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ABSTRACT

This study investigates the possibility of custom fitting a widely accepted
approximate yield surface equation (Ziemian, 2000) to the theoretical yield surfaces of
five different structural shapes, which include wide-flange, solid and hollow rectangular,
and solid and hollow circular shapes. To achieve this goal, a theoretically “exact” but
overly complex representation of the cross section’s yield surface was initially obtained
by using fundamental principles of solid mechanics. A weighted regression analysis was
performed with the “exact” yield surface data to obtain the specific coefficients of three
terms in the approximate yield surface equation. These coefficients were calculated to
determine the “best” yield surface equation for a given cross section geometry. Given that
the exact yield surface shall have zero percentage of concavity, this investigation
evaluated the resulting coefficient of determination (R?) and the percentage of concavity
of the customized yield surface in comparison to those of the widely accepted yield

surface.

Based on the results obtained, only the customized yield surface equations for
wide-flange sections fit the corresponding theoretical yield surfaces better than the
widely accepted yield surface equation. For other sections, the R? was either very small,
negative, or zero for both the customized yield surface equation and the widely-accepted
yield surface equation. By using the concavity test developed in this study, the
theoretical yield surface was found to have a small percent of concavity, which can be

attributed to the high sensitivity of the convexity test to rounding off errors. In these



viii
cases, a negligible degree of concavity was consistently observed at these points.
Therefore, the percentage of concavity of the exact yield surface was subsequently used
as an offset for assessing the concavity of both the widely accepted yield surface and the
customized vyield surface equations. With this approach, both the widely accepted and
customized yield surfaces were shown to be completely convex for all sections except for
hollow circular sections. With regard to both improving R? values and maintaining the
continuous and convex characteristics of a yield surface, only the widely accepted yield
surface equation could be customized to fit the theoretical yield surfaces for wide-flange

sections.



INTRODUCTION

1.1 OBJECTIVE

Most of today’s structural design is based on an analysis that does not account for
the possibility of the material failing, either by excessive yielding or fracture. To assure
that these failure modes will not govern, the capacity of members are significantly
increased when they are designed. Such an approach has proven to be safe and reliable,
but in many cases it can be very conservative and subsequently, less economical. Over
the past twenty years, research has continued in developing more advanced structural
analysis methods that can account for material yielding and thereby allow forces within
the structure to redistribute away from members that are yielding and on towards
members with reserve capacity. Such analysis approaches provide for improved
economy and a better representation of the actual structural performance. With this in
mind, the American Institute of Steel Construction (AISC), which is the governing body
for the design of hot-rolled steel buildings in the U.S., recently released an updated
specification (AISC, 2010) that contains new rules (Appendix 1 — Design by Inelastic
Analysis) that allows engineers to take advantage of the actual material nonlinear
behavior (termed inelasticity) that will occur as a structure reaches its limit state of
strength. Unfortunately, very few of today’s commercially available analysis software

packages provide such functionality. One of the difficulties in developing such software



is providing an analysis that is accurate and can be completed within a reasonable or even

acceptable amount of time (i.e., within minutes, not hours or days).

A key component of such an analysis is the device that is used to determine when
full yielding will occur. This device, commonly referred to as a yield surface, is in theory
a function of each member’s cross sectional shape. As a result, it is unique to each type of
member used. To maintain an efficient analysis, software developers have been using a
single yield surface equation to represent all cross sections (e.g., I-beams, box sections,
pipes, etc.). Unfortunately, this approach can in many cases provide unconservative
results and most engineers agree that a scheme for efficiently incorporating custom fit
yield surfaces within structural analysis software is needed before design by inelastic
analysis will become more common. In this regard, this research explores the possibility
of custom fitting a single general form yield surface to the characteristics and dimensions

of individual structural shapes.
1.2 SCOPE

The scope of this project consists of custom fitting a widely accepted yield
surface equation to all wide-flange, solid and hollow rectangular, and solid and hollow
round shapes. For example, the coefficients (3.5, 3.0, and 4.5) used in the general

expression for a single all-purpose yield surface, shown below as:

p> + mi + my + 3.5p’mi + 3.0p°mj + 4.5mim; = 1.0 Eq. (1)



could be individually tailored to best match the unique theoretical yield surface for a
given cross section. The expected outcome from this study will be a computational
algorithm, based on regression analysis, that determines the best numerical coefficients to
be used in the above vyield surface equation for any given shape (e.g. I-beam) and its
corresponding dimensions (such as height, width, and wall thicknesses). The optimum
numerical coefficients will be determined based on the respective R? and concavity of the
yield surface. Note that only one quadrant of the yield surface needs to be studied

because each quadrant is assumed for isotropic material to be identical to the others.

2 BACKGROUND

2.1 THEORY

2.1.1 YIELD SURFACE

The vyield surface is a “hypersurface” of the combined effects defining a yield
criterion. This can be viewed as combinations of multidirectional stress in a structural
member that result in stresses equal to the yield stress of the material [5]. Theoretically, a
yield surface is a six-dimensional surface, corresponding to the six generalized stress
components. In the plastic-hinge analysis of ductile frames, the specified yield surface is
a stress resultant yield surface that only needs be three-dimensional [1]. The surface is a
non-dimensional function of axial force and bending moments about two axes, all of
which produce normal stress in the direction of the length axis of the member. The

surface is represented by the function:



$(my, my,p)
where:

p = P/P,, the ratio of the axial force to the squash (axial yield) load,

m,= M, /M,,, the ratio of the major-axis bending moment to the corresponding

plastic moment, and

m,, = M,,/M,,,, the ratio of the minor-axis bending moment to the corresponding

plastic moment.

The squash load P, is the product of the cross-sectional area, 4, and the material
yield stress, F,. The plastic moment, M,,, about a principle axis is the product between the
plastic section modulus, Z, about the corresponding axis and the material yield stress, F,.
Figure 1.a shows an example of a plastic-hinge at a wide-flange section that is subjected
to combined axial force and bending moments about two principal axes and Figure 1.b

shows the traces of a typical yield surface.

The reasoning and justification for adopting a three-dimensional yield surface
instead of a six-dimensional surface are presented in Section 2.2.1. The theoretically
exact representation of a yield surface is a multi-faced surface (composed of multiple
equations) as shown in Fig. 1.c. Single-equation yield surfaces, however, are needed
because such forms satisfy the computational requirement of “being a continuous

function” while multi-faced surfaces do not [4].
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(a) (b)

(c) [Reference 4]

Figure 1. (a) Wide-flange section under combined axial and bending loads (b)
sketch of a wide-flange yield surface (c) Chen and Atsuta’s multi-faced wide-

flange yield surface.



The theoretical yield surface can be calculated for a given shape, dimensions, and

material of a cross section based on cross-sectional equilibrium [1].

2.1.2 ROLE OF A YIELD SURFACE IN INELASTIC ANALYSIS

The yield surface is a device that can indicate when plastic hinging occurs.
Yielding is typically defined as a loss of stiffness at a location within a cross section
where any additional stress is redistributed to the neighboring unyielded parts that still
have stiffness. Initial yielding occurs at the beginning of the stress redistribution;
complete yielding or a plastic hinge is the limit at which a cross-section can resist any
additional applied loading. Therefore, plastic hinging serves as an important component
of an inelastic analysis, in which the main goal can be considered as designing members
to use of all their reserved capacity just before the strength limit of the system is reached.
Practically, the yield surface is a benchmark for the design that attempts to maximize the
economy of structural members without exceeding the design strengths. The combined
axial and bending moments that are resisted by a member (after being normalized by the
member’s squash load and plastic moments) is compared with the yield surface of the
member’s cross-section to assess whether or not a plastic hinge has formed. For inelastic
analysis software to perform efficiently it is ideal to employ a yield surface that formatted

into an appropriate single continuous equation.



2.2HISTORY

2.2.1 THE DEVELOPMENT OF YIELD SURFACES

In principle, a stress-resultant yield surface is a six-dimensional surface, which
includes all possible degrees of freedom at a typical member end. Possible member or
element types include the beams, columns, and braces found in a typical structure. These
six degrees of freedom account for the effects of axial force, two directions of shear
force, two directions of bending moment, and torsion. An example of a wide-flange

cross-section of such an element is shown in Fig. 2 [5].

For a stress resultant yield surface, only normal stresses are typically considered.
Normal stresses are the result of axial force and bending moments about two principle
axes, which define the three attributes of the yield surfaces explored in this study. As a
result, this means that the effects of shear force in two directions and torsion are

neglected. By doing so, the following two assumptions must be made:

(a) Material is elastic-perfectly plastic, and

(b) Plane sections remain plane before and after load s are applied.

Elastic-perfectly plastic behavior means that there are no transitions between
elastic and plastic states. Figure 3 is the stress-strain diagram for typical carbon steel. The
stress-strain diagram for an elastic-perfectly plastic material differs from that of the
typical carbon steel in that the transition between elastic and plastic range and strain

hardening are not included. Figure 4 is the normal stress diagram over the depth of a



cross section. For an elastic-perfectly plastic material, the transitional state of stress
occurs between initial yielding and full plastic hinge are ignored. Thus, the cross-section

is either fully elastic or completely plastic.
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Figure 3 (adopted reference [4])
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Figure 4 (adopted reference [4])

2.2.2 CHEN AND ATSUTA’S YIELD SURFACES

Using equilibrium on the cross-section geometry, Chen and Atsuta successfully
derived each exact expression of the interaction equation (yield surface) relating axial
force and biaxial bending moments acting on rectangular or circular sections under the
fully yielding condition. Based on the concept of superposition, Chen and Atsuta
provided methods of analysis to calculate the exact expression of the interaction equation
for other double web and doubly symmetrical cross sections, including wide-flange and
hollow rectangular shapes. This was achieved by treating entire cross-sections as
assemblages of rectangles. Unfortunately, their interaction equations always contain non-
integer exponents, which produce slope discontinuities on their respective yield surfaces.
These discontinuities in slope can provide computational errors in inelastic analysis due

to the potential for numerical instability [4].

2.2.3 ORBISON’S YIELD SURFACE
Based on the work of Chen and Atsuta, Orbison developed a single-equation yield

surface to represent the behavior of W12x31, which can also be used to approximate the
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behavior of light-to-medium-weight American shapes. Orbison’s equation (Eq. 2) was

developed through a process of trial and error curve fitting and is given by the criterion

1.15p* + mg + my + 3.67p’mg + 3.0p°m{ + 4.65mym; = 1.0  Eq. (2)

where p, m,, and m, are defined as above. This objective of this equation is to “a)

conform closely to a realistic, physically derived surface, b) be continuous and convex,

and c) be amenable to efficient computer implementation.” [4].

2.2.4 MASTANZ2’S YIELD SURFACE

MASTAN?2 is structural engineering software developed by Ziemian and
McGuire (MASTAN2, 2011). MASTAN?2 intended for educational use and can account
for both linear and nonlinear structural behavior. Available analysis options include
“first- or second-order elastic or inelastic analyses of two- or three-dimensional frames
and trusses subjected to static loads” (MASTANZ2, 2011). Similar to other available
structural analysis software, the yield surface in MASTAN2 was modeled by a general
single continuous equation. The yield surface equation used in MASTANZ2 is Eq. 1
shown above. The equation was based on Orbison’s yield surface equation with the 1.15

modified to 1.0 so that the full axial yield load of a truss element could be achieved.

This study uses the yield surface equation of MASTANZ2 to custom fit to the real
yield surfaces of selected shapes by modifying the coefficients of the cross-terms

2002 16102 4.2
p“mg, p°my, and mymy.
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3 DISCUSSION

3.1 METHEDOLOGY

The process of custom fitting the MASTAN?2 vyield surface equation to a given
shape defined in terms of its geometric dimensions of height, width, and wall thicknesses

can be divided into the following four main stages, which are also illustrated in Fig. 5.

(1) Using principles of solid mechanics, a theoretically “exact” but overly complex

representation of the cross section’s yield surface, (m,, m,, p), is initially obtained.

(2) Data weighting factors for use in the latter regression analysis are developed from this

representation.

(3) With both the weighting factors and theoretical yield surface data, the approximate
yield surfaces using the form of Eq. 1 are subsequently obtained. Essentially these
“exact” data points are utilized within a weighted regression analysis to obtain the three
aforementioned coefficients and to determine the “best” yield surface equation of the

form given in Eq. 1.

(4) For the convexity requirement of a yield surface, each yield surface obtained through

regression analysis is tested for concavity and compared to the MASTAN?Z yield surface.

It should be noted that all of the work completed in this research is based on
MATLAB, which is computational software that was readily available to the author and

permits routines to be written in module form for any required analysis processes.
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‘;*"'bustom fit MASTAN2 E.Q to 2\1\\.‘

| given shape and dimensions /
N >

I
First stage
\ 4

Generate theroretical yield
surface
(mx, my, p)
I

Second stage
\ 4
Generate weighting factors for
data points (p, mx, my), wt

|
Third stage

v

Perform weighted regression analysis to give outputs:
e Regression coefficients: (C1, C2, C2)
e R square of MASTAN2 and Regression

I
Fourth stage
4

Perform concavity test to give outputs
e % of concavity of theoretical data
e % of concavity of MASTAN2

e % of concavity of Regression

Figure 5. General analysis flow chart.

3.2 GENERATING THEORETICAL YIELD SURFACE (m,,m,,p)

Consider the wide-flange section that is under combined axial force and bending
moment and its plastic hinge diagram shown in Fig. 6. The plastic hinge stress block
diagram is modeled the same way for all types of cross sections, where the yield stress of

material is reached throughout the depth of the cross section. The defined neutral axis
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(N.A.) divides the cross-section into compression (-) and tension (+) regions. The Section
Assemblage Concept defines that the plastic hinge stress block diagram can be
represented by the combination of a moment stress block diagram (above and below the
neutral axis) and axial stress block diagram (neighboring the neutral axis). With N.B.
defined as the reflection line of N.A. about the center of the cross-section, the position of

N.A. is that of N.B. if the moment changes direction.

T [ f 1 L _i'_y
N-J _____ - | e I (e N Fy
F P
. - M e
H.B. - *
e e T e e I - .
— — % _ 3 SN R
Fy Fy
Loadings of a wide Section view Flastic hinge Moment stress Axial stress
flange section stress block block (top& bottom) block{center)

(a) Negative moment.

T bf Fy F)%
il _
NBJ _____ ~~ds2 Y Y Fy
F - _ ) P
) - M + R
I > S | - 3
+
— R | g ‘ [ N R S SR
Fy Fy
Loadings of o wide Section view Plastic hinge Moment stress Axiol stress
flange section stress block block (topd bottom)  block(center)

(b) Positive moment.

Figure 6. Plastic hinge stress block diagram. (Wide-flange section)

Following this stress distribution, stresses contributed by axial forces and bending
moments can be represented by axial area A,, and bending moment area A,,. Therefore,

the cross-sectional area A can be considered as the sum of the axial and bending moment
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areas: A = A, + Ap,. Based on cross-section equilibrium, the ratio of the axial area to the
cross-sectional area is p = P/P, = A,F,/AF, = A,/A and the ratio of the bending

moment area to cross-sectional area is (1 — p) = 4,,/A.

If P, M,, and M, are the given axial force, the major-axis bending moment ( x-
axis) and minor-axis bending moment (y-axis), respectively, and B,, My, and M, are
the squash load, major-axis plastic bending moment, and minor-axis plastic bending
moment, respectively, then the ratios p = P/P,, my, = M, /M,,, and m,, = M, /M,,,, are

dimensionless components of the yield surface.

Given that a cross-section can be subjected to both axial force and bending
moments and such force and moments can be applied about various axes, there is an
undefined number of different locations for the N.A. (Fig. 7). In addition, a given
location of the plastic neutral axis corresponds to a single point (m,,m,,p) on the
theoretical yield surface. The location of the N.A. needs to be varied widely so that a
well-distributed cloud of sampling data points (m,,m,,p) can be obtained that is
intended to represent the theoretical yield surface. An adequate number of points, here,
does not imply a specific number but rather a large enough number of data points that
allows a reasonable calculation time and will not improve the results significantly when a
larger number of data points is used. Generating a cloud of uniformly distributed data
points can be a challenge. Weighting factors, however, can be used to ameliorate this
distribution problem when performing the regression analysis. The determination of such

weighting factors is presented in Section 3.3.
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RLA,

Figure 7. Different cases of neutral axis (N.A.)

The value of p at a given point (m,, m,,p) and the location of the N.A., which
can be represented by the angle made by N.A. and the horizontal x-axis 6, can be used as
controlling factors of the distribution of the data points. This is because p is the vertical
component of each data point and the other two components (m, and m,) are only
functions of 6. To allow variables p and 6 to be the controlling factors, the below
strategy that is based on the Section Assemblage Concept defined above is used for all

shapes and dimensions investigated in this research (refer to Fig.8):

e Let the origin be at the center of the cross-section.

e Let 6 be the angle made by the neutral axis and the horizontal x-axis.

e The cross-section can be divided into (1) an axial force segment, which is the
region subjected to axial force and (2) a bending moment segment, which is the
region subjected to the major- and minor-axis bending moments, by using the
following process:

1.) Draw a center line C.L. through the center of the cross-section and parallel to

N.A.
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2.) Draw N.B., the inflection line of N.A. about C.L. and make r an equal
distance from C.L. to N.A. and N.B.

3.) Make the axial force segment be the region on the cross-section between N.A.
and N.B. This region has an area A,,.

4.) Make the two regions (shaded) on the other side of N.A. and N.B. be the
bending moment segment. They are geometrically symmetric and each of an area
A /2.

5.) The value of p and 8 then will dictate the shape of these three segments.

Yy oA Axial force
y segment, Ap=pxA
/ 4 /['L'
Bending moment—"|
seqment, AmJsZ - B.
e -
/ ! W
r
/—Bending momen
/ %% segment, Am/iZ
= !

(a) Solid rectangular section
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(d) Hollow circular section
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(e) Wide-Flange section
Figure 8. Partitioning of different cross-section shapes:

(1) Region subjected to Moments above N.A. of area Am/2.
(2) Region subjected to Moments below N.A. of area Am/2.

(3) Region subjected to Axial Forces of area Ap.

For a given p and &, normalized moments m,, and m,, can then be calculated as follows.
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Plastic bending moments M,,, and M, are previously defined as the products
between their respective plastic section modulus Z and material yield stress, F,, where Z

is a function of cross-section shape and dimensions:

Mpx = ZxFy, (Eq3)
My, = Z,F,.

Bending moment about a particular axis is defined as the product between the areas of

bending moment segment A4,,, and the moment arm C about the axis of interest:
M, = A, X Cy, (Eq.4)
M, = Ay X Gy,

where A4,,, can be calculated from the given value of p as previously defined and moment
arms C, and C,, about the x-axis and y-axis can be determined from the coordinates of the
vertices of the polygon defining the bending moment segment. The calculation of
moment arms for different shapes of bending moment segment is presented in Section

3.2.1.

Coordinates of vertices of different shapes of the bending moment segment can be
derived mathematically for different cross-section shapes (rectangular, circular, wide-
flange, etc.) and dimensions using geometry and an interpolating technique in MATLAB.
Vertices and other information defining the bending moment segment are presented in

Section 4 for each cross-section shape.
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‘,"/Generating theoretical yield\\‘\)
\ surface (mx,my,p) /
| _
Step 1
v

For given:

e Shape and dimensions
Calculate cross-section properties:
e (Cross-sectional area, A

e Plastic moments, Mpx and Mpy
|

Step 2
v
For given:
e Location of neutral axis ® and p
Calculate:

e Coordinates of vertices of bending
moment segment (of area Am)
¢ Moment arms Cx, and Cy.

|
Step 3

v

For given:

e Area (Am) and moment arms
(Cx, Cy)

Calculate:

e mxand my

Figure 9. General steps of generating theoretical yield surface.

Overall, the three routines---“Moment Arms”, “Weighting Factors” and “Regression
Analysis”---are determined in the same way regardless of shapes and dimensions. The
only routine whose method of determination is unique for different shapes is “Generating

Theoretical Data Points (m,,m,,p )”. The general steps of generating data points
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(m,,m,,p ) are presented in Fig.9 and the more detailed methods for different shapes are
y

presented in Section 4.

3.2.1 MOMENT ARMS

POLYGONS

The major- and minor-axis moment arms of a given polygon are the distances
from the centroid of the polygon to the x-axis and y-axis, respectively (Fig.10). The

position of the centroid of the polygon is given as the following:

1

Cy = Yot + X1 (XiYie1 — Xi41Vi) Eq. (5)
6Apolygon
1 —
Cy = YL 4 Yis) (XiYiv1 — Xiva Vi)

6Apolygon

i~ el 1)
{xZ.v2
N=f
|t O :Centroid
FURTY]
[%5,45]
Cy
{xd,yh)
" A
0 -

Figure 10. Centroid of a polygon.
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where, Apoiygon IS the area of the polygon, which in the case of bending moment

segment is A,,/2 , (x;,y;) are coordinates of a given vertex i, and N is the number of

vertices as shown in Fig. 10.
CIRCULAR SEGMENTS

For a circular segment shown in Fig. 11, its centroid can be determined according

to Eq. 6:

‘Y

1

. 1

b

A~"" *

/ -.;<
Figure 11. Centroid of a circular segment.
e Horizontal component of the centroid: x = 0 Eq. (6)

arsin()?

e Vertical component of the centroid: y = 3(B—sin(g))’

where R is the radius of the circle and g is the radius angle of the circular segment.
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3.3 WEIGHTING FACTORS

This study explored two methods of defining weighting factors that can be used to
help rectify a point distribution problem within the yield surface data points. Generally, a
weighting factor is the value that is assigned to each point on the surface to reflect the
amount of exact surface area to be represented by the point while performing regression

analysis.

The first method defined boundaries between approximated areas represented by
all points and these areas are used as weighting factors. This type of weighting factor
method is termed “area weighting factors.” Note that, because the yield surface data
points are not in the same plane in three-dimensional space, the calculated area
represented by each point is the approximation of the area of the corresponding point on
the exact yield surface. What matters here, however, is the relative size between areas
represented by all points rather than the actual values of exact areas themselves. For
visualization purposes, one quadrant of the yield surface was flattened out onto a plane as
shown in Fig. 12. Lines in black are traces of the yield surface, where each intersection
between these lines defines a point on theoretical yield surface: O(j, k). Lines in red are
traces of the boundaries between areas represented by points on yield surface. Lines in
green are diagonals of the three-dimensional quadrangle’. Lines in blue are traces of

neighboring quadrants of the yield surface.

L A three-dimensional quadrangle here is defined as a quadrangle whose vertices are not on the same plane

in three-dimensional space.
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For the points whose k-coordinate is not n or (n — 1), the area represented by a
given point O(j, k) was calculated with the following strategy. For each point, eight
immediate neighboring points are identified:A(j —1,k), B(j,k—1), C(, k+ 1),
DG +1,k), EG—1,k—1), Fj+1,k—1), GG—1,k+1) and HG + 1,k + 1) as
shown in Fig. 13a. Because all these nine points are not on the same plane in three-
dimensional space, the area represented by a given point O is approximated as the
summation of four triangles ROS, SOT, TOU, and UOR, where R, S, T, and U are
defined as the “virtual intersection points” between the diagonals of three-dimensional
quadrangle AGCO, CHDO, DFBO, and BEAO, respectively. A “virtual intersection
point” is the mid-point of the shortest line drawn between two skew diagonals of a three-

dimensional quadrangle (Fig. 13b).

.

. o, ;"‘r
s o
Area reprasented by paint (jk A X, i
Vi 1 \;%/—cose# & kwl.n—1ndjem
XA TS
. N
RN T AN
k=3 // \‘\
, \\ aze# 5 kgl.n—Tné&j=m
\\
\
S\
N,
Y

| 4

\
LA
T

=1 j=m—1 =m kc
ased2 k=1&=1 asefd k=Thj=m

ase#l k=1&jgl,m

(1) Lines in black are trace of yield surface,

each intersection of the between black lines

defines a point on wield surfoce

(2} Lines in red are trace of boundaries between

areas represented by points on yield surfocs (a)
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cased Ob) k=rikj=m
cased Blaf k=ndj=1 ~
case# B(g) k=n&j#l.m

Araa represent?d/ by point {jk=n)

/
/

Area represented byf point [jk=n—1}

cased 7B} kig—’l&jﬂ

Y k=n—1/i

o (b)
Figure 12. Area weighing factors.

For points whose k-coordinate is (n — 1), the same strategy that is used with
points whose k-coordinate is not n or (n — 1) applies except that Rand S for k = (n — 1)
are defined differently from above (Fig. 14.c). The point R for k = (n — 1) is defined as
the midpoint of the line connecting AO (x—n) and O=n_1)0 k=n) at their respective
midpoints. Point S for k = (n — 1) is defined as the midpoint of the line connecting

O(k=n-1)0 (k=n) @nd DO (x—p, at their respective midpoints.

For points whose k-coordinate is n, the interest area is the area of triangle RSOy—,,
where R and S belong to their corresponding Oy.— -1y point (Fig. 13c). Note that points
along the edges of one quadrant of the yield surface are shared with one to three other

quadrants. Therefore, the areas that the edge points are representing are beyond those in
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only one quadrant of the yield surface. For this reason, there are eight cases of points

whose calculations of area are distinguishable from each other’s as shown in Fig. 12.

Glj=1,k+1) C(k+1) H(j+1,k+1)

F 5
(=1, ) (1,0
U T
i=1,k=1) (ik—1) (j+1,k=1)
e
(@) (b)
O(k=n}

\é\ Mpy
Alk=n—1 -1 D(k=n—1) My
9] T
Mpx
Quadrant Il Quadrant! O Edge point
k=n—1) B{k=n—1) Flk=n-1) b M % Symmetric point
(©) (d)

Figure 13. (a) A given point O for k # n — 1, n. (b) Defining a virtual intersection
point. (c) A given point O for k = n — 1 and O for k = n. (d) Edge points and

Symmetric points.
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The rule of thumb for cases where the edge points of one quadrant of yield surface that
can be shared by two or more quadrants is: the immediate neighboring points of an edge
point of one quadrant are geometrically symmetric to those of the other quadrants, with
which the edge point being shared, about the axis the edge of yield surface that contains

the edge point lies on (Fig. 13d). The different cases of points are listed below.

o Case#l, k=1&j+1m
o Case#2,k=1&j=1
o Case#3,k=1&j=m
o Case#d k#1,n—-1n&j=1
o Case#5,k+1,n—1,n&j=m
o Case#6,k #1l,n—1,n& j#1m
o Case#l,k=n—-1
@k=n—-1&j#1m
Mk=n-1&j=1
€ k=n—-1&j=m
o Case#8,k=n
@ k=n&j=1
b)) k=n&j=m

€ k=n&j+1m

As a second method for calculating weighting factors, the area represented by

each point is calculated by means of determining the “crowdedness” of that point.
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Crowdedness of a point is represented by the ratio of (i) the area of a circle whose radius
is the average distance from the interest point to the eight immediate neighboring points
to (ii) the sum of the areas of all circles (Fig.14). The same strategy used for neighboring
points of an edge point of the area weighting factors is also used for computing

crowdedness-weighting factors.

ase# 8 k=n

cased 7 k=n— k=n
/f
k=n—12 .
.r}f \\\
4 asefl & k&l,n—T,ndjm

3
\\
\\
\k
i1 k1Y (k41D FH1 ke \

Area represented by point (jk

Y ase# S k#l,n—"1,ndj=m

= \ FEm-—1 =m
J 3 k=1&j=
ase#? k="1&[=1 ase#l k=1&je1,m ase# j=m

(1) Lines in black are trace of wyleld surface, each
intersection  of the between block lines defires a
point on yield surface

(2) Shaded circle whose radius is average distance
between point [k} to its neighboring peints. Its area
is the area represented by peint (jk).

Figure 14. Crowdedness weighting factors.

3.4 REGRESSION ANALYSIS
After the exact representation of the yield surface is obtained, a regression
analysis can be performed. There are two goals in this regression analysis. The first is to

determine the “best fit” coefficients c,, c,, c5 in the general yield surface equation Eq. 7.
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¢ =p* +mi +m; + c;p*mZ + cp®m3 + czmym;, Eq. (7)

For a general yield surface point i, Eq. (7) can be re-arranged as
Y; = C1Zin t C2Zip + C3Z;3 Eq.(8)

where

y;=(@—p*-m; —mj),

ziy = (p*m3);

Zip = (PGmgzz)i

Ziz = (mfémgzz)i
and y, is the general component of a column vector {Y} of length n, where n is the total
number of yield surface points generated and {Y} is a defined property of the theoretical
yield surface because it is only a function of theoretical yield surface data points
(my, m,,p ), and @ theoretically equals 1.00. Variables z;;, z;,, and z;; are the general
components of matrix [Z] of size nx3, which is also a property of the theoretical yield
surface. In least-squares regression, if the right-hand side expression c;z;; + cyz;, +

c3z;3 Is the linear model of the left hand side dependent variable y, , then the difference

between y; and ¢, z;; + ¢z, + c3z;3 is the residuale;.

€ =Y, —Ci1Zj1 — C2Zjp — C3Z;3 Eq.(9)

The objective of a least-squares regression approach is to minimize the sum of the

squares of the residuals S, between measured y and calculated y with the linear model.
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Sr = Z?:l eiz = Z?:l(yi,measured - yi,model)2 EQ-(]-O)
n
Sy = Z()’i = Zj101 — Zj2Cy — Zl'3C3)2
i=1

Differentiating with respect to each of the unknown coefficients,

as,

Fr -2 Z(}’i — Zj1C1 — Zj3Cy — Zi3€3)(2i1) = 0
€1

0S.

5 T=_2 Z(yi — Zj1C1 — Zi2C3 — Z3¢3)(Z;2) = 0
C2

aS,

5 =-2 Z()’i — Zj1C1 — ZipCy — Zi3X3)(Z;3) = 0
C3

and performing algebra results in
27i1(zi 61 + Zip¢5 + Zi3¢3) = Z(211) (Vi)
2212(2i161 + ZiaC5 + 2i3¢3) = E(2i2) 1)
22i3(2i161 + ZipC5 + 2i3¢3) = E(2i3) 1)

These equations can be expressed in matrix form as

27221 X227  XZi3Zi3|{C2 2(zi2) i)

XZi1Zin  2Zi1Zip ZZiﬂiaHQ} 2(zi1) (i)
Y7321 XZi3Zip 273231 \C3 2(ziz) (i)

With
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(Y1)

Z11 Z21 231 Z41 - Zm 'yz I

{RHS} = [212 Zy2 Z3p Zay - Zn 43’3 E
Z13 233 233 Z43 - ZIn3

211 Z12  Z13 1

Z11 221 Z31 Za1 - Zna|Z21 Z2z2  Z23 |

{LHS} = [212 Zy2 Z3p Zaz - an] {231 Z3p  Z33 j
Zi3  Zp3  Z33 Zaz - Zpzl| i : :
(2] Zn1  Zn2  Zn3

The resulting regression equation is
[Z]"[Z]{C} = {[Z]"{Y}}

where {C} is the coefficient vector of size 3x1 and whose components are ¢4, ¢;,c3. By

using Gaussian elimination, {C} can be calculated as:

(€} = [[21"121] {21 (v} Eq.(11)

The second goal of the regression analysis is to find the coefficient of
determination R? of MASTANZ2 equation, R% 4sran2, and that of the regression equation,

Riegression- In general, the coefficient of determination can be calculated as
R? = (S; — S,)/S:, Eq.(12)

where S, is the total sum of the squares around the mean for independent variable (y,) ,

which can be calculated as

St = Z?:l()’i - yave)z: Eq.(13)
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inwhichy_  isthe mean of y. , defined as the arithmetic average of y..

To incorporate the weighting factors into the regression analysis, the same steps

as shown above are employed with the weighting factor w; of each data point

incorporated as follows

Sr = Z?:l Wieiz = Z?:l Wi (yi,measured - yi,model)2 Eq-(14)

n
_ E 2
S = Wi (Vi — Zi1C1 — ZizC3 — Zi3C3)
i=1

Differentiating with respect to each of the unknown coefficients,

aS,
5 = —ZZ w; (Vi — 2161 — ZipC; — Z3¢3)(2i1) = 0
C1
aS,
5 = —ZZ w; (Vi — 2161 — ZipC; — Z3¢3)(2Zi2) = 0
C2
as,
9c = —ZZ w; (Vi — Zi1€1 — ZipCp — Zi3€3)(Zi3) = 0
3

which can be expressed as
Xw;Zi1 (Zi1C1 + ZipCp + Zi3¢3) = Ew;(2i1) (V1)
XW;zi5(zi1¢1 + ZipCy + Zi3c3) = Ew;(2i2) (Vi)

Xw;zi3(zi1¢1 + ZipCy + Zi3c3) = Zw;(2i3) (V)
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In matrix form is

IWiZipZiy  IWiZjpZip  IW;ZjpZi3|{C2 w;(zi2) (7:)

[ZWiZnZn IW;Zi1Z;; ZWiZilzisl{Cl} Xw;(zi1) (Vi)
IW;Zi3Zyy  EWiZj3Zi;  IWZi3Zizl\C3 >w;(zi3) (¥;)

With
V1
WiZ11 WpZ31 WsZ3zy WyiZyy o WpZpi] | V2
{RHS} = |W1Z12 W3Zpp W3Zzp WiZyp oo WpZpa| (Y3
W1Z13 WyZpz WsZzz WpZy3z ... WpZps
",
Z11  Z12  Z13
W1Zy11 W3Zpy1 W3Z3q WyaZyy o WpZnil|Zo1 Zyp  Zp3
{LHS} = [W1Z12 WzZ3; W3Z3p; WiZyy ... WpZpp||Z31 Z32 233
WiZ13 WaZz3 WgzZzz WyZy3 ... WpZpg : : J
Zn1 Zn2 Zn3
[Z]
and

[W1 0 0 0 07> (W1Y1)
| 0 %) 0 0 0 Iyz I I 485
0 0 ws 0 O 43’3¥=4W13’3¥

|
SN

[W]is the diagonal of column
vector of weighted factor

the resulting system of equations is
[Z]"W]IZ]{C} = [Z]"[WI{Y}

And again by employing Gaussian elimination, the coefficients are computed from
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(¢} = [[z1" W1lz1) " {[Z]" WYy Eq.(15)

3.5 CONCAVITY TEST

A concavity test was derived in this study to check the required convex behavior
of a yield surface. The results of a concavity test on a yield surface are defined by the
percentage and degree of concavity of the yield surface. The percentage of concavity can
be obtained as the percentage of number of concave points among the total data points.
The degree of concavity of a yield surface may be represented by the depth of depression
at the concave point. The depth of depression can be related to the slopes falling from the
neighboring points to the center of the depression, which is the location of the concave

point. The steeper the slopes are, the higher the degree of concavity.

A concavity test that is capable of differentiating the concave points from the total
data points and approximating the slopes falling from the neighboring points to the
concave point was developed based on a MATLAB function called “SURFNORM.” The

syntax for SURFNORM function is
[Nx,Ny,Nz] = SURFNORM(X,Y,Z).

“This function returns the components of the three-dimensional normal vector for the
surface defined by point arrays (X,Y,Z). The result is normalized to length 1~

(MathWorks, 2012). The direction of SURFNORM surface normal at every point is the
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same, that is they are all either pointing inward or outward. This direction, however, can

be reversed by applying transpose to the inputs as shown below
[Nx,Ny,Nz] = SURFNORM(X’,Y’,Z")

When applied to this study, the cloud of points (m,, m,, p) that make up a yield surface,

are included as follows

[Nx,Ny,Np] = SURFNROM (m,, m,,p)

al

el |
I |

(a) (b)

Figure 15. SURFNORM surface normal N pointing in positive vertical direction (a)

at a convex point. (b) at a concave point.

The routine returns an array of the components of the three-dimensional yield surface
normal at each yield surface point, which each has a length of 1 and its direction can be

manipulated to either point inward or outward. If the surface normal at each is directed to
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point in a known vertical direction the dot-products between the surface normal N and the
vector v that originates at the interest point and ends at each neighboring point can
indicate whether this given point is a concave or convex point on the surface. This

statement is illustrated in Fig. 15.

For example, suppose that each surface normal N is to point in the positive
vertical direction. If N belongs to a convex point (Fig. 15a), the angle (a) made by N and
the individual vectors v must be obtuse. In other words, the dot-product between N and v
gives a negative value. Instead, if N belongs to a concave point (Fig. 15b), @ must be
acute and the dot-product between N and v gives a positive value. If N is to be reversed

in direction, the above rules also need to be reversed.

In summary, a point can be classified as a concave or convex point by only
checking the signs of the dot-products between N and the v’s with respect to the
specified direction of N. The largest magnitude of dot-products is termed the “concavity
coefficient.” The degree of concavity of a given point can be related to the concavity
coefficient. The larger the negativity or positivity of the concavity coefficient of a point

is, the greater the degree of concavity at that point.

On the other hand, the percentage of concavity of the yield surface (%con) can be
obtained as the percentage of concave points out of the total data points of the yield
surface. Weighting factors can also be incorporated into the calculation of the percentage

of concavity.
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Yocon = 2L x 100% Eq.(16)

wi

where w; ., IS the weighting factor corresponding to the yield surface point

(Mg, myy, p;) that tested as concave.

The validity of the concavity test was verified by running this test with the
theoretical yield surface data. The results show that the theoretical yield surface, which
shall be entirely convex or have a zero percent of concavity, contains a certain percent of
concavity. Because this should not be occurring, the appearance of a small percent of
concavity in the theoretical yield surface was deemed due to the round-off error. This
conclusion was made by three-dimensional plotting and observation of the degrees of
concavity at the points on theoretical yield surface that tested concave. Due to the fact
that some parts of the yield surface are almost flat or almost have zero degree of
convexity, the differences between being convex and concave are almost negligible.
Therefore, to test the customized yield surface, the concavity test are calibrated using the

percentage of concavity that exists in the corresponding theoretically exact yield surface.

3.6 ANALYSIS

There are two options of analysis that were investigated in this study, including (1) with
area weighting factors, and (2) with crowdedness weighting factors. Initially, these two
different sets of analysis were done for selected dimensions from all cross section shapes.
The results of these two sets of analysis were then compared to each other with respect to

the R? value and percentage of concavity. The weighting factors in the set of analysis that
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on average provides better R? and smaller percentage of concavity would be used within

the regression analysis and concavity test for the remaining shapes and dimensions.

The general steps of analysis of both sets for all shapes and dimensions are the
same. The only difference is the weighting factors that are used. Figure 16 shows the
detail flowchart of custom fitting MASTAN2 equation to the theoretical yield surface of
a wide-flange shape by using area weighting factors. First, the dimensions of the wide-
flange shapes are called from the database (“\Wshape.mat”). Then, the algorithm that is
required to calculate the theoretical yield surface and its corresponding weighting factors
is called (“wshapeyld.m”). With this information, weighted regression analysis is
performed to find the best coefficients. With the coefficients found, R? of both regression
and MASTAN2 equations are determined. Before the concavity test can be performed on
either regression or MASTANZ2 equation, the offset value must first be determined by
performing concavity test on the theoretical data. Two separate but similar algorithms
were created for testing percentage of concavity of theoretical yield surface and
approximate yield surfaces. One algorithm takes an array of yield surface points as inputs
(“yldsurf data concavetest.m”)and the other algorithm takes coefficients within the form
of Eq. (1) as inputs (“yldsurf eq concavetest.m”). Finally, a summary of required results
is made available for record. A similar flowchart, which is not shown here, is also used
for the set that uses crowdedness weighting factors. This analysis process is used for all
shapes. Only the routine that is required to generate the theoretical yield surface that is

unique to each shape.
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- ~.

‘/ Start
\ (Wide Flange)

f Load up database:
‘\ Database: [W section_name, d,bf,tw, tf]=textread('WShape.mat’,’%s %f %f %f’, ‘commentstyle’, ‘matlab’);

| 1

» Doi=1ton

A4
Calculate the Theoretical Data Points and Weighting Factors (mx,my,p,wt):
Function# 1:[p mx my wt]=wshapeyld(d,bf,tw,tf)
Input:(d{i),bf(i),tw(i),tf(i)

Output:[p mx my wt]
Perform Regression Analysis to give Area Regression Coefficients:
Coef r=[cl, c2, c3]

Calculate Coefficient of Determinations:
* Rsquare of Regression Equation (Rsqgrd_r)
e R square of MASTAN2 Equation (Rsqrd_mstn2)

}

Perform Concavity Test on the Theoretical (real) Data Points to get:
 Percent of concavity of real data point (percent_concave_real)

« Concavity Coefficient of Point with Maximum degree of concavity (CC_real)
Function# 2: [percent_concave, CC]=yldsurf_data_concavetest(mx, my, p)
Input: (mx, my, p)

Output: [percent_concave_real, CC_real]

L4
Perform Concavity Test on the Regression and MASTAN2 Data Points to get:

e Data points (mx, my, p}

* Percentage of Concavity

Function# 3: [mx, my, p, percent_concave]=yldsurf_eq_concavetest(coef,num, offset)
(1) Area Regression Coefficients Equation

Input: {Coef_r, 200,CC_real)

Output: [mx, my, p, percent_concave_r]

(2) MASTAN2 Equation

Input: {(Coef_mstn2, 200, CC_real)

Ouput: [mx, my,p, percent_concave_mstn2]

Summary Results:
Matlab code:
disp({W_section_name(i) Coef r(1) Coef r(2) Coef r(3) Rsqrd_r Rsqrd_mstn2 percent_concave_r percent_concave_mstn2])

P
/

\

Figure 16. Detail flowchart of analysis for wide-flange sections.
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4 METHODS AND RESULTS

In the following sections, the input dimensions of each cross-section shape are defined.
By referring to the flowchart in Fig.9, the formulas required for calculating cross section
properties and derivation of bending moment segments that contribute to the steps for
generating theoretical yield surface for each cross-sectional shapes are provided in their

respective sections. The results of the analysis and the discussion are also included.

4.1 SOLID RECTANGULAR SECTION

4.1.1 METHOD

Inputs: cross-section dimensions:

h = depth of the shape
b = width of base
E, = yield strength of material

Output: arrays of p, m,, and m,,.

STEP #1 CROSS SECTION PROPERTIES (4, My, M},,)
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Y &, -
i Axial force
L mEﬁ/quegmen’r, Ap
/ //IZ.L.
Bending mmmen’r—/ﬁ

C B
segment, Am/? A ¥ 9 e /__\j

X

/a—Bending moment

/ % sagment, Am/?
Y 3/
(] _hs2 M
Figure 17. Solid rectangular section
For rectangular section:
e Cross-sectional area, A = bh Eq.(17)

. bh?
e Plastic Moment, M,, = F, —~

STEP #2 BENDING SEGMENT’S VERTICES AND CENTROID

By studying the possible locations of N.A. on a solid rectangular section, there are
three cases for which the N.A. can be located to give different cases when defining the
bending moment segment (Fig.18). These three cases of the bending moment segment are
distinguished by two different cases of critical angles 6.. These two critical angles need
to be determined before the study of different cases of bending moment segment can be

done.
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-

Eending moment Bending moment: Bending moment: i
segqment, Amfﬂ_\ T segment, Am/ A segment, ﬁ«mf?\ i L
M4,

X7 I I keg

/

/

N
Rectangular section: Rectangular section: Rectangular section:
Caze # 1 Case # 2 Case 3

Figure 18. Different cases of the shape of the bending moment segment for solid

rectangular section.

FIND CRICTICAL ANGLES:

e The first critical angle 8.4 occurs when B is over lapsed with M (Fig.19).

Banding mormeant

sagmant, Am/2

L
|
Y4

b2 Y
] X
1A
D
G “Ff3 N

Figure 19.Critical angle, case #1
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Observe: Ay
1 1,5
AALM= Ey4b = Eb tan (0)
A4 1S also equal to half of the area subjected to moment A,,,.

Thus,

tan(8) = A,,/b?
0., = atan(4,,/b?) Eq.(18)

The second critical angle 8., occurs when A is over lapsed with O (Fig. 20).

Observe: Aprp

Aors=5xsh = 5 h*cot (6)

Banding moment
segment, Am/s2 NAY
K‘Lﬁ X Lo I
L h/2 M
B
ac
-hi2 0 bf2
X
3 @c
< A X e M

Figure 20. Critical angle, case #2



Ao 1S also equal to half of the area subjected to moment 4,,,.

Thus,

cot(@) = A,,/h?

0, = cot(A,,/h?)

DIFFERENT CASES OF BENDING MOMENT SEGMENT:

CASE#1, 6 <0,

The bending moment segment in this case is polygon ALMB. Its vertices can be

calculated as:

segment, Am/?2
L

>

Bending m@men’r\ v
]

CL.

.
\

~b/2 h/2 _
AT
a Yf hiZ N

Figure 21. Solid rectangular section, case #1

M.A.
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Eq.(19)



o Llpy)=(-33

o M@y yu) = (G5)

® A(xAlyA)
b
xA = _E
y4 = 0D + AD
Ya=Y1t+Y

But, y; = r/cos (0)
Find R

Areaygep = CD X1
But,

CD = b/cos (0)
And,

Areaupcp = Ap/2
Then,

. Apcos (0)
2b

So,

vy, = (h — btan(6))/2

Hence,



Ap
V4 = > + (h — btan(60))/2

e B(xg,y5)
xB = b/2
Y = Va + CD X sin (8)

A, h—btan(6) _
Vg = > + — + bsin (8)/cos (0)

CASE#2: 0, <0 <0,

The interest region in this case is the triangle ALB. Its vertices can be calculated as

o Lly)=(-33

i A(xAlyA)
b
xA = _E
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Figure 22. Solid rectangular section, case #2

Find y,

Observe Ay;p:

Aaip= AL X LB = y,x,
But,

X4 = ya/tan (0)

Then,

Aprp= %yf/tan )

Also,
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Ay p= Am/2
Then,
y4 an( ) tan (9)
Hence,

= h —tan(9) |2z
Ya = an tan(6)
B(xp,yg)
Xp =Xx4—b/2

b An

¥ =T 2 + tan (0)
yg = h/2

CASE#3: 0 > 0,

The interest region in this case is the polygon AOLB. Its area can be computed by

knowing the coordinates of its vertices.

¢ 00 +yo)=(-2,—2)

o LOpy)=(-2,3)

d A(xAlyA)
Ya=—h/2
b
xA = —=+4 x4_
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Figure 23. Solid rectangular section, case #3

Find x,

X4 =b—(x1+x3)

x; = R/sin (0)
Observe: polygon ABCD
Areaygep =1 X CD

CD = h/sin (0)
However,

Areaypcp is also equal to half of area subjected to axial forces A, /2.

Then,



_ Apsin (0)
"= on
So,

Ap
x1 -_ ﬁ

x; = (b+x3)/2
But,

X3 = h X cot(0)
Then,

Xy = (b+ h Xcot(0))/2

So,
A, b+ hXxcot(8)
—ph_ (P
b A, b+ hXcot(0)

xA - 5 + b - % + 2

_ heot(0) 4
Xa = 2 2h
B(xg, ¥5)

Xp = —§+(x2—x1)

b b+hxcot(0) 4
BT 75 2 2h

_h
YB—Z
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4.1.2 RESULTS

The theoretical yield surface of a solid rectangular section is the same for any proportions
of solid rectangular section. The interaction curves (traces of the theoretical yield surface)
of a solid rectangular yield surface are shown in Fig. 24a. They are identical to
interaction curves for the solid rectangular section calculated by Chen and Atsuta that are
shown in Fig. 24b. The comparison between the major- and the minor-axis bending

interaction curves of the theoretical, regression and MASTAN?2 are shown in Fig. 25.

—.
0ol 2\ Solid rectangular section
0.4 !

08}

A

0a
06f

0.5}

ry

04t

0.3t

0.2

01t

(@)



1.0

(b)

Figure 24. Top views of theoretical interaction curves for solid rectangular section
(a) calculated in this study and (b) calculated by Chen and Atsuta (adopted from

reference [2]).
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Figure 25. Interaction curves for a solid rectangular section (h/b=10), (a) major-axis

and (b) minor-axis.
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For major-axis, the regression curve underestimates the theoretical curve when
p=[0,0.65] and overestimates the theoretical curve when p=[0.65,1]. The MASTAN2
curve underestimates the theoretical curve when p=[0,0.83] and overestimates the
theoretical curve when p=[0.83,1]. For minor-axis behavior, the regression curve
overestimates the theoretical curve when p=[0,0.69], just overestimates the theoretical
curve when p=[0.95,1], and underestimates the theoretical curve when p=[0.69,0.95]. The

MASTANZ2 curve overestimates the theoretical curve for all values of p.

The results of the analysis of solid rectangular section are shown in Table A.1.
MASTAN?2’s coefficients provide a negative R? value of -0.5842 and the yield surface
that is completely convex. This indicates that the general form of Eq. 7 cannot be used to
model the theoretical yield surface of a solid rectangular section. The regression
coefficients found with and without using weighting factors all provide with an R? value
at a maximum of 0.24 and the yield surface that is convex almost entirely. This shows the
improvement of regression equation over MASTAN2Z2 equation; however, only 24% of
the theoretical yield surface data can be explained by the regression equation. Therefore,
it can be concluded from these results that the customized MASTAN2 equation is not a

good model for the yield surface of solid rectangular section.

4.2 HOLLOW RECTANGULAR SECTION

4.2.1 METHOD

Inputs: cross-section dimensions:
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h = depth of the shape

b = width of base

t = wall-thickness

E, = yield strength of material

Output: arrays of p, m,, and m,,.

STEP #1 CROSS SECTION PROPERTIES (4, My, M},,)

By the principle of superposition, the properties of a hollow rectangular shape can be

determined from the two solid rectangular shapes by

hollow rectangle = outer rectangle — inner rectangle.

Inputs: cross-section dimensions:

houter =R Ripper =h —t Eq.(20)

bouter = b binner =b —t
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Figure 26. Hollow rectangular section

Apply superposition to cross-section properties/capacities:

e Cross-sectional area, Anoiiow = Aouter —

Ainner

e Plastic Moment, Mp(hollow) = Mp(outer) — Mp(inner)

Apply superposition to applied forces/moments:

d Bending Moment, My1i0w = Mouter — Minner

61

By applying the superposition principle, (m,, m,,p ) of the hollow rectangular section

can be generated from two solid rectangular shapes being analyzed simultaneously (Fig.

27).
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Bending moment

2 T segment , Arn/LZ i, o

) 4 /gt
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Figure 27. Rectangular section as an assemblage of rectangles.

STEP #2 BENDING SEGMENT’S VERTICES AND CENTROID

Unfortunately, studying the different locations of the N.A. and using above the
trapezoidal technique can only be done with one solid rectangular section. Because
different sizes of solid rectangular sections are being considered together, a given
location of N.A. can fall into more than one trapezoidal area which increases significantly
the number of required cases that need to be considered. In most cases, it is difficult to
find the critical angles to distinguish between these cases. Furthermore, the geometry of
bending moment segment for these cases makes it nearly impossible to calculate the

coordinates of the vertices of the bending segment.

With this in mind, a new technique was derived in this study to avoids the above
shortcomings and provides a general solution to finding coordinates of vertices of
bending moment segment for all kinds of cross sections that can be considered as the
assemblage of rectangles. This new technique is called the “interpolating technique” and

takes advantage of the MATLAB linear interpolation function “interpl.”
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In this technique, the unique line N.A., for a given bending moment area AA
(= A,,/2 and corresponds to a given p) and 6, can be found by determining the

parameter taken as the vertical intersection (yy) of the line (N.A.):
y =tan (6)x +yy Eqg.(21)

The unique line of the N.A. can be used to locate the vertices of the bending moment
segment by determining the intersections between the line and any rectangles of the
assemblage. An algorithm called “line_intersect_rect” was created in this thesis to find
such intersections. The location yy can be found for any location of the N.A. by
interpolating between only a few reference points that relate the area AAto the

location yy. The illustration of such a relationship is shown in (Fig.28).

g
(hi2-tl+btan({®)

am/2

Figure 28. Relationship between vertical interception of line N.A.: y = tan (6)x +

yy and bending moment area AA.



The three reference points that are used in the interpolation to calculate yy from any

given AA are identified below.
The first pointis at (—b/2,h/2)

AA =0

—h+bt 0
yy=5+3 an (0)

The second point is at (— g% —t)
There are two cases of 6 as shown in Fig. 29.
When 6 > 6, = atan (%)

2
A=——"-—
2tan (0)

B (h t) N b tan(0)
yy = ) >

When 6 < 6, = atan (%)

b? tan(6)

AA = bt —
2

B (h t) N b tan(0)
yy = ) >

The third point is at the origin:
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AA 4
2
yy =
NA. 1
NA 2
N.A. 1
¥ o e Y |
" B | hiof Mg L 2§ MY nak
R % . T
— yy? ! yy=0 7] = 60'—{
¥yl —yy3=0
) i
S CE
—b/] / Vb2 b/1 o /\Lm’/
X
ot et
0 —R/Z N ] hi7 N
(@) 6 =0, (b) 6 < 6,

Figure 29. Three reference points from the relationship between yy and AA.

4.2.2 RESULTS

The analyses of hollow rectangular sections provided similar results to the results of the
solid rectangular section, as shown in Table A.2. On average the R? values calculated
from both the regression and MASTAN2 coefficients are close to zero. All of the yield
surfaces are completely concave. The theoretical interaction curves for the hollow
rectangular section with the ratio of height to base to wall thickness of 40:20:1 is shown
in Fig. 30. The regression, the MASTAN2, and theoretical interaction curves are plotted

together in Fig. 31. For major-axis behavior, the regression curve stays very close to the
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MASTAN?2 curve which both underestimate the theoretical curve when p=[0,0.7] and
overestimate the theoretical curve when p=[0.7,1]. For minor-axis behavior, the
MASTAN?2 curve overestimates excessively the theoretical curve for all values of p. The
regression curve starts off from p=0 by staying close to the MASTAN2 curve until it
starts to move away from the MASTAN2 curve at p=0.35. It directs toward the
theoretical curve until it touches the theoretical curve when p=0.75. Then it stays close to

the theoretical curve when p=[0.75,1].

0.9} Hollow rectangular

0sl section (hbt)=(40-20-1)

07—
06}

05}

my

04t
03}
02t

01}

Figure 30. The theoretical interaction curves for a hollow rectangular section.
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Figure 31. The regression, MASTANZ2, and theoretical interaction curves for a

hollow rectangular section, (a) major-axis, (b) minor-axis.
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Although some improvement can be realized by customizing the MASTAN2 equation to
the theoretical yield surface of hollow rectangular section, the resulting regression yield
surface still cannot provide a good model for the theoretical yield surface of any

corresponding hollow rectangular sections.

4.3 SOLID CIRCULAR SECTION

4.3.1 METHOD

Inputs: cross-section dimensions:
D = diameter of cross section (R = D /2)
E, = yield strength of material

Output: arrays of p, m,, and m,,.

Bending mament Y NA —Axial force

segment, Am/?Z segment, Ap
L

Bending moment
segment, Am/Z

Figure 32. Solid circular section



69

Step #1 CROSS SECTION PROPERTIES (4, M, M,,,)
For circular shape:

e Cross-sectional area, A = wR? Eq.(21)

. 4R3
e Plastic Moment, M, = F, —

Step #2 BENDING MOMENT SEGMENT’S VERTICES AND CENTROID

The bending moment segment in this case is the shaded circular segment whose area is

equal to A4,,/2. Its moment arms can be calculated using the following equations
e X-component: C, = sin(8) y Eq.(22)

e y-component: C, = cos(0) y

arsin(Ly®

where, y = m

The area of the bending moment segment can be defined in terms of the circular radius R

and the center angle g (in radians) by

Ap/2 = RFEZNE Eq.(23)

with A, = A — A, = A(1 — p), Eq.(23) can be rewritten as

R*(B —sin(p)) = A(1 —p) Eq.(24)
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With this, S can be solved from the above equation for the known values R and p.

4.3.2 RESULTS

The theoretical yield surface for solid circular section is the same for all sizes of a solid
circular section. Its theoretical interaction curves are shown in Fig. 33. The comparison
between the major- and the minor-axis interaction equations of the theoretical, regression,
and MASTANZ2 yield surfaces for a solid circular section is also shown in Fig. 34. The
results of the regression analysis for a solid circular section are similar to the previous
sections, as shown in Table A.3. The MASTAN2 coefficients provide a negative R?
value of -1.7474. The regression coefficients [ 2.0649 10.6746  1.9695] provide the

corresponding R? value of 0.1974.

09k Solid circular section

my

M

Figure 33. The theoretical interaction curves for a solid circular section.
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Figure 32.The regression, MASTANZ2, and theoretical interaction curves for a solid

circular section, (a) major-axis, (b) minor-axis.
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This once again shows that the regression equation (Eg. 7) that results from fitting the
MASTAN?2 equation to fit the theoretical yield surface of a solid circular section cannot
provide a good model for the theoretical yield surface of any solid circular sections. The
regression and MASTANZ2 curves of solid circular sections behave in a similar manner to
that of the regression and MASTAN2 curves of hollow rectangular section with respect
to their theoretical curves, as described in section 4.2.2. The same conclusion is reached,
MASTAN?2 cannot be used to give a good customized yield surface equation to model the

theoretical yield surface of solid circular section.

4.4 HOLLOW CIRCULAR SECTION

4.4.1 METHOD

Inputs: cross-section dimensions:

oD = Qutside diameter
t = thickness of pipe
E, = yield strength of material

Output: arrays of p, m,, and m,,.
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Figure 33. Hollow circular section

Similar to a hollow rectangular cross-section, the principle of superposition can be used
to determine the properties of hollow rectangular cross-section from the corresponding

properties of the outer and inner solid circular cross-sections.

hollow pipe = outer pipe — inner pipe

Inputs: cross-section dimensions:

Router = 0D /2 Rinner = 0D/2 —1t Eq.(25)
Apply superposition to cross-section properties/capacities:

e Cross-sectional area, Anoow = Aouter — Ainner

e Plastic Moment, Mp(hollow) = Mp(outer) - Mp(inner)

Apply superposition to applied forces/moments:
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e Bending Moment, My 110w = Mouter — Minner

Therefore, (m,, m,,, p ) of hollow rectangular shape can be generated from (m;,, m,, p) of

two solid rectangular shapes by applying the superposition principle.
Step #2 BENDING MOMENT SEGMENT’S VERTICES AND CENTROID

The interpolating technique described above can be extended to determine the bending
moment segment of the hollow circular section. This can be done by relating the hollow
circular section r to the area AA. There are only two reference points that can be easily
identified as shown below (Fig. 34). Due to the symmetry of a circle about any axis,

these two points can be identified the same way for any given 6.

M4
Y
Bending mament
seqment, Am/2Z
M.AZ
rl |r2
R g
i
b

Figure 34. Two reference points from the relationship between r and AA.

The first point is located at any location on the outer circle:
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AA =0

The second point is at the origin:

AA=A)2

r=0

4.4.2 RESULTS
The theoretical interaction curves for a hollow circular section with the ratio of outside
diameter to wall thickness of 12:1 are plotted to compare with the corresponding

interaction curves calculated by Chen and Atsuta (Fig. 35). They are identical.
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Figure 35. The theoretical interaction curves for hollow circular section (a)

calculated in this study and (b) calculated by Chen and Atsuta (adopted from

reference [2])
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Figure 36.The regression, MASTANZ2, and theoretical interaction curves for a

hollow circular section (OD/t=12/1), (a) major-axis, (b) minor-axis.

The results of regression analysis for hollow circular sections are also similar to those of
the previous sections, as shown in Table A.4. The regression and MASTAN?2 yield
surfaces did have some percentages of concavity. Similar to the findings in the above
sections, the MASTAN?2 vyield surface equation cannot provide a good regression
equation to model the corresoponding theoretical yield surfaces of any hollow circular

sections.

4.5 WIDE-FLANGE SECTION

4.5.1 METHOD

Inputs: cross-section dimensions:
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d = depth of the shape
by = width of base

tw = width of the web
tr = width of the flange

Output: arrays of p, m,, and m,,.
Step #1 CROSS SECTION PROPERTIES (4, M, M,,,,)

To simplify the analysis, a wide-flange cross-section can be broken into three rectangles.
The cross-section’s yield surface (m,, m,, p ) is then the superposition of the behavior of

these three rectangles (refer Fig.37).

Y MA.
¥ ¥ M
d/z ds2 L Bldsz oL
' ' I
rf rf 1 b
| - - r
|
| 2 2 /<
|
: | X 3[} X q‘ X
-bE2 birz i 0572 bf/Z _bf72 bf/z
|
|
! |
Aty — Aty — =ty b

-4z -2 -d/2

Figure 37. Wide-flange section as the assemblage of rectangles.

Rectangle 1: Outer rectangle
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e Area, A, = bgd Eq.(26)

e Plastic moment, My,(1y = F, (byd®)/4
Rectangle 2: Inner rectangle

e Area, A, = be(d — 2ty)

e Plastic moment, M,y = E, [by(d — th)z]/4
Rectangle 3: Web

e Areq A; = t,(d — 2tf)

e Plastic moment, My, = F,[t,,(d — 2t;)°]/4
STEP #2 BENDING MOMENT SEGMENT’S VERTICIES AND CENTROID:

With the wide-flange section defined as an assemblage of rectangles, the bending
moment segment can be determined by using the previously described interpolation
technique. The parameter and reference points for the wide-flange section are almost

identical to those for the hollow rectangular section.
The first point is at (—b/2,d/2)

AA=0

=4 Y tan o
=5+ an (0)



The second point is at (—%,g — tr).
There are two cases of 6 as shown in Fig. 38.
When 6 > 6, = atan (:0)

f

2

_ _br
AA = 2tan (0)

_(d brtan(6)
Yy = (5 N tf) T

When 6 < 6, = atan (Z—;)

tf® tan(6)
2

e

The third point is at the origin

AA =

A
2

yy=20
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Figure 38. Three reference points from the relationship between yy and AA.

452 RESULTS

The theoretical interaction curves for a W14x426 section generated in this study are
compared to the interaction curves generated by Chen and Atsuta (Fig. 39). These two
sets of interaction curves are identical. Table A. 5 shows complete results of the analysis
of wide-flange sections. For all such sections, the R? of the regression equation is closer
to the ideal value of unit than the R? of the MASTAN2 equation. Within the tolerance
defined by using the percentage of concavity of the theoretical yield surface, both the
MASTAN?Z and regression yield surfaces were tested to contain zero percent concavity.
In several cases, remarkable improvement can observed. For example, a W24x55 results

in regression coefficients defined [2.80 18.49 2.55] and the corresponding R? is 0.79,
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which is a significant improvement when compared to the MASTAN2 R? of 0.16. A
comparison between the major- and the minor-axis interaction equations of the
theoretical, regression, and MASTAN?2 vyield surfaces for W24x55 is shown in Fig. 40.
Figure 41 provides three-dimensional surface plots of the theoretical, regression, and

MASTAN?2 yield surfaces.
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Figure 39. The theoretical interaction curves of W14x426 calculated (a) using

method derived in this study and (b) using Chen and Atsuta’s Exact Method.
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Figure 40. The regression, MASTANZ2, and theoretical interaction curves for

W24x55, (a) major-axis, (b) minor-axis.
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(€)

(f)

Figure 41. (a), (b), and (c) surface plots comparing the theoretical and regression
yield surfaces for W24x55. (d), (e), and (f) surface plots comparing the theoretical

and MASTAN?2 yield surfaces for W24x55.
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5 CONCLUSIONS

For wide-flange sections, coefficients found by performing a weighted regression
analysis on theoretical data points always provides a better coefficient of determination
R? than MASTAN2. A better R? indicates a better model because the value of R?
represents the percentage of the variation of theoretical data points that can be explained
by the model. This study also proved that a small percent of concavity can always be
found in the theoretical yield surfaces and their modeling equations. However, the
degrees of concavity in the regression equations for wide-flange sections are

insignificant.

For other shapes, R? for both the regression and MASTAN2 equations are on
average negative or close to zero. This indicates that MASTAN2 and its customized
versions are not good representatives of the theoretical yield surfaces for solid and hollow
rectangular and circular sections. The reason that customized versions of MASTAN2 for
wide-flange sections provide better R? than for other sections is simply that the
MASTAN?2 equation was derived from the theoretical yield surface of a wide-flange

section, which is W12x31.

With this in mind, future work may include employing weighted regression
analysis on other general forms of equations that are similar but the not the same as
MASTANZ2’s vyield surface equation. Hopefully this could produce that could be

employed for cross-sectional shapes that are not wide-flange sections.
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APPENDICES

APPENDIX A: ANALYSIS RESULTS

Table Al. Results of the analysis of the solid rectangular section.

Solid Rectangular Section

§ R squares % concavity

Q

©

& cl c2 c3 5 g .E’ z

g g | ‘B

00 g ) o )

o a0 < a0 <

= & = s =
Area 2.257 10.090 | 3.529 | 0.087 | -0.584 0 0
Crowd 1.680 | 14532 | 2.108 | 0.243 | -1.774 | 11.12 | O
Without 1.858 13.428 | 3.712 | 0.143 | -0.584 0 0

Table A2. Results of the analysis of the hollow rectangular sections.

Hollow Rectangular Section (area weighting factors)

%

quuares .
concavity
hb | bt cl c2 c3 5 % S
a -
5 | 2
4 s
12/5 2.505 | 27.359 | 3.862 | -0.269 | -1.266

7
1 8 2.962 | 24.809 | 3.748 | -0.165 | -1.156
11/4 9 2.659 | 27.002 | 3.805 | -0.230 | -1.233

1 10 2.962 | 24.812 | 3.748 | -0.165 | -1.156
11/5 11 2.714 | 26.608 | 3.789 | -0.219 | -1.219
12/5 12 2.514 | 28.091 | 3.860 | -0.263 | -1.270

1 13 2.963 | 24.814 | 3.748 | -0.165 | -1.156
11/3 14 2.576 | 27.629 | 3.834 | -0.249 | -1.254

1 15 2.963 | 24.816 | 3.748 | -0.165 | -1.156
11/4 16 2.660 | 27.010 | 3.805 | -0.230 | -1.233
11/3 17 2.576 | 27.639 | 3.834 | -0.249 | -1.254

o|o|o|o|o|o|o|o|o|o|o|Regression
o|lo|o|lo|o|o|o|o|lo|o|oMASTAN




1 18 2976 | 25.148 | 3.745 | -0.162 | -1.161 | O 0
1 19 2976 | 25.153 | 3.745 | -0.162 | -1.162 | O 0
1 20 2.980 | 25.245 | 3.744 | -0.161 | -1.163 | O 0
1 21 2982 | 25.312 | 3.743 | -0.161 | -1.164 | O 0
11/3 22 2.582 | 28.187 | 3.832 | -0.244 | -1.258 | O 0
1 23 2.982 | 25.316 | 3.743 | -0.161 | -1.164 | O 0
11/3 24 2.582 | 28.192 | 3.832 | -0.244 | -1.258 | O 0
1 25 2.985 | 25.406 | 3.743 | -0.160 | -1.166 | O 0
11/5 26 2.725 | 27.245 | 3.786 | -0.213 | -1.225 | O 0
12/5 27 2.520 | 28.770 | 3.858 | -0.257 | -1.274 | O 0
1 28 2.985 | 25.410 | 3.743 | -0.160 | -1.166 | O 0
11/5 29 2725 | 27.250 | 3.786 | -0.213 | -1.225 | O 0
1 30 2.990 | 25,548 | 3.741 | -0.159 | -1.168 | O 0
11/4 31 2.671 | 27.810 | 3.802 | -0.224 | -1.240 | O 0
1 32 2.990 | 25,554 | 3.741 | -0.159 | -1.168 | O 0
11/8 33 2.819 | 26.752 | 3.765 | -0.193 | -1.206 | O 0
11/4 34 2.671 | 27.816 | 3.802 | -0.224 | -1.240 | O 0
1 35 2,993 | 25.645 | 3.741 | -0.158 | -1.169 | O 0
1 36 2.993 | 25.648 | 3.741 | -0.158 | -1.169 | O 0
12/7 37 2.634 | 28.202 | 3.814 | -0.231 | -1.250 | O 0
1 38 2997 | 25.770 | 3.740 | -0.157 | -1.171 | O 0
11/3 39 2.586 | 28.704 | 3.831 | -0.240 | -1.262 | O 0
1 40 2997 | 25.773 | 3.740 | -0.157 | -1.171 | O 0
1 41 2.997 | 25.774 | 3.740 | -0.157 | -1.171 | O 0
11/3 42 2.586 | 28.708 | 3.831 | -0.240 | -1.262 | O 0
11/3 43 2.586 | 28.712 | 3.831 | -0.240 | -1.262 | O 0
1 44 2997 | 25.778 | 3.740 | -0.157 | -1.171 | O 0
1 45 3.000 | 25.880 | 3.739 | -0.156 | -1.173 | O 0
11/4 46 2.675 | 28.173 | 3.801 | -0.220 | -1.243 | O 0
1 47 3.000 | 25.883 | 3.739 | -0.156 | -1.173 | O 0
11/4 48 2.675 | 28.176 | 3.801 | -0.220 | -1.243 | O 0
1 49 3.001 | 25.945 | 3.738 | -0.156 | -1.174 | O 0
11/5 50 2.733 | 27827 | 3.784 | -0.208 | -1.231 | O 0
12/5 51 2.523 | 29.391 | 3.856 | -0.252 | -1.278 | O 0
1 52 3.001 | 25.949 | 3.738 | -0.156 | -1.174 | O 0
11/5 53 2733 | 27.832 | 3.784 | -0.208 | -1.231 | O 0
12/5 54 2.523 | 29.396 | 3.856 | -0.252 | -1.278 | O 0
1 55 3.003 | 26.014 | 3.738 | -0.155 | -1.175 | O 0
1 56 3.003 | 26.017 | 3.738 | -0.155 | -1.175 | O 0
12/7 57 2.637 | 28.613 | 3.813 | -0.227 | -1.253 | O 0
1 58 3.004 | 26.054 | 3.738 | -0.155 | -1.176 | O 0
1 59 3.004 | 26.057 | 3.738 | -0.155 | -1.176 | O 0
1 60 3.005 | 26.080 | 3.737 | -0.155 | -1.176 | O 0
1 61 3.007 | 26.187 | 3.737 | -0.154 | -1.178 | O 0
11/4 62 2.677 | 28,512 | 3.800 | -0.218 | -1.246 | O 0
1 63 3.007 | 26.188 | 3.737 | -0.154 | -1.178 | O 0




11/5 64 2.735 | 28.090 | 3.784 | -0.206 | -1.234 | O 0
1 65 3.007 | 26.189 | 3.737 | -0.154 | -1.178 | O 0
11/3 66 2.589 | 29.177 | 3.829 | -0.236 | -1.265 | O 0
1 67 3.007 | 26.190 | 3.737 | -0.154 | -1.178 | O 0
11/4 68 2.677 | 28,515 | 3.800 | -0.217 | -1.246 | O 0
1 69 3.007 | 26.190 | 3.737 | -0.154 | -1.178 | O 0
12/5 70 2.524 | 29.675 | 3.855 | -0.249 | -1.280 | O 0
1 71 3.007 | 26.192 | 3.737 | -0.154 | -1.178 | O 0
11/8 72 2.829 | 27.422 | 3.762 | -0.188 | -1.214 | O 0
11/4 73 2.677 | 28,517 | 3.800 | -0.217 | -1.246 | O 0
1 74 3.007 | 26.192 | 3.737 | -0.154 | -1.178 | O 0
11/3 75 2.589 | 29.181 | 3.829 | -0.235 | -1.265 | O 0
1 76 3.009 | 26.293 | 3.736 | -0.153 | -1.180 | O 0
1 77 3.010 | 26.314 | 3.736 | -0.153 | -1.180 | O 0
1 78 3.010 | 26.317 | 3.736 | -0.153 | -1.180 | O 0
2 53/4 | 2.120 | 29.052 | 4.126 | -0.371 | -1.374 | O 0
11/2| 67/8 | 2421 | 27.786 | 3.904 | -0.289 | -1.288 | 0
11/2| 83/5 | 2429 | 28.733 | 3.901 | -0.282 | -1.293 | O 0
21/3| 85/8 | 1.984 | 32.461 | 4.257 | -0.394 | -1.418 | O 0
21/3|101/3 | 1.980 | 33.156 | 4.253 | -0.389 | -1.418 | O 0
2 111/2 | 2,117 | 32.231 | 4113 | -0.350 | -1.379 | O 0
21/3 13 1.976 | 33.822 | 4.248 | -0.384 | -1.417 | O 0
11/2 | 133/4 | 2.435 | 29.998 | 3.897 | -0.271 | -1.299 | O 0
2 143/8 | 2.115 | 32.768 | 4.110 | -0.345 | -1.379 | O 0
11/2 | 171/6 | 2.435 | 30.366 | 3.895 | -0.268 | -1.300 | O 0
2 211/2 | 2111 | 33.422 | 4104 | -0.339 | -1.379 | O 0
2 215/9 | 2.111 | 33.427 | 4104 | -0.339 | -1.379 | O 0
2 23 2.111 | 33505 | 4.104 | -0.339 | -1.379 | O 0
21/3 | 256/7 | 1.967 | 35.011 | 4.237 | -0.375 | -1.414 | O 0
11/2 | 271/2 | 2.435 | 30.867 | 3.893 | -0.263 | -1.302 | O 0
2 283/4 | 2.109 | 33.732 | 4101 | -0.337 | -1.378 | O 0
21/3 | 341/2 | 1.964 | 35.283 | 4.234 | -0.374 | -1.410 | O 0
12/3 | 411/4 | 2.305 | 32.200 | 3.960 | -0.288 | -1.330 | O 0
11/2 46 2433 | 31.167 | 3.892 | -0.260 | -1.301 | O 0
21/2 | 53/4 | 1.942 | 30.572 | 4.330 | -0.422 | -1.433 | O 0
3 68/9 | 1.816 | 32.950 | 4505 | -0.454 | -1.473 | O 0
26/7 | 71/2 | 1.842 | 33.182 | 4.455 | -0.442 | -1.463 | O 0
3 85/8 | 1.805 | 34.185 | 4500 | -0.449 | -1473 | O 0
3 101/3 | 1.798 | 34.951 | 4.495 | -0.445 | -1.472 | O 0
21/2 | 111/2 | 1.923 | 34.020 | 4.316 | -0.403 | -1.433 | O 0
2 6/7 12 1.825 | 35,139 | 4443 | -0.431 | -1.461 | O 0
3 13 1.791 | 35.684 | 4.489 | -0.440 | -1.470 | O 0
21/2 | 137/9 | 1.919 | 34523 | 4.311 | -0.399 | -1.433 | O 0
2 6/7 15 1.819 | 35.733 | 4.438 | -0.427 | -1.460 | O 0
313 | 171/4 | 1.719 | 37.110 | 4.586 | -0.459 | -1.486 | O 0




26/7 | 201/9 | 1.813 | 36.306 | 4.431 | -0.424 | -1.457

3 205/8 | 1.780 | 36.709 | 4.479 | -0.434 | -1.466

3 23 1.778 | 36.876 | 4.476 | -0.434 | -1.464

31/3 | 256/7 | 1.710 | 37.795 | 4578 | -0.456 | -1.477

21/2 | 271/2 | 1.909 | 35.664 | 4.299 | -0.391 | -1.427

26/7 | 301/6 | 1.807 | 36.839 | 4.425 | -0.422 | -1.450

21/2 | 341/2 | 1.906 | 35.878 | 4.297 | -0.390 | -1.423

4 53/4 | 1.688 | 33.042 | 4.780 | -0.512 | -1.524

4 67/8 | 1.673 | 34.450 | 4.784 | -0.509 | -1.523

4 83/5 | 1.656 | 35.801 | 4.781 | -0.505 | -1.522

4 101/3 | 1.646 | 36.648 | 4.777 | -0.502 | -1.520

31/2 | 111/2 | 1.705 | 36.299 | 4.644 | -0.474 | -1.498

4 111/2 | 1.640 | 37.074 | 4.774 | -0.500 | -1.519

4 127/8 | 1.635 | 37.463 | 4.772 | -0.498 | -1.517

4 133/4 | 1.633 | 37.665 | 4.770 | -0.498 | -1.516

4 171/4 | 1.625 | 38.252 | 4.764 | -0.495 | -1.512

31/2 23 1.685 | 37.959 | 4.628 | -0.467 | -1.487

5 53/4 | 1.613 | 33.914 | 4981 | -0.548 | -1.553

67/8 | 1.594 | 35.400 | 4.988 | -0.546 | -1.553

83/5 | 1.574 | 36.820 | 4.989 | -0.543 | -1.551

111/2 | 1.555 | 38.178 | 4.985 | -0.540 | -1.546

133/4 | 1.546 | 38.823 | 4.981 | -0.538 | -1.542

171/6 | 1.536 | 39.446 | 4.976 | -0.537 | -1.535

67/8 | 1.546 | 36.053 | 5.143 | -0.573 | -1.571

83/5 | 1.524 | 37.533 | 5.147 | -0.571 | -1.569

O|0O|0O|0O|0|0|0|0O|0O|O|O|O|O|O|O|O|O|O|O|O0O|O|O|O|O|O|O

oOooojoijorjor|jor|ol

111/2 | 1.502 | 38.966 | 5.145 | -0.569 | -1.562

Table A3. Results of the analysis of the solid circular section.

Solid Circular Section

2 %
o] R squares -
3] concavity
O

c c
z cl c2 3 S S s |2
2 2 < 2| <
o0 g ) g )
Q oo < a0 <
= o = x| 2

Area 2.065 | 10.675 | 1.970 | 0.197 | -1.747 | [0] | [0]

Crowd | 1.680 | 14.532 | 2.108 | 0.243 | -1.774 | [0] | [0]

Without | 1.796 | 12.299 | 2.156 | 0.319 | -1.774 | [0] | [0]
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Table A4. Results of the analysis of hollow circular sections.

Hollow Circular Section (area weighting factors)

R squares % concavity

5 2 5 2

OD/t cl c2 c3 % E % é

S < & <

o > @ =
101/5 | 2.696 | 23.675 | 2.155| 0.107 | -1.364 | 11.279 | 5.636
103/4| 2.697 | 23.791 | 2.155| 0.108 | -1.365 | 11.276 | 5.636
11| 2.698 | 23.829 | 2.155 | 0.108 | -1.365 | 11.275 | 5.636
112/3 | 2.699 | 23.969 | 2.155 | 0.109 | -1.366 | 11.271 | 5.636
115/6 | 2.700 | 23.989 | 2.155 | 0.110 | -1.366 | 11.270 | 5.636
12 | 2.700 | 24.010 | 2.155 | 0.110 | -1.366 | 11.269 | 5.636
121/3 | 2.700 | 24.064 | 2.155 | 0.110 | -1.367 | 11.268 | 5.636
121/2 | 2701 | 24.092 | 2.155 | 0.110 | -1.367 | 11.267 | 5.636
123/4 | 2701 | 24121 | 2.155 | 0.111 | -1.367 | 11.266 | 5.636
127/8 | 2701 | 24.135 | 2.155 | 0.111 | -1.367 | 11.266 | 5.636
128/9 | 2.701 | 24.137 | 2.155| 0.111 | -1.367 | 11.266 | 5.636
13| 2.701 | 24.138 | 2.155 | 0.111 | -1.367 | 11.266 | 5.636
132/3 | 2.702 | 24224 | 2.155| 0.111 | -1.367 | 11.263 | 5.636
133/4 | 2.702 | 24.235| 2.155| 0.112 | -1.368 | 11.263 | 5.636
14 | 2.702 | 24.268 | 2.155 | 0.112 | -1.368 | 11.262 | 5.636
141/4 | 2.702 | 24.284 | 2.155| 0.112 | -1.368 | 11.262 | 5.636
141/3 | 2.702 | 24293 | 2.155| 0.112 | -1.368 | 11.261 | 5.636
143/8 | 2.702 | 24.297 | 2.155| 0.112 | -1.368 | 11.261 | 5.636
147/9 | 2.703 | 24.334 | 2.155 | 0.112 | -1.368 | 11.260 | 5.636
145/6 | 2.703 | 24.339 | 2.155 | 0.112 | -1.368 | 11.260 | 5.636
15| 2.703 | 24.345| 2.155 | 0.112 | -1.368 | 11.260 | 5.636
151/5| 2.703 | 24.369 | 2.155 | 0.113 | -1.369 | 11.259 | 5.636
153/4 | 2.703 | 24.410 | 2.155| 0.113 | -1.369 | 11.258 | 5.636
157/8 | 2.703 | 24.419 | 2.155 | 0.113 | -1.369 | 11.258 | 5.636
16 | 2.703 | 24.424 | 2.155 | 0.113 | -1.369 | 11.258 | 5.636
161/8 | 2.703 | 24.438 | 2.155 | 0.113 | -1.369 | 11.257 | 5.636
161/2 | 2.703 | 24.460 | 2.155 | 0.113 | -1.369 | 11.257 | 5.636
163/5 | 2.703 | 24.469 | 2.155 | 0.113 | -1.369 | 11.256 | 5.636
171/9 | 2.703 | 24502 | 2.155 | 0.113 | -1.370 | 11.256 | 5.636
171/6 | 2.703 | 24505 | 2.155 | 0.113 | -1.370 | 11.255 | 5.636
171/5| 2.703 | 24506 | 2.155 | 0.113 | -1.370 | 11.255 | 5.636
171/4 | 2.703 | 24508 | 2.155 | 0.113 | -1.370 | 11.255 | 5.636
172/5 | 2.703 | 24516 | 2.155 | 0.113 | -1.370 | 11.255 | 5.636
181/5 | 2.703 | 24557 | 2.155 | 0.114 | -1.370 | 11.254 | 5.636
181/2 | 2.703 | 24573 | 2.155| 0.114 | -1.370 | 11.254 | 5.636
185/9 | 2.703 | 24574 | 2.155| 0.114 | -1.370 | 11.254 | 5.636
19 | 2.703 | 24.594 | 2.155 | 0.114 | -1.370 | 11.253 | 5.636




191/2 | 2.703 | 24.616 | 2.155 | 0.114 | -1.370 | 11.252 | 5.636
192/3 | 2.703 | 24.624 | 2.155 | 0.114 | -1.371 | 11.252 | 5.636

20 | 2.703 | 24.639 | 2.155 | 0.114 | -1.371 | 11.252 | 5.636
201/9 | 2.703 | 24.641 | 2.155| 0.114 | -1.371 | 11.252 | 5.636
204/9 | 2.704 | 24.653 | 2.155 | 0.114 | -1.371 | 11.251 | 5.636
201/2 | 2.704 | 24.654 | 2.155 | 0.114 | -1.371 | 11.251 | 5.636
205/8 | 2.704 | 24.659 | 2.155 | 0.114 | -1.371 | 11.251 | 5.636
202/3 | 2.704 | 24.662 | 2.155| 0.114 | -1.371 | 11.251 | 5.636
205/6 | 2.704 | 24.667 | 2.155 | 0.114 | -1.371 | 11.251 | 5.636
212/7 | 2.703 | 24.682 | 2.155 | 0.114 | -1.371 | 11.251 | 5.636
211/2 | 2.703 | 24.688 | 2.155 | 0.114 | -1.371 | 11.250 | 5.636
215/9 | 2703 | 24.691 | 2.155| 0.114 | -1.371 | 11.250 | 5.636
216/7 | 2.703 | 24.700 | 2.155| 0.114 | -1.371 | 11.250 | 5.636
223/4 | 2.703 | 24.727 | 2.155 | 0.115 | -1.371 | 11.249 | 5.636

23 | 2.703 | 24.731 | 2.155 | 0.115 | -1.371 | 11.249 | 5.636
231/8 | 2.703 | 24.736 | 2.155 | 0.115 | -1.371 | 11.249 | 5.636
231/6 | 2.703 | 24.738 | 2.155 | 0.115 | -1.371 | 11.249 | 5.636
235/8 | 2.703 | 24.748 | 2.155 | 0.115 | -1.371 | 11.249 | 5.636

24 | 2.703 | 24.758 | 2.155 | 0.115 | -1.372 | 11.249 | 5.636
241/5| 2.703 | 24.761 | 2.155 | 0.115 | -1.372 | 11.249 | 5.636
245/7 | 2.703 | 24.774 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
247/9 | 2.703 | 24.775| 2.155| 0.115 | -1.372 | 11.248 | 5.636

25| 2.703 | 24.780 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
251/2 | 2.703 | 24.790 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
253/4 | 2.703 | 24.795 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
257/9 | 2.703 | 24.795 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
256/7 | 2703 | 24.798 | 2.155 | 0.115 | -1.372 | 11.248 | 5.636
273/7 | 2.703 | 24.826 | 2.155 | 0.115 | -1.372 | 11.247 | 5.636
271/2 | 2.703 | 24.828 | 2.155 | 0.115 | -1.372 | 11.247 | 5.636
274/7 | 2.703 | 24.829 | 2.155 | 0.115 | -1.372 | 11.247 | 5.636
283/7 | 2703 | 24.841 | 2.155| 0.115 | -1.372 | 11.246 | 5.636
282/3 | 2.703 | 24.846 | 2.155 | 0.115 | -1.372 | 11.246 | 5.636
283/4 | 2.703 | 24.847 | 2.155 | 0.115 | -1.372 | 11.246 | 5.636
291/2 | 2.703 | 24.858 | 2.156 | 0.115 | -1.372 | 11.278 | 5.636

30 | 2.703 | 24.865 | 2.156 | 0.115 | -1.372 | 11.277 | 5.636
301/9 | 2.703 | 24.866 | 2.156 | 0.115 | -1.372 | 11.277 | 5.636
301/6 | 2.703 | 24.867 | 2.156 | 0.115 | -1.373 | 11.277 | 5.636
304/5 | 2.702 | 24.874 | 2.156 | 0.115 | -1.373 | 11.277 | 5.636

32 | 2.702 | 24.887 | 2.156 | 0.115 | -1.373 | 11.277 | 5.636
321/5| 2.703 | 24.890 | 2.156 | 0.115 | -1.373 | 11.277 | 5.636

33 | 2.703 | 24.900 | 2.156 | 0.115 | -1.373 | 11.276 | 5.636
343/8 | 2.702 | 24.913 | 2.156 | 0.115 | -1.373 | 11.276 | 5.636
342/5| 2.702 | 24.913 | 2.156 | 0.115 | -1.373 | 11.276 | 5.636
341/2 | 2.702 | 24.914 | 2.156 | 0.115 | -1.373 | 11.276 | 5.636

37| 2.702 | 24.934 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636

38 | 2.702 | 24.942 | 2.156 | 0.115 | -1.373 | 11.275| 5.636




385/7 | 2.702 | 24.947 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
384/5| 2.702 | 24.948 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
391/3 | 2.702 | 24.951 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
391/2 | 2.702 | 24.953 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
401/9 | 2.702 | 24.956 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
402/9 | 2.702 | 24.957 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
411/3 | 2.702 | 24.963 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636

43 | 2.702 | 24.972 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
431/9 | 2.702 | 24.973 | 2.156 | 0.115 | -1.373 | 11.275 | 5.636
446/7 | 2.702 | 24.982 | 2.156 | 0.115 | -1.373 | 11.274 | 5.636
455/6 | 2.702 | 24.986 | 2.156 | 0.115 | -1.373 | 11.274 | 5.636
46 1/7 | 2.702 | 24.987 | 2.156 | 0.115 | -1.373 | 11.274 | 5.636
481/9 | 2.702 | 24.995 | 2.156 | 0.115 | -1.373 | 11.274 | 5.636
494/7 | 2.702 | 25.001 | 2.156 | 0.115 | -1.373 | 11.274 | 5.636
514/7 | 2.701 | 25.008 | 2.156 | 0.115 | -1.374 | 11.274 | 5.636
515/7 | 2.701 | 25.008 | 2.156 | 0.115 | -1.374 | 11.274 | 5.636
545/7 | 2.701 | 25.017 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636

55| 2.701 | 25.018 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
551/3 | 2.701 | 25.018 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
571/9 | 2.701 | 25.023 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
571/3 | 2.701 | 25.024 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
571/2 | 2.701 | 25.024 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636

60 | 2.701 | 25.030 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
601/3 | 2.701 | 25.031 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636
682/3 | 2.701 | 25.046 | 2.156 | 0.114 | -1.374 | 11.273 | 5.636

Table A5. Results of the analysis of wide-flange sections.

Wide-flange Section (area weighting factors)

QEJ R squares % concavity
©
2 [ o~ [ o~
5 cl c2 c3 % <Zt % z
B o & o 5
9] o0 < 00 <
@ 2 = g | =
'W44X335' | [3.2899] | [3.7166] | [3.9617] | [0.7967] | [0.7647] | [O] [0]
'W44X290' | [3.3812] | [3.7867] | [3.9390] | [0.8046] | [0.7731] | [O] [0]
'W44Xx262' | [3.3862] | [3.6745] | [3.8383] | [0.8103] | [0.7761] | [O] [0]
'W44X230' | [3.3430] | [3.4038] | [3.6414] | [0.8156] | [0.7682] | [O] [0]
'W40X593' | [3.3452] | [5.0730] | [4.9643] | [0.6687] | [0.5652] | [O] [0]
'W40X503' | [3.3693] | [4.7937] | [4.7452] | [0.7099] | [0.6346] | [0] [0]




'W40X431' | [3.3801] | [4.5258] | [4.5357] | [0.7428] | [0.6892] | [0] | [O]
'W40X397' | [3.4224] | [4.4977] | [4.4770] | [0.7555] | [0.7033] | [0] | [O]
'W40X372' | [3.4176] | [4.3778] | [4.3880] | [0.7661] | [0.7212] | [0] | [O]
'W40X362' | [3.4323] | [4.3775] | [4.3747] | [0.7691] | [0.7239] | [0] | [O]
'W40X324' | [3.4606] | [4.2896] | [4.2798] | [0.7817] | [0.7401] | [0] | [O]
'W40X297' | [3.4486] | [4.1374] | [4.1682] | [0.7914] | [0.7557] | [0] | [O]
'W40X277' | [3.5506] | [4.3336] | [4.2336] | [0.7917] | [0.7447] | [0] | [O]
'W40X249' | [3.5633] | [4.2411] | [4.1476] | [0.7992] | [0.7555] | [0] | [O]
'W40X215' | [3.5776] | [4.1197] | [4.0354] | [0.8070] | [0.7662] | [0] | [O]
'W40X199' | [3.4219] | [3.5814] | [3.7241] | [0.8156] | [0.7769] | [0] | [O]
'W40X392' | [3.0416] | [4.0408] | [4.4320] | [0.6939] | [0.6494] | [0] | [O]
'W40X331' | [3.0505] | [3.7134] | [4.1571] | [0.7397] | [0.6956] | [0] | [O]
'W40X327' | [3.0794] | [3.7606] | [4.1749] | [0.7436] | [0.7034] | [0] | [O]
'W40X294' | [3.1034] | [3.6228] | [4.0398] | [0.7659] | [0.7235] | [0] | [O]
'W40X278' | [3.0755] | [3.4596] | [3.9207] | [0.7747] | [0.7206] | [0] | [O]
'W40X264' | [3.1053] | [3.4422] | [3.8820] | [0.7833] | [0.7307] | [0] | [O]
'W40X235' | [3.1877] | [3.4709] | [3.8396] | [0.7968] | [0.7515] | [0] | [O]
'W40X211' | [3.1897] | [3.3261] | [3.7098] | [0.8055] | [0.7490] | [0] | [O]
'W40X183' | [3.1847] | [3.1023] | [3.5120] | [0.8131] | [0.7314] | [0] | [O]
'W40X167' | [3.0331] | [2.5802] | [3.1433] | [0.8109] | [0.6056] | [0] | [O]
'W40X149' | [2.8658] | [1.9884] | [2.6618] | [0.7961] | [0.2982] | [0] | [O]
'W36X800' | [3.3709] | [5.9567] | [5.5085] | [0.5677] | [0.3554] | [0.9] | [O]
'W36X652' | [3.4337] | [5.5997] | [5.2428] | [0.6317] | [0.4662] | [0] | [O]
'W36X529' | [3.4955] | [5.3019] | [4.9969] | [0.6853] | [0.5558] | [0] | [O]
'W36X487' | [3.5043] | [5.1612] | [4.8928] | [0.7038] | [0.5902] | [0] | [O]
'W36X487' | [3.5043] | [5.1612] | [4.8928] | [0.7038] | [0.5902] | [0] | [O]
'W36X441' | [3.5325] | [5.0451] | [4.7870] | [0.7234] | [0.6217] | [0] | [O]
'W36X395' | [3.5569] | [4.9246] | [4.6789] | [0.7414] | [0.6511] | [0] | [O]
'W36X361' | [3.5692] | [4.8107] | [4.5843] | [0.7550] | [0.6748] | [0] | [O]
'W36X330' | [3.5971] | [4.7539] | [4.5173] | [0.7652] | [0.6887] | [0] | [O]
'W36X302' | [3.6038] | [4.6398] | [4.4247] | [0.7761] | [0.7082] | [0] | [O]
'W36X282' | [3.6074] | [4.5606] | [4.3604] | [0.7829] | [0.7204] | [0] | [O]
'W36X262' | [3.5767] | [4.3748] | [4.2424] | [0.7923] | [0.7421] | [0] | [O]
'W36X247' | [3.5603] | [4.2585] | [4.1642] | [0.7979] | [0.7536] | [0] | [O]
'W36X231' | [3.5497] | [4.1551] | [4.0900] | [0.8028] | [0.7625] | [0] | [O]
'W36X256' | [3.2065] | [3.7636] | [4.0746] | [0.7775] | [0.7450] | [0] | [O]
'W36X232' | [3.2184] | [3.6363] | [3.9563] | [0.7904] | [0.7548] | [0] | [0]
'W36X210' | [3.1398] | [3.2588] | [3.6909] | [0.8026] | [0.7363] | [0] | [0]
'W36X194' | [3.1490] | [3.1746] | [3.6073] | [0.8078] | [0.7326] | [0] | [O]




'W36X182' | [3.1465] | [3.0862] | [3.5287] | [0.8108] | [0.7238] | [0] | [0]
'W36X170' | [3.1382] | [2.9789] | [3.4368] | [0.8128] | [0.7090] | [0] | [O]
'W36X160' | [3.1146] | [2.8381] | [3.3244] | [0.8133] | [0.6819] | [0] | [O]
'W36X150' | [3.0751] | [2.6536] | [3.1807] | [0.8119] | [0.6345] | [0] | [O]
'W36X135' | [2.9512] | [2.1906] | [2.8151] | [0.8012] | [0.4423] | [0] | [O]
'W33X387' | [3.5822] | [5.1764] | [4.8374] | [0.7205] | [0.6034] | [0] | [O]
'W33X354' | [3.5969] | [5.0629] | [4.7443] | [0.7356] | [0.6302] | [0] | [O]
'W33X318' | [3.6304] | [4.9827] | [4.6574] | [0.7500] | [0.6514] | [0] | [O]
'W33X291' | [3.6374] | [4.8729] | [4.5708] | [0.7614] | [0.6729] | [0] | [O]
'W33X263' | [3.6544] | [4.7814] | [4.4874] | [0.7720] | [0.6907] | [0] | [O]
'W33X241' | [3.5945] | [4.4830] | [4.3114] | [0.7870] | [0.7300] | [0] | [O]
'W33X221' | [3.5776] | [4.3352] | [4.2099] | [0.7950] | [0.7467] | [0] | [O]
'W33X201' | [3.5504] | [4.1435] | [4.0800] | [0.8035] | [0.7635] | [0] | [O]
'W33X169' | [3.2974] | [3.5781] | [3.8365] | [0.8057] | [0.7689] | [0] | [O]
'W33xX152' | [3.2236] | [3.2302] | [3.5936] | [0.8126] | [0.7481] | [0] | [O]
'W33X141' | [3.1669] | [2.9817] | [3.4151] | [0.8141] | [0.7136] | [0] | [O]
'W33xX152' | [3.2236] | [3.2302] | [3.5936] | [0.8126] | [0.7481] | [0] | [O]
'W33X141' | [3.1669] | [2.9817] | [3.4151] | [0.8141] | [0.7136] | [0] | [O]
'W33X130' | [3.0966] | [2.6886] | [3.1968] | [0.8123] | [0.6470] | [0] | [O]
'W33x118' | [3.0110] | [2.3394] | [2.9221] | [0.8046] | [0.5228] | [0] | [O]
'W30X391' | [3.5983] | [5.5326] | [5.0662] | [0.6850] | [0.5256] | [0] | [O]
'W30X357' | [3.6320] | [5.4451] | [4.9801] | [0.7026] | [0.5528] | [0] | [O]
'W30X326' | [3.6493] | [5.3282] | [4.8861] | [0.7188] | [0.5824] | [0] | [0]
'W30X292' | [3.6861] | [5.2450] | [4.7973] | [0.7346] | [0.6062] | [0] | [O]
'W30X261' | [3.6802] | [5.0566] | [4.6681] | [0.7519] | [0.6437] | [0] | [O]
'W30X235' | [3.7226] | [5.0283] | [4.6109] | [0.7613] | [0.6540] | [0] | [O]
'W30X211' | [3.6720] | [4.7374] | [4.4385] | [0.7782] | [0.6995] | [0] | [O]
'W30X191' | [3.6601] | [4.5811] | [4.3289] | [0.7883] | [0.7218] | [0] | [O]
'W30X173' | [3.6475] | [4.4337] | [4.2248] | [0.7966] | [0.7397] | [0] | [O]
'W30X148' | [3.2943] | [3.6588] | [3.9090] | [0.8009] | [0.7672] | [0] | [O]
'W30X132' | [3.1898] | [3.2055] | [3.6004] | [0.8107] | [0.7418] | [0] | [0]
'W30X124' | [3.1724] | [3.0753] | [3.4968] | [0.8130] | [0.7266] | [0] | [O]
'W30X116' | [3.1222] | [2.8557] | [3.3347] | [0.8135] | [0.6864] | [0] | [O]
'W30X108' | [3.0514] | [2.5697] | [3.1176] | [0.8108] | [0.6071] | [0] | [O]
'W30X99' | [2.9772] | [2.2659] | [2.8730] | [0.8033] | [0.4837] | [0] | [O]
'W30X90' | [2.9860] | [2.1963] | [2.7970] | [0.7985] | [0.4588] | [0] | [O]
'W27X539' | [3.4821] | [6.4003] | [5.6741] | [0.5522] | [0.2799] | [0] | [O]
'W27X368' | [3.6138] | [5.8164] | [5.2358] | [0.6565] | [0.4602] | [0] | [O]
'W27X336' | [3.6505] | [5.7244] | [5.1483] | [0.6758] | [0.4904] | [0] | [0]




'W27X307' | [3.6614] | [5.5829] | [5.0478] | [0.6940] | [0.5263] | [0] | [O]
'W27X281' | [3.7053] | [5.5383] | [4.9822] | [0.7082] | [0.5443] | [0] | [O]
'W27X258' | [3.7137] | [5.4100] | [4.8886] | [0.7232] | [0.5745] | [0] | [O]
'W27X235' | [3.7044] | [5.2359] | [4.7755] | [0.7389] | [0.6106] | [0] | [O]
'W27X217' | [3.7489] | [5.2442] | [4.7437] | [0.7458] | [0.6145] | [0] | [O]
'W27X194' | [3.7526] | [5.0967] | [4.6348] | [0.7598] | [0.6441] | [0] | [O]
'W27X178' | [3.6721] | [4.7404] | [4.4407] | [0.7780] | [0.6991] | [0] | [O]
'W27X161' | [3.6779] | [4.6390] | [4.3578] | [0.7864] | [0.7149] | [0] | [O]
'W27X146' | [3.6762] | [4.5219] | [4.2681] | [0.7942] | [0.7306] | [0] | [O]
'W27X129' | [3.3551] | [3.8551] | [4.0203] | [0.7972] | [0.7669] | [0] | [O]
'W27X114' | [3.2702] | [3.4368] | [3.7366] | [0.8094] | [0.7642] | [0] | [O]
'W27X102' | [3.2606] | [3.2800] | [3.6056] | [0.8139] | [0.7556] | [0] | [O]
'W27X94' | [3.2062] | [3.0307] | [3.4260] | [0.8151] | [0.7248] | [0] | [O]
'W27X84' | [3.1203] | [2.6652] | [3.1548] | [0.8115] | [0.6451] | [0] | [O]
'W24x370' | [3.5709] | [6.2053] | [5.5014] | [0.6004] | [0.3529] | [0] | [O]
'W24x335' | [3.6055] | [6.0623] | [5.3921] | [0.6262] | [0.3971] | [0] | [O]
'W24X306' | [3.6456] | [5.9618] | [5.3007] | [0.6478] | [0.4311] | [0] | [O]
'W24X279' | [3.6694] | [5.8352] | [5.2037] | [0.6678] | [0.4672] | [0] | [O]
'W24X250' | [3.7129] | [5.7380] | [5.1072] | [0.6882] | [0.4987] | [0] | [O]
'W24x229' | [3.7236] | [5.6013] | [5.0092] | [0.7052] | [0.5327] | [0] | [O]
'W24X207' | [3.7482] | [5.4941] | [4.9173] | [0.7211] | [0.5607] | [0] | [O]
'W24X192' | [3.7693] | [5.4292] | [4.8556] | [0.7314] | [0.5778] | [0] | [O]
'W24x176' | [3.7750] | [5.3197] | [4.7749] | [0.7429] | [0.6018] | [0] | [O]
'W24x162' | [3.7648] | [5.1615] | [4.6711] | [0.7560] | [0.6328] | [0] | [O]
'W24X146' | [3.7398] | [4.9547] | [4.5418] | [0.7702] | [0.6690] | [0] | [O]
'W24x131' | [3.6869] | [4.6638] | [4.3691] | [0.7857] | [0.7119] | [0] | [O]
'W24x117' | [3.6618] | [4.4642] | [4.2361] | [0.7963] | [0.7369] | [0] | [O]
'W24X104' | [3.6418] | [4.2865] | [4.1123] | [0.8044] | [0.7547] | [0] | [O]
'W24x103' | [3.3569] | [3.8652] | [4.0269] | [0.7968] | [0.7665] | [0] | [O]
'W24X94' | [3.3269] | [3.6464] | [3.8683] | [0.8057] | [0.7715] | [0] | [O]
'W24x84' | [3.2949] | [3.4156] | [3.6956] | [0.8124] | [0.7659] | [0] | [O]
'W24x76' | [3.2380] | [3.1395] | [3.4981] | [0.8153] | [0.7410] | [0] | [O]
'W24X68' | [3.1456] | [2.7576] | [3.2220] | [0.8130] | [0.6700] | [0] | [O]
'W24X62' | [2.8605] | [2.1412] | [2.8211] | [0.8035] | [0.3695] | [0] | [O]
'W24xX55' | [2.8017] | [1.8489] | [2.5485] | [0.7927] | [0.1642] | [0] | [O]
'W21X201' | [3.8190] | [5.9541] | [5.1615] | [0.6864] | [0.4632] | [0] | [O]
'W21X182' | [3.8384] | [5.8334] | [5.0694] | [0.7026] | [0.4945] | [0] | [O]
'W21X166' | [3.8787] | [5.7922] | [5.0110] | [0.7138] | [0.5088] | [0] | [O]
'W21X147' | [3.7609] | [5.2498] | [4.7377] | [0.7472] | [0.6146] | [0] | [O]




'W21X132' | [3.7840] | [5.1764] | [4.6658] | [0.7575] | [0.6316] | [0] | [O]
'W21X122' | [3.8005] | [5.1138] | [4.6064] | [0.7652] | [0.6450] | [0] | [O]
'W21X111' | [3.8040] | [5.0157] | [4.5315] | [0.7737] | [0.6630] | [0] | [O]
'W21X101' | [3.8281] | [4.9789] | [4.4834] | [0.7794] | [0.6707] | [0] | [O]
'W21X93' | [3.2906] | [3.8244] | [4.0520] | [0.7891] | [0.7590] | [0] | [O]
'W21X83' | [3.3177] | [3.7367] | [3.9536] | [0.7995] | [0.7680] | [0] | [O]
'W21X73' | [3.3349] | [3.6251] | [3.8424] | [0.8077] | [0.7726] | [0] | [O]
'W21X68' | [3.3163] | [3.4880] | [3.7399] | [0.8117] | [0.7700] | [0] | [O]
'W21X62' | [3.2813] | [3.2796] | [3.5865] | [0.8150] | [0.7571] | [0] | [O]
'W21X68' | [3.3163] | [3.4880] | [3.7399] | [0.8117] | [0.7700] | [0] | [O]
'W21X62' | [3.2813] | [3.2796] | [3.5865] | [0.8150] | [0.7571] | [0] | [O]
'W21X55' | [3.1802] | [2.8604] | [3.2897] | [0.8142] | [0.6946] | [0] | [O]
'W21x48' | [3.0488] | [2.3530] | [2.9081] | [0.8026] | [0.5383] | [0] | [O]
'W21X57' | [3.0558] | [2.8132] | [3.3487] | [0.8107] | [0.6650] | [0] | [O]
'W21X50' | [2.9390] | [2.3353] | [2.9689] | [0.8072] | [0.4944] | [0] | [0]
'W21X44' | [2.8583] | [1.9741] | [2.6508] | [0.7959] | [0.2852] | [0] | [O]
'W18X311' | [3.6136] | [7.0538] | [5.9085] | [0.5193] | [0.1548] | [0] | [O]
'W18X283' | [3.6480] | [6.8635] | [5.7955] | [0.5482] | [0.2078] | [0] | [O]
'W18X258' | [3.6976] | [6.7510] | [5.7056] | [0.5727] | [0.2454] | [0] | [0]
'W18X234' | [3.7546] | [6.6653] | [5.6215] | [0.5954] | [0.2771] | [0] | [O]
'W18X211' | [3.7847] | [6.5043] | [5.5130] | [0.6196] | [0.3222] | [0] | [O]
'W18X192' | [3.8325] | [6.4217] | [5.4322] | [0.6387] | [0.3502] | [0] | [O]
'W18X175' | [3.8419] | [6.2603] | [5.3314] | [0.6580] | [0.3915] | [0] | [O]
'W18X158' | [3.8658] | [6.1299] | [5.2349] | [0.6765] | [0.4268] | [0] | [O]
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