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Abstract

We explore the attraction of zeros near the central point of L-functions associated with
elliptic curves and modular forms. Specifically, we consider families of twists of elliptic
curves, the family of weight 2 modular forms, and the family of level 1 modular forms.
We observe experimentally an attraction of the zeros near the central point, and that
the attraction decreases with the rank r of the L-function. However, for each set of
L-functions of rank r within a particular family we observe a statistically significant
increase in the attraction as the conductors of the L-functions increase. This indicates
a correspondence with the random matrix theory result about the vanishing of the
distance between eigenangles near 1 as the size of the matrix increases, but also that
this correspondence only exists in the limit, since we observe less attraction otherwise.
Additionally, we begin preliminary investigation on a new statistic, the relationship
between the value of the first zero above the central point and the value of the L-
function at s = 1

2
.
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Chapter 1

Introduction

Many of the most important problems considered by number theorists over the years
are problems involving prime numbers. Prime numbers have been studied by mathe-
maticians for thousands of years. During this time, many important results involving
primes have been proven. For example, it has been proven that there are an infinite
number of primes. We also know results concerning the distribution of the primes
over the integers. One important result is the Prime Number Theorem [16]:

Theorem 1. The number of primes p ≤ x,π(x), satisfies the formula

π(x) ≈ x

log(x)

as x→∞.

This theorem states that the distribution of the primes is asymptotic in the limit
to x

log(x)
. This concept is illustrated in Figure 1.1 [4].

However, we note from the figure that there is a gap between this asymptotic
behavior, and the actual true distribution of the of the primes. For years, mathe-
maticians searched for ways to close this gap. In the end, it was Bernard Riemann
who discovered another possible way of looking at the distribution of primes. He did
this by considering the Riemann ζ-function, written as

ζ(s) =
∞∑
n=1

1

ns
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Figure 1.1: Prime Number Theorem

The ζ-function is a function on the complex plane that is defined for Re(s) > 1.
Interestingly, the ζ-function has a connection to the primes known as the Euler product
[17].

Theorem 2. For any s ∈ C, the Riemann ζ-function has a product expansion

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s

where both sides of the equation converge for Re(s) > 1.

We note that the Euler product implies that none of the zeros of the Riemann
zeta-function occur for Re(s) > 1. It is also true that that Riemann ζ-function
extends analytically onto the entire complex plane, except a simple pole at s = 1.
Let

Λ(s) := π−s/2Γ

(
s

2

)
ζ(s).

Then
Λ(s) = Λ(1− s).

We refer to this as the functional equation of the ζ-function [17].

The Riemann Hypothesis, proposed by Bernhard Reimann in 1859, is stated as
follows: All non-trivial zeros of the Riemann zeta function have real part s = 1

2
[17].

Looking back, the Prime Number Theorem is equivalent to saying that there are no
zeros of the ζ-function on the line s = 1. The Riemann Hypothesis, however, implies
a much stronger result than the Prime Number Theorem. In fact, it tells us exactly
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that all of the zeros of the ζ-function lie on the line Re(s) = 1
2
, or that the zero-free

region is as large as possible.

The Riemann ζ-function is an example of an L-function. Just like the ζ-function,
all L-functions are defined by a Dirichlet series, an Euler product, a functional equa-
tion, and an analytic continuation. This allows us to use the generalized Riemann Hy-
pothesis, which states that all of the zeros for any L-function lie on the line Re(s) = 1

2
.

L-functions also have a property N , level, which can be used as a partial ordering on
collections of L-functions. Finally, the rank of an L-function is the order of L(1/2),
where the order of L(1/2) is r + 1 such that Lr(1/2) = 0 but Li(1/2) 6= 0 for all
0 ≤ i < r.

In addition to quesitons about primes, one of the problems that number theorists
often consider is finding solutions to polynomials over the rationals. While linear
and quadratic polynomial solutions are often covered in an undergraduate number
theory course, the problem becomes significantly more complicated when we consider
equations y2 = f(x) where f(x) is a cubic f ∈ Q[x]. In this case, number theorists
introduce objects known as elliptic curves over Q. To find solutions of elliptic curves
over the rationals, we consider solutions over Fp, the finite field modulo p. For f(x)
a cubic polynomial, we can define

E(Fp) = {(x0, y0) ∈ F2
p : y20 = f(x0)}.

We have
ap = p+ 1− |E(Fp)|

. We define the Euler product, and with it the L-function associated with E as the
Dirichlet series

L(E, s) =
∞∑
n=1

an
ns

=
∏

p prime

1

1− app−s + p1−2s
.

In this way, we are always able to find a unique L-function associated with an elliptic
curve. A theorem from Mordell-Weil tells us an important result about elliptic curves
[10].

Theorem 3. The solutions to an elliptic curve overQ form a finitely generated abelian
group.

As we will show in Chapter 2, it is self-evident that the solutions to an elliptic curve
form an abelian group by exploration of the group laws. What is important about this
theorem, however, is that the group is finitely generated. Finitely generated groups



CHAPTER 1. INTRODUCTION 4

are guaranteed to have finite rank. This leads us to the Birch and Swinnerton-Dyer
Conjecture (1965), which is stated as: the rank of the abelian group E(Q) is equal to
the rank of the associated L-function L(E, s) [24].

These results tell us that we can compare families of L-functions of a particular
rank to abelian groups a certain rank. Thus we have found a number theoretic reason
for studying families of L-functions.

Modular forms are a type of infinite polynomial sum whose coefficients are of
particular interest to number theorists due to their unique algebraic and analytic
properties. Modular forms are defined by two main parameters: weight N and level
k.

A famous theorem, widely known as the Modularity Theorem, due to Wiles [23],
Taylor-Wiles [21], Breuil-Conrad-Diamond-Taylor [7], says:

Theorem 4. Let E be an elliptic curve over Q of conductor N . Then there exists a
modular form F of weight 2 and level N such that L(F, s) = L(E, s).

This tells us that elliptic curves make up a subset of modular forms of weight 2
and level N . In particular, we note that this is a very small subset of all modular
forms, since modular forms exists for many weights k and levels N . Therefore, we
are not only interested in finding L-functions associated elliptic curves, but also those
L-functions that are associated with modular forms as well.

There exist interesting conjectures as to the attraction of zeros of L-functions
to the central point L(1

2
) on the complex plain. These conjectures result from a

heuristic correspondance between L-functions and a field known as random matrix
theory. In April 1972, Hugh Montgomery was visiting Princeton University to share
a result involving the statistics of the Riemann ζ-function, defined above. During
his visit, he happened to discuss his result with Freeman Dyson, a physicist working
at the university, over tea. Through the course of their discussion, the two discov-
ered a remarkable correspondence between Montgomery’s work and the eigenvalues
being studied in random matrix theory prmtback. Ever since this discovery, the un-
derstanding of the connection between the zeros of L-functions and random matrix
theory has been an area of interest for many mathematicians.

In particular, the correspondence that we are interested in has to do with the
attractions that occurs for the smallest zeros found on the critical line. In random
matrix theory, a phenomenon has been observed where attraction of the smallest
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eigenvalues to 0 increases to 0 as the size of the matrix tends towards infinity. It
has been observed that trends having to do with the size of a random matrix corre-
spond to trends involving the conductor size of an L-function, a parameter which is
determined by certain parameters of its associated number theoretic object. There-
fore, we expect that as we increase the conductor of L-functions towards infinity, the
attraction between the first zero on the critical line and the central point should be
maximized.

The first experiment of this kind was done by Steven J. Miller [14] at Brown
University almost a decade ago. In his experiment, Miller formulates the conjecture
that the zeros of L-functions with the parameters weight 2 and level N are attracted
to each other more as the conductor (which in the case of weight 2 is equal to the
level) increases. Specifically, he ran experiments for certain families of L-functions
determined by elliptic curves, and in all cases observed that that for finite N , the
attraction is less than the maximal limit case. As conductor size N increases, the be-
havior of the attraction tends towards the maximal random matrix theory prediction,
but does not reach this limit in the finite case.

In our experiments, we verify this correspondence for larger families of L-functions
associated with elliptic curves. We also verify the connection for different families of
L-functions associated with modular forms up to a certain conductor. Finally, we
compute and observe a new statistic linking the value of an L-function at the central
point to its first zero on the critical line.

The connection between random matrix theory and the functions involved in my
experiment is fortunate as it places a broader relevance and significance on the results
and analysis of the data. Currently, Miller is working at Williams with Harvard
undergraduate student Patrick Ryan on developing and proving the abstract random
matrix theory results corresponding to the experiment we conducted. Therefore, while
the experimental results of our research are of immediate interest to mathematicians
since they have never been done before, the broader analysis and comparison of the
experimental results to the abstract results being studied by Miller and Ryan could
have an even greater level of interest amongst broader fields within the mathematical
community.
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Chapter 2

Modular Forms

2.1 Defining Modular Forms

We will begin our discussion about modular forms with some standard definitions
and results about modular forms, which can be found in Diamond and Shurman’s
graduate textbook on the subject [9]. We start by considering the group SL2(Z):

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

We call SL2(Z) the modular group, and from now on we will represent it using
the symbol Γ. For our purposes, it is important to realize that within the group Γ,
we have the following subgroups:

Definition 1. For N ∈ N, the congruence subgroup of level N is defined by

Γ0(N) =

{(
a b
c d

)
∈ Γ : c ≡ 0 mod N

}
.

We pause to verify that Γ0(N) is a subgroup of Γ.

Proposition 1. Γ0(N) is a subgroup of Γ

Proof: By the properties of matrices, it is clear the that the property of asso-
ciativity holds. We first check that Γ0(N) is closed under the group operation. We
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compute (
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
where c1, c2 ≡ 0 mod N . Then c1a2 + d1c2 ≡ 0 mod N , and thus the subgroup
is closed under matrix multiplication. Also, the identity matrix I is included in
the subgroup, since in that case c = 0, which is obviously equivalent to 0 mod N .

Finally, we consider inverses. We know that the inverse of the matrix

(
a b
c d

)
is

1
ad−bc

(
d −b
−c a

)
. However, since we are in Γ, ad− bc = 1. Thus we must only check

−c ≡ 0 mod N . Since c ≡ 0 mod N , this statement holds, and thus Γ0(N) is a
subgroup of Γ. �

In addition to Γ0(N) being a subgroup, we also must note that there exists a
group action on the upper half of the complex plane H = {z ∈ C : Im z > 0}, defined
as

γz 7→ az + b

cz + d

for γ =

(
a b
c d

)
∈ Γ0(N).

Proposition 2. The operation described above is a group action.

Proof: We first consider the identity element γ =

(
1 0
0 1

)
. Then

γz → 1z + 0

0z + 1
= z,

and thus is the identity as required. We now consider associativity. Consider γ1 and
γ2 such that

γi =

(
ai bi
ci di

)
.
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Then we compute

(γ1γ2)(z) =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
(z)

=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
(z)

=
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

=
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d2

=

(
a1 b1
c1 d1

)
a2z + b2
c2z + d2

=

(
a1 b1
c1 d1

)((
a2 b2
c2 d2

)
(z)

)
= γ1(γ2z)

Thus associativity holds. Finally, we need to show that if z ∈ H, then γz ∈ H. We
let z = x+ iy. Then we note that

a(x+ iy) + b

c(x+ iy) + d
=

(ax+ b) + aiy

(cx+ d) + ciy
.

To isolate the imaginary part of this fraction, we compute

(ax+ b) + aiy

(cx+ d) + ciy
·(cx+ d)− ciy
(cx+ d)− ciy

=
((ax+ b)(cx+ d)− ay2) + ((ax+ b)(−ciy) + (cx+ d)(aiy))

(ax+ d)(cx+ d) + c2y2
.

Then we must only verify that (ax+ b)(−c) + (cx+d)(a) = ad− bc. But we recall
from our definition of Γ0(N) that a, b, c, d ∈ Z, with ad − bc = 1. Thus γz ∈ H and
the group action is valid. �

We now have the machinary necessary in order to define a modular form. A
modular form is an analytic function on the upper half of the complex plane. It
enjoys symmetries induced by the group action on the modular group Γ, and has a
Fourier series of a particular form. It is partially specified by two parameters: the
level N and the weight k. These two characteristics will be helpful for us later on for
performing computations. We formalize the specifics of this definition using language
found in [18] as follows:
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Definition 2. Let k,N ∈ N. An analytic function f : H → C in the upper half of
the complex plane is called a modular form of weight k with respect to Γ0(N) if for

all

(
a b
c d

)
∈ Γ0(N),

f

(
az + b

cz + d

)
= (cz + d)kf(z),

and

f(z) =
∞∑
n=0

anq
n

for q = e2πinz. We call the numbers an the Fourier coefficients of f , and say that in
this case the Fourier expansion of f has finite principal part.

We note that since

(
1 1
0 1

)
∈ Γ0(N), f(z+1) = f(z), and so the Fourier expansion

of f exists.

From this definition, we will prove an important fact about the weight k of a
modular form.

Proposition 3. The weight of a modular form k is always even.

Proof: Suppose instead that the weight k of a modular form f is odd, and

consider

(
−1 0
0 −1

)
∈ Γ0(N). Then we compute

f

(
az + b

cz + d

)
= f

(
−z
−1

)
= f(z) 6= −f(z) = (−1)kf(z) = (cz + d)kf(z).

Thus, we have created a contradiction in the definition, and our proposition must be
true. �

We also note that in some cases we will wish to consider a slightly different formu-
lation of the group action in the above definition. Recall that a meromorphic function
is simply an analytic function with an isolated set of poles.

Definition 3. Let f : H → C be meromorphic and k ∈ N. For γ =

(
a b
c d

)
∈

GL2(R), let
f |kγ = (detγ)k/2(cz + d)−kf(γz).
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In Definition 3, we see that for γ, δ ∈ GL2(R), f has the equivalence (f |kγ)|kδ =
f |k(γδ). Then ◦|kγ is a linear operator on the group. Now recall the action on the
modular group that was included as part of Definition 2. Since Γ0(N) ⊂ GL2(R),
we can apply this new definition to the group action, and see that f |kγ = f for all
γ ∈ Γ0(N). We typically refer to this property of the action on modular forms by
saying they are invariant under the modular group. We also note that in every case
k > 0 and k is even.

One of the key properties of modular forms is that they have a finite dimensional
vector space structure. We denote the vector space of modular forms of weight k with
respect to Γ0(N) as Mk(N). Also, there is an important subset of Sk(N) known as
the cusp forms of a particular weight k.

Definition 4. A modular form with a zero constant coefficient in the Fourier expan-
sion is called a cusp form.

Let H∗ = H ∪ Q ∪ {∞}. Then we say H∗ is the set of cusps. Intuitively, the
modular forms defined above are called cusp forms since they vanish at the cusps and
at the points at infinity. We denote the vector space of cusp forms of weight k with
respect to Γ0(N) as Sk(N). We note that Sk(N) is a subset of Mk(N). Also, it can
be shown that the dimensions of both of these spaces are finite.

2.2 Atkin-Lehner Eigenvalues

In designing our computations, we use certain properties of modular forms in order
to organize the computations to cover the entire vector space. One property that is
necessary for our computations is the Atkin-Lehner eigenvalue of a modular form.

We start by considering the vector space Mk(N). We define the Atkin-Lehner
involution to be the matrix

WN =

(
0 −1
N 0

)
.

We note that WN takes the name involution since W 2
Nz = z, and that WN 6∈

Γ0(N), since det(Wn) 6= 1 for any N ∈ Z+, N 6= 1.
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We now take some L =

(
a b
c d

)
∈ Γ0(N). We compute

WNLWN =

(
−Nd c
N2b −a

)
.

Since c ≡ 0 (mod N) and N2b ≡ 0 (mod N), we have

WNLWN ≡
(
−d c/N
Nb −a

)
∈ Γ0(N).

Recall the space Mk(N) of modular forms of weight k and level N . Suppose
f ∈ Mk(N). Since WNLWN ∈ Γ0(N), f |k(WNLWN) = f , and since W 2

Nz = z,
f |kW 2

N = f , and thus it is an involution. Then we have
(f |kWN)|kL = f |kWN .

So ◦|kWN is a linear operator which is an endomorphism on Mk(N), i.e. a ho-
momorphism from Mk(N) to itself. Yet we recall that we know ◦|kWN is also an
involution. Thus, since all matrices that are involutions have eigenvalues ±1, the
only eigenvalues of the linear operator on Mk(N) are ±1. This conclusion leads us to
the following important theorem which will allow us to determine the Atkin-Lehner
eigenvalues of modular forms.

Theorem 5. The space Mk(N) is the direct sum of the two eigenspaces M+
k (N)and

M−
k (N) with respect to the linear operator ◦|kWN and the eigenvalues ±1. Let f ∈

M±
k (N). Then f satisifies

f

(
−1
Nz

)
= µNk/2zkf(z),

where µ = ±1 is called the Atkin-Lehner eigenvalue of f .

Note that this theorem also holds for Sk(N), the space of cusp forms, since
Sk(N) ⊂Mk(N).

2.3 Newforms

In anticipation of wishing to maximize the efficiency of our computations in our
experiments, we will now turn to a type of modular forms known as a newform. To
do this, we consider two spaces of cusp forms Sk(N) and Sk(M) with N,M ∈ Z
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such that M |N . By the definition of Γ0(N), M |N implies Γ0(M) ⊆ Γ0(N). Thus in
essence, the level N of a modular group provides us with a nested set of subgroups
withN ordered by divisibility. Similarly, Sk(M) ⊆ Sk(N). Let aM |N and f ∈ Sk(M).
Then by this containment relationship, the function z → f(az) is a modular form in
Sk(N).

By repeating the above process, we can find a subspace of Sk(N) comprised of
elements that can be found by mappings from cusp forms whose levels are proper
divisors of N . We call this subspace the space of oldforms of Sk(N). This name
is logical, since if we are considering the spaces of cusp forms for a fixed k and an
increasing N , the space of oldforms is that of the spaces which we have already seen
in earlier spaces where M |N .

Oldforms are important for us since we do not wish to double count any of the
same modular forms in our sets of data. Therefore, we wish to only consider the
subspace of newforms of each Sk(N). The subspace of newforms is the complement
of the subspace spanned by the oldforms for a particular Sk(N), i.e. the orthogonal
complement with respect to the Petersson inner product :

Definition 5. Let f, g ∈ Sk(N). Then we define the Petersson inner product as

〈f, g〉 =

∫
f(z)g(z)yk

dxdy

y2
.

It has been verifed that the Petersson inner product is in fact a well-defined inner
product for elements of Sk(N) [18]. Thus we have a way of taking the orthogonal
complement in Sk(N).

2.4 Hecke Operators

We now explore whether there is an easier way for us to find the newforms of Sk(N)
besides finding all the oldforms and taking the complement of that space. In fact,
there exists an object called a Hecke operator which provides us with a computation-
ally efficient way to determine a basis of newforms of Sk(N), defined as follows:

Definition 6. Let f ∈ Sk(N). Then for n ∈ N, the Hecke operator T (n) is such that

T (n)f =
1

n

∑
ad=n

ak
∑

0≤b<d

f

(
az + b

d

)
.
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While the theory of Hecke operators covers a wide range of results and applica-
tions, for our computational purposes we require only the following theorem.

Theorem 6. Let T (n) be the set of all functions f such that T (n)f = λf (n)f for all
n ∈ N. The basis elements of Sk(N) that are simultaneous eigenfunctions of T (n)
are the Hecke eigenforms. Each member f of this basis can be normalized to have the
Fourier coefficient a1 = 1, so an = λf (n) for all n ∈ N. Also, the coefficients an are
multiplicative.

As we can see, Hecke operators provide us with a concrete process which allows
us to find the subspace of newforms of a particular space of cusp forms without
considering the subspace of oldforms. We now have a way to find all of the cusp
forms for a certain Sk(N) that are not already contained in a space of cusp forms
with a lower level. Thus we have devised a way for determining all of the cusp forms
(without overcounting) for a fixed k while letting N range from 1 to some N ∈ Z.
Hence we have figured out the most efficient way of spanning the set of all computable
modular forms.

2.5 Field of Definition

At this point, there exists one final object associated with a modular form that we
have yet to define known as the field of definition. Intuitively, the field of definition
of a modular form f is the field F over which the coefficients of the Fourier expansion
that defines the form are defined. When we consider the space of newforms in Sk(N)
of weight k and level N , we say that its degree p corresponds to its finite field of
definition Fp. We observed that, for example, if dim Sk(N) = 1, then the field of
definition is Q. More details on the field of definition are provided by Shimura [19].

2.6 Elliptic Curves

As mentioned in the introduction, elliptic curves are a type of object that have inter-
esting properties that are studied in many areas of mathematics. In the next chapter,
we will define L-functions that are associated with modular forms. In particular,
we are interested in elliptic curves since, just like modular forms, they too have L-
functions associated with them. In fact, there exists a correspondence between elliptic
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Figure 2.1: Elliptic Curve Point Addition

curves and modular forms which allows us to regard the L-functions of elliptic curves
as L-functions of modular forms in our computations. Most of the information in
this chapter can be referenced in Neal Koblitz’s graduate text Introduction to Elliptic
Curves and Modular Forms [12].

By definition, an elliptic curve is a curve with an equation of the form

y2 = x3 + Ax+B,

where the discriminant 4A3 + 27B2 6= 0. We denote the set of points of an elliptic
curve over a field F as

E = {(x, y) ∈ F : y2 = x3 + Ax+B} ∪ {O}.

We note that the extra point O refers to the point at infinity.

The necessity of the inclusion of the point at infinity can be seen in the geometric
representations of elliptic curves. When we plot an elliptic curve, it appears to be
a nonintersecting curve on R2. One interesting geometric property of elliptic curves
is the addition of two points. To add two points P and Q on an elliptic curve, we
draw a line through P and Q, and find the other point R where this line intersects
the curve. If we then reflect R across the x-axis, the resulting point is P +Q. We see
this illustrated in the first two images in Figure 2.1 [1].

Similarly, if we wish to add P to itself, we take the tangent line of P and find the
point R where the line intersects the curve. By reflecting this point over the x-axis,
we result in the point 2P . This idea can be seen in the second two images in Figure
2.1.

The problem that arises with this geometric representation of addition on elliptic
curves is what happens when the line we draw through either two points P and Q or



CHAPTER 2. MODULAR FORMS 15

tangent to the point P is a vertical line. A vertical line will never intersect the elliptic
curve at more than two points. Therefore, the addtion of the point O at infinity is
necessary to preserve the additive geometric properties of elliptic curves. We say that
O is the point that is found when traversing any vertical line towards infinity.

Algebraically, it can be proven that the solutions to an elliptic curve form an
abelian group. Understanding the rational solutions

E(Q) = {(x, y) ∈ Q : y2 = x3 + Ax+B} ∪ {O}

is a long-standing Diophantine problem. This problem has been studied by exploiting
the connections between modular forms, elliptic curves, and L-functions (which we
define in the next chapter).
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Chapter 3

L-functions

3.1 Defining L-functions

In this chapter, we will finally define the object which we wish to investigate in our
experiments. The information following parallels work done in by Christoph Schmitt
in his Master’s thesis [18]. As we saw in Chapter 1, the definition of a modular form
is abstract enough that it appears that there would be a number of ways to analyze
its properties. One type of object associated with a particular modular form is an
L-function. We define an L-function associated with a cusp form as follows:

Definition 7. Let f ∈ Sk(N). Then the L-function associated with f is the Dirichlet
series

L(s, f) =
∞∑
n=1

an
ns
,

which converges absolutely in the complex half-plane Re s > k/2 + 1.

We observe that the significance of a Dirichlet series is that it is of the form∑∞
n=1

an
ns with (an) a sequence of complex numbers for any s within the defined do-

main. In our case, the selection of the domain is simpler since we are considering s
as a complex number based on the weight k of f and (an) as a real sequence [19].
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3.2 Finding the Functional Equation

For a particular f , we analytically continue the series L(s, f) through the use of the
Mellin transform. The Mellin transform is an integral transform that may be regarded
as the multiplicative version of the two-sided Laplace transform. It is defined by the
integral

M(s, f) :=

∫ ∞
0

f(iz)zs−1dz.

Now we compute for our f ∈ Sk(N) : for s such that Re(s) > k
2

+ 1,

M(s, f) =

∫ ∞
0

f(iz)zs−1dz

=

∫ ∞
0

∞∑
n=1

ane
−2πnzzs−1dz

=
∞∑
n=1

an

∫ ∞
0

e−tts−1(2πn)−sdt

= Γ(s)(2π)−s
∞∑
n=1

an
ns

= Γ(s)(2π)−sL(s, f),

where Γ(x) =
∫∞
0
xs−1e−xdx is the Gamma function. We note that the interchange

of summation and integration included in the above computation is valid over the
region of absolute convergence we are considering.

We now wish to be more specific in finding the so-called functional equation for
Hecke eigenforms in S±k (N). We recall from Theorem 1 that the spaces S+

k and S−k
span the space Sk(N), and that f ∈ S±k (N) satisfies

f

(
−1

Nz

)
= µNk/2zkf(z)

where µ is the Atkin-Lehner eigenvalue of f . We will now see why the Atkin-Lehner
eigenvalue of a cusp form is essential to finding the functional equation of its associated
L-function.
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We consider our computation of the general Mellin transform of f . This time,
instead of simply replacing f by its Fourier series, we split the integral along the
positive real axis at

√
N . In this way, we intend to find an analytic continuation of

L(s, f) to the entire complex plane. We compute

M(s, f) =

∫ ∞
0

f(iz)zs−1dz

=

∫ ∞
1√
N

f(iz)zs−1dz +

∫ 1√
N

0

f(iz)zs−1dz

=

∫ ∞
1√
N

f(iz)zs−1dz +

∫ ∞
1√
N

f

(
1

Nz

)(
1

Nz

)s−1
1

Nz2
dz

=

∫ ∞
1√
N

f(iz)zs−1dz +Nk/2−sµik
∫ ∞

1√
N

f(iz)zk−s−1dz.

If we recall our intial definition of the Fourier series of f , we see that f(iz) decays
exponentially as z → ∞. Then both of the integrals in the above sum converge for
all s ∈ C. Thus, we have found a way to extend our definition of M(s, f), and thus
L(s, f), to cover the entire complex plane.

We also consider the Mellin transform when we replace s with k− s. This substi-
tution results in the equation

M(k − s, f) =

∫ ∞
1√
N

f(iz)zk−s−1dz +N s−k/2µik
∫ ∞

1√
N

f(iz)zs−1dz.

If we compare the resulting formulas for M(s, f) and M(k− s, f), with simplification
we end up with in the equality

M(k − s, f) = N s−k/2µikM(s, f).

We note that µik = ±1, since we recall from Proposition 3 that the weight k
of f is always an even integer. To complete our asymmetric functional equation of
L(s, f), we substitute in our orginal computations for M(s, f) to the above equation
and simplify to result in

N s/2(2π)−sL(s, f) = µikN (k−s)/2(2π)s−kΓ(k − s)L(k − s, f).
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This will be useful to us in our computations, since now we will be able to compute
values of L(s, f) for a particular f without the restriction of having to consider s such
that Re(s) > k

2
+ 1.

3.3 The Riemann Zeta Hypothesis and the Criti-

cal Line

Now, we will take a brief detour to discuss the Riemann zeta function. We do this
to describe the Riemann Hypothesis, a conjecture which relates to the experimental
computations of L-functions we will carry out.

The Riemann ζ-function, ζ(s), is a function of a complex variable s that analyti-
cally continues the sum of the infinite series

∑∞
n=1

1
ns , which converges when the real

part of s is greater than 1 [17].In fact, it is easy to see that the Dirichlet series that
we considered in defining L-functions of modular forms is simply a generalization of
the Riemann zeta function.

One interesting property of the Riemann ζ-function that was discovered by Euler
is the connection between the zeta function and the prime numbers.

Theorem 7. For all prime numbers p,

ζ(s) =
∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s

where both sides of the equation converge for Re(s) > 1.

The product on the right side of the equation in the above formula is known as
an Euler product.

Also, from Riemann’s orginal paper [17], the Riemann zeta function is known to
satisfy the functional equation

π−s/2Γ

(
s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

In the study of L-functions of cusp forms, an important conjecture related to the
Riemann zeta function is known as the Riemann Hypothesis. Though as a conjecture
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it has never been proved, it is so widely supported by experimental evidence that it
and its related results about L-functions associated with cusp forms in general are
commonly assumed to be true in most experiments involving the computation of zeros
of L-functions.

The Riemann Hypothesis, proposed by Bernhard Reimann in 1859, is stated as
follows: All non-trivial zeros of the Riemann zeta function have real part 1

2
. In this

case, non-trivial refers to zeros that do not arise from poles of the Gamma factor. If
the hypothesis is correct, then all non-trivial zeros of the function lie on the critical
line Re(s) = 1

2
.

For our purposes, we recognize that like the ζ-function, L-functions associated
with cusp forms are primarily defined by a Dirichlet series. They also satisfy a
functional equation which appears very similar to that of the zeta function.

We recall (see Theorem 2) that one of the important properties of Hecke eigenforms
in particular is that their coefficients are multiplicative. This means that it is possible
to create an analogous Euler product formula for L(s, f)

L(s, f) =
∏
p|N

1

1− ap
ps

∏
p 6|N

1

1− ap
ps
− 1

p2s+1−k

which converges for Re s > k+1
2

.

Due to these similarities, it is possible for us to generalize the Riemann hypothesis
to be a conjecture about L-functions associated with newforms as follows: All non-
trivial zeros of an L-function associated with a newform of weight k and level N have
real part k

2
.

What we have observed is that the Riemann zeta function and its associated
Hypothesis is merely a special case which illustrates an important assumption behind
our computations of zeros of L-functions: all zeros of an L-function associated with
a newform f can be found on the critical line Re(s) = k

2
.

Currently our Euler product formula for L-functions associated with newforms
implies that L(s, f) does not vanish for Re s > k+1

2
. We define the critical strip to

be the set {s ∈ C : k−1
2
≤Re s ≤ k+1

2
}, and we note that the Dirichlet series of an

L-function is not convergent in the critical strip. Thus, we have a way to perform
calculations with Re s > k+1

2
, and by a non-trivial result of Rankin-Selberg theory

[8], we have that L(s, f) is non-vanishing at Re s = k+1
2

as well.
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However, we still require a way to perform calculations for Re s < k+1
2

. To do
this, we will investigate the approximate functional equation.

Theorem 8. Let f ∈ Sk(N) with Atkin-Lehner eigenvalue µ. Then the L-function
L(s,f) associated with f satisfies the approximate functional equation

L(s, f) =
1

Γ(s)

∞∑
n=1

an
ns

Γ

(
s,

2πnr√
N

)
+µikNk/2−s(2π)2s−k

1

Γ(s)

∞∑
n=1

an
nk−s

Γ

(
k−s, 2πn√

Nr

)
.

We note that the convergence of this representation implies the analytic contin-
uation of L(s, f). In order to perform computations using this formula, we perform
truncated estimates on the two infinite series within the terms of the equation

Often when people investigate the Riemann zeta function, they find it is useful to
investigate the function

ξ(s) = πs/2Γ

(
s

2

)
ζ(s),

since ξ has the functional equation ξ(s) = ξ(s− 1).

When we generalize this concept to L-function we define the equation

Λ(s, f) := N s/2(2π)−sΓ(s)L(s, f),

which satisfies the functional equation

Λ(s, f) = µikΛ(k − s, f).

Similar to ζ(s), this is a convenient and symmetric functional equation.

3.4 Analytic Normalization

In our above computations, we observe that the critical line on which the zeros of the
L-function fall is determined based on the weight of the modular form to which the
L-function is associated. In our computations, we wish to avoid these differences in
the critical line, so as to more easily compare the statistics of the zeros on the critical
line of our various L-functions. To do this, we are going to analytically normalize the
coefficients of each modular form so in all cases the critical line becomes Re(s) = 1

2
.
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To do this, we apply a change of variables to each of the coeficients in the Fourier
series of a modular form, substituting s − k−1

2
in for s. This results in the following

formula for the series ∑ an/n
k−1
2

ns
.

By applying this change of variables, we result in the formula

Λ(s, f) = µikΛ(1− s, f),

which normalizes the coefficients of the L-function associated to a modular form.
This normalization also allows us to avoid any computational errors that might occur
from attempting to compute using extremely large coefficients.

3.5 The Hardy Z-Function

Now that we have a general approximate functional equation for L-functions of ana-
lytically normalized modular forms, it would be beneficial if we could use this equation
over the domain of the entire complex plane. In order to achieve this result, we use
a tool known as the Hardy Z-function. For the Riemann ζ-function, we define the
Hardy Z-function by

Z(t) = e2πitζ

(
1

2
+ it

)
.

It follows from the functional equation of the Riemann ζ-function that the Hardy
Z-function is real for all real values of t. Moreover, it follows that the non-trivial
zeros of Z(t) are precisely the zeros of the ζ-function along s = 1

2
[18].

In our case, we use a general form for the Hardy Z-function which holds over
for not just the Riemann ζ-function, but for all L-functions of modular forms. This
allows us to define a real and differentiable representation of L on the critical line
that shares the same zeros as L(1

2
, f). For a modular form f , we define the Hardy

Z-function to be

Z(t) =

Re

(
Λ(1

2
+ it, f)

)
|Γ(1

2
+ it, f)|

(
2π√
N

)1/2

.
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We note that when µik = −1, we have a vanishing real part of Λ on the critical
strip. Hence in that case we define Z(t) by replacing Re Λ with Im Λ. Since the non-
trivial zeros of this Z-function are precisely the non-trivial zeros of the L-function
along s = 1

2
, we now apply the techniques known for solving for zeros of the Hardy Z-

function in order to determine zeros of the corresponding L-function on Re(s) = 1
2
. In

this way, we now have a way to solve for zeros of an analytically normalized L-function
associated with a modular form over the entire complex plane.

3.6 Order of Vanishing at s = 1
2

Finally, we note that so far we have defined modular forms based on two parameters:
weight k and level N . One other characteristic of L-functions that will be important
to us in our computations is known as the rank, r, of an L-function associated with
a modular form. Intuitively, the rank of a modular form is related to the order of
vanishing of the L-function at s = 1

2
. The Birch-Swinnerton-Dyer conjecture [24],

another conjecture which is widely supported by experimental evidence, though yet
to be proved, says as follows:the rank of an elliptic curve L-function is the order of
the zero of its associated L-function at the central point s = 1

2
. For example, if the

first zero on the critical line does not occur at the central point, we can say that the
newform has rank 0.

As rank increases above 0, however, other factors besides the value of the first
zero on the critical line come into play, making us unable to simply assume the value
of the rank based on the order of the first zero with a nonzero y-value. Therefore,
more complex ways of precisely computing the exact rank of a newform have since
been found [20]. One important tool which we use in our computations is the sign
of the functional equation of an L-function, denoted by ω. If ω is positive, we know
we have an even function, and if ω is negative, we know we have an odd function.
Thus, by using a combination of the BSD conjecture, the value of the first zero on the
critical line, and the sign of the functional equation, we can almost always determine
the rank of an L-function computationally.
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3.7 Conductor of an L-Function

In this section, we define a characteristic of an L-function that plays a key role in
the random matrix theory correspondence we will describe in the next chapter. This
characteristic is known as the conductor of an L-function. Following the results of
Booker [6], we define the analytic conductor of an L-function to be

Q(s) = N

k∑
j=1

s+ µj
2π

where N is the level of the modular form and k is the weight. This function provides
us with a tool to induce a partial ordering on a set of L-functions, which will be usual
for us when we wish to compare L-functions in our computations.

3.8 L-functions of Elliptic Curves

One technique used to understand solutions over the rationals is to consider solutions
modulo p, where p is a prime number. In our case, we will be considering E(Fp) where
Fp is the finite field of the integers modulo p. Then for f(x) a cubic polynomial, we
can define

E(Fp) = {(x0, y0) ∈ F2
p : y20 = f(x0)}.

Then the L-function associated with E is the Dirichlet series

L(E, s) =
∞∑
n=1

an
ns

which converges absolutely in the complex half-plane Re s > 3/2.

The following result about elliptic curves follows from the proof of Fermat’s Last
Theorem, due to Wiles, Taylor-Wiles, and Breuil-Conrad-Diamond-Taylor [7], and
summarizes an important connection between modular forms and elliptic curves.

Theorem 9. Let E(Fp) be the solutions to an elliptic curve y2 = f(x) where f(x) is
a cubic polynomial and p is prime. Then if we define

ap = p+ 1− |E(Fp)|
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and amn = aman for m,n relatively prime, the resulting series

f(z) =
∞∑
n=1

anq
n

with q = e2πiz is a modular form of weight 2 and level N , where in this case we refer to
N as the conductor of the elliptic curve. Moreover, and this is key, L(f, s) = L(E, s).

We thus see that one established property of elliptic curves is that they correspond
to a subset of modular forms of weight 2. We now recall our work in Chapter 3 on
L-functions of newforms. We note that since all elliptic curves have weight 2, their
associated L-functions derived using the Mellin transform are convergent on the half-
plane Re s > 3/2. Furthermore, we recall that we are able to find an analytic
continuation of the L-function that satisfies the functional equation

Λ(s, f) = −µΛ(2− s, f).

3.8.1 The Excess Rank Phenomenon of Elliptic Curves

Another important characteristic about elliptic curves in particular that has been
observed in computations involving L-functions associated with curves is known as
the excess rank phenomenon. The set of all elliptic curves over Q has approximately
half of its functional equations even (+1 in the functional equation) and half odd (−1
in the functional equation). We recall from Section 3.6 the Birch and Swinnerton-
Dyer conjecture, which states that the rank of a newform is directly related to the
order of the zeros of its L-function. We consider a family of elliptic curves over Q and
apply the Birch and Swinnerton-Dyer conjecture. With the application of something
known as the Density Conjecture, we arrive at the excess rank phenomenon: at the
central point in the limit as the conductors tend to infinity the L-functions have rank
0 half of the time and rank 1 half of the time. Therefore, as we increase the conductor
of an elliptic curve towards infinity, we observe that the existence of curves of rank
r ≥ 2 becoming less likely.

We pause here to note the overall significance of the subset of elliptic curves within
the overall context of modular forms. Due to the much more specific properties of
elliptic curves, much more research and analysis has been put into some of the phe-
nomena observed regarding the L-functions associated with them. Also, for reasons
we will explain in Chapter 5, computations involving elliptic curves are much less time
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intensive compared to analogous computations over modular forms, especially as we
increase the condutor of an elliptic curves (i.e. the level of a modular form). There-
fore, much of the theory and experimentation done in the following chapters has only
been observed for L-functions of elliptic curves, and even in that case, L-functions
of specific families of elliptic curves. Keeping this in mind, we will proceed to show
some of the previous theory and experimentation regarding L-functions associated
with families of elliptic curves, and how we have been able to extend those results
over L-functions associated with all elliptic curves, and even those associated more
generally with any eigenform.
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Chapter 4

Random Matrix Theory

4.1 Historical Background

Random matrix theory is a field of mathematics which gained momentum beginning
in the 1950s based on work done by Eugene Wigner in mathematical physics. In
his work, Wigner wanted to find a way of describing the properties of the spacings
between energy levels of heavy nuclei in highly excited states (such as those measured
in nuclear reactions). These complex systems of energy levels of nuclei live in an
infinite-dimensional Hilbert space. Therefore, Wigner conjectured that the energy
levels could be approximated by the eigenvalues of a very large random matrix. More
specifically, the spacings between energy levels of these such nuclei could be modelled
by the spacings between successive eigenvalues of a random (N × N)- matrix as
N →∞ [22].

In April 1972, a large advance was made in connecting number theory to random
matrix theory based on a chance encounter of Hugh Montgomergy and Freeman
Dyson. At the time, Montgomergy was visiting Princeton to discuss his work on the
nontrivial zeros of the Riemann zeta function with a number theorist interested in
their connection to the pattern of the prime numbers. In what became known as
the Pair Correlation Conjecture, Montgomery proposed that the zeros of the function
appeared to repel other nearby zeros. During teatime at Princeton, Montgomery
mentioned this result to Freeman Dyson [22].
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Dyson, coincidentally, had been one of the key collaborators with Wigner in his
work on the statistical behavior of the eigenvalues of random matrices. He immedi-
ately discovered an amazing heuristic correspondence between Montgomergy’s recent
results and the observations he had made about the eigenvalues of random matrices
with Wigner years earlier. Today, more than forty years later, the answer as to why
there is such a correspondence between the two statistical distributions has prompted
much work in intersecting areas of number theory, mathematical physics, probability,
and statistics. Overall, there’s no explanation for why there should be such a heuristic
correspondence.

However, there has been some other work besides the “Princeton Tea” that indi-
cates that this correspondence should exist. Years before, Hilbert and Polya stated a
conjecture indicating that the Riemann Hypothesis is true because non-trivial zeros
of the zeta function correspond to the eigenvalues of some positive operator [22]. At
the time, there was little basis for the conjecture. Montgomery’s conclusions in 1972
provided a more solid basis for the conjecture, though obviously did not actually
prove it true. More recently, Katz and Sarnak have proved the desired results of a
correspondence between random matrix theory and L-functions over function fields
[22]. However, the connection still remains unproven for L-functions over all of Q,
which is the correspondence we are investigating.

4.2 The Basics: What is Random Matrix Theory?

Before delving into a more detailed explanation of the particular random matrix
theory and number theory connection we are interested in, we provide a brief intro-
duction to field of random matrix theory itself. Random matrix theory involves the
study of collections of “random” sets of N × N matrices. The matrices are referred
to as “random” since their entries are independently chosen from a fixed probabil-
ity distribution. We call a collection of matrices, along with the probability density
which describes how likely it is to observe a given matrix a random matrix ensemble.

However, there is another notion of randomness that has been more useful for
number theory since it leads to a more natural method of choosing a matrix at
random.

Definition 8. We say that a complex square matrix U is unitary if

U∗U = UU∗ = I
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where I is the identity matrix and U∗ is the conjugate transpose of U .

Let U(N) be the space of N × N unitary matrices, and consider its compact
subgroups. For example, one commonly studied compact subgroup of U(N) is the
N ×N orthogonal matrices. For each one of these subgroups, there exists a measure
O(n) known as the Haar measure attached to it. This measure can be used to find
a random matrix ensemble which is useful for number theory. We also note that
the eigenvalues of unitary matrices have modulus 1, and can be written as eiθj with
each θj real. Then the θj’s provide us with a sequence of real numbers which can be
statistically analyzed.

The main idea used to learn more about the eigenvalues of matrices in random
matrix theory is known as the Eigenvalue Trace Formula. We first recall that the
trace of a matrix A is the sum of its diagonal entries:

Trace(A) = a11 + ...+ aNN .

We generalize this idea when we apply the idea of the trace to the power of matrices.

Theorem 10. Let A be an N ×N matrix. Then

Trace(Ak) =
N∑
i1=1

...
N∑
ik=1

ai1i2ai2i3 ...aik−1ikaiki1 .

We use the equivalence from the theorem above to help us in understanding the
Eigenvalue Trace Formula, which is stated as follows: for any non-negative integer k,
if A is an N ×N diagonalizable matrix with eigenvalues λi(A), then

Trace(Ak) =
N∑
i=1

λi(A)k.

The importance of this formula is that it provides a relationship between the
randomly chosen entries of a matrix and the eigenvalues of that matrix. This is key,
since the eigenvalues of the matrices in a random matrix ensemble are the objects
around which the field of study is based. In fact, the Eigenvalue Trace Formula is in
effect the idea that makes the entire field of random matrix theory possible.

Finally, we make note of the idea of normalization in terms of eigenvalues of
random matrices. Similarly to how we normalized the coefficients of the Fourier
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series of modular forms in order to be able to compare the zeros of their associated
L-functions, it is also important to normalize the eigenvalues of random matrices to
be able refer to them on a similar scale. For the details of this normalization process,
we refer to Miller’s An Invitation to Modern Number Theory [15].

4.3 Generating Random Matrices From Classically

Compact Groups

In the above section, we mentioned that random matrices come from the compact
subgroups of the space of unitary N×N matrices. In this section, we will describe the
sort of algorithm that is used by mathematicians to construct these random matrices.

We start by noting that the columns of an N ×N unitary matrix are orthonormal
vectors in CN . We recall the process of Gram-Schmidt orthonormalization from linear
algebra, and see that if we take a complex N × N matrix Z of full rank and apply
Gram-Schmidt orthonormalization to its columns, the resulting matrix Q is unitary.
Then we result in Z = QR where R is upper-triangular and invertible. This is known
as the QR decomposition, and is a factorization that is widely used in numerical
analysis.

We note that the QR decomposition is not a unique map. Instead, it defines

QR : GL(N,C)→ U(N)× T (N)

for Z ∈ GL(N,C) and T (N) the group of invertible upper-triangular matrices. There-
fore, we require some way to alter the QR factorization to make a one-to-one map.
We consider the one-to-one map

QR : GL(N,C)→ U(N)× T (N)/(T (N) ∩ U(N))

where T (N)/(T (N) ∩ U(N)) is the right coset space of T (N) ∩ U(N) in T (N). This
map is constructed in order to induce the Haar measure on U(N), which from the
previous section we know is a necessary condition to find our random matrix ensemble.

We now have all the necessary tools which will allow us to create a random unitary
matrix with distribution given by the Haar measure. First, take any N ×N complex
matrix Z whose entries are complex standard normal random variables. Then run Z
through any QR decomposition. Next, create the diagonal matrix D with diagonal
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entries
rjj
|rjj | where the rjjs are the diagonal elements of R. Finally, we note that the

diagonal elements of R′ = D−1R are always real and strictly positive. Thus we finish
by taking Q′ = QD, which is therefore distributed with Haar measure as required.
A more detailed description of the results of this section can be found in Mezzadri’s
paper [13].

4.4 Random Matrix Theory and Number Theory

Connection

We now return to the Princeton teatime discovery by Dyson and Montgomery of
a heuristic correspondence between the spacing of zeros on the critical line of L-
functions of modular forms and the spacing between eigenvalues of random matrices.
In our experiments, we explore another connection between L-functions and random
matrix theory. This connection examines the heuristic correspondence between the
effect of multiple zeros at the central point on nearby zeros of an L-function and the
effect of multiple eigenvalues at 1 on eigenvalues in a classical compact group. This
correspondence is detailed in Katz and Sarnak’s Density Conjecture, which states
that the behavior of the normalized zeros of families of L-function of modular forms
near the central point as the levels tend to infinity is equal to the N → ∞ scaling
limit of the normalized eigenvalues near 1 of a (N ×N) classical compact group [11].

In stating the last conjecture, we notice that we referred to something known
families of L-functions. In fact, there is no universally agreed upon definition for
families of L-functions. In loose terms, however, we can define a family of L-functions
as some set of L-functions that has an ordering on it. In particular, when we are
referring to L-functions, we often order them based on what is known as the conductor
of the L-function, which we defined in Section 3.7. We note that according to that
formulaic definition, we can therefore order our families of L-functions associated with
modular forms based on either the level N or the weight k of the forms while holding
the other parameter constant.

While the theory behind which particular classical compact group has normalized
eigenvalues corresponding to the zeros at the central point of a certain family of
L-functions, it is the intuitive idea of a correspondence at the limit of N → ∞
which is important to our experiments. At Williams College, work is currently being
done by Miller and his students to prove the random matrix theory hypothesis which
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states that the attraction observed between eigenvalues near 1 of a classical compact
group is maximized as N → ∞. In our experiments, we address the other side of
this correspondence: if we know that as N goes toward infinity the attraction is
maximized, what can we observe about the attraction at values of N <∞?
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Chapter 5

Experimental Computations

5.1 Modular Forms in Sage

In our experiments, we performed computations involving modular forms using Sage
[5], a mathematical Python library. Within Sage, we are able to create modular form
objects defined by the weight and level of the form. Once we have created a particular
modular form object, there are then a few main computations we need to perform
in order to find the L-function of that modular form. Unfortunately, some of these
computations are more computationally expensive than others.

One attribute of the modular form that we need to compute is the Atkin-Lehner
eigenvalue. If we recall the ideas from Section 2.2, we can see intuitively that this
computation should run fairly quickly when done using a computer; indeed, it is not
a very time-intensive computation no matter the level or weight of a form. We also
need to consider the computation of the coefficients of the L-function associated to a
particular form. In fact, this does get slower as we increase the level and/or weight,
since the dimension of the space Sk(N) gets large.

Finally, we must consider the way in which we compute the entire set of Hecke
eigenforms of a particular level and weight. To do this, we create a newforms object
based on the parameters level and weight, and assign a to it modular symbol, which is
the way Sage represents a modular form. The modular symbol has a field of definition
of degree n, and so for any modular symbol α, we receive α and its n representations
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back from Sage.

However, computation of the coefficients is eventually necessary in order to find
the L-functions associated with the newforms. This computation is where we can run
into issues of efficiency based on the size of the level and weight of a modular form.
Let f ∈ Sk(N). Then by a theorem from Shimura [19], the coefficients of f live in a
totally real field Kf . We need to do exact linear algebra in this field, the degree of
which grows as the level and/or weight increases. Therefore, it is quickly impossible
for us to perform these linear algebra computations as the level and/or weight of the
modular forms associated with L-functions tend towards infinity.

5.2 Elliptic Curves in Sage

Within Sage, the elliptic curve object differs significantly from that of a general
modular form. The curve is created based on its conductor. However, for most con-
ductors there are multiple elliptic curves, many of which have different corresponding
L-functions. Therefore, Sage differentiates between curves with the same conductor
by attaching a letter onto the name; e.g. 11a is the name of the first elliptic curve
object with condutor 11. An illustration of this principle can be seen in the LMFDB
database [3].

Once again, our computations require us to compute a large number of normalized
coefficients of the L-function corresponding to a particular elliptic curves. However,
there are two features of Sage which make computing L-functions of elliptic curves
computationally much more efficient and less time-intensive than modular form com-
putations. The first is what is known as the Schoof-Elkies-Atkin (SEA) algorithm
[5]. The SEA algorithm is used for counting the number of points on an elliptic curve
over a finite field, the ap in the Euler product that defines L(E, s). The algorithm is
known to be sublinear, making it a computationally inexpensive implementation for
the large number of calculations we made in our experiments [5].

The second useful aspect of the Sage program is that in it one can use the Cre-
mona database. While the basic Sage package contains data on elliptic curves up to
conductor 10, 000, the Cremona database is an add-on to a custom Sage installation
which ranges up to curves of condutor 350, 000. This package therefore gave us access
to perform an unprecedented number of calculations on millions of L-functions of dif-
ferent elliptic curves, all of which were able to be done at the same computationally
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efficient rate implemented as in the lower conductor ranges.

5.3 L-function Calculations

Calculations involving L-functions for these experiments were done using the lcalc
command line interface for computing with L-functions developed by Michael Ru-
binstein [2]. The lcalc interface he developed requires the creation of a text file
containing defining data associated with a particular modular form, such as its level
and coefficients. The program then allows for computationally inexpensive calcula-
tions involving a L-function represented by one of these such files. These calculations
are done via an optimized version of the Approximate Functional Equation (see The-
orem 4). Some important calculations that can be completed through the use of
the program include computing the values of the first n zeros on the critical line or
computing the value of the L-function at a particular point.

5.4 Challenges in Implementation of Code

The basic workflow implementation for the code we wrote can be seen in Figure 5.1.
In the figure, we see that we began by creating either an elliptic curve or modular form
object, a process which is described in Sections 5.1 and 5.2. From there, we found
the data of the L-function associated with the object, a process which is described in
Section 5.4.2. Then, we wrote this data into a file of the form required by Rubinstein’s
lcalc program. Finally, our last step was to create shell files which would run the L-
function file through lcalc to output a file containing the data we desired for that L-
function. This entire workflow had to be repeated for each L-function we considered,
so finding a way of optimizing this process for each family of L-functions was a very
important part of our research.

While working out the details of this workflow, we encountered many standard
coding challenges that were easily fixed. However, as we were implementing the
workflow, the creation of the code in order to calculate the data relevant to our
research also required solutions to three distinct challenges:

1. How can we find all of the modular forms within a particular family we have
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Figure 5.1: Code Workflow
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defined?

2. Given a family of elliptic curves or modular forms, how can we efficiently com-
pute the defining characteristics of the L-functions associated with each of the
forms?

3. How can we efficiently compute the statistical data relevant to our research once
we have the defining characteristics of particular L-functions?

The code described in this section can be found in Appendix 1.

5.4.1 Finding Families of Modular Forms

The first question which we were needed to consider when designing our experiments
was on which “families” of modular forms we wished to perform our data analysis.
The definition of a family of modular forms can vary widely in specificity depending
on the source; in our case, however, we consider a family to be the set of forms created
by the fixing of one parameter, such as level or weight, and the varying of the other
(in some specific way).

One common way of creating a family of this type is the process known as twisting.
In this technique, we begin with a base L-function associated to some elliptic curve
or modular forms. We then vary the condutor of the L-function by multiplying by
a fundamental discriminant d. This means that d ≡ 1 (mod 4) and is square-free, a
calculation which can be done quickly to result in a long list of eligible d’s. Using
this list, we are able to create an entire family of L-functions up to some conductor.

In our experiments, due to computational efficiency concerns later on in the pro-
cess, we began by creating families of elliptic curves. Since elliptic curves correspond
to modular forms of weight 2, by considering curves we were in effect fixing a certain
weight. Therefore, by choosing a base curve of a certain conductor, we were then able
to create a family of twists of that curve by using the twisting process just described.
In this way, we were able to efficiently create hundreds of families of twists of elliptic
curves on which we could perform further calculations. To do this in Sage, we first
wrote code to create elliptic curve objects based on conductor. We then wrote code
that found a large list of eligible d’s with which to twist our L-function.

From there, we considered a more comprehensive family of modular forms: the
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family of all elliptic curves up to some conductor. We recall from Theorem 9, since
we are considering just elliptic curves, we are in effect fixing the weight at 2. By
considering the family of all elliptic curves, we are simply fixing the weight and varying
the conductor in as many iterations as possible. In order to ensure that we cover all
possible conductor variations, we looped through the entire Cremona database, which
as we stated above contains all elliptic curves up to conductor 350000. Therefore, we
were able to create a large family of millions of curves simply by considering every
possible elliptic curve in the database. To do this in Sage, we again used our code for
creating elliptic curve objects based on conductor. However, this time we also had to
write code to loop through the entire Cremona database.

Finally, we wished to consider families of general modular forms. To do this, we
created families in two different ways: fixing the weight at 2 and varying the level,
and fixing the level at 1 and varying the weight. By fixing such low initial values, we
were attempting to avoid the computational efficiency concerns of later steps in the
process for as long as possible. In fact, by considering these two particular families
of modular forms, we actually covered a large subsection of the modular forms with
associated L-functions that are computationally efficient to compute. To do this in
Sage, we wrote code to create the basis of newforms of a particular weight and level.
We then had to write code to create L-functions for each of the individual forms
within the set of newforms.

5.4.2 Efficiently Computing L-Functions

To address the problem of computing the defining characteristics of L-functions as-
sociated with modular forms efficiently, we first began with our families of twists of
elliptic curves. We began by computing the attributes of the L-function associated
with our base curve. Computing the L-function of a modular form, however, takes
time. Therefore, instead of continuing to compute L-functions for a series of elliptic
curves, we instead not only twist the conductor, but we also twist the other character-
istics of our orginal L-function in order to arrive at the characteristics of an entirely
new L-function.

Twisting L-function data is computationally efficient since it requires fewer cal-
culations than the computation of an entire elliptic curve and then its associated
L-function from scratch. Consider a base L-function L with conductor NL, sign ωL,
and coefficients an,L. We recall that to go from a base L-function L to the L-function
of a twist L̃, we simply need to find a fundamental discriminant d. This means that
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d ≡ 1 (mod 4) and is square-free, a calculation which can be done quickly to result
in an entire list of eligible d’s. From there, the conductor of the twist is now found
by NL̃ = NLd

2. We then compute the Kronecker symbol (d|N), which is simply a
generalization of the Jacobi symbol. Using this symbol, we compute

ωL̃ = ωL
d

|d|
∗ (d|N)

an,L̃ = an,L(d|N)

for each an which we computed for our original L-function. Carrying over all of
the other characterisitics of our original L-function to the new one, we have found
an L-function contained within our family. By repeating this twisting computation
on one L-function associated with a base elliptic curve for a series of d’s, we get a
family of twists of elliptic curves over which we can statisitically analyze L-function
data. To do this in Sage, we first wrote code to compute the characteristics of the
L-function associated with a particular elliptic curve object, and to write them into
a file of the proper format necessary for lcalc. We then wrote code that could read
in the L-function file of the base curve, perform the twisting computations on the
characteristics, and write appropriate new L-function files for each twist.

We then considered our family of all elliptic curves. Since we were covering the
entire family of curves in the Cremona database, it turned out that the most computa-
tionally efficient approach for finding the characteristics of the associated L-functions
was simply to create each of the elliptic curve objects and find the associated L-
function attributes directly from the objects. While this process was slightly more
computationally costly than twisting L-functions, it was the only way for us to be able
to find all of the L-functions associated with elliptic curves up to a certain conduc-
tor. Also, we note that this approach still was not overly computationally expensive,
since as we established before, the computational efficiency of creating elliptic curve
objects does not decrease significantly as the size of the conductor increases. To do
this in Sage, we had to apply the code we had already written that computed the
characteristics of the L-function associated with a particular elliptic curve object, and
wrote them into a file of the proper format necessary for lcalc.

Finally, we considered our two families of modular forms. Once again, since
we were considering an entire family of forms based on fixing one parameter and
all possibilities of the other, our approach had to mirror the the one we took with
the family of all elliptic curves. In this case, however, we ran into the problem of
computational inefficiency once the parameter became too large, and therefore our
families in these two cases are significantly smaller than our family of all elliptic
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curves, in order to maintain computational efficiency as much as possible. To do this
in Sage, we had to write code that computed the characteristics of the L-function
associated with a particular general modular form object, and wrote them into a file
of the proper format necessary for lcalc.

5.4.3 Computing Statistical Data on L-Functions

Once we had found all of the families of L-functions described in the following sections,
our final problem to address was the most computationally efficient way to calculate
the statistical data we needed for our data analysis we wished to conduct. At the
time, the characteristics of each particular L-function could be found within a text
file which needed to be passed through the lcalc interface we described earlier in
the chapter. Therefore, we concluded that the most efficient way to perform these
calculations was through the use of the Bucknell Linux Computing Cluster. By
writing code that created a series of shell script files (see Appendix 2), we were able
to run large amounts of lcalc calculations at the same time, resulting in a much more
computationally efficient approach to acquiring the L-function data. Fortunately,
by this point the process was identical for all of our families, since we had written
all of the L-function files to be submitted to lcalc in the same format. To do this,
therefore, we had to write code that created a shell job file of the proper format
for each statistic about an L-function that we wanted to compute, and write these
statistics into respective files. We also then had to write code of the correct format
that ran all of these job files to the computing cluster. Finally, we had to write code
to gather the statistical data from the respective files and perform different types of
data analysis on the statistics, the results of which we will discuss in the next chapter.
This code can be found in Appendix 3.
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Chapter 6

Results, Conclusions, and Future
Work

6.1 Prior Work

The first experiment of this kind was published by Miller in 2005 [14]. In his exper-
iment, Miller discusses and formulates the conjecture that the zeros of L-functions
with the parameters weight 2, level N (determined by some invarient of the curve
f(x) = y2), and trivial character are repulsed by each other. Figures 6.1 and 6.2
[14]are two histograms that demonstrate the results of Miller’s initial experiment.

The first graph considers the data of the zeros of L-functions for smaller level N ,
while the second graph demonstrates the data for larger N . He observed that as the
size of the conductor increases, the histograms for the experimental data on modular
forms of weight 2 moves to the left. He compared these results to the random matrix
theory results seen in Figure 6.3 [14], which indicates that the limit of the density
should continue to move to the left.

In particular, Miller’s experiments focused on elliptic curves of rank 0 and rank
2 (Figures 6.1 and 6.2 correspond to the results for rank 0). In both cases, Miller
generated data on the first normalized zero above the central point for select families
of elliptic curves with the same rank. He separated the data into two sections of
the same size based on the size of the conductor of the curve. He then showed the
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Figure 6.1: Miller Results for first normalized zero above the central point: 750 rank 0
curves from y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, log(cond) ∈ [3.2, 12.6],
median= 1.00, mean = 1.04, standard deviation above the mean= .32

Figure 6.2: Miller Results forfirst normalized zero above the central point: 750 rank 0
curves from y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, log(cond) ∈ [12.6, 14.9],
median= .85, mean = .88, standard deviation above the mean= .27
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Figure 6.3: Random Matrix Theory Model: First normalized eigenangle above 1: N →∞
scaling limit

statistical relationship between the zeros within the two samples; namely, that the
mean value of the zeros with smaller conductor is consistently significantly larger than
the mean value of the zeros with larger conductor. For each family of elliptic curves
that Miller analyzed, this relationship between conductor size and the mean value of
the first zero above the central point remained consistent. This experimental evidence,
he concluded, suggested that the first normalized zero is in some cases attracted to
the central point. Also, as conductors increase, this attraction increases, verifying
the theoretical random matrix theory results seen in Figure 6.3, which suggest the
attraction should be maximized as conductor size tends to infinity.

Miller verified these results with the use of the Pooled Two-Sample t-Procedure
and the Unpooled Two-Sample t-Procedure, standard statistical tests which check for
strength of difference in the means of the two samples. Since in his case the number
of degrees of freedom was so large, he was able to use the Central Limit Theorem and
replace the t-statistic with a z-statistic. He was then able to obtain strong evidence
against the null hypothesis that the two means are equal.

In our experiments, we aimed to verify the results of Miller’s experiments when
considering a much larger set of L-functions, and L-functions in different families
as well. Using computing power at the time, Miller was able to calculate the first
normalized zero for log-conductors about 25. He also calculated zeros primarily for
certain one-parameter families of elliptic curves. Therefore, he was only able to verify
his results for the L-functions of a small subset of curves. Finally, Miller also only
analyzed results for curves of rank 0 and 2. In doing so, he did not consider curves
of other ranks. Therefore, the set of curves of rank 1 especially is still a significant
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subset of elliptic curves which Miller did not analyze.

6.2 Our Results

As described in Chapter 5, we began our experiments by studying families consisting
of twists of elliptic curves. In particular, the first family we considered was the twists
of the elliptic curve labeled by “11a”, which is the first elliptic curve listed in the
LMFDB database. In this family, we observed results similar to those of Miller. We
first considered the value of the first zero above the central point of all twists of the
family of rank 0. We note that for this section, we use the term conductor to refer to
the conductor of the associated elliptic curve, but we recall from Chapter 3 that this
has a direct connection with the conductor of the L-function itself. We split this set
into two subsets of smaller and larger 382 zeros, graphed the values, and performed
the same statistical testing as Miller. The graphs of values of the zeros in these two
subsets and the statistics can be seen in Figure 6.4.

log(conductor) Median µ̃ Mean µ StDev σµ

<18.44 0.18 0.21 0.21
>18.44 0.14 0.15 0.08

Figure 6.4: First zero above the central point for rank one L-functions of twists of the
elliptic curve 11a with z-test value = 4.9254

As we can see from the graphs, the mean of the zero values appears to be decreasing
as the conductor size tends towards infinity, and our statistics verify this observation.
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We then considered the value of the first zero above the central point of all twists
of “11a” of rank > 0 (we recall that by the BSD conjecture and the parity conjecture
that this should be approximately all twists of rank 1). We again split this set into
two subsets of 459 zeros each based on conductor size and the graphs of values of the
zeros and their relevant statistics can be seen in Figure 6.5.

log(conductor) Median µ̃ Mean µ StDev σµ

<18.40 0.49 0.53 0.23
>18.40 0.39 0.39 0.12

Figure 6.5: First zero above the central point for rank ≥ 1 L-functions of twists of elliptic
curve 11a with z-test value = 11.2464

Once again, we observed both graphically and statistically that the mean shifted
to the left as the conductor size increased.

The next family we considered was replicating the twisting we did for “11a′′, and
this time doing it for all elliptic curves up to conductor 230. In this family, we also
observed results similar to those of Miller. For the family of rank 0, we found had
two subsets of 26837 zeros each, and the results can be seen in Figure 6.6.

We then considered the value of the first zero above the central point of all twists of
rank > 0 (we once again recall that by the BSD conjecture and the parity conjecture
that this should be approximately all twists of rank 1). We split this set into two
subsets of 36925 zeros each, who results can be seen in Figure 6.7.

In all of these cases seen above, our results were again verifed.
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log(conductor) Median µ̃ Mean µ StDev σµ

<18.42 0.24 0.27 0.17
>18.42 0.18 0.20 0.11

Figure 6.6: First zero above the central point for rank zero L-functions of all twists of
elliptic curves z-test value = 61.0855

log(conductor) Median µ̃ Mean µ StDev σµ

<18.41 0.53 0.56 0.23
>18.41 0.43 0.43 0.15

Figure 6.7: First zero above the central point for rank ≥ 1 L-functions of all twists of
elliptic curves z-test value = 90.4681
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6.3 Results for All Elliptic Curves

The next family we considered was the family of all the L-functions associated with
elliptic curves up to conductor 250000. We note that in this case we split the set
into two subsets of 156160 and 156156 zeros respectively based on conductor size (in
this case, conductor size is regarded directly, since log(conductor) is too small of a
number for most of these elliptic curves). Results for the family of rank 0 can be seen
in Figure 6.8.

Conductor Median µ̃ Mean µ StDev σµ

<120225 0.61 0.67 0.31
>120225 0.48 0.49 0.17

Figure 6.8: First zero above the central point for rank one L-functions of all Elliptic
Curves z-test value = 202.1637

We next considered the value of the first zero above the central point of all twists
of the family of rank 1. We split this set into two subsets of 201623 and 201261 zeros
respectively. Results can be seen in Figure 6.9.

For this type of family, we finally considered the value of the first zero above the
central point of all twists of the family of rank ≥ 2, and we note that we can say that
almost all of these are actually of rank 2, so we will call them this. We split this set
into two subsets of 54647 zeros each, and results can be seen in Figure 6.10.

We note that in all three of these cases, our predictions held. Also, Miller’s
prediction about the attraction decreasing as the rank of the families increases is also
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Conductor Median µ̃ Mean µ StDev σµ

<133848 0.94 .97 0.27
>133848 0.81 0.81 0.20

Figure 6.9: First zero above the central point for rank one L-functions of all Elliptic
Curves z-test value = 202.1637

Conductor Median µ̃ Mean µ StDev σµ

<139110 1.31 1.32 0.24
>139110 1.17 1.17 0.19

Figure 6.10: First zero above the central point for rank two L-functions of all Elliptic
Curves Forms z-test value = 117.8212
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evident by comparisons of the graphs and mean values of these three cases.

6.4 Results for Modular Forms of Level 1

Next we continued our experiments by studying the family of L-functions associated
with modular forms of level 1 and varying the weight k. In our experiments, we
considered 2 ≤ k ≤ 200. We split this set into two subsets of 361 and 357 zeros
respectively, and considered the family of rank 0. Our results can be seen in Figure
6.11.

Weight k Median µ̃ Mean µ StDev σµ

≤60 2.03 2.03 0.81
>60 0.58 0.66 0.44

Figure 6.11: First zero above the central point for rank zero L-functions of Level 1 Mod-
ular Forms z-test value = 28.1352

We then considered the value of the first zero above the central point of the family
of rank 1. We split this set into two subsets of 198 and 178 zeros respectively, whose
results can be seen in Figure 6.12.

We note that in the case of L-functions associated with modular forms of level 1
for the range of weights we investigated, there were no L-functions of rank > 1.
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Weight Median µ̃ Mean µ StDev σµ

≤146 1.49 1.66 0.88
>146 1.12 1.18 0.42

Figure 6.12: First zero above the central point for rank one L-functions of Level 1 Modular
Forms z-test value = 6.8646

6.5 Results for Modular Forms of Level 2

Next we continued our experiments by studying the family of L-functions associated
with modular forms of varying level N and weight 2. In our experiments, we con-
sidered 1 ≤ N ≤ 700. We split this set into two subsets of 2540 and 2540 zeros
respectively, and considered the family of rank 0. The graphs of values of the zeros
in these two subsets can be seen in Figure 6.13.

We then considered the value of the first zero above the central point of the family
of rank 1. We split this set into two subsets of 386 zeros respectively, whose results
can be seen in Figure 6.14.

We note that in the case of L-functions associated with modular forms of level 1
for the range of weights we investigated, there were only 9 L-functions of rank > 1,
and thus we will not analyze them.
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Level N Median µ̃ Mean µ StDev σµ

≤461 1.78 1.80 0.69
>461 1.39 1.39 0.52

Figure 6.13: First zero above the central point for rank zero L-functions of Weight 2
Modular Forms z-test value = 30.4711

Level N Median µ̃ Mean µ StDev σµ

≤469 2.55 2.61 0.53
>469 2.16 2.14 0.37

Figure 6.14: First zero above the central point for rank one L-functions of Weight 2
Modular Forms z-test value = 14.3892
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6.6 Discussion of Results

In the above sections, we see that in every case of experiments we considered, there
existed a statistically significant difference between the means of the lowest zeros
of L-functions of lower conductor and those of higher conductor. Specifically, in
every case the zeros of lower conductor were significantly larger than those of higher
conductor. This indicates that the hypothesis tested by Miller in his work in 2005
in fact appears to be for much larger families of L-functions of elliptic curves, and
even for families of modular forms as well. In particular, we found that for all of the
families of L-functions associated with elliptic curves and modular forms with finite
N that we gathered data for, we observe less attraction of the distribution of the first
zero above the central point s = 1

2
. As N increases, the attraction increases, and

seems to agree with the random matrix theory model. Also, the attraction is greater
for comparable families of L-functions with lesser rank. These experimental results
parallel the random matrix theory predictions associated with the distribution of the
first zero of a family of L-functions as N →∞.

6.7 Conclusions and Future Work

In our experiments, we came very close to hitting the upper bounds of current com-
putational limits for L-functions associated with both elliptic curves and modular
forms. For example, it would be fairly trivial to extend the the family of L-functions
associated with elliptic curves from conductor 250000 to conductor 350000. However,
350000 is a current upper bound for this family, since the Cremona database ends at
that value, and no other database of all elliptic curves based on conductor N currently
exists. Also, in our work we also came very close to upper bounds for L-functions
associated with modular forms. In fact, for the two families we considered, we did
hit upper bounds for current computational power for the two families we consid-
ered. Moreover, since computations very quickly become difficult for modular forms
in Sage, any other families with higher level N or weight k would quickly result in
hitting upper bounds as well. Therefore, our experiments actually covered almost all
of the computationally possible L-functions assoicated with modular forms.

Due to these computational upper bounds, future work based on the same com-
putational structure that we used would quickly become impossible based on the
computing power available today. However, we now have amassed a large amount of
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Figure 6.15: First zero value versus value at L(1/2)

L-function data files that could be accessed to perform an analysis on any number of
other statistics based on L-functions. For example, at the end of our work we also
considered a new statistic in our experiments by asking the question: is there any
correlation between the value of an L-function at s = 1

2
and the value of the first zero

of the L-function on the critical line. We plot the results of this graph below, with
the zero value found on the x-axis and the value of L(1

2
) found on the y-axis, using

the data set of the first 50, 000 rank 0 L-functions in our twists of elliptic curves data
set.

In this graph, we see an interesting relationship between the two values which
merits further exploration. Analysis of these results and their context within the
greater random matrix theory connection could prove to be a very interesting project
to pursue.
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Appendix 1

In this appendix, we find the main code we wrote to compute the lcalc files containing
the data about an L-function that is necessary to perform computations to learn
more about the L-function. The first function allows us to write all of the parameters
associated with an L-function into a correctly formated l-calc file.

def w r i t e l c a l c f i l e ( base curve , N, c o e f f i c i e n t t y p e , L funct ion type ,
n u m b e r c o e f f i c i e n t s , p e r i o d i c c o e f f i c i e n t s , number gamma factors ,
f irst gamma , f i r s t l ambda , Q, omega , po les , c o e f f i c i e n t s t r i n g , k =
None , j = None ) :

’ ’ ’ Takes in the parameters f o r an L−f unc t i on and w r i t e s a l−c a l c
formatted f i l e s with those parameters ’ ’ ’

#dea l s wi th e l l i p t i c curves case
i f k == None :

o = open( ’ E l l i p t i c C u r v e s / ’+ base curve + ’ / ’+ str (N) + ’ . l c a l c
’ , ’w ’ )

#dea l s wi th modular forms case
else :

o = open( ’ ModularForms/ ’ + ’ l e v e l ’ + str (N) + ’ we ight ’ +
str ( k ) + ’ ’ + str ( j ) + ’ . l c a l c ’ , ’w ’ )

o . wr i t e ( str ( c o e f f i c i e n t t y p e ) + ’ \n ’ )
o . wr i t e ( str ( L func t i on type ) + ’ \n ’ )
o . wr i t e ( str ( n u m b e r c o e f f i c i e n t s ) + ’ \n ’ )
o . wr i t e ( str ( p e r i o d i c c o e f f i c i e n t s ) + ’ \n ’ )
o . wr i t e ( str ( number gamma factors ) + ’ \n ’ )
o . wr i t e ( str ( f i rst gamma ) + ’ \n ’ )
o . wr i t e ( str ( f i r s t l a m b d a ) + ’ \n ’ )
o . wr i t e ( str (Q) + ’ \n ’ )
o . wr i t e ( str ( omega ) + ’ \n ’ )
o . wr i t e ( str ( po l e s ) + ’ \n ’ )
o . wr i t e ( c o e f f i c i e n t s t r i n g )
o . c l o s e ( )
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Next, we see a couple of functions which allows us to take in an elliptic curve
object from sage, and find the characteristics of its associated L-function.

def c o e f f i c i e n t l o o p ( c o e f f i c i e n t l i s t , base = False ) :
’ ’ ’ Creates a l i s t o f normal ized c o e f f i c i e n t s o f an L−f unc t i on ’ ’ ’
l o n g l i s t = ’ ’

#i f c o e f f i c i e n t s s t i l l need to be normal ized
i f base == True :

for i in range (1 , len ( c o e f f i c i e n t l i s t ) ) :
l o n g l i s t += str ( c o e f f i c i e n t l i s t [ i ] / s q r t ( i ) . n ( ) ) + ’ \n ’

#c o e f f i c i e n t s are a l r eady normal ized
else :

for i in range (1 , len ( c o e f f i c i e n t l i s t ) ) :
l o n g l i s t += str ( c o e f f i c i e n t l i s t [ i ] ) + ’ \n ’

return l o n g l i s t

def m a k e b a s e l c a l c f i l e ( f i r s t c u r v e , n u m b e r c o e f f i c i e n t s ) :
’ ’ ’ Takes in the LMFDB marker f o r an e l l i p t i c curve and re tu rn s i t s L
−f unc t i on parameters , up to a c e r t a i n number o f c o e f f i e n t s ’ ’ ’

f i r s t c u r v e = f i r s t c u r v e
#crea t e s e l l i p t i c curve o b j e c t in sage
E = E l l i p t i c C u r v e ( f i r s t c u r v e )
N = E. conductor ( )
#sign o f the f un c t i o na l equat ion
omega = str (E. root number ( ) ) + ’ 0 ’
n u m b e r c o e f f i c i e n t s = n u m b e r c o e f f i c i e n t s
#the f o l l ow i n g few l i n e s are l−ca l c cons tan t s
c o e f f i c i e n t t y p e = 2
L func t i on type = 2
p e r i o d i c c o e f f i c i e n t s = 0
number gamma factors = 1
f irst gamma = 1
f i r s t l a m b d a = ” . 5 0”
#conductor o f the L−f unc t i on
Q = s q r t (N) . n ( ) /(2∗ pi . n ( ) )
po l e s = 0
c o e f f i c i e n t l i s t = E. a n l i s t ( n u m b e r c o e f f i c i e n t s )
c o e f f i c i e n t s t r i n g = c o e f f i c i e n t l o o p ( c o e f f i c i e n t l i s t , True )
#once parameters are gathered , sends them to w r i t e l c a l c f i l e to be

made in to a f i l e
w r i t e l c a l c f i l e ( f i r s t c u r v e , N, c o e f f i c i e n t t y p e , L funct ion type ,

n u m b e r c o e f f i c i e n t s , p e r i o d i c c o e f f i c i e n t s , number gamma factors
, f irst gamma , f i r s t l ambda , Q, omega , po les , c o e f f i c i e n t s t r i n g
)
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Here, we see the same sort of function, but this time it is modified to work for
modular forms instead of elliptic curves.

def g e n m a k e l c a l c f i l e ( newform , n u m b e r c o e f f i c i e n t s , rea l embedding=
None , j = None ) :

’ ’ ’ Takes in the Sage newform ob j e c t and i f nece s sa ry a s p e c i f i c r e a l
embedding o f that object , and re tu rn s the parameters f o r i t s

a s s o c i a t e d L−funct ion , up to the number o f c o e f f i c i e n t s ’ ’ ’
n = newform
k = n . weight ( )
N = n . l e v e l ( )
#sign o f the f un c t i o na l equat ion
eps = (−1) ˆ( k /2) ∗n . a t k i n l e h n e r e i g e n v a l u e ( )
#the f o l l ow i n g few l i n e s are l−ca l c cons tan t s
c o e f f i c i e n t t y p e = 2
L func t i on type = 2
p e r i o d i c c o e f f i c i e n t s = 0
number gamma factors = 1
f irst gamma = 1
f i r s t l a m b d a = str ( ( k−1) /2 . n (100) ) + ” 0”
#conductor o f the L−f unc t i on
Q = s q r t (N) . n ( ) /(2∗ pi . n ( ) )
po l e s = 0
omega = str ( eps ) + ” 0”
c o e f f i c i e n t s t r i n g = ’ ’
i f rea l embedding i s None :

for i in range (1 , n u m b e r c o e f f i c i e n t s +1) :
va l = (n [ i ] / i ˆ ( ( k−1)/2) ) . n (100)

c o e f f i c i e n t s t r i n g += str ( va l ) + ’ \n ’
else :

for i in range (1 , n u m b e r c o e f f i c i e n t s + 1) :
va l = ( rea l embedding (n [ i ] ) / i ˆ ( ( k−1)/2) ) . n (100)

c o e f f i c i e n t s t r i n g += str ( va l ) + ’ \n ’
#once parameters have been gathered , w r i t e s them in to an l−ca l c f i l e
w r i t e l c a l c f i l e ( newform , N, c o e f f i c i e n t t y p e , L funct ion type ,

n u m b e r c o e f f i c i e n t s , p e r i o d i c c o e f f i c i e n t s , number gamma factors
, f irst gamma , f i r s t l ambda , Q, omega , po les , c o e f f i c i e n t s t r i n g
, k , j )

Here, we see a function which allows us to take in an l-calc file for our base
L-function, and create a series of l-calc files by twisting the data in the base one.

def t w i s t b a s e l c a l c f i l e ( p a t h t o b a s e f i l e ) :
’ ’ ’ Takes in a base L−f unc t i on f i l e and c r e a t e s the f i l e s f o r a

fami ly o f t w i s t s ’ ’ ’
l i n e s = [ l i n e . s t r i p ( ) for l i n e in open( p a t h t o b a s e f i l e ) ]
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f i r s t c u r v e = os . path . dirname ( p a t h t o b a s e f i l e )
f i l ename = os . path . basename ( p a t h t o b a s e f i l e )
base N = int ( os . path . s p l i t e x t ( f i l ename ) [ 0 ] )
#range can be ad ju s t ed to inc l ude more t w i s t s
for i in range (0 ,−8000 , −1) :

f = i s f un d am e nt a l d i s c r i m in a n t ( i )
i f f :

d = i
N = base N∗dˆ2
#a l l o f t h e s e c o e f f i c i e n t numbers were found through

exper imenta t ion
i f N < 300000:

n u m b e r c o e f f i c i e n t s = 10000
e l i f N < 1700000:

n u m b e r c o e f f i c i e n t s = 20000
e l i f N < 5900000:

n u m b e r c o e f f i c i e n t s = 40000
e l i f N < 35000000:

n u m b e r c o e f f i c i e n t s = 80000
e l i f N < 144000000:

n u m b e r c o e f f i c i e n t s = 160000
e l i f N < 400000000:

n u m b e r c o e f f i c i e n t s = 320000
else :

break
c o e f f i c i e n t t y p e = l i n e s [ 0 ]
L func t i on type = l i n e s [ 1 ]
p e r i o d i c c o e f f i c i e n t s = l i n e s [ 3 ]
number gamma factors = l i n e s [ 4 ]
f i rst gamma = l i n e s [ 5 ]
f i r s t l a m b d a = l i n e s [ 6 ]
#conductor o f the new L−f unc t i on
Q = s q r t (N) . n ( ) /(2∗ pi . n ( ) )
#sign o f the f un c t i o na l equat ion f o r the new L−f unc t i on
omega = str ( int ( l i n e s [ 8 ] [ 0 : 2 ] ) ∗d/abs (d) ∗ kronecker symbol (d ,

base N ) ) + ’ 0 ’
po l e s = l i n e s [ 9 ]
n = 1
length = len ( l i n e s )
c o e f f i c i e n t l i s t = [ 0 ]
#ad ju s t i n g c o e f f i c i e n t s f o r the new L−f unc t i on
for x in range (10 , n u m b e r c o e f f i c i e n t s + 9) :

a n = f loat ( l i n e s [ x ] )
c o e f f i c i e n t l i s t += [ a n∗ kronecker symbol (d , n) ]
n += 1

c o e f f i c i e n t s t r i n g = c o e f f i c i e n t l o o p ( c o e f f i c i e n t l i s t )
w r i t e l c a l c f i l e ( f i r s t c u r v e , N, c o e f f i c i e n t t y p e ,

L funct ion type , n u m b e r c o e f f i c i e n t s ,
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p e r i o d i c c o e f f i c i e n t s , number gamma factors , f irst gamma ,
f i r s t l ambda , Q, omega , po les , c o e f f i c i e n t s t r i n g )

Here, we see a function which allows us to loop through and extract all the elliptic
curves from the Cremona database.

def l oop through database ( f i r s t c u r v e , l a s t c u r v e , n u m b e r c o e f f i c i e n t s =
10000) :
’ ’ ’ Takes in a range and f i n d s a l l the e l l i p t i c curves with in that

condutor range in the Cremona Database ’ ’ ’
C = CremonaDatabase ( )
cu r r en t cu rve = f i r s t c u r v e
while int ( cu r r en t cu rve ) <= int ( l a s t c u r v e ) :

A = C. a l l c u r v e s ( cu r r en t cu rve )
i f A != {} :

keys = [ ]
for key in A. i t e r i t e m s ( ) :

#pr in t ( key [ 0 ] [ 0 ] )
i f key [ 0 ] [ 0 ] not in keys :
keys += [ key [ 0 ] [ 0 ] ]

for i in range ( len ( keys ) ) :
curve name = cur r en t cu rve + keys [ i ]
#pr in t ( cur r en t curve + keys [ i ] )
E = E l l i p t i c C u r v e ( curve name )
N = E. conductor ( )
p a t h t o b a s e f i l e = ’ E l l i p t i c C u r v e s / ’ + curve name

+ ’ / ’ + str (N) + ’ . l c a l c ’
c u r r e n t c u r v e d i r e c t o r y = ’ E l l i p t i c C u r v e s / ’ + str (

curve name )
m a k e b a s e l c a l c f i l e ( curve name ,

n u m b e r c o e f f i c i e n t s )
r u n l c a l c f i l e s ( c u r r e n t c u r v e d i r e c t o r y )

cu r r en t cu rve = str ( int ( cu r r en t cu rve ) + 1)

Finally, here we have a function which allows us to loop through all the modular
forms within a certain level and/or weight range.

def make a l l (Nmin , Nmax, kmin , kmax , n u m b e r c o e f f i c i e n t s = 10000) :
’ ’ ’ Takes in a range o f l e v e l s and range o f weights and c r e a t e s L−

f u n c t i o n s o f a l l modular forms with in those ranges ’ ’ ’
for k in range ( kmin , kmax , 2) :

for N in range (Nmin , Nmax, 1) :
print k , N
#crea t e s newforms o b j e c t
SkN = Newforms (N, k , names=’ a ’ )
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dimS = len (SkN)
for i in range ( dimS ) :

f = SkN [ i ]
K = f . h e c k e e i g e n v a l u e f i e l d ( )

#checks i f the f i e l d i s r a t i o n a l
i f K == QQ:

g e n m a k e l c a l c f i l e ( f , n u m b e r c o e f f i c i e n t s )
#i f the f i e l d i s not ra t i ona l , have to f i nd the r e a l

embeddings
else :

embs = f . h e c k e e i g e n v a l u e f i l e ( ) :
rea l embeddings ( )

degK = len ( embs )
for j in range (degK) :

g e n m a k e l c a l c f i l e ( f ,
n u m b e r c o e f f i c i e n t s , embs [ j ] , j )

return
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Appendix 2

In this appendix, we find the code which allows us to create shell files which can be
run on a computing cluster.

def r u n l c a l c f i l e s ( d i r e c t o r y ) :
for root , , f i l e s in os . walk ( d i r e c t o r y ) :

for f i l e in f i l e s :
f i l ename = os . path . s p l i t e x t ( f i l e ) [ 0 ]
ext = os . path . s p l i t e x t ( f i l e ) [ 1 ]
i f ext [ 0 : 2 ] == ’ . l ’ :

n e w f i l e 1 = d i r e c t o r y + ’ / ’ + f i l ename + ’ . 1 . txt ’
f = open( newf i l e1 , ’w ’ )
f . wr i t e ( ’ #!/ bin /bash \n ’ )
f . wr i t e ( ’#PBS −N ’ + f i l ename + ’ \n ’ )
f . wr i t e ( ’#PBS −o /home/ accounts / student /k/keh021/

Honors Thes is / ’ + d i r e c t o r y + ’ \n ’ )
f . wr i t e ( ’#PBS −e /home/ accounts / student /k/keh021/

Honors Thes is / ’ + d i r e c t o r y + ’ \n ’ )
f . wr i t e ( ’#PBS −M keh021@bucknell . edu \n ’ )
f . wr i t e ( ’ cd ”$PBS O WORKDIR” \n ’ )
f . wr i t e ( ’ . / l c a l c −v −F ’ + ’ ˜/ Honors Thes is / ’ +

d i r e c t o r y + ’ / ’ + f i l ename + ’ . l c a l c ’ + ’ > ’ +
’ ˜/ Honors Thes is / ’ + d i r e c t o r y + ’ / ’ +

f i l ename + ’ . dat ’ + ’ \n ’ )
f . wr i t e ( ’ e x i t 0 ’ )
f . c l o s e ( )
n e w f i l e 2 = d i r e c t o r y + ’ / ’ + f i l ename + ’ . 2 . txt ’
o = open( newf i l e2 , ’w ’ )
o . wr i t e ( ’ #!/ bin /bash \n ’ )
o . wr i t e ( ’#PBS −N ’ + f i l ename + ’ \n ’ )
o . wr i t e ( ’#PBS −o /home/ accounts / student /k/keh021/

Honors Thes is / ’ + d i r e c t o r y + ’ \n ’ )
o . wr i t e ( ’#PBS −e /home/ accounts / student /k/keh021/

Honors Thes is / ’ + d i r e c t o r y + ’ \n ’ )
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o . wr i t e ( ’#PBS −M keh021@bucknell . edu \n ’ )
o . wr i t e ( ’ cd ”$PBS O WORKDIR” \n ’ )
o . wr i t e ( ’ . / l c a l c −z 5 −F ’ + ’ ˜/ Honors Thes is / ’ +

d i r e c t o r y + ’ / ’ + f i l ename + ’ . l c a l c ’ + ’ >> ’
+ ’ ˜/ Honors Thes is / ’ + d i r e c t o r y+ ’ / ’+
f i l ename + ’ . dat ’ + ’ \n ’ )

o . wr i t e ( ’ e x i t 0 ’ )
o . c l o s e ( )
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Appendix 3

In this appendix, we find the code used to do the statistical analysis on the calculated
zeros of L-functions. These first few functions show how we collect the zeros from
different types of L-functions into files based on the rank of the L-function.

def f i n d r a n k l i s t s ( d i r e c t o r y ) :
’ ’ ’ Takes in a d i r e c t o r y o f t w i s t s o f L−f u n c t i o n s o f e l l i p t i c curves

and re tu rn s two f i l e s composed o f l i n e s o f : conductor , f i r s t
ze ro value , L(1/2) value , where one o f the f i l e s c o n s i s t s o f
t h i s data f o r L−f u n c t i o n s o f rank

zero , and one c o n s i s t s o f the data f o r L−f u n c t i o n s o f h igher rank ’ ’ ’
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y ) :

for dir in d i r s :
f = open( d i r e c t o r y + ’ / ’ + dir + ’ / r a n k 0 z e r o s . txt ’ , ’w

’ )
g = open( d i r e c t o r y + ’ / ’ + dir + ’ / o t h e r r a n k z e r o s . txt ’

, ’w ’ )
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y + ’ / ’ + dir ) :

for f i l e in f i l e s :
#conductor o f e l l i p t i c curve a s s o c i a t e d wi th L−

f unc t i on
f i l ename = os . path . s p l i t e x t ( f i l e ) [ 0 ]
p a t h t o f i l e = str ( d i r e c t o r y ) + ’ / ’ + str ( dir )

+ ’ / ’ + str ( f i l e )
l i n e s = [ l i n e . s t r i p ( ) for l i n e in open(

p a t h t o f i l e ) ]
try :

#y−va lue o f f i r s t zero o f L−f unc t i on
zero = l i n e s [ 1 ]
#the y−va lue o f the f i r s t zero i s a l s o

zero , move to the second zero
i f f loat ( ze ro ) <= . 0000 01 :

ze ro = l i n e s [ 2 ]
#Write data in to rank 0 f i l e
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g . wr i t e ( f i l ename + ’ , ’ + zero + ’ , ’
+ l i n e s [ 0 ] + ’ \n ’ )

else :
#Write data in to o ther rank ze ros

f i l e
f . wr i t e ( f i l ename + ’ , ’ + zero + ’ , ’

+ l i n e s [ 0 ] + ’ \n ’ )
except :

pass
f . c l o s e ( )
g . c l o s e ( )

def f i n d r a n k l i s t s e c s ( d i r e c t o r y ) :
’ ’ ’ Takes in a d i r e c t o r y o f L−f u n c t i o n s o f e l l i p t i c curves and

re tu rn s three f i l e s composed o f l i n e s o f : conductor , f i r s t ze ro
value , L(1/2) value , where one o f the f i l e s c o n s i s t s o f t h i s

data f o r L−f u n c t i o n s o f rank zero , one c o n s i s t s o f the data f o r
L−f u n c t i o n s o f rank one , and one c o n s i s t s o f the data f o r L−

f u n c t i o n s o f h igher rank ’ ’ ’
f = open( d i r e c t o r y + ’ / r a n k 0 z e r o s . txt ’ , ’w ’ )
g = open( d i r e c t o r y + ’ / r a n k 1 z e r o s . txt ’ , ’w ’ )
h = open( d i r e c t o r y + ’ / h i g h e r r a n k z e r o s . txt ’ , ’w ’ )
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y ) :

for dir in d i r s :
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y + ’ / ’ + dir )

:
for f i l e in f i l e s :

#conductor o f e l l i i p t i c curve a s s o c i a t e d wi th
L−f unc t i on s

f i l ename = os . path . s p l i t e x t ( f i l e ) [ 0 ]
ext = os . path . s p l i t e x t ( f i l e ) [ 1 ]
p a t h t o f i l e = str ( d i r e c t o r y ) + ’ / ’ + str ( dir )

+ ’ / ’ + str ( f i l e )
p a t h t o l c a l c f i l e = str ( d i r e c t o r y ) + ’ / ’ +

str ( dir ) + ’ / ’ + str ( f i l ename ) + ’ . l c a l c ’
i f ext == ’ . dat ’ :

l i n e s = [ l i n e . s t r i p ( ) for l i n e in open(
p a t h t o f i l e ) ]

l i n e s 2 = [ l i n e . s t r i p ( ) for l i n e in open(
p a t h t o l c a l c f i l e ) ]

#omega o f L−func t ion , taken d i r e c t l y from
. l c a l c f i l e f o r L−f unc t i on

omega = l i n e s 2 [ 8 ]
try :

#y−va lue o f f i r s t va lue o f L−
f unc t i on

zero = l i n e s [ 1 ]
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#the y−va lue o f the f i r s t zero i s
a l s o zero , move to the second
zero

i f f loat ( ze ro ) <= . 0000 01 :
ze ro = l i n e s [ 2 ]
#i f the s i gn o f the f un c t i o na l

equa t ion i s nega t i v e
i f omega [ 0 ] == ’− ’ :

#wr i t e data in t o rank 1
f i l e

g . wr i t e ( f i l ename + ’ , ’ +
zero + ’ , ’ + l i n e s [ 0 ]
+ ’ \n ’ )

#i f the s i gn o f the f un c t i o na l
equa t ion i s p o s i t i v e

i f omega [ 0 ] == ’ 1 ’ :
#wr i t e data in t o h i ghe r

rank f i l e
h . wr i t e ( f i l ename + ’ , ’ +

zero + ’ , ’ + l i n e s [ 0 ]
+ ’ \n ’ )

else :
#wr i t e data in t o rank 0

f i l e
f . wr i t e ( f i l ename + ’ , ’ +

zero + ’ , ’ + l i n e s [ 0 ]
+ ’ \n ’ )

except :
pass

f . c l o s e ( )
g . c l o s e ( )
h . c l o s e ( )

def f i n d r a n k l i s t s m o d f o r m s ( d i r e c t o r y ) :
’ ’ ’ Takes in a d i r e c t o r y o f L−f u n c t i o n s o f modular forms and re tu rn s

three f i l e s composed o f l i n e s o f : conductor , f i r s t ze ro value ,
L(1/2) value , where one o f the f i l e s c o n s i s t s o f t h i s data f o r
L−f u n c t i o n s o f rank zero , one c o n s i s t s o f the data f o r L−

f u n c t i o n s o f rank one , and one c o n s i s t s o f the data f o r L−
f u n c t i o n s o f h igher rank ’ ’ ’

f = open( d i r e c t o r y + ’ / r a n k 0 z e r o s . txt ’ , ’w ’ )
g = open( d i r e c t o r y + ’ / r a n k 1 z e r o s . txt ’ , ’w ’ )
h = open( d i r e c t o r y + ’ / h i g h e r r a n k z e r o s . txt ’ , ’w ’ )
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y ) :

for f i l e in f i l e s :
f i l ename = os . path . s p l i t e x t ( f i l e ) [ 0 ]
#i f we are f i x i n g the we igh t and vary ing the l e v e l
i f ”Weight” in d i r e c t o r y :
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#l e v e l o f modular form as s o c i a t e d wi th L−f unc t i on s
numb = f i l ename . s p l i t ( ’ ’ ) [ 1 ]

#i f we are f i x i n g the l e v e l and vary ing the we igh t
i f ” Level ” in d i r e c t o r y :

try :
#weigh t o f modular forms a s s o c i a t e d wi th L−

f unc t i on s
numb = f i l ename . s p l i t ( ’ ’ ) [ 3 ]

except :
pass

else :
pass

ext = os . path . s p l i t e x t ( f i l e ) [ 1 ]
p a t h t o f i l e = str ( d i r e c t o r y ) + ’ / ’ + str ( f i l e )
p a t h t o l c a l c f i l e = str ( d i r e c t o r y ) + ’ / ’ + f i l ename + ’ .

l c a l c ’
i f ext == ’ . dat ’ :

l i n e s = [ l i n e . s t r i p ( ) for l i n e in open( p a t h t o f i l e )
]

l i n e s 2 = [ l i n e . s t r i p ( ) for l i n e in open(
p a t h t o l c a l c f i l e ) ]

#omega o f L−func t ion , taken d i r e c t l y from . l c a l c f i l e
f o r L−f unc t i on

omega = l i n e s 2 [ 8 ]
try :

#y−va lue o f f i r s t va lue o f L−f unc t i on
zero = l i n e s [ 1 ]
#the y−va lue o f the f i r s t zero i s a l s o zero , move

to the second zero
i f f loat ( ze ro ) <= . 0000 01 :

ze ro = l i n e s [ 2 ]
#i f the s i gn o f the f un c t i o na l equat ion i s

nega t i v e
i f omega [ 0 ] == ”−” :

#wr i t e data in t o rank 1 f i l e
g . wr i t e (numb + ’ , ’ + zero + ’ , ’ +

l i n e s [ 0 ] + ’ \n ’ )
#i f the s i gn o f the f un c t i o na l equat ion i s

p o s i t i v e
i f omega [ 0 ] == ”1” :

#wr i t e data in t o h i ghe r rank f i l e
h . wr i t e (numb + ’ , ’ + zero + ’ , ’ +

l i n e s [ 0 ] + ’ \n ’ )
else :

#wr i t e data in t o rank 0 f i l e
f . wr i t e (numb + ’ , ’ + zero + ’ , ’ + l i n e s [ 0 ] +

’ \n ’ )
except :
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pass
f . c l o s e ( )
g . c l o s e ( )
h . c l o s e ( )

In the next function, we see how we were able to gather zeros data on from multiple
directories and group it together to gather statistics for very large families.

def f i n d g i a n t r a n k l i s t ( d i r e c t o r y ) :
’ ’ ’ Takes in a d i r e c t o r y and combines a l l o f the composite z e r o s

f i l e s from s u b d i r e c t o r i e s , then w r i t e s out the se complete f i l e s
with in the d i r e c t o r y ’ ’ ’

f = open( d i r e c t o r y + ’ / r a n k 0 z e r o s . txt ’ , ’w ’ )
g = open( d i r e c t o r y + ’ / r a n k 1 z e r o s . txt ’ , ’w ’ )
h = open( d i r e c t o r y + ’ / h i g h e r r a n k z e r o s . txt ’ , ’w ’ )
for root , d i r s , f i l e in os . walk ( d i r e c t o r y ) :

for dir in d i r s :
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y + ’ / ’ + dir ) :

for f i l e in f i l e s :
i f f i l e == ’ r a n k 0 z e r o s . txt ’ :

f i l ename = open( d i r e c t o r y + ’ / ’ + dir + ’ / ’ + f i l e , ’ r ’ )
f . wr i t e ( f i l ename . read ( ) )

e l i f f i l e == ’ r a n k 1 z e r o s . txt ’ :
f i l ename = open( d i r e c t o r y + ’ / ’ + dir + ’ / ’ + f i l e , ’ r ’ )
g . wr i t e ( f i l ename . read ( ) )

e l i f f i l e == ’ h i g h e r r a n k z e r o s . txt ’ :
f i l ename = open( d i r e c t o r y + ’ / ’ + dir + ’ / ’ + f i l e , ’ r ’ )
h . wr i t e ( f i l ename . read ( ) )

else :
pass

f . c l o s e ( )
g . c l o s e ( )
h . c l o s e ( )

Finally, this set of functions shows how we compute the statistics from the com-
posite zeros files based on rank and print them out into files.

def mean( l s t ) :
’ ’ ’ Computes the mean o f the va lue s in a l i s t ’ ’ ’
return f loat (sum( l s t ) ) / len ( l s t )

def median ( l s t ) :
’ ’ ’ Computes the median o f the va lue s in a l i s t ’ ’ ’
l s t l e n = len ( l s t )
i f l s t l e n == 0 :

return None
index= ( l s t l e n − 1) // 2
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i f ( l s t l e n % 2) :
return l s t [ index ]

else :
return l s t [ index ]

def s t anda rd dev i a t i on ( l s t ) :
’ ’ ’ Computes the standard dev i a t i on o f the va lue s in a l i s t ’ ’ ’
avg = mean( l s t )
var i ance = map(lambda x : ( x − avg ) ˆ2 , l s t )
return s q r t (mean( var iance ) )

def p o o l e d t t e s t ( l s t 1 , l s t 2 ) :
’ ’ ’ Takes in two l i s t s and re tu rn s the t−s t a t i s t i c and degree s o f

freedom f o r a pooled two−sample t−t e s t ’ ’ ’
n 1 = len ( l s t 1 )
n 2 = len ( l s t 2 )
x 1 = mean( l s t 1 )
x 2 = mean( l s t 2 )
s 1 = s tandard dev i a t i on ( l s t 1 )
s 2 = s tandard dev i a t i on ( l s t 2 )
s p = s q r t ( ( ( n 1 − 1) ∗ s 1 ˆ2 + ( n 2 − 1) ∗ s 2 ˆ2) /( n 1 + n 2 −2) )
#t−s t a t i s t i c
t = ( x 1 − x 2 ) /( s p ∗ s q r t (1/ n 1 + 1/ n 2 ) )
#degrees o f freedom
DF = n 1 + n 2 − 2
l i s t = [ t , DF]
return l i s t

def u n p o o l e d t t e s t ( l s t 1 , l s t 2 ) :
’ ’ ’ Takes in two l i s t s and re tu rn s the t−s t a t i s t i c and degree s o f

freedom f o r an unpooled two−sample t−t e s t ’ ’ ’
n 1 = len ( l s t 1 )
n 2 = len ( l s t 2 )
x 1 = mean( l s t 1 )
x 2 = mean( l s t 2 )
s 1 = s tandard dev i a t i on ( l s t 1 )
s 2 = s tandard dev i a t i on ( l s t 2 )
#t−s t a t i s t i c
t = ( x 1 − x 2 ) /( s q r t ( s 1 ˆ2/ n 1 + s 2 ˆ2/ n 2 ) )
#degrees o f freedom
DF = ( s 1 ˆ2/ n 1 + s 2 ˆ2/ n 2 ) ˆ2/(1/( n 1 − 1) ∗( s 1 ˆ2/ n 1 ) ˆ2 + 1/( n 2

−1) ∗( s 2 ˆ2/ n 2 ) ˆ2)
l i s t = [ t , DF]
return l i s t

def f i n d s t a t s ( d i r e c to ry , f i l e ) :
’ ’ ’ Takes in a composite f i l e o f z e r o s and re tu rn s a s t a t s f i l e

ana lyz ing the zero data ’ ’ ’



APPENDIX 3 71

h = open( d i r e c t o r y + ’ / ’ + f i l e + ’ . s t a t s . txt ’ , ’w ’ )
l i n e s = [ l i n e . s t r i p ( ) for l i n e in open( d i r e c t o r y + ’ / ’ + f i l e ) ]
#parameter be ing var i ed in the fami l y o f L−f unc t i on s
numbs = [ ]
for l i n e in l i n e s :

numb, zero , va lue = l i n e . s p l i t ( ’ , ’ )
numbs += [ int (numb) ]

middle = median ( sorted (numbs) )
i f middle == None :

pass
else :

#s p l i t s data s e t i n t o sma l l e r conductor range and l a r g e r
conductor range

s m a l l z e r o s = [ ]
l a r g e z e r o s = [ ]
for l i n e in l i n e s :
numb, zero , va lue = l i n e . s p l i t ( ’ , ’ )

i f int (numb) <= middle :
s m a l l z e r o s += [ f loat ( ze ro ) ]

else :
l a r g e z e r o s += [ f loat ( ze ro ) ]

s = sorted ( s m a l l z e r o s )
l = sorted ( l a r g e z e r o s )
h . wr i t e ( str ( middle ) + ’ \n ’ )
h . wr i t e ( str ( len ( s ) ) + ’ \n ’ )
h . wr i t e ( str ( len ( l ) ) + ’ \n ’ )
h . wr i t e ( str (mean( s ) ) + ’ \n ’ )
h . wr i t e ( str (mean( l ) ) + ’ \n ’ )
h . wr i t e ( str ( median ( s ) ) + ’ \n ’ )
h . wr i t e ( str ( median ( l ) ) + ’ \n ’ )
h . wr i t e ( str ( s t anda rd dev i a t i on ( s ) ) + ’ \n ’ )
h . wr i t e ( str ( s t anda rd dev i a t i on ( l ) ) + ’ \n ’ )
h . wr i t e ( str ( p o o l e d t t e s t ( s , l ) ) + ’ \n ’ )
h . wr i t e ( str ( u n p o o l e d t t e s t ( s , l ) ) + ’ \n ’ )
h . c l o s e ( )

def l oop data ( d i r e c t o r y ) :
’ ’ ’ Takes in a d i r e c t o r y and computes the s t a t i s t i c s o f a l l th ree o f

the composite z e r o s f i l e s ’ ’ ’
for root , d i r s , f i l e s in os . walk ( d i r e c t o r y ) :

for dir in d i r s :
f i n d s t a t s ( d i r e c t o r y + ’ / ’ + dir , ’ r a n k 0 z e r o s . txt ’ )
f i n d s t a t s ( d i r e c t o r y + ’ / ’ + dir , ’ r a n k 1 z e r o s . txt ’ )
f i n d s t a t s ( d i r e c t o r y + ’ / ’ + dir , ’ h i g h e r r a n k z e r o s . txt ’

)
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