used to help neurological,
psychological, and functional recovery in various
clinical populations, including stroke patients. An-
other guiding principle is the knowledge obtained
from rehabilitation sciences that meaningful and
relevant tasks and motivated participation in activ-
ities enhance rehabilitation outcomes in everyday
life, compared to mere repetition of rote exercises.
Thus, it seems that we have reached the crucial point
at which each discipline can help inform the others
in ascertaining how music can be used for improv-
ing the lives of patients.
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How can music-related activities fit into rehabil-
itation? Within the framework of the International
Classification of Functioning, Disability and Health
(ICF) of the World Health Organization (WHO),94

we propose that music making and/or music listen-
ing activities can be understood as an activity that
influences a stroke patient’s environment, which in
turn interacts with behavioral activity and partici-
pation, as well at the level of brain function. For ex-
ample, a music-making exercise demands not only
sensorimotor but also auditory memory functions
incorporated with motor planning and execution.
Increasing complexity and challenge can easily be
built into musical exercises, such that they are in
line with the principles of effective motor learning.
Also, the goal-oriented approach of music making
resonates with the importance of meaningful tasks
in rehabilitation. Compared with many traditional
motor and cognitive rehabilitation methods, music-
based activities have the advantage of being intrinsi-
cally motivating and fun as well as providing direct
and natural feedback, which can be crucial for en-
gaging patients in their rehabilitation process. At
the same time, engagement in music making can
become an important emotional event, often pro-
viding solace and comfort and relieving stress and
anxiety, and can therefore have an important addi-
tional positive impact on quality of life.

In this section, we synthesize recent studies of
musical interventions for stroke survivors. The in-
terventions are based on existing evidence regarding
underlying brain mechanisms, and outcome mea-
sures are demonstrated as functional changes at the
level of behavior and the brain. These give us impor-
tant insights into how the human brain in both the
healthy and damaged state processes music, with
its multimodal interactions. In the first article,95

Särkämö and Soto review current evidence of the
effects of music listening on emotion, cognition,
and the brain; present two bodies of experimental
studies showing that listening to pleasant music after
a stroke can temporarily enhance visual awareness
in patients suffering from unilateral spatial neglect
as well as improve the recovery of memory, atten-
tion, and mood; and discuss the potential neural
mechanisms underlying the rehabilitative effect of
music listening. In the second article,96 Rodriguez-
Fornells, Rojo, Amengual, Ripolles, Altenmüller,
and Münte review the literature concerning the

application of music-supported therapy (MST) (a
new motor rehabilitation method that uses musi-
cal instruments) and present experimental results
indicating that MST is effective for improving the
recovery of motor skills and mood after a stroke,
with a direct impact on the activity and functional
connectivity of the frontotemporal auditory–motor
networks. MST is also discussed in the third ar-
ticle97 by Fujioka, Ween, Jamali, Stuss, and Ross,
which demonstrates, using MEG, that listening and
tapping to a beat are both associated with the pe-
riodic modulation of beta oscillations in the brain
that are typically linked to motor functions, and
that MST can induce changes in the contribution of
auditory and motor brain areas to the beta activity
after chronic stroke. Their data also give some in-
sight into how rhythmic auditory stimulation (RAS)
using music or metronome sounds may successfully
enhance rehabilitation exercises through activating
the sensorimotor beta-band network.98,99

In the fourth article,100 van Wijck et al. intro-
duce the rationale and methodological basis of a
novel, innovative motor intervention for stroke pa-
tients, which integrates the patient’s preferred mu-
sic with game technology in a rhythmic auditory
cueing task for training upper limb function. Fi-
nally, Tomaino101 describes various singing-related
techniques used in clinical music therapy to en-
hance speech ability in nonfluent aphasic patients.
Although MIT has been known as an effective
singing exercise,84,102 the paper documents how di-
verse the symptoms of aphasic patients can be and
how emphasizing different musical features and so-
cial/motor cues in the practice can help with treating
them differently.

In summary, this section highlights recent ad-
vances in the field of music therapy for stroke and
provides steps toward integrating musical activities
into the neurological rehabilitation of stroke pa-
tients and toward understanding how music can
work in the damaged brain. Although the findings
are encouraging, the field is still new, and more re-
search is clearly needed for building a solid evidence
base through randomized control trials that com-
pare musical interventions against adequate control
interventions. Through this synthesis, our hope is
to inspire and stimulate future research directions
with joint efforts among neuroscientists, therapists,
psychologists, and engineers.
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Symposium 8: Autism and music

Catherine Y. Wan
Autism spectrum disorder (ASD) is a developmen-
tal condition that affects one in 110 children, and
as many as one in 70 boys.103 In addition to so-
cial abnormalities and the presence of repetitive
and stereotyped behaviors, one of the core diag-
nostic features of ASD is impairment of language
and communication.104 Severe deficits in commu-
nication not only diminish quality of life for affected
individuals but also present a lifelong challenge for
their families.

Despite their social and communication deficits,
children with ASD can enjoy auditory–motor activ-
ities, such as making music, through singing or play-
ing an instrument. In addition, such children often
display enhanced music and auditory-perception
abilities.105 In the first published report of autism,
Kanner106 described the exceptional musical skills of
several children, including one notable example of
an 18-month-old boy who was able to discriminate
among many symphonic pieces of music. Recent
investigations have provided further evidence for
enhanced music-perception abilities in individuals
with ASD. Often described as emotionally unreach-
able or in their own world, these individuals are
nevertheless often able to express typical affective
responses to music and to derive enjoyment from
music.

The paper entitled “Music: a unique window into
the world of autism” presents recent advances in
research examining neurobiological underpinnings
of musical processing in ASD and the therapeutic
potential of music making in ameliorating some of
the associated deficits. Molnar-Szakacs and Heaton
summarize research on the dissociation between
emotional communication abilities in the musical
and social domains in individuals with ASD.107 Al-
though individuals with ASD are often impaired in
their ability to understand nonverbal expression of
emotions, they can nevertheless understand simple
and complex musical emotions.17 Potential expla-
nations for such uneven development across func-
tional domains, as well as future directions for the
study of music in autism, are discussed.

Hyde and colleagues review the behavioral and
neuroimaging literature on auditory pitch and time
processing in ASD.108 Individuals with ASD gen-
erally show enhanced perceptual skills in a musi-
cal context but not in a linguistic context. These

observations may be related to the locally ori-
ented or highly focused behaviors that are com-
mon in ASD.109 Identifying the brain–behavior re-
lationships of auditory processing in ASD may help
to identify neurobiological markers and enhanced
treatment potential in ASD.

Wan et al. present diffusion tensor imaging data
collected from a group of completely nonverbal chil-
dren with ASD.110 Abnormalities in a language-
related white matter tract, the arcuate fasciculus,
were investigated. This tract connects auditory and
motor brain regions and is important in the map-
ping of sounds to articulatory actions during speech.
The preliminary imaging findings reported here
may explain why children with ASD fail to develop
speech naturally. Furthermore, the findings com-
plement the laboratory’s ongoing treatment study
of a novel intonation-based intervention (auditory–
motor mapping training, AMMT), which aims to
facilitate speech output in nonverbal children with
ASD.111 It is suggested that interventions that are
designed to engage abnormal auditory–motor con-
nections (such as AMMT) have the potential to
effectively facilitate the development of expressive
language skills.

Taken together, the three papers on music and
autism review current knowledge in this emerging
field, which will hopefully stimulate further research
and the development of interventions for a disorder
that affects the lives of a great many individuals.

Symposium 9: Learning and memory
in musical disorders

Psyche Loui and Isabelle Peretz
Although music is ubiquitous across human cul-
tures, a subset of the normal population appears to
have an abnormal lack of musical ability. Increasing
evidence from behavioral, neuroimaging, and ge-
netic studies has documented difficulties in pitch
perception as well as production, also known as
congenital amusia or tone deafness.112,113 Although
these substantial deviations from the musical norm
are fascinating to the general public, they can also
be informative as a window into the psychological
and neural capacities necessary for musical func-
tioning. Furthermore, they can provide us with a
model system through which to investigate capac-
ities that, like music, might be uniquely human,
such as speech and language, expectation for future
events, and consciousness.
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Given that musical disorders may have impor-
tant implications for a broader scientific commu-
nity, there is a need to have a solid understanding
of their underlying cognitive processes and mecha-
nisms. How do musical disorders inform our model
of the human capacity for music? To date, tested
theories of the causes of musical disorders include
difficulties in fine-grained pitch discrimination,114

spatial processing115 (see also Ref. 116), pitch aware-
ness,117 disconnection of neural pathways,118 and
short-term memory limitations in pitch.119 Despite
these theories, we know relatively little about how
cognitive constraints might limit musical perfor-
mance. In particular, limitations on memory are
only recently becoming addressed as possible expla-
nations for musical disorders. Given that persons
with congenital amusia have pitch-specific limita-
tions on their short-term memory resources that
are independent of perceptual difficulties,120 it re-
mains to be seen whether and to what extent these
memory limitations could give rise to learning diffi-
culties. If learning is indeed affected in people with
musical disorders, then to characterize these learn-
ing deficits, and possibly to design rehabilitation
strategies, we need to know about the types of in-
formation learning that are affected: whether these
learning difficulties are circumscribed to music, and
whether related modalities such as language learn-
ing might be affected as well.

The last section in this volume aims to address
precisely these questions concerning the cognitive
underpinnings of musical disorders. The section be-
gins by exploring memory limitations in persons
with congenital amusia, a topic introduced by Dalla
Bella et al., who outline a model of vocal produc-
tion and its impairment in amusia and suggest that
memory can be a source of disorders in musical
production.121 Stewart, in collaboration with Susan
Anderson et al., describe and present preliminary
results from a musical intervention with five indi-
viduals diagnosed with congenital amusia.122 Loui
explores further the notion of learning in musi-
cal disabilities by reporting a novel investigation of
rapid statistical learning abilities and its disruption
in tone-deaf individuals.123 This statistical learning
approach is followed up in the last chapter by Peretz
et al., who report five novel experiments showing
that persons with amusia can learn novel words as
easily as controls, whereas they systematically fail on
musical materials.124

Taken together, the aim of this section is to pro-
vide a comprehensive review of musical disorders,
bring novel results to light regarding learning and
memory and their interactions in normal and disor-
dered brains, and ultimately to offer new perspec-
tives toward the fundamental questions regarding
neuroplasticity and the domain generality versus
domain specificity of music.

Conclusion

It is evident from this introduction that the field of
music neuroscience is rich and varied in ideas, ap-
proaches, implications, and potential applications.
Much of the work is interdisciplinary in nature, in-
cluding strong links with psychology, neurology,
and clinical practice, and growing links with mu-
sic performance, education, and therapy. Although
the papers included here certainly reflect the current
state of the art, it must also be emphasized that they
represent only a small fraction of ongoing research
internationally and only hint at the research being
planned and prepared. The future of our under-
standing of the underlying neurobiology of human
musical ability and behavior looks healthy, exciting,
and promising, from the first milliseconds of audi-
tory perception in infants to long-term training, in-
dividual musical preferences, and cultural diversity.
We look forward with anticipation to The Neuro-
sciences and Music V, planned for France in 2014.
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