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Diminished Antioxidant Activity of High-Density Lipoprotein–
Associated Proteins in Chronic Kidney Disease
David J. Kennedy, PhD; W. H. Wilson Tang, MD; Yiying Fan, PhD; Yuping Wu, PhD; Shirley Mann, BS; Michael Pepoy, BS;
Stanley L. Hazen, MD, PhD

Background-—Decreased serum arylesterase activity, catalyzed by the high-density lipoprotein–associated paraoxonase (PON)-1,
is associated with increased oxidant stress and atherosclerosis risk. We sought to determine the prognostic value of serum PON-1
activity, as monitored by PON or arylesterase activities, in subjects with chronic kidney disease (CKD), particularly in relation to
established cardiac biomarkers.

Methods and Results-—Serum arylesterase and PON activities were measured in sequential subjects with CKD (n=630; estimated
glomerular filtration rate [eGFR] <60 mL/min per 1.73 m2) and an age- and sex-matched control group of non-CKD subjects
(n=315) presenting for cardiac evaluations and prospectively followed for incident (3-year) major adverse cardiac events
(composite of death, nonfatal myocardial infarction, and stroke). Serum arylesterase activity in CKD subjects was lower compared
with that in non-CKD control subjects [median (interquartile range) 94 (77 to 112) versus 103 (85 to 121) lmol(L�min) per mL,
P<0.001]; similarly, PON activity in CKD subjects was lower compared with that in non-CKD control subjects [median (interquartile
range) 474 (275 to 936) versus 586 (301 to 1118) nmol(L�min) per mL, P<0.001]. Lower serum arylesterase (hazard ratio 1.8, 95%
CI 1.26 to 2.57, P<0.01) was a predictor of poorer outcomes. After adjusting for traditional risk factors and medication use, lower
serum arylesterase (hazard ratio 1.55, 95% CI 1.08 to 2.23, P<0.05) still conferred an increased risk of major adverse cardiac
events at 3 years.

Conclusions-—In patients with CKD, decreased serum arylesterase activity, a measure of diminished antioxidant properties of
PON-1, predicts higher risk of incident long-term adverse cardiovascular events (heart attack, stroke, or death) in multivariable
models adjusting for established clinical and biochemical risk factors. ( J Am Heart Assoc. 2013;2:e000104 doi: 10.1161/
JAHA.13.000104)

Key Words: arylesterase • chronic kidney disease • HDL • outcomes • oxidant stress • paraoxonase-1

O xidative stress is an important participant in the
pathogenesis and progression of chronic kidney disease

(CKD).1,2 Stable byproducts of oxidative stress, including
oxidized low-density lipoproteins (LDL),3,4 malondialdehyde,5

isoprostanes,6 and carbonylated proteins,7,8 are increased in

uremic conditions. In the setting of renal disease, increased
oxidant generation coupled with depressed endogenous
antioxidant mechanisms generates a redox imbalance that
favors oxidative stress.9 This imbalance between prooxidant
and antioxidant mechanisms may contribute to glomerular
and tubulointerstitial damage and progression of CKD.10

Indeed, in the SPACE (Space-Protected Angioplasty versus
Carotid Endarterectomy) trial, a small double-blind placebo-
controlled randomized trial in which alpha tocopherol (vitamin E)
800 IU, a presumed antioxidant therapy, was provided to
subjects undergoing maintenance hemodialysis, significant
reductions in cardiovascular events were observed.11

Although there is significant evidence that enhanced oxidant
stress is observed in subjects with CKD and end-stage renal
disease (ESRD), the pathways responsible for this imbalance
are still under investigation.

In addition to enhanced oxidant stress, subjects with CKD
exhibit lipoprotein abnormalities such as increased remnant
particles and triglycerides and both deficiency and dysfunction
in high-density lipoprotein (HDL), a presumed atheroprotective
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lipoprotein with mechanistic links to atherosclerosis and
cardiovascular disease in both subjects with normal renal
function and patients with ESRD.12–15 Paraoxonase (PON)-1 is
a glycoprotein that associates with HDL and is believed to
facilitate some of its systemic antioxidant activities, including
protection against lipoprotein oxidation and remodeling of
oxidized phospholipids.16,17 Although its endogenous sub-
strate(s) remains a topic of study, PON-1 is mechanistically
linked to multiple systemic indices of oxidant stress both in
animal models of disease18,19 and within humans.20 PON-1
activity within serum is functionally characterized by its
hydrolysis organophosphate compounds such as paraoxon
and carboxylic esters such as phenyl acetate. These PON and
arylesterase activities have been linked both clinically and
experimentally with multiple systemic measures of oxidant
stress and have established the role of PON-1 as an important
antioxidant enzyme.18,20 Recent genomewide association
studies of systemic PON and arylesterase activities in humans
confirmed that genetic variants within the PON-1 locus control
systemic PON and aryleseterase activities.21 In addition to its
antioxidative properties, PON-1 has been mechanistically
linked to protection from atherosclerosis risk,18,20 including
promoting antiatherogenic properties against macrophage
cholesterol accumulation, one of the earliest cellular hall-
marks of the atherosclerotic process.22,23 In the current
study, we examined the potential role of HDL antioxidant
activity, as monitored by systemic measures of serum PON-1
arylesterase and PON activities, as a predictor of cardiovas-
cular disease progression and incident adverse events,
myocardial infarction, stroke, and death, among patients with
moderate CKD.

Methods

Study Population
We performed serum arylesterase activity and PON activity in
serum samples collected from a prospective cohort of 630
consecutive individuals with CKD (estimated glomerular
filtration rate [eGFR] <60 mL/min per 1.73 m2) who pre-
sented for elective diagnostic cardiac evaluations at a tertiary
referral hospital. All subjects were stable and underwent
elective diagnostic coronary angiography (either cardiac
catheterization or coronary computed tomography angiogra-
phy) not in the setting of acute coronary syndrome (cardiac
troponin I <0.03 lg/L) with blood samples collected before
any heparin administration. None of the study subjects were
receiving dialysis. A control group of non-CKD subjects (eGFR
≥60 mL/min per 1.73 m2, n=315) was obtained from the
same setting and matched for age and sex (1:2 versus the
CKD subjects). Serum samples in all subjects were collected
in serum separator tubes, processed, and stored in aliquots at

�80°C within 4 hours of phlebotomy. All participants gave
written informed consent, and the Institutional Review Board
of the Cleveland Clinic approved the study protocols.

Data were recorded for standard cardiac risk factors,
including age, sex, history of diabetes mellitus, cigarette
smoking, systolic blood pressure, and fasting lipids. Estimated
GFR was calculated according to the Kidney Disease
Outcomes Quality Initiative Modification of Diet in Renal
Disease guidelines.24 Creatinine, fasting blood glucose, and
lipid profiles were measured on the Abbott Architect platform
(Abbott Laboratories).

End Points
Major adverse cardiovascular events (MACEs) were defined as
death, nonfatal myocardial infarction, or nonfatal cerebrovas-
cular accident after enrollment. End points were collected by
in-person prospective follow-up including letter solicitation
and reply cards, chart review, and direct contact by study
staff. We ascertained adjudicated outcomes over the ensuing
3 years for all participants after enrollment.

Serum Biochemical Assays
Venous blood samples were collected in and immediately
processed and frozen at �80°C until analysis. Serum
arylesterase activity level was determined using a modifica-
tion of a spectrophotometry-based assay as previously
described.21 Briefly, initial hydrolysis rates at 25°C of phenyl
acetate substrate (3.6 mmol/L) were determined at 270 nm
in 1:50 diluted serum in reaction mixtures consisting of Tris
hydrochloride 9 mmol/L, pH 8.0, and calcium chloride
0.9 mmol/L in a 96-well plate format (Spectramax 384 Plus;
Molecular Devices). An extinction coefficient (at 270 nm) of
1310 mol/L per cm was used for calculating units of
arylesterase activity in serum, which are expressed as the
amount of phenyl acetate hydrolyzed in units of lmol(L�min)
per mL. The intraassay and interassay coefficients of variance
for arylesterase activity assay were each <4.0% when
performed on 20 replicates performed on 10 different days
over the course of assay. Serum PON activity was measured
spectrophotometrrically in an open channel on the aforemen-
tioned Architect ci8200 platform (Abbott Laboratories). The
para-nitrophenol generation was determined at 405 nm in
1:40 diluted serum in reaction mixtures containing paraoxon
1.5 mmol/L (Sigma-Aldrich, St Louis, Missouri), Tris hydro-
chloride 10 mmol/L, pH 8.0, sodium chloride 1 mol/L, and
calcium chloride 2 mmol/L at 24°C. PON activity units were
calculated using an extinction coefficient (at 405 nm) of
17 000 mol/L per cm, and values were expressed as
nanomoles of para-nitrophenol produced per minute per
milliliter of serum. Intraassay and interassay coefficients of
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variance for the PON activity assay used were each <3.5% as
determined from 30 replicates performed on 15 different days
during the course of sample analyses. All other biochemical
assays were performed on the Architect ci8200 platform
according to the manufacturer’s guidelines.

Statistical Analysis
We compared baseline characteristics between subjects with
high versus low serum arylesterase and PON activity levels by
means of the Student t test (normally distributed) or Wilcoxon
rank sum test (non–normally distributed) for continuous
variables and v2 test for categorical variables. The Spearman
correlation was performed to determine the relationship
between serum arylesterase and PON activity levels and other
biochemical parameters. For each continuous variable, we
investigated the log-linearity assumption of Cox models by
introducing a cubic spline component. Receiver operator
characteristic curve analyses in the context of the time to
event were performed to determine the optimal cutoff at
<70 lmol(L�min) per mL (arylesterase) and <280 nmol(L�min)
per mL (PON) activity levels, with risk of event estimated
using 5-fold cross-validation by a Cox model. Both net
reclassification improvement (NRI) and integrated discrimina-
tion improvement (IDI) were used to quantify improvement in
model performance. The P values compare models with and
without arylesterase and PON. Both models were adjusted for
traditional risk factors, including age, sex, smoking, HDL
cholesterol, systolic blood pressure, history of diabetes
mellitus, triglyceride, and creatinine clearance. Cutoff values
for NRI estimation used a ratio of 6:3:1 for low-, medium-, and
high-risk categories. Kaplan–Meier analysis with log-rank test
was used to compare the survival curves of the 2 groups of
the respective PON-1 activity levels [serum arylesterase
activity <70 versus ≥70 lmol(L�min) per mL, serum PON
activity <280 versus ≥280 nmol(L�min) per mL]. Cox propor-
tional hazards regression was used for time-to-event analysis
to determine hazard ratios (HRs) and 95% CIs for MACEs. The
analysis was adjusted for individual traditional cardiac risk
factors, including age, sex, systolic blood pressure, cigarette
smoking, and fasting cholesterol values (including LDL and
HDL cholesterol levels). Additional adjustments included
medication use (including angiotensin-converting enzyme
inhibitors, angiotensin II receptor blockers, b-blockers, and
statin therapy), to predict incident 3-year MACE risks. For
non–log-linear variables such as serum arylesterase activity,
the continuous variable was transformed into a binary
variable, and the optimal cutoff value for dichotomization
was selected as that value that minimized the prediction error
in MACEs. All analyses were performed using SAS version 8.2
(SAS Institute) and R 2.8.0 (www.r-project.org), and statistical
significance was considered to be P<0.05.

Results

Subject Characteristics
Baseline characteristics of the study population are given in
Table 1. The mean and median eGFR were 46�13 and
50 mL/min per 1.73 m2 (interquartile range 40 to 56 mL/
min per 1.73 m2) in the CKD subjects. Serum arylesterase
activity in CKD subjects was lower compared with that in non-
CKD control subjects (median [interquartile range] 94 [77 to
112] versus 103 [85 to 121] lmol(L�min) per mL, P<0.001,
Figure 1); similarly, PON activity in CKD subjects was lower
compared with that in non-CKD control subjects (median
[interquartile range] 474 [275 to 936] versus 586 [301 to
1118] nmol(L�min) per mL, P<0.001, Figure 1). The baseline
characteristics of the CKD population stratified by quartiles of
serum arylesterase and PON activity are presented in Tables
S1 and S2. Within the CKD subjects, serum arylesterase
activity was inversely correlated with several measures of
inflammation, including myeloperoxidase (r=�0.09, P<0.05)
and C-reactive protein (r=�0.12, P<0.05); however, these
same trends were not significant for PON activity.

Serum Arylesterase and PON Activity and Major
Adverse Cardiac Outcomes
A total of 166 events (nonfatal myocardial infarction, stroke,
or death) were recorded within the 3-year period of follow-up.
When divided as a dichotomous variable according to optimal
cutoff, lower serum arylesterase activity [<70 lmol(L�min) per
mL] was predictive of future development of adverse cardiac
events (hazard ratio 1.8, 95% CI 1.26 to 2.57, P<0.01;
Table 2). Lower serum PON activity showed similar trends
when divided by optimal cutoff [<280 nmol(L�min) per mL] but
did not reach statistical significance (hazard ratio 1.35, 95% CI
0.98 to 1.88, P=NS; Table 2). After adjusting for traditional
risk factors such as HDL and medication use including
angiotensin-converting enzyme inhibitors, angiotensin II
receptor blockers, b-blockers, and statin therapy, lower
serum arylesterase still conferred an increased risk of major
adverse cardiac events at 3 years (hazard ratio 1.55, 95% CI
1.08 to 2.23, P<0.05), whereas PON activity displayed similar
trends but again failed to reach statistical significance (hazard
ratio 1.22, 95% CI 0.87 to 1.71, P=NS). When the risk analysis
was performed according to quartiles of either arylesterase or
PON activity, the lowest serum arylesterase quartile
(<77 lmol(L�min) per mL) was predictive of future develop-
ment of adverse cardiac events (hazard ratio 2.17, 95% CI 1.4
to 3.37, P<0.001; Table S3). Subjects in the lowest serum
PON activity quartile (<275 nmol(L�min) per mL) showed
similar trends (hazard ratio 1.73, 95% CI 1.11 to 2.7, P<0.05;
Table S3). After adjustment for traditional risk factors and
medication use, the lowest serum arylesterase quartile still
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conferred an increased risk of major adverse cardiac events at
3 years (hazard ratio 1.64, 95% CI 1.03 to 2.60, P<0.05),
whereas PON activity displayed similar trends but failed to
reach statistical significance (hazard ratio 1.54, 95% CI 0.97
to 2.44, P=0.064). These findings were essentially the same
when PON activity was adjusted for in the arylesterase model
or when arylesterase was adjusted for in the PON model (Table
S4). Moreover, the addition of serum PON or arylesterase

activity to traditional risk factors resulted in significant
integrated discrimination improvement (PON IDI 4%,
P<0.001; arylesterase IDI 4%, P<0.001) and significant
event-specific net reclassification (PON NRI 12%, P=0.01;
arylesterase NRI 10%, P=0.02). Kaplan–Meier survival analy-
ses demonstrated that the combination of low serum
arylesterase and PON activity levels within CKD subjects
were associated with higher event rates compared with those
with higher activity levels of arylesterase or PON (log rank
P=0.004; Figure 2).

Discussion
In the current study, we provide evidence of a significant
reduction in HDL-associated antioxidant PON-1 activity (as
quantified by both serum arylesterase and PON activity) in a
large cohort of stable mild–moderate CKD patients undergo-
ing elective coronary angiography, compared with age- and
sex-matched control subjects without CKD. Furthermore, we
demonstrate a significant association between both low
serum arylesterase and PON activities and poor long-term
prognosis independent of traditional cardiac risk factors. To
our knowledge, this is the largest study to examine the
relationship between arylesterase and PON activities and
clinical outcomes in subjects with CKD. Although the HDL-
associated protein PON-1 has established links with multiple

Table 1. Baseline Subject Characteristics

CKD (n=630) Control (n=315) P Value

Age, y 69�10 70�10 0.79

Male, % 53 52 0.872

Diabetes, % 52 16 <0.001

Hypertension, % 86 61 <0.001

Cigarette smoking, % 61 57 0.292

LDL cholesterol, mg/dL 92 [73 to 115] 98 [82 to 114] 0.007

HDL cholesterol, mg/dL 32 [26 to 40] 39 [33 to 47] <0.001

Triglycerides, mg/dL 134 [96 to 190] 91 [69 to 129] <0.001

hsCRP, mg/L 4 [2 to 9] 2 [1 to 4] <0.001

MPO, pmol/L 134 [89 to 288] 109 [72.1 to 298.7] 0.004

Serum arylesterase activity, lmol(L�min) per mL 94 [77 to 112] 103 [85 to 121] <0.001

Serum paraoxonase activity, nmol(L�min) per mL 474 [275 to 936] 586 [302 to 1115] 0.006

Baseline medications, %

ACE inhibitors/ARBs 63 37 <0.001

Beta-blockers 66 42 <0.001

Statin 58 32 <0.001

Aspirin 66 55 <0.001

Values expressed as mean�SD or median [interquartile range]. CKD indicates chronic kidney disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; hsCRP, high sensitivity C
reactive protein; MPO, myeloperoxidase; ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker.

Figure 1. Comparison of serum arylesterase activity (left) and
serum paraoxonase activity (right) between control subjects (eGFR
≥60 mL/min per 1.73 m2) and patients with chronic kidney disease
(eGFR <60 mL/min per 1.73 m2). Probability value <0.001 versus
control for arylesterase and paraoxonase by both Wilcoxon and
t test. CKD indicates chronic kidney disease; eGFR, estimated
glomerular filtration rate.
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measures of systemic oxidant stress and atherosclerotic risk
in subjects with normal renal function,20,21 the current
findings imply a potential importance for PON-1 as an
important protective pathway that is diminished in the setting
of even moderately reduced renal function. Thus, PON-1 may
be a clinically useful diagnostic and therapeutic target in the
setting of CKD because these patients have limited treatment
options that address their significant burden of cardiovascular
morbidity and mortality.

Although there is a paucity of knowledge regarding the role
of PON-1 across the spectrum of CKD, its role in chronic renal
failure and ESRD has recently been reviewed.25 Indeed, PON
activity and expression is lower in patients with ESRD,26,27 a
finding that has been repeated in multiple ESRD cohorts.28–30

Not only does hemodialysis increase the antiinflammatory
activities of HDL,31 but also increases in PON-1 activity are
observed after long-term hemodialysis,32 suggesting that
uremic toxins may play a mechanistic role in the suppression
of PON-1 activity. Interestingly, toxins such as the reactive
aldehyde acrolein are elevated in uremia, removed via hemod-

ialysis, and demonstrate dose- and time-dependent PON
inactivation that is attenuated with N-acetylcysteine.33 Similar
to hemodialysis, renal transplantation also appears to normal-
ize PON activity in ESRD.27 Interestingly, changes in PON-1
activity within the chronic renal failure population do not
appear to be linked to genetic polymorphisms,34,35 whereas
genetic polymorphisms are linked to systemic PON activity
measures in subjects with normal renal function.20,36,37

The precise pathophysiologic mechanism whereby
decreased PON-1 activity leads to major adverse cardiac
events in CKD is not fully understood. In addition to its
esterase activity, PON-1 is both a lactonase and a thiolac-
tonase.38 There is some evidence to suggest that the
increased lipid peroxidation and protein homocysteinylation
detected in ESRD patients are associated with diminished
lactonase activity and that hemodialysis is capable of
restoring lactonase activity to levels indistinguishable from
those of control subjects.39 In a small study (N=60) of
subjects with ESRD, diminished PON-1 activity was correlated
with carotid intimal-medial thickness measures,40 and ele-
vated homocysteine–thiolactone levels found in ESRD have
also been correlated with both diminished PON-1 activity and
decreased antiatherogenic capacity.39,41,42 In the present
study, we noted that serum arylesterase activity was inversely
correlated with serum levels of both myeloperoxidase and
CRP, suggesting that the ability of PON to modulate
inflammatory processes in CKD may be responsible in part
for the observed benefit in terms of cardiovascular risk.

The current study extends our findings of the prognostic
value of serum PON and arylesterase activities to a large
population of patients with mild-to-moderate CKD with
prospective long-term clinical outcomes. We previously
reported that both PON-1 polymorphisms and activity have
significant independent and additional prognostic value beyond
standard clinical, biochemical, and echocardiographic param-
eters in stable patients undergoing diagnostic coronary
angiography.20 Interestingly, the presence of subclinical myo-
cardial necrosis in these patients is also associated with
reduction in arylesterase activity.43 Our results are consistent
with another population with end-organ dysfunction—patients

Figure 2. Kaplan–Meier analysis of major adverse cardiac events in
patients with chronic kidney disease. Patients stratified according to
optimal cutoff for serum arylesterase and paraoxonase activity levels
as follows: “high” paraoxonase [≥280 nmol(L�min) per mL] or “low”
paraoxonase [<280 nmol(L�min) per mL] and “high” arylesterase
[≥70 lmol(L�min) per mL] or “low” arylesterase [<70 lmol(L�min)
per mL].MI indicates myocardial infarction.

Table 2. Unadjusted and Adjusted 3-Year Hazard Ratio for MACE at 3 Years Stratified by Optimal Cut-Off Values for Serum
Arylesterase and Paraoxonase Activity Levels

Arylesterase activity, lmol(L�min) per mL (range) Paraoxonase activity, nmol(L�min) per mL (range)

Range <70 ≥70 <280 ≥280

3-y MACE, % 41/107 125/523 52/161 114/469

Unadjusted HR 1.80 (1.26 to 2.57)** 1 1.35 (0.98 to 1.88) 1

Adjusted HR 1.55 (1.08 to 2.23)* 1 1.22 (0.87 to 1.71) 1

Model adjusted for traditional risk factors including age, sex, systolic blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, smoking, diabetics, and ACE
inhibitor, ARB, b-blocker, and statin use. MACE indicates major adverse cardiac events; HR, hazard ratio; ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker.
*P<0.05, **P<0.01.
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with systolic heart failure, in whom decreased serum arylest-
erase activity predicts higher risk of incident long-term adverse
cardiac event independent of established clinical and bio-
chemical risk factors.44 The present finding raises the possi-
bility that a specific antioxidative pathway, such as catalyzed by
PON-1, modulates cardiovascular risk even at the earlier stages
of CKD and warrants further mechanistic investigations.

Study Limitations
>In addition to the selection bias that accompanies all case–
control studies, serum arylesterase and PON activities were
only measured at a single time point. We are thus limited in our
ability to determine the impact of therapeutic effects on PON-1
activity levels over time or whether changes in PON-1 activity
levels over time yield any further prognostic value in patients
with CKD. Furthermore, the fact that PON activity was not
predictive of long-term adverse cardiac events in the Cox
proportional hazards model may be reflective of either an
insufficient sample size or the fact that the promiscuous
esterase activity of PON-1 is not entirely reflective of changes in
its physiologic function. To be sure, there is some agreement
that the main physiologic activity of PON-1 is its lactonase
activity,41 which may in fact rely on a different active site of
PON-1 than that of its esterase activity.45 Because we did not
perform measurement of lactonase activity in these samples,
we cannot comment on whether the strong association of lower
PON-1 lactonase activity seen in a small-cohort study in an
ESRD population39 also holds true in these patients with
moderate CKD. We do note, however, that the present study, in
contrast to prior cross-sectional studies, shows low arylester-
ase activity heralds increased prospective risk for MACEs over
the ensuing 3-year period. A further limitation is that we do not
have complete PON-1 polymorphism data for these patients.
We thus cannot adequately assess the contribution of genetic
factors in this population, although the prevalence of 192 Gln/
Arg and 55 Leu/Met PON-1 polymorphisms reportedly do not
appear to differ between patients with chronic renal failure and
control subjects.34 Despite these limitations, to our knowledge,
this study represents the first examination of the contribution of
PON-1 activity to long-term adverse cardiac events in a large
cohort of well-characterized subjects with moderate CKD.
Because patients with CKD are disproportionately burdened by
both oxidant stress and cardiovascular disease, these findings
warrant further examination of this important antioxidative
pathway.

Conclusion
In patients with moderate CKD, diminished activity levels of
the antioxidant HDL-associated enzyme PON-1, as monitored

by serum arylesterase and PON activities, predict increased
risk for the development of adverse cardiac events, including
nonfatal myocardial infarction, nonfatal stroke, or death, in
multivariable models adjusted for established clinical and
biochemical risk factors. These findings further support the
hypothesis that oxidative stress is an important mediator in
the progression of kidney disease and point to the potential
antioxidant compensatory role of HDL and its associated
protein PON-1. Studies aimed at modulating PON-1 activity
for both cardioprotective effects, and also possibly even as a
means of potentially protecting the kidney from disease
progression, merit consideration in this population of
patients with substantial cardiovascular morbidity and
mortality.
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Table S1:  Baseline subject characteristics for CKD patients (n=630) by Aryleterase 
quartiles 

 Q1 Q2 Q3 Q4 P-value

Age (years) 72±8 69±10 68±10 68±10 <0.001 

Male (%) 61 58 52 42 0.004 

Diabetes (%) 56 48 53 52 0.503 

Hypertension (%) 86 89 86 83 0.596 

Cigarette smoking (%) 58 69 62 54 0.04 

LDL cholesterol (mg/dL) 
82 [66-106] 90 [71-108] 89 [74-113]

102 [83-
127] <0.001 

HDL cholesterol (mg/dL) 
28 [23-35] 31 [26-39] 32 [28-40] 

38 [32-
45] <0.001 

Triglycerides (mg/dL) 129 [88-
185] 

121 [89-
177] 

134 [103-
191] 

158 [105-
230] <0.001 

hsCRP (mg/L) 6 [3-14] 4 [2-8] 3 [2-8] 3 [1-7] <0.001 

MPO (pmol/L) 145 [89-
405] 

125 [87-
216] 

140 [92-
280] 

133 [86-
287]  <0.001

Baseline medications: 

   ACE inhibitors/ARBs (%) 

   Beta blockers (%) 

   Statin (%) 

   Aspirin (%) 

63 

72 

59 

64 

68 

66 

52 

67 

59 

68 

61 

71 

63 

59 

61 

63 

0.375 

0.141 

0.343 

0.491 

Values expressed as mean  standard deviation or median [interquartile range]. hsCRP, 

high sensitivity C reactive protein; MPO, myeloperoxidase. 
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Table S2: Baseline subject characteristics for CKD patients (n=630) by paraoxonase 

quartiles 

 Q1 Q2 Q3 Q4 P-value 

Age (years) 69±10 69±9 71±10 69±10 <0.001 

Male (%) 58 55 57 43 0.028 

Diabetes (%) 51 51 52 55 0.856 

Hypertension (%) 86 84 87 87 0.787 

Cigarette smoking (%) 59 59 64 59 0.753 

LDL cholesterol (mg/dL) 
82 [69-103]

92 [73-
112] 

97 [74-
117] 

94 [77-
120] <0.001 

HDL cholesterol (mg/dL) 
28 [24-37] 

34 [27-
41] 

32 [26-
38] 

36 [31-
44] <0.001 

Triglycerides (mg/dL) 136 [101-
189] 

131 [93-
188] 

130 [88-
173] 

146 [100-
210] <0.001 

hsCRP (mg/L) 5 [2-11] 3 [2-8] 5 [2-9] 4 [1-8] <0.001 

MPO (pmol/L) 134 [84-
240] 

134 [90-
298] 

130  [90-
344] 

140 [90-
269]  <0.001

Baseline medications: 

    ACE inhibitors/ARBs (%) 

    Beta blockers (%) 

    Statin (%) 

    Aspirin (%) 

58 

70 

61 

69 

62 

65 

63 

62 

61 

69 

56 

64 

71 

61 

53 

70 

0.107 

0.281 

0.206 

0.421 

Values expressed as mean  standard deviation or median [interquartile range]. hsCRP, high 

sensitivity C reactive protein; MPO, myeloperoxidase.
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Table S3: Unadjusted and adjusted 3-year hazard ratio for major adverse cardiac events 

(MACE) at 3 years by quartiles for serum arylesterase and paraoxonase activity levels 

 Arylesterase Activity mol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥112 94-112 77-94 <77 

Unadjusted 

HR 1 

1.52 (0.96-2.42) 

p=0.075 

1.26 (0.78-2.03) 

p=0.35 

2.17 (1.4-3.37) 

**p=0.001 

Adjusted HR  

1 

1.29(0.8-2.1) 

p=0.3 

1(0.61-1.66) 

p=0.994 

1.64(1.03-2.6) 

*p=0.036 

3-year MACE 

(%) 

30/158=18.99 43/157=27.39 36/157=22.93 57/158=36.08 

 Paraoxonase Activity nmol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥936 474-936 275-474 <275 

Unadjusted 

HR 1 

1.52(0.96-2.41) 

p=0.074 

1.23(0.77-1.97) 

p=0.395 

1.73(1.11-2.7) 

*p=0.015 

Adjusted HR  

1 

1.34(0.83-2.15) 

p=0.227 

1.21(0.75-1.96) 

p=0.429 

1.54(0.97-2.44) 

p=0.064 

3-year MACE 

(%) 

31/158=19.62 45/157=28.66 38/157=24.2 52/158=32.91 

Model adjusted for traditional risk factors including age, gender, systolic blood pressure, low-

density lipoprotein cholesterol, high-density lipoprotein cholesterol, smoking, diabetics, ACE 

inhibitor, ARB, beta blocker and statin use. *p < 0.05, **p < 0.01 
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Table S4: Unadjusted and adjusted 3-year hazard ratio for major adverse cardiac events 
(MACE) at 3 years by quartiles for serum arylesterase and paraoxonase activity levels 

 Arylesterase Activity mol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥112 94-112 77-94 <77 

Unadjusted 

HR 1 
1.52 (0.96-2.42) 

p=0.075 
1.26 (0.78-2.03) 

p=0.35 
2.17 (1.4-3.37) 

**p=0.001 

Adjusted HR  
1 

1.26(0.78-2.06) 
p=0.346 

0.95(0.57-1.57) 
p=0.829 

1.54(0.97-2.45) 
p=0.067 

Event rate 30/158=18.99 43/157=27.39 36/157=22.93 57/158=36.08 

 Paraoxonase Activity nmol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥936 474-936 275-474 <275 

Unadjusted 

HR 1 
1.52(0.96-2.41) 

p=0.074 
1.23(0.77-1.97) 

p=0.395 
1.73(1.11-2.7) 

*p=0.015 

Adjusted HR  
1 

1.19(0.73-1.95) 
p=0.491 

1.27(0.78-2.08) 
p=0.33 

1.33(0.83-2.15) 
p=0.238 

Event rate 31/158=19.62 45/157=28.66 38/157=24.2 52/158=32.91 

 

For aryleterase: Model adjusted for traditional risk factors including age, gender, systolic 

blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

smoking, diabetics,  paraoxonase activity, ACE inhibitor, ARB, beta blocker and statin use. *p 

< 0.05, **p < 0.01 

For paraoxonase: Model adjusted for traditional risk factors including age, gender, systolic 

blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

smoking, diabetics,  arylesterase activity, ACE inhibitor, ARB, beta blocker and statin use. *p 

< 0.05, **p < 0.01 
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Table S1:  Baseline subject characteristics for CKD patients (n=630) by Aryleterase 
quartiles 

 Q1 Q2 Q3 Q4 P-value

Age (years) 72±8 69±10 68±10 68±10 <0.001 

Male (%) 61 58 52 42 0.004 

Diabetes (%) 56 48 53 52 0.503 

Hypertension (%) 86 89 86 83 0.596 

Cigarette smoking (%) 58 69 62 54 0.04 

LDL cholesterol (mg/dL) 
82 [66-106] 90 [71-108] 89 [74-113]

102 [83-
127] <0.001 

HDL cholesterol (mg/dL) 
28 [23-35] 31 [26-39] 32 [28-40] 

38 [32-
45] <0.001 

Triglycerides (mg/dL) 129 [88-
185] 

121 [89-
177] 

134 [103-
191] 

158 [105-
230] <0.001 

hsCRP (mg/L) 6 [3-14] 4 [2-8] 3 [2-8] 3 [1-7] <0.001 

MPO (pmol/L) 145 [89-
405] 

125 [87-
216] 

140 [92-
280] 

133 [86-
287]  <0.001

Baseline medications: 

   ACE inhibitors/ARBs (%) 

   Beta blockers (%) 

   Statin (%) 

   Aspirin (%) 

63 

72 

59 

64 

68 

66 

52 

67 

59 

68 

61 

71 

63 

59 

61 

63 

0.375 

0.141 

0.343 

0.491 

Values expressed as mean  standard deviation or median [interquartile range]. hsCRP, 

high sensitivity C reactive protein; MPO, myeloperoxidase. 
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Table S2: Baseline subject characteristics for CKD patients (n=630) by paraoxonase 

quartiles 

 Q1 Q2 Q3 Q4 P-value 

Age (years) 69±10 69±9 71±10 69±10 <0.001 

Male (%) 58 55 57 43 0.028 

Diabetes (%) 51 51 52 55 0.856 

Hypertension (%) 86 84 87 87 0.787 

Cigarette smoking (%) 59 59 64 59 0.753 

LDL cholesterol (mg/dL) 
82 [69-103]

92 [73-
112] 

97 [74-
117] 

94 [77-
120] <0.001 

HDL cholesterol (mg/dL) 
28 [24-37] 

34 [27-
41] 

32 [26-
38] 

36 [31-
44] <0.001 

Triglycerides (mg/dL) 136 [101-
189] 

131 [93-
188] 

130 [88-
173] 

146 [100-
210] <0.001 

hsCRP (mg/L) 5 [2-11] 3 [2-8] 5 [2-9] 4 [1-8] <0.001 

MPO (pmol/L) 134 [84-
240] 

134 [90-
298] 

130  [90-
344] 

140 [90-
269]  <0.001

Baseline medications: 

    ACE inhibitors/ARBs (%) 

    Beta blockers (%) 

    Statin (%) 

    Aspirin (%) 

58 

70 

61 

69 

62 

65 

63 

62 

61 

69 

56 

64 

71 

61 

53 

70 

0.107 

0.281 

0.206 

0.421 

Values expressed as mean  standard deviation or median [interquartile range]. hsCRP, high 

sensitivity C reactive protein; MPO, myeloperoxidase.
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Table S3: Unadjusted and adjusted 3-year hazard ratio for major adverse cardiac events 

(MACE) at 3 years by quartiles for serum arylesterase and paraoxonase activity levels 

 Arylesterase Activity mol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥112 94-112 77-94 <77 

Unadjusted 

HR 1 

1.52 (0.96-2.42) 

p=0.075 

1.26 (0.78-2.03) 

p=0.35 

2.17 (1.4-3.37) 

**p=0.001 

Adjusted HR  

1 

1.29(0.8-2.1) 

p=0.3 

1(0.61-1.66) 

p=0.994 

1.64(1.03-2.6) 

*p=0.036 

3-year MACE 

(%) 

30/158=18.99 43/157=27.39 36/157=22.93 57/158=36.08 

 Paraoxonase Activity nmol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥936 474-936 275-474 <275 

Unadjusted 

HR 1 

1.52(0.96-2.41) 

p=0.074 

1.23(0.77-1.97) 

p=0.395 

1.73(1.11-2.7) 

*p=0.015 

Adjusted HR  

1 

1.34(0.83-2.15) 

p=0.227 

1.21(0.75-1.96) 

p=0.429 

1.54(0.97-2.44) 

p=0.064 

3-year MACE 

(%) 

31/158=19.62 45/157=28.66 38/157=24.2 52/158=32.91 

Model adjusted for traditional risk factors including age, gender, systolic blood pressure, low-

density lipoprotein cholesterol, high-density lipoprotein cholesterol, smoking, diabetics, ACE 

inhibitor, ARB, beta blocker and statin use. *p < 0.05, **p < 0.01 
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Table S4: Unadjusted and adjusted 3-year hazard ratio for major adverse cardiac events 
(MACE) at 3 years by quartiles for serum arylesterase and paraoxonase activity levels 

 Arylesterase Activity mol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥112 94-112 77-94 <77 

Unadjusted 

HR 1 
1.52 (0.96-2.42) 

p=0.075 
1.26 (0.78-2.03) 

p=0.35 
2.17 (1.4-3.37) 

**p=0.001 

Adjusted HR  
1 

1.26(0.78-2.06) 
p=0.346 

0.95(0.57-1.57) 
p=0.829 

1.54(0.97-2.45) 
p=0.067 

Event rate 30/158=18.99 43/157=27.39 36/157=22.93 57/158=36.08 

 Paraoxonase Activity nmol/L/min/mL (range) 

 Q 4 Q3 Q2 Q1 

Range ≥936 474-936 275-474 <275 

Unadjusted 

HR 1 
1.52(0.96-2.41) 

p=0.074 
1.23(0.77-1.97) 

p=0.395 
1.73(1.11-2.7) 

*p=0.015 

Adjusted HR  
1 

1.19(0.73-1.95) 
p=0.491 

1.27(0.78-2.08) 
p=0.33 

1.33(0.83-2.15) 
p=0.238 

Event rate 31/158=19.62 45/157=28.66 38/157=24.2 52/158=32.91 

 

For aryleterase: Model adjusted for traditional risk factors including age, gender, systolic 

blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

smoking, diabetics,  paraoxonase activity, ACE inhibitor, ARB, beta blocker and statin use. *p 

< 0.05, **p < 0.01 

For paraoxonase: Model adjusted for traditional risk factors including age, gender, systolic 

blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

smoking, diabetics,  arylesterase activity, ACE inhibitor, ARB, beta blocker and statin use. *p 

< 0.05, **p < 0.01 
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