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Abstract 
 

Developmental plasticity is the alteration of the nervous system throughout 

development influenced by environmental interactions and experience. The 

differentiation of neurons normally gives rise to the numerous types of specialized cells 

to perform specific functions within the nervous system. The modification of the number 

or ratio of specialized neuronal types is a category of developmental plasticity 

modulating neuronal composition. Changes in neuronal composition are especially 

conspicuous in holometabolous insects, which undergo radical changes in body plan 

during metamorphosis. The smaller and simpler nervous system of insects provides a 

model to study mechanisms altering neuronal composition.  

A considerable transformation occurs in the mushroom body (MB) of the 

olfactory system of Drosophila. The mushroom body is a prominent structure in the 

insect brain essential to olfactory learning and memory, and serves as an excellent system 

to study the molecular mechanisms underlying the developmental plasticity. The MB’s 

consists of three different classes of neurons (γ, α'/β', α/ β) that are generated 

sequentially from four neuroblasts coincident with key stages in Drosophila 

development.  

Evidence suggests there are environmental influences on mushroom body 

neuronal composition, likely mediated by hormones. Downstream of Juvenile Hormone 

(JH) and Ecdysone, key hormones regulating development and metamorphosis, is the 
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transcription factor Broad-Complex (BR-C), known to be critical in the transition of 

larvae into metamorphosis.  

To elucidate the individual roles of the four BR-C isoforms, Z1-Z4, on neuronal 

composition in the mushroom body, I undertook a series of overexpression experiments 

and created tools for knockdown experiments. Specifically, I imaged and analyzed 

Drosophila brains from earlier experiments in which BR-C isoforms Z1 and Z3 were 

individually overexpressed in the MB. The knockdown experiments required the creation 

of the molecular tools necessary for isoform-specific RNA interference (RNAi). For these 

I performed PCR to amplify DNA sequences unique to each isoform and inserted those 

into the pWIZ vector, which will permit expression of loopless hairpin double stranded 

RNA to trigger the RNAi pathway in the fly. 

Overexpression of BR-Z1 resulted in an increase in both γ neurons and total 

neurons in the mushroom body. Overexpression of BR-Z3 resulted in a decrease in 

γ neurons and no change in total neurons. These results suggest that individual isoforms 

of BR-C regulate distinct aspects of developmental plasticity in the neuronal composition 

of the MB. The generation of the pWIZ-based constructs is still in progress. Currently, 

the 1st inserts of BR-Z4 and BR-Z1 have been verified to be successfully ligated into 

pWIZ. Once complete, these RNAi constructs will be useful tools for investigation into 

the roles of individual BR-C isoforms in any tissue of interest in the fly and specifically 

will allow us to determine whether the isoforms are necessary in normal MB 

development. 
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Introduction and Background 
 

Neural Plasticity 

Nervous system development requires specific spatially and temporally regulated 

mechanisms to create a diverse population of neurons and connections. Developed neural 

circuits allow an organism to receive input from the environment, process it, and output 

certain behavioral or physiological responses. Importantly, an organism’s nervous system 

must allow behavior appropriate to its particular environment. Innate nervous system 

development may control the construction of conserved neural circuits and connections, 

but the potential for a nervous system to be plastic, to alter structure and functional 

organization based upon experience, contributes to the survival and reproductive success 

of an individual animal.  

Neural plasticity is a recent discovery, prior to which most had believed the brain 

remained static after childhood development. Ramon y Cajal, the founder of modern 

neuroscience, believed the nervous system was fixed and immutable. This opinion largely 

dominated the field of neuroscience until the 20th century. William James, a 

contemporary of Ramon y Cajal, gave the earliest documented proposal of plasticity. He 

stated, “Organic matter, especially nervous tissue, seems endowed with a very 

extraordinary degree of plasticity” (James, 1890). 

Experimental evidence for the theory began as early as the 1920’s, but was not 

truly considered definitive until the 1970’s. In an attempt to allow blind people to see 

basic figures, Paul Bach-y-Rita created a device to substitute the visual system with the 
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sensory system (1969). Patients were soon able to recognize different shapes and figures. 

To be capable of visualizing figures through tactile stimulation involves the formation of 

novel connections, suggesting the brain adapts and changes. Evidence of plasticity was 

later found in many other mammals such as rats, cats, and songbirds (Guth, 1976; Brown, 

1975; McEwan, 1980). Increasing evidence suggests almost all brain areas are capable of 

neural plasticity. 

A known and commonly investigated mechanism underlying nervous system 

adaptation involves the alteration of strength and type of neural connections, or synaptic 

plasticity, by the modification of neurotransmitter release rate or receptor concentration. 

As the Hebbian theory suggests, “Cells that fire together, wire together.”  The repeated 

stimulation of a neuron creates an increased synaptic strength and efficacy of the neurons 

at that synapse.   

A broader view of variation in the nervous system is developmental plasticity, the 

alteration of the nervous system throughout development resulting from environmental 

interactions and experience. Developmental plasticity differs from hard-wired 

developmental mechanisms, which produce a common and organizationally conserved 

nervous system in species, by providing alteration of the nervous system throughout 

development specific to an individual organism. Although developmental plasticity 

encompasses synaptic plasticity, it also involves a less familiar type of plasticity 

mediating the numbers of neurons belonging to particular classes, termed neuronal 

composition. Throughout development, neural stem cells, or neuroblasts, differentiate 

and produce specialized neurons. Just as specialized cells exist from tissue to tissue, 
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classes and even subclasses of neurons have distinct roles in the nervous system and may 

be differentiated based on morphology and gene expression. The regulation of neuronal 

composition, or the number and ratio of types of neurons in the nervous system, may 

have profound effects on the organism. Mechanisms of neuronal composition remain 

largely unknown, leaving open opportunities for truly novel findings in this area.  

 

Holometabolous Insects 

The study of developmental plasticity remains difficult in mammalian organisms 

due to the size and complexity of the nervous system. Research is instead focused on 

insects, which exhibit smaller, simpler, yet still extremely complex nervous systems, 

allowing for studies of plasticity not feasible in mammals or larger organisms. 

Surprisingly, the insect brain has many regions analogous to those of mammals (Sweeney 

& Luo, 2010), suggesting that research on these areas could have direct relevance and 

significance to studies in humans. 

The model genetic organism Drosophila melanogaster is ideal to study molecular 

mechanisms involved in the plasticity of neuronal composition. Important to 

developmental studies are the short life cycle of Drosophila, small number of 

chromosomes, and easily induced and preserved mutations. The nervous system has been 

studied extensively and many aspects of neuronal development have been investigated 

providing vast foundational research for intricate and specific studies of the organism. 
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Drosophila melanogaster, like all holometabolous insects, undergoes complete 

metamorphosis, a process in which an animal will abruptly change from an immature to 

adult form through cell death, growth, and differentiation. Drosophila females lay eggs 

while offspring are still in their embryonic stages. Larvae emerge after hatching and, due 

to their rigid exoskeletons, undergo ecdysis, the shedding of their outer cuticle layer, 

multiple times throughout development. Prior to the first shedding, larvae are termed 1st 

instar larvae. Two subsequent instances of shedding occur, allowing the larvae to 

progress to 2nd instar and finally 3rd instar. 3rd instar larvae ecdyse to form a pupal cuticle 

and undergo metamorphosis. Metamorphosis is dependent on a critical weight that must 

be achieved by the larva (Truman & Riddiford, 2005). Once this is reached, hormonal 

mechanisms induce widespread changes throughout the organism. After metamorphosis 

is complete, the adult fly emerges from its pupal case in a process termed eclosion. 

Developmental plasticity is striking in holometabolous insects, which must 

prepare two nervous systems capable of distinct functions over the course of 

development: not only must neural circuits allow a larva to maneuver and find sources of 

food, but they must also confer flight, walking, and reproductive behavior on the 

morphologically distinct adult (reviewed by Levine & Restifo, 1995). Thus, the nervous 

system of a holometabolous insect must be reconstructed through programmed cell death, 

postembryonic neurogenesis, and the modification of persistent neurons. In one well-

studied example, the olfactory system must undergo metamorphic changes to 

accommodate appropriate behavioral responses to volatile molecules for both larval and 

adult forms (Lee et al., 1999; Marin et al., 2005). Remarkably, the olfactory system 
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seems to have a highly conserved organization from insects to mammals while also 

exhibiting reduced numerical complexity in comparison to mammals (Couto et al., 2005), 

making it an especially attractive system in which to study plasticity in neuronal 

composition.  

 

Olfactory System & Mushroom Body 

 The olfactory system is required for olfaction, or the sense of smell. Organisms 

are capable of discriminating between thousands of volatile organic compounds and 

associating certain compounds with appropriate outcomes and responses (reviewed by 

Firestein, 2001). The extreme diversity of compounds requires the olfactory system to be 

flexible and requires an intimate relationship with learning and memory.  

 In insects, the MB serves as an astonishing and unique brain structure in the 

olfactory system required for olfactory learning and memory. The MB, when first 

discovered in bees and ants, had been suggested as the seat of intelligence (Dujardin, 

1850). Continued research on the structure has indeed supported a role in intelligence, as 

it is essential to learning and short-term memory (Heisenberg, 2003).The MB is also 

involved in other complex adaptive behaviors, such as modulation of food-seeking 

behavior during satiety and hunger, visual context generalization, choice behavior, 

courtship, and sleep (Krashes et al., 2009; Liu et al., 1999; Tang and Guo, 2001; McBride 

et al., 1999; Joiner et al., 2006). 

Genetic and behavioral studies have shown that plasticity at the synapses of 

Kenyon Cells (KCs), the intrinsic mushroom body neurons, contribute to the acquisition 
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and storage of memory (Gu & O’Dowd, 2006). Therefore, the MB has been primarily 

implicated in the formation and recall of olfactory memory in both the larva and adult 

Drosophila (Pauls et al, 2010; Heisenberg, 2003), suggesting a high level of plasticity in 

this region. 

The MB’s are a pair of bilaterally symmetric brain structures that contain ~2500 

Kenyon Cells (KCs) located in the dorsal protocerebrum (Figure 1A, B) (Gu & O’Dowd, 

2006). KC’s belong to one of at least three morphologically distinct subclasses of neurons 

(γ, α’/β’, α/β) based upon their axonal projections into the lobe region of the MB and 

levels of expression of the cell-surface adhesion protein FasII (Crittenden et al., 1998). 

The dendrites and axons of KC’s form the calyces and the peduncle, respectively, and 

also form five distinctive types of lobes (γ, α', α, β',  β). 

In the MB, four neural stem cells, or neuroblasts, produce the same set of neurons 

and glial cells (Ito et al., 1997) and are capable of generating the three distinct subtypes 

of neurons (Lee & Luo, 1999). The neuronal subtypes are generated sequentially by the 

divisions of neuroblasts, and their axons project into their respective lobe(s). The switch 

from one neuronal subtype is coincident with certain periods in development, particularly 

the time between the last larval molt and metamorphosis (Figure 1C) (Lee & Luo, 1999). 

During embryogenesis, ~50 γ neurons are generated, and after larval hatching, ~500 more 

neurons are produced. Neuroblasts generate γ neurons until the middle of the 3rd instar 

(Lee & Luo, 1999). α’/β’ neurons are then generated between the middle of the 3rd instar 

and puparium formation, and α/β neurons are produced during metamorphosis. 
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Figure 1 Adult Drosophila mushroom body anatomy and KC production.  (A) Composite confocal 
image using immunohistochemistry to label the whole MB. (B) γ, α’/β’, and α/β lobes are outlined in 
red, green, and blue, respectively. Distinct branching patterns identify each lobe. (C) The generation of 
KC subtypes is coincident to key developmental time periods. Neuroblasts (Nb) produce γ neurons until 
3rdinstar and then abruptly switch to creating α’/β’ until P0. During metamorphosis and in the adult, α/β 
neurons are generated. 
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Mechanisms of MB Developmental Plasticity 

Although the nature of the switch from one MB neuronal subtype to another has 

not yet been elucidated, the timing of the production of MB neuron subtypes with 

development suggests hormonal influences are involved. Given the essential role of 

hormones in many aspects of development, a hormone-regulated mechanism for 

developmental plasticity in the MB is likely and has in fact been found in other insects. In 

the honeybee Apis mellifera, hormonally responsive KC’s and their nuclear receptors are 

known to regulate MB structure and neuropil formation (Velarde et al., 2009). In 

Drosophila, ecdysone is responsible for γ neuron reorganization during metamorphosis 

(Lee et al., 2000).  

Preliminary studies investigating the effects of environmental conditions on MB 

development have been conducted and suggest that neuronal composition is hormonally 

regulated. When Drosophila larvae are fed temporarily on a 20% sucrose diet, known to 

arrest larval growth but not affect MB neuroblast divisions, there is an increase in the 

numbers of the first born γ neuron subclass in the brain (Figure 2) (Marin, Apenteng, and 

Truman, unpublished). This regulation of composition due to dietary restrictions implies 

the possibility of MB-extrinsic factors, such as hormones, regulating proliferation rates of 

neuroblasts or survival of neuronal classes. Two key developmental timing regulators, 

ecdysone and Juvenile Hormone (JH), were therefore studied for their effects on MB 

neuronal composition during development.  
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Juvenile Hormone & Ecdysone 

The timing of insect development is governed primarily by JH and Ecdysone. JH, 

released by the corpora allata, has classic ‘status quo’ action in preventing larvae 

metamorphosis while promoting larval growth and development (Riddiford, 1994; 

Riddiford et al., 2001). Before each larval ecdysis occurs, JH levels increase to counteract 

ecdysone and prevent metamorphosis. However, titers of JH decrease after 3rd instar has 

been reached to allow the insect to undergo metamorphosis. Both JH and ecdysone are 

known to regulate additional aspects of insect nervous system development (Bownes et 

al., 1989; Robinow et al., 1993; Lee et al., 2000). 

In the MB, the ecdysone receptor (EcR) and its co-receptor ultraspiracle (USP) 

form a heterodimer expressed in γ neurons and mediates their reorganization and pruning 

Figure 2 Determining Role of Environmental Factors in MB Development. On a normal diet, the 
switch from the production of γ neurons to α’/β’ will occur after 3rd instar. When larva are fed on a 
sucrose diet for 48 hours, the number of γ neurons later in development will be indicative of an intrinsic 
or extrinsic cue governing the switch to α’/β’. If analysis of neuron number at P0 indicates extra γ 
neurons, the cue is extrinsic. However, if there is no difference in γ neuron number, the switch is likely 
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during metamorphosis (Lee et al., 2000). The surge in ecdysone before metamorphosis 

correlates with the transition of KC production from α’/β’ to α/β. Using dominant 

negative ecdysone receptors and mutant USP alleles, the relationship between EcR and 

temporal MB neuronal subtype composition was investigated. Results did not support a 

role for the canonical ecdysone signal transduction pathway in the control of neuronal 

subtype composition (Marin, Apenteng, and Truman, unpublished).  

 Although ecdysone was not implicated as the extrinsic signal, another plausible 

candidate was JH. Recent results from loss and gain of JH function experiments suggest a 

direct relationship between JH levels and α’/β’neuron number (Lubin, Dincer, Kanwal, 

Wakulchik and Marin, unpublished). These findings advocate an exciting model of 

hormonally regulated plasticity of the neuronal composition of the MB. If there is such 

hormonal regulation, however, intracellular factors must transduce the signal to alter 

expression of genes. Both ecdysone and JH regulate the expression of an early-gene 

downstream target, the transcription factor Broad-Complex (BR-C).  

 

Broad-Complex (BR-C) 

BR-C activates late-genes involved in programmed cell death of larval tissues for 

metamorphosis (Ashburner et al., 1974). Specifically, ecdysone induces widespread 

changes in BR-C expression to initiate puparium formation (Fletcher & Thummel, 1995). 

In addition, BR-C mediates the action of the JH hormonal signal in metamorphic 

reorganization of the CNS, salivary glands, and musculature (Restifo & Wilson, 1998).  



13 
 

 

Alternative splicing of BR-C transcripts links a common 5’ BTB/POZ-coding 

exon to one of four zinc-finger-coding exons (Z1, Z2, Z3, & Z4) (Figure 3) (DiBello et 

al., 1991; Bayer et al., 1996), generating one of four distinct isoforms. BR-C proteins act 

as site-specific, DNA-binding transcription factors (Hodgetts et al., 1995). Alternative 

splicing of the zinc fingers would presumably confer the ability to regulate distinct 

subsets of genes or mediate protein-protein interactions. For instance, as revealed by 

mutant alleles disrupting specific isoforms, Z1 mediates salivary gland-specific late gene 

transcription (rbp+), Z2 mediates envagination of imaginal discs (br+) and Z3 mediates 

fusion of imaginal discs (2Bc+). There is no known genetic correlation with the Z4 

isoform (DiBello, 1991). 

 

 

 

 

 

Figure 3 BR-C Gene Map. Two promoters, Pdistal and Pprox facilitate the transcription of BR-C isoforms. 
Among all isoforms, a common core 5’BTB/POZ-coding exon is retained. Zinc-finger coding exons are 
alternatively spliced to form Z1, Z2, Z3, or Z4 isoforms. 
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Throughout the nervous system, individual BR-C isoforms display distinctive 

temporal and spatial expression patterns. BR-Z3 expression is transiently present in many 

neuroblasts lineages during embryonic, larval, and pupal stages, with highest expression 

seen in the earliest born neurons (Zhou et al., 2009). Neurons generated during larval 

growth express BR-Z3 soon after birth, coinciding with the period when the neuron has 

finished its outgrowth to initial targets. BR-Z4 is expressed in all neuronal lineages born 

during a certain period (Zhou et al 2009), and BR-Z1 expression may be limited to glial 

cells (Spokony & Restifo, 2009); their selective and persistent expression suggest roles in 

providing molecular time-stamps of birthdates (Zhou et al., 2009). BR-Z2 is expressed in 

proliferating neuroblasts (Spokony & Restifo, 2009). Importantly, BR-Z3 expression has 

also been found in the developing MB (Zhou et al., 2009). The differential expression 

patterns for each isoform suggest that each mediates unique aspects of central nervous 

system development.  

Preliminary studies have uncovered a role for BR-C and specifically BR-Z3 in the 

MB for neuronal composition, though the mechanism of plasticity is still unknown 

(Marin, Apenteng, and Truman, unpublished). Initial overexpression of the broad isoform 

BR-Z3 led to a significantly decreased number of γ neurons in the MB accompanied by a 

similar decrease in total number of neurons (Figure 4b, d). Additionally, knockdown of 

all four BR-C isoforms through BR-Core RNAi resulted in an increase in all non-γ 

neurons and total neurons (Figure 4c, d). 

 



15 
 

 

 

 

 

 

 

Although only BR-Z3 expression has been confirmed in the MB, the paradoxical  

 

BR-Core RNAi results suggest expression of other isoforms as well. To clarify, if 

BR-Z3 were the only isoform normally expressed in the MB, knockdown of BR-Core 

should have resulted in an increase in γ neurons, the opposite result of BR-Z3 

overexpression. These results therefore suggest an interesting model (Figure 5) in which 

Z3 and an unknown isoform have antagonizing roles in mediating neuronal composition 

Figure 4 Effects of BR-Core Knockdown and BR-Z3 Overexpression on Neuronal Composition of 
MB. EcRB1 expression (purple) labels gamma neurons. mCD8 expression (green) labels all MB 
neurons. (A)  OK107 GAL4 driver control.  (B) OK107>BRZ3 Overexpression. A dramatic decrease in 
both γ neurons and total MB neurons is observed. (C) OK107>BR-RNAi knockdown of all BR-C 
isoforms. There is an observable increase in non-γ neurons and total neurons. (D)  Numerical analysis 
and comparison of OK107 control to OK107>BR-Z3 and OK107>BR-RNAi. OK>BR-Z3 animals 
showed a significant decrease in γ neuron number as well as total number of neurons in the MB. 
OK107>BR-RNAi animals exhibited a significant increase in non-γ neurons in addition to a significant 
increase in total MB neurons. 

d 



16 
 

 

in the MB. Additionally, the differences in total number of neurons imply changes in cell 

survival or proliferation as a method of isoform-mediated neuronal composition. 

 

 

 

 

 

Hypothesis 

Based upon prior experiments and results, I hypothesize that BR-C regulates 

aspects of developmental plasticity in neuronal composition of the MB in an isoform-

specific manner. To test this, I pursued three aims for my thesis work. First, I imaged and 

quantified the γ, non-γ, and total KC’s in control, BR-Z1, and BR-3 overexpression 

Drosophila brains that had been previously generated and mounted on slides (A. Barnard 

and E. Marin, unpublished) in order to analyze the effects of gain of function BR-C 

manipulations on neuronal composition. Second, I built transgenic fly lines with which to 

drive expression of the RNAi enhancer dicer-2 as well as each BR-C isoform-specific 

RNAi construction in MB to perform knockdown experiments and analyze the resulting 

loss of function phenotypes. Finally, I initiated the creation of pWIZ-based BR-C 

Figure 5 Model of isoform interaction mediating neuronal composition in the MB. 
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isoform-specific RNAi constructs to activate tissue-specific RNAi for the aforementioned 

knockdown of each isoform and analysis of the resulting phenotypes.  

 

The GAL4/UAS System 

Developed by Andrea Brand and Norbert Perrimon in 1993, the GAL4/UAS 

system serves as a molecular genetic method to express transgenes of interest in 

Drosophila (Figure 6) (Brand & Perrimon, 1993). GAL4 is a yeast transcription factor 

protein that binds to an Upstream Activating Sequence (UAS) to activate gene 

transcription. Mobilization of an inserted GAL4 to new sites in the genome will allow its 

expression to be controlled by a nearby tissue-specific enhancer. When GAL4 lines are 

crossed with strains of flies which have UAS regions cloned upstream of a gene of 

interest, GAL4 will be expressed, and the GAL4 protein will bind to the UAS region and 

activate gene transcription, in a specific subset of tissues or cells. Coupled with the RNAi 

system, tissue-specific disruption of RNA translation of the gene of interest is possible by 

driving expression of a sequence that forms hairpin dsRNA and activates the fly’s 

endogenous RNAi pathway.  

 

RNA Interference (RNAi) 

The development of Drosophila transgenic flies for knockdown experiments 

requires the use of RNAi to silence isoform expression and the GAL4/UAS system to 

limit RNAi expression specifically to the MB. The pWIZ plasmid, capable of expressing 
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double-stranded loopless hairpin RNA to activate RNAi, was utilized for the creation of 

transgenic UAS-RNAi flies. 

In many Eukaryotes, an RNAi defense mechanism has evolved against viruses in 

which the enzyme Dicer prevents translation of RNA to protein thereby eliminating gene 

products. Dicer cleaves double-stranded RNA into short nucleotides fragments. One of 

these strands is degraded and the other is used as a template to bind to other RNA and 

activate the RNAi mechanism. RNAi is a useful tool for research, allowing post-

transcriptional modulation of any gene’s expression. Coupled with the GAL4/UAS 

system, RNAi can be specific to tissues or even a small number of cells.  

 

 

 

 

 

 

Figure 6 GAL4/UAS System. GAL4 is a yeast transcription factor not normally present in other 
organisms. A GAL4 gene is placed under the control of a driver gene, while the UAS controls 
expression of a target gene. GAL4 is then only expressed in cells where the driver gene is usually active. 
In turn, GAL4 should only activate gene transcription where a UAS has been introduced.  
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pWIZ Plasmid 

The pWIZ (White Intron Zipper) plasmid is a vector capable of expressing 

loopless hairpin dsRNA (Lee &Carthew, 2003) (Figure 7). Derived from the pUAST 

plasmid, pWIZ utilizes the GAL4/UAS system, thus providing expression with cell and 

temporal specificity. Constructing the RNAi-inducing pWIZ plasmid involves sequential 

insertion of gene fragments upstream and downstream of the 74-base pair (bp) white 

intron in inverse orientation (Figure 8). In the fly, the white intron will be spliced out to 

produce complementary RNA fragments to hybridize with each other, forming a hairpin 

capable of triggering RNAi. Flanking the intron in pWIZ are restriction sites to insert 

gene fragments; AvrII and NheI exist on the 5’ and 3’ end, respectively. PCR products 

therefore must be digested with SpeI, AvrII, NheI, or XbaI to produce ligation-

compatible overhangs. For stability purposes, fragments are also required to be 500-

700bp in length.  

After the insertion of two inverse fragments has been verified, pWIZ will be 

injected into Drosophila embryos. P-elements transposon repeats, or sequences of DNA 

that are capable of mobility and integration, are present in the plasmid to introduce the 

transgene into the Drosophila genome in the presence of a coinjected transposase.  Once 

stably integrated, this construct will produce BR-C isoform-specific dsRNA in response 

to transcriptional activation by a tissue-specific GAL4 driver – in this case, in the MB. 
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Figure 7 pWIZ Plasmid. A) Restriction sites are shown flanking the white intron. B) The pWIZ 
plasmid includes a White gene, a white intron, and 3’ and 5’ P-element sites for transposase-mediated 
insertion of pWIZ into Drosophila genome.  

 

A 

B 
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Figure 8 Procedure for making an isoform-specific RNAi construct using the pWIZ vector. A DNA 
fragment corresponding to a portion of a broad isoform is amplified by PCR. A restriction site compatible 
with AvrII and NheI is present at the 5’ end of each PCR primer. The PCR product is inserted twice, by two 
ligation steps, into the AvrII and NheI sites of pWIZ. Two ligation steps are required to insert PCR products 
in an inverse orientation on either side of the white intron. Transformation follows to generate transgenic 
lines carrying the WIZ gene. Crossing transgenic animals with the WIZ gene with animals carrying MB-
specific GAL4 drivers creates F1 progeny, which produce loopless hairpin RNA. This induces RNAi 
against a specific isoform of BR-C. 
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Materials and Methods 
 

Overexpression and Immunohistochemistry 

Overexpression experiments were conducted to observe the effects of increased 

concentration of BR-C isoforms in the MB. BR-C overexpression lines were obtained 

from X. Zhou and L. M. Riddiford (U. Washington, Seattle). The UAS-dicer-2 line was 

obtained from M. Rolls (Penn State University). UAS-CD8-GFP, OK107 flies were 

crossed with w1118 (control), UAS-BRZ3 (BR-Z3 overexpression), and UAS-BRZ1 (BR-

Z1 overexpression). Progeny were raised on Carolina instant medium at 25°C at the same 

density.  

P0 brains were dissected, fixed in 3.7% paraformaldehyde, and stained with 1D4 

(anti-FasII, Developmental Studies Hybridoma Bank) at 1:20 and rat anti-mCD8 

(Caltag/Invitrogen) at 1:100 and then with TxR anti-mouse and FITC anti-rat (Jackson 

Immunoresearch Labs) at 1:300. The brains were then mounted on slides.  

 

Confocal Microscopy & Image Analysis 

Using a Leica SP5 laser scanning confocal microscope, the MB cell bodies were 

imaged. A stack of images were produced to observe the MB in 3-dimensions, with each 

slice within a stack representing an increase in the z-axis. ImageJ, an image processing 

and analysis software (http://rsbweb.nih.gov/ij/), was used with a customized Cell 

Counter Plugin (G.S.X.E Jefferis) to count the number of γ (mCD8+, EcRB1+) and non-

γ (mCD8+, EcRB1-) neurons.  
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.Each cell was manually counted on a single frame and the position was marked 

+/- 5 frames to avoid recounting the same cell. All frames within a sample were analyzed. 

 

Statistical Analysis of Results 

 Cell counts were recorded for the MB of each brain and the numbers of γ neurons, 

non-γ neurons, and total were averaged for at least seven samples. A student’s t-test was 

performed to test for significant differences between the averages of γ neurons, non-γ 

neurons, and total neurons in control and experimental groups.  

 

Primer Design & PCR 

Forward and reverse primers were made for each of the four isoforms. Primer 

design was based upon creating a PCR product 500-700bp in length with an additional 

concern for primer stability (Table 1). The necessity of ligand-compatible restriction sites 

required mismatches in the primers to create novel restriction sites if none existed in the 

gene fragment; these mismatches were kept at the 5’ end to decrease instability caused by 

a mismatched base. For instance, in the Z1 isoform-specific sequence, there existed a 3’ 

internal SpeI site close with no other compatible site.  The sequence was searched for a 6-

bp sequence only one bp different from either a NheI, SpeI, Xba, or AvrII site.  The 

sequence ‘CCTAGT’, similar to the SpeI site ‘ACTAGT’, was found at an appropriate 

position within the sequence. The forward primer was made to encompass the SpeI-

similar sequence and included a mismatched ‘A’ base to create the ‘ACTAGT’ site. 
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Similarly, the Z3 forward primer required a mismatched base to create a novel restriction 

site. Compatible restriction sites did not exist in Z2 and Z3 sequences and both forward 

and reverse primers had mismatched bases substituted to create novel restriction sites.  

Primers were ordered from Eurofins MWG Operon. 

Drosophila DNA was extracted from two w1118 flies using DNeasy Blood & 

Tissue Kit protocol (QIAGEN). DNA was eluted in 100 μL buffer AE, provided by 

DNeasy kit. Nucleic acid anaylsis was performed with Nandrop1000 (ThermoScientific) 

to determine concentration and impurities in the sample. 

Primers were initially diluted 1:100 in TE buffer (10mM TRIS; 1mM EDTA; pH 

8) and further diluted 1:10 in TE buffer for use in PCR reaction. A reaction mix and was 

made for each isoform and included Platinum Taq Polymerase (Invitrogen), Primer 

Forward and Primer Reverse, and either DNA or water (negative control NC). PCR was 

performed for 35 cycles of 94°C for 1min, a temperature ranging from 45-55°C 

depending on primer melting temperatures (Tm) for 30sec, and 74°C for 1min. Samples of 

the PCR products were electrophoresed on 1% agarose gel at 90V for 1hr. 

 

Cloning into TA Plasmid & Transformation of One Shot® Competent Cells 

PCR products were then cloned into the pCRII plasmid with T4 DNA ligase 

provided by the TA cloning kit, following the manufacturer’s protocol (Invitrogen). The 

appropriate volume of PCR product was used to produce a 1:1 vector:insert molar ratio. 

Once ligation was completed, the construct was transformed into One Shot® Competent 
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INVαF’ cells following the manufacturer’s protocol (Invitrogen). To grow the bacterial 

cells, 40μL of 100mM IPTG and 40mg/mL X-GAL were added to Luria Broth (LB) agar 

plates containing 100 μg/mL ampicillin. Either 10 or 50μL of each transformation 

reaction was spread onto LB agar plates. Plates were incubated at 37°C overnight and 

moved to 4°C for 3hrs to intensify color before counting blue vs. white colonies. For 

plasmid isolation and restriction analysis, 10 white colonies from each plate were used to 

inoculate 3mL LB containing 100 μg/mL ampicillin and placed overnight in a 37°C  

shaking incubator. 

 

 

 

 

 

Isoform Primer Sequence Length % GC 

Z1 
Forward:   5’ GTCTAGACTAGTTACAATTAGTTGC 3’ 25 36 

Reverse:    5’ TGTTACGGTGCGCTTAACC 3’ 19 52 

Z2 
Forward:   5’ CACCACTAGTATTTCCACCACGG 3’ 23 52 

Reverse:  5’  TTGGTCTAGAAAATTCATGCGTTCAT 3’ 26 34 

Z3 Forward:  5’ AGGAGCTAGCCATCTACCCAAAGC 3’ 24 54 

Reverse: 5’ CGTATTCTAGATACTGGTCCATAGGC 3’ 26 46 

Z4 
Forward: 5’ CCGTCTAGAGCCTACACAGTCACG3’ 24 58 

Reverse: 5’ ATACAGACTAGTCGCGGATGGGACA 3’ 25 52 

Table 1 Forward and Reverse Primers for BR-C Isoforms. Underline indicates restriction site. Bases 
highlighted in red represent a mismatched basepair for the creation of a novel restriction site. Lengths of 
each forward and reverse primer are shown along with their %GC content. 
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Miniprep Procedure and Restriction Digests 

Following QIAprep Spin Miniprep protocol (QIAGEN), TA plasmid constructs 

were isolated from each of the bacterial cultures (QIAGEN). After isolation, a restriction 

digest using appropriate restriction enzymes (New England Biolabs) was performed to 

cut the fragment from the TA plasmid. Restriction enzymes were chosen based upon the 

known internal sites or primer-made restriction sites. Reactions were incubated at 37°C 

for at least 1hr. Digests were then run on 1% agarose gels to confirm successful ligation 

and isolation of construct. Fragments which corresponded to their predicted size were 

sent to Genomics Core Facility, University Park for sequencing. Sequencing confirmed 

the fragments were indeed BR-C isoform sequences and free of mutations introduced by 

DNA replication. For each isoform, the miniprep corresponding to the fragment with the 

fewest replication errors was chosen for insertion into the pWIZ plasmid.  

TA plasmids were digested with the appropriate restriction enzymes (Table 2). 

The Volume of miniprep DNA required in each reaction was calculated by determining 

concentration of miniprep and using a total of 5 μg of DNA The total volume of digest 

DNA was run on a 1% agarose gel at 90V for 45min. The fragment which corresponded 

to the insert was isolated using QIAEX II isolation kit (QIAGEN) following 

manufacturer’s protocol. Concentration of isolated DNA was determined to verify 

successful isolation.  
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Insertion of Fragments into pWIZ: 1st Insert 

pWIZ plasmid was transformed into One Shot® Competent Cells following the 

manufacturer’s protocol (Invitrogen). Plasmid was extracted in high volume and 

concentration using the QIAfilter Plasmid Midi Kit (QIAGEN) following the 

manufacturer’s protocol.  

2μg pWIZ plasmid was digested with AvrII in a total reaction volume of 25 μL. 

Digested pWIZ was treated with alkaline phosphatase (Apex) to prevent religation 

following the manufacturers protocol (Epicentre). Isolated fragment DNA was then 

ligated to pWIZ with T4 ligase (Epicentre) using the Fast-Link DNA Ligation Kit. 

Volumes of pWIZ and fragment DNA were determined by calculating a 5:1 

pWIZ:fragment molar ratio (CIP’d pWIZ, fragment DNA, 1.5 μL 10x Fast Link Ligation 

Buffer, 1.5 μL 10mM ATP, and dH2O) for a total reaction volume of 15 μL. Procedure 

followed the manufacturer’s protocol (Epicentre).  

Ligation products were each transformed into GC10 Competent Cells following 

manufacturers protocol (Sigma). As pWIZ features ampicillin resistance but not 

blue/white screening, colonies were selected randomly for verification of insert.  Isoform 

sequence was searched for internal restriction sites for use in a restriction digest to 

confirm successful insertion. Construct DNA was isolated with miniprep procedure and 

digested with the appropriate restriction enzyme. Digested miniprep DNA was run on a 

1% agarose gel and the appearance of a fragment of the predicted size suggested the 

construct now included the first insert. DNA from samples believed to contain an insert 



28 
 

 

was transformed into GC10 Competent Cells following the manufacturers protocol 

(Sigma) and isolated using a QIAGEN Midiprep Kit.  

 

Insertion of Fragments into pWIZ: 2nd Insert 

Midiprep DNA was digested using the NheI restriction enzyme (5 μg midiprep 

DNA, 2 μL 10X NEB2 reaction buffer, .2 μL 100X BSA, .1 μL NheI, dH2O) in a total 

reaction volume of 25 μL. The same procedure for the 1st insert was used to ligate and 

verify the insertion of the fragment. However, restriction sites were chosen based upon 

the ability to predict fragment size when digests were run on a gel and infer inverse 

orientation. 

For further verification of the insertion of two fragments, forward and reverse 

sequencing primers were designed to complement DNA in the white intron. Sequencing 

results were submitted to NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) for 

comparison to the Drosophila genome.  
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Results 
 

BR-C Isoform Overexpression 

Alternative splicing of Broad-Complex produces for distinct isoforms, Z1-Z4, 

each with distinct roles in development. I sought to determine if there were differential 

functions of BR-C isoforms in the MB. Overexpression experiments were conducted to 

observe the effects of increased concentration of BR-C isoforms in the MB. UAS-CD8-

GFP, OK107 flies were crossed with w1118 (control), UAS-BRZ3 (BR-Z3 

overexpression), and UAS-BRZ1 (BR-Z1 overexpression).  

I first compared animals in which BR-Z1 had been overexpressed in the 

mushroom body using an OK107 GAL4 driver with matched controls. Qualitiative 

inspection of the overexpression of Z1 suggested substantially more γ (EcRB1+) neurons 

at P0 (Figure 9A). Quantification revealed this increase to be both significant and 

dramatic (1071 vs 585, p < .0006) (Figure 9B). Additionally, the total number of neurons 

also increased (1225 vs 681, p < .0001) along with the number of α’/β’ (EcRB1-) 

neurons (155 vs 97, p < .01). The results suggest that BR-Z1 mediates the survival of 

both γ and α’/β’ neurons. 
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Figure 9 BR-C Isoform Overexpression. Α) Confocal imaging of MB for wild type, BR-Z1 
overexpression, and BR-Z3 overexpression. EcRB1 expression (red) labels γ neurons and mCD8 
expression (green) labels all neurons in the MB. B) Quantification of γ and total neurons in the MB. 
Overexpression of BR-Z1 results in significantly increased γ neurons (1071 vs 585 p < .0006) as well as 
total MB neurons (1225 vs 681 p <  .0001). Overexpression of BR-Z3 results in a significant decrease in 
γ neurons (423 vs 585 p <  .0006) but total MB neurons remain the same (719 vs 681 p <  .56). 
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Animals featuring BR-Z3 overexpression using a MB-specific GAL4 driver were 

then analyzed. On first inspection of the MB, these animals exhibited a marked decreased 

in γ neuron number (EcRB1+) (Figure 9A). Numerical analysis supported these findings 

(Figure 9B). Overexpression of BR-Z3 resulted in a significant decrease in γ neurons 

(423 vs 585 p < .0006), while there was an increase α’/β’ neurons (EcRB-) (265 vs 97, p 

< .0005). However, the total number of MB neurons remained the same (719 vs 681 p < 

.56). The results indicate BR-Z1 and BR-Z3 differentially modify neuronal composition 

in the MB. 

 

Making UAS-RNAi  Drosophila Line 

 A MB-specific GAL4 line is required to selectively initiate RNAi in the MB. The 

GAL4 enhancer trap, OK107, is an enhancer with high expression in the MB. The 

OK107, UAS-GFP, and an UAS-Dicer-2 line will be crossed with the UAS-RNAi line. 

Progeny from the cross will knockdown expression of BR-C isoforms in the MB.   

Female virgin CD8 (UAS-CD8-GFP), yw; Pin/Cyo stock flies were crossed with 

w; UAS-Dicer males. From the progeny, non-Pin, Cyo males were selected and crossed 

with CD8, yw; Pin/Cyo virgin females. Non-Pin, cyo flies were selected and crossed to 

produce a stable CD8, yw; UAS-Dicer stock.  

 Concurrently, another stable stock was being created to cross with CD8, yw; 

UAS-Dicer. CD8, yw; Pin/Cyo virgin females were crossed with CD8, yw; +/+; OK107 

males. CD8, yw; +/cyo; OK107/+ virgin female progeny were crossed with CD8, yw; 
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Pin/+; OK107/+ male progeny. The progeny of this cross, CD8, yw; Pin/Cyo; 

OK107?/OK107? were crossed with each other in single sibling pair crosses. After the 2nd 

generation, vials were selected based on OK107 homozygosity (red eye color due to w+ 

marker in the OK107 transgene). The crosses produced a CD8, yw; Pin/Cyo; 

OK107/OK107 stable stock.  

 CD8, yw; UAS-Dicer virgin females were crossed with CD8, yw; Pin/Cyo; 

OK107 males. From the progeny, Cyo, non-Pin virgin females and males were selected 

and crossed. Single crosses of CD8, UAS-Dicer/Cyo, OK107/OK107? males and CD8, 

yw; UAS-Dicer/Cyo; OK107/OK107? virgin females were made. After three generations, 

crosses which produced only red eyes were selected. From these vials, flies were CD8, 

yw; UAS-Dicer; OK107. The Drosophila line was verified by dissecting samples from 

each vial and observing OK107+ expression in the nervous system. This line will be 

crossed to UAS-RNAi transgenic flies and progeny will be capable of post-transcriptional 

inactivation of gene expression specifically among tissues expressing OK107, most 

importantly the mushroom body.  

 

Creation of pWIZ-based Isoform Constructs 

Although we had a UAS-RNAi fly line in which all four BR-C isoforms could be 

knocked down simultaneously by targeting the common core region, UAS-RNAi flies 

were not available to study individual functions of BR-C isoforms. The development of 

pWIZ-based BR-C isoform-specific RNAi constructs was therefore necessary to 
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understand the role the isoforms have in neuronal composition in the MB. The vector 

required the insertion of two fragments from each isoform in inverse orientation such that 

during transcription, the fragments would complement and form dsRNA (Lee & Carthew, 

2003).  The fragments were designed to complement sequences of isoform-specific zinc-

coding regions in the BR-C gene and to amplify a minimum of 500 basepairs (bp) to a 

maximum of 750 bp (Table 1). 

Isoform specific sequences were amplified from genomic DNA isolated from the 

w1118 strain via polymerase chain reaction (PCR). Successful isolation of genomic DNA 

was verified using the NanoDrop1000, which returned a DNA concentration of 38.9ng/ul 

and a 260/280 value of 1.73. Using sequences found on FlyBase (http://flybase.org/), 

novel forward and reverse primers were designed for each isoform. Insertion of 

fragments into the pWIZ vector requires the use of specific restriction enzymes to create 

compatible restriction sites, producing complementary overhangs capable of efficient 

ligation. Given the relatively small size of the four zinc-finger-coding exons, compatible 

restriction sites sometimes did not exist. Instead, a location within the sequence was 

chosen that closely matched a restriction site sequence and a primer containing a base 

mismatch was made to substitute the appropriate nucleotide to form the site. The primers 

were then used for PCR to amplify each of the isoform-specific regions. The products of 

each reaction were inserted into a TA plasmid for sequencing. Once insert had been 

verified, the TA plasmids were digested and run on a gel for fragment extraction. The 

fragment ultimately will be sequentially inserted twice, in inverse orientation, into the 

pWIZ vector.  
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An initial PCR run was conducted using Z1-Z3 primers on Drosophila genomic 

DNA at specific annealing temperatures: 55ºC for Z1, 55ºC for Z2, 59ºC for Z3. Products 

were run on a 1% agarose gel (Figure 10). The Z1G sample produced a fragment ~500bp 

in length in lane 2 (Figure 10A). The Z1 PCR product was then ligated to TA plasmids 

and transformed into OneShot Competent Cells. Minipreps of DNA from white colonies 

were digested with SpeI and digests were run on 1% agarose gel (Figure 11A).The 

highest intensity fragments (circled) were chosen for sequencing. Fragments were then 

sequenced and the results run through BLAST to verify fragment identity and to 

determine percent mismatch from known isoform sequences. Miniprep Z1_16 matched 

99% to the known Z1 sequence (Appendix 1). An 8bp sequence of DNA was unable to 

be sequenced, most likely due to the presence of repeated thymadine (T) sequence. 

Miniprep Z1_16 was digested once more and run on a gel for extraction. Gel-extracted 

DNA was used for ligation into phosphatase-treated pWIZ plasmid digested with AvrII. 

Successful insertion of the Z1 fragment was verified by digesting pWIZ and running 

reactions on a 1% agarose gel (Figure 12).  Procedures for insertion of the 2nd fragment 

have been completed but have yet to be verified. 

The first PCR amplification of Z2 was unsuccessful. Amplification was 

reattempted at a lower annealing temperature of 45ºC to facilitate primer binding.  The 

Z2G sample produced a fragment ~1000bp in length (Figure 10C). Because the size was 

much higher than predicted, the Z2 product was not used for insertion into pWIZ.  
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PCR successfully amplified a portion of DNA in the Z3G sample and produced a 

fragment ~350bp in length. PCR products were ligated into the TA plasmid. Miniprep 

DNA was digested but no fragments were seen when run on a gel (not shown). Repeated 

cloning procedures of the Z3 isoform produced no visible results (not shown). 

Methylation of the plasmid was suspected. Therefore, Dcm-/Dam- cells (NEB) were used 

for cloning to prevent methylation and the cloning and digest procedures redone. Digests 

were run on a 1% agarose gel (Figure 12B) and two fragments were seen (circled).   

Miniprep Z3_5 matched 99% with the Z3 sequence with two mismatches. Miniprep Z3_5 

was digested once more and run on a gel and the visible fragment was extracted. Gel 

extraction products were ligated into phosphatase-treated pWIZ plasmid and the pWIZ-

construct transformed into Dcm-/Dam- cells. Experiments to verify insertion of the 

fragment have yet to be conducted.  

Initial PCR reaction did not produce any visible fragment for the Z4G reaction 

mixture. An additional PCR reaction was performed to amplify Z4 isoform sequence at 

53ºC and produced a fragment of ~700bp in size (Figure 10B; Lane 4). The PCR product 

was ligated into the TA plasmid. Miniprep DNA was digested to confirm the presence of 

the fragment in the plasmid (Figure 11C). The highest intensity fragments (circled) were 

chosen for sequencing. Of the resulting sequences, the corresponding fragment with the 

fewest mismatches was chosen for insertion into pWIZ. 99% of miniprep Z4_6 sequence 

matched the known Z4 sequence, with two mismatches and 1 basepair missing. Miniprep 

Z4_6 was digested once more and run on a gel for gel extraction. Gel extraction products 
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were ligated into phosphatase-treated pWIZ. The pWIZ-construct was then transformed 

and the miniprep DNA was digested to confirm successful ligation (Figure 12).  

 

Isoform Restriction Enzymes 

Z1 SpeI 
Z2 SpeI & XbaI 
Z3 NheI & XbaI 
Z4 XbaI & SpeI 

 

 

 

 

 
Figure 10 Amplification of Isoform DNA. Circled bands indicate fragments seen under UV light.  

 

Table 2 Restriction Enzymes for Digestion of Isoform Fragment from TA Plasmid. The Z1 isoform 
had only one restriction enzyme for digestion. One SpeI restriction site was created by the primer and 
the other was an internal site within the fragment. Z2, Z3, and Z4 all required double digestion. Z2 
required SpeI and Xba, both of which were created by the forward and reverse primers. Z3 required 
NheI and XbaI, created by the forward and reverse primers. Z4 required XbaI and SpeI; XbaI was 
created by the forward primer and SpeI was an internal site within the fragment. 
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Figure 11 Verification of Cloning in TA plasmid. Circled bands indicate fragments seen under UV 
light.   

 
A 

 

Figure 12 Verification of 1st BR-C isoform fragment in pWIZ. Yellow arrows indicate bands that 
have been sequenced and verified to be an insert of expected fragment. 
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Discussion 
 

BR-C Overexpression  

The overexpression and knockdown experiments allows us to quantify the effects 

of loss- or gain-of-function for each broad isoforms in the MB. In the present study, we 

demonstrate BR-C isoform-specific roles in mediating neuronal composition in the MB.  

Overexpression of BR-C isoforms in the MB suggested a role for both BR-Z3 and 

BR-Z1 in determining neuronal composition. In support of previous results, 

overexpression of BR-Z3 reduced γ neuron number (Figure 5; Figure 9). However, total 

neuron number for BR-Z3 overexpression remained the same whereas results of previous 

studies suggested a reduction in total neuron number (Figure 9) (Marin, Apenteng, and 

Truman, unpublished).  The difference between the results of the studies might be due to 

several factors. Selection of animals for dissection in this study was limited to those with 

normal eye size due to ease of dissection.  The previous study focused on dissected 

animals with smaller eyes, suggesting a reduction of cell proliferation and a higher level 

of OK107 expression. Also, animals were raised on different media in comparison to this 

study, possibly resulting in altered growth and development. There is additional concern 

regarding the possibility that different genotypes were used in these two studies since 

multiple insertion lines exist for each isoform.  

Conversely, overexpression of BR-Z1 in the MB resulted in a significant increase 

in γ-neurons and total number of neurons at P0 (Figure 9). Taken together, the findings 

suggest that BR-Z1 increases γ-neuron number while BR-Z3 antagonizes this action.   
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The means by which the isoforms might direct neuronal composition is still 

unknown. In Drosophila, BR-C regulates physiological and anatomical changes 

throughout the organism by cell death or proliferation. A reduction in γ neurons without a 

change in total neurons suggests a role for BR-Z3 in regulating the numbers of both γ and 

non-γ neurons. For example, BR-Z3-mediated programmed cell death in either/both γ or 

α’/β’ neurons should result in a decrease in total neuron number; this effect was not seen 

with BR-Z3 overexpression. The findings suggest the possibility that BR-Z3 normally 

alters neuroblast proliferation rates to create more γ neurons at the expense of non-

γneurons. BR-Z3 overexpression could also transform γ neurons to other, EcRB1-, 

subtypes. However, this effect could also simply result from down-regulated EcRB1 

expression in γ neurons due to BR-Z3 overexpression.   

In contrast, overexpression of BR-Z1 did alter total neuron number, indicating the 

isoforms might work via independent pathways to regulate neuronal composition, 

possibly through cell death or proliferation rates. To test this hypothesis, an antibody for 

activated caspase proteins, cysteine proteases crucial to cell apoptosis, could be used to 

compare cell death levels in the MB between overexpression animals and controls. To 

determine if proliferation rates are affected, BrdU, a synthetic analog of thymadine, can 

be fed to Drosophila larvae. BrdU can be incorporated into synthesized DNA of 

replicating cells and, using a BrdU antibody, indicate proliferating cells.  

Overexpression data also exist for BR-Z2 and BR-Z4. However, the experiments 

were conducted at 29°C instead of 25°C. The temperature difference does not permit 
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direct comparison of results of isoform overexpression with control animals.  The 

temperature at which animals are raised has been observed to affect MB neuronal 

composition (B.A. Apenteng and E.C. Marin, unpublished). The results from Z2 and Z4 

overexpression may still be used if control animals are made for 29°C. 

Unfortunately, the tools used for genetic manipulation were later found to affect 

the insulin-secreting cells; OK107 expression was not limited to the MB as previously 

thought. Insulin has been found to control size and growth of Drosophila throughout 

development (Oldham et al., 20002) and could likely alter MB neuronal composition as 

well. Therefore, we cannot be certain that the phenotypes were due solely to a cell-

autonomous role for BR-C in the mushroom body. Further experiments will be conducted 

in the future to separate the effects of insulin and BR-C. New tools are being developed 

using the MB247 GAL4 driver, known to have expression limited to the MB. The results 

from OK107 lines still could be used by combining the results with MB247 lines, 

allowing the possibility of distinguishing the role of insulin and cell-autonomous 

mechanisms in the MB.  

The limitation of overexpression experiments is ectopic, or abnormal, expression 

of a molecule; a NB that expresses an isoform it normally does not express is not 

necessarily generating a phenotype indicative of the isoform’s normal role during 

development. For this reason, knockdown experiments will be conducted to provide 

further evidence and reveal the roles of specific isoforms in the MB.  
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Creation of pWIZ-based Isoform Construct 

PCR amplification of isoform-specific zinc-fingers from genomic DNA resulted 

in the successful isolation of Z1, Z3, and Z4 fragments. Fragments were then ligated into 

the TA plasmid to provide stocks for each isoform to confirm successful ligation via 

restriction digestion and sequencing. Of the 12 white colonies used for each miniprep 

procedure, 1-2 colonies produced a fragment of the correct size after digestion. 

Corresponding DNA minipreps were then sequenced. Sequencing results suggested novel 

mutagenesis had occurred during DNA replication. Because mismatches will decrease the 

efficacy of RNAi, sequences with the smallest amount of error were chosen.  

After fragments were extracted from the agarose gel, they were inserted into the 

pWIZ vector. The frequency of a successful insert for Z1 and Z4 was 1:12. Currently, the 

1st insert for Z1 and Z4 have been verified and procedures are being conducted for the 2nd 

insert. Digestion of pWIZ-construct after 1st ligation of Z3 did not produce fragments 

when run on a gel. The restriction enzyme XbaI is blocked or impaired by Dam, a 

methylation enzyme, resulting in the inability to cleave pWIZ if methylation sequences 

exist in the Z3 sequence. To prevent methylation, Dam-/Dcm- competent cells were used 

for Z3. The 1st insert for Z3 into pWIZ has yet to be verified.  

PCR was unsuccessful for Z2. Although a PCR product was seen, it was not of 

the appropriate size. The annealing temperature used in the PCR reaction might have 

facilitated non-specific binding. Additional attempts to amplify this isoform under 

varying PCR conditions were also unsuccessful. New primers were designed for PCR but 
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were also unsuccessful in BR-Z2 amplification. The Z2 zinc-finger sequence is smaller in 

comparison to other broad zinc-finger sequences and the limitation for amplifying 

fragments of >500bp in addition to having AvrII and NheI compatible restriction sites 

severely restricted primer design. The sequence will need to be further analyzed and new 

primers designed that are stable and specific to allow for PCR amplification.   

 

Future Work 

Future procedures will continue to complete the pWIZ-based BR-C isoform 

constructs. Procedures for fragment insertion into the 2nd pWIZ site for Z1 and Z4 are 

currently being conducted.  

Once completed, the pWIZ constructs will be injected into Drosophila embryos, 

creating transgenic flies via p-element-mediated transformation. Flies bearing the RNAi 

transgene will be crossed to flies bearing a mushroom-body specific GAL4 driver 

(OK107), a membrane-bound GFP reporter gene, and a copy of Dicer-2. Dicer-2 is 

included because it has been found to enhance RNAi effects in neurons.  

Once transformed, the efficiency of gene silencing via RNAi will depend on 

complementary of the UAS-produced dsRNA and genomic-transcribed ssRNA. Using 

genomic DNA for the UAS-dsRNA raises concerns for post-transcriptional 

complementarity. RNA undergoes posttranscriptional modification and, because UAS-

dsRNA is derived from genomic DNA, there is a possibility that the dsRNA will not be 

capable of hybridizing with ssRNA. Therefore, the use of cDNA, or DNA reverse-
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transcribed from RNA, for the UAS-RNAi lines will likely be the most efficient method 

of activating RNAi.  

 

Significance of Project 

The crucial role of hormones in development suggests a possibility of a likewise 

fundamental role in developmental plasticity. Indeed, Juvenile Hormone was found to 

mediate neuronal composition in the MB (Lubin, Dincer, Kanwal, Wakulchik and Marin, 

unpublished). Downstream of JH is the transcription factor BR-C, known to be involved 

in the transition of Drosophila into metamorphosis (Fletcher & Thummel, 1995), but no 

evidence suggests a role for it in developmental plasticity. Our results indicate at least 

BR-Z1 and BR-Z3 mediate neuronal composition in the MB, possibly via a JH-regulated 

mechanism. The responsiveness of hormones to environmental factors presents a 

likelihood of an environmentally-responsive BR-C as well. Determining the effects of JH on 

BR-C in the MB are not yet known but could provide an interesting model in which BR-C 

ultimately transduce environmental cues to either increase or decrease subtypes in the MB and 

thus appropriately modulate behavior and learning and memory. 

Although the genetic basis of conserved developmental programs is widely 

studied, the molecular mechanisms underlying plasticity, particularly neuronal 

composition, remains an area largely unexplored. Understanding this process at the 

molecular level will not only increase our general understanding of plasticity, but also 

inform efforts in the area of stem cell technology.  
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The BR-C knockdown project will create novel RNAi tools that are capable of 

depressing isoform-specific BR-C expression in any tissue of Drosophila. Thus, any 

researcher interested in the functions of BR-C may use these tools to manipulate 

expression of the isoforms and elucidate their roles in development. Additionally, the MB 

has been implicated to have a common ancestral structure to that of the cortex found in 

vertebrates and invertebrates (Sweeney and Luo, 2010). Increasing our understanding of 

this brain region found in most insects and arthropods increases our potential to 

understand more of the mammalian and human brain development. Moreover, elucidating 

the role of BR-C in the MB has important implications in the roles of hormones in 

neuronal composition, a field vastly understudied.  
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Appendix 1: 
 

BLAST RESULT: Z1_16 Miniprep from TA plasmid 
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Appendix 2: 
 

BLAST RESULT: Z3_5 Miniprep from TA plasmid 
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Appendix 3: 
 

BLAST RESULT: Z4_6 Miniprep from TA plasmid 
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