Bucknell University
Bucknell Digital Commons

Honors Theses Student Theses

2011

Provenance signature of a forearc basin modified by
spreading ridge subduction: Detrital zircon
geochronology and detrital modes from the
Paleogene Arkose Ridge Formation, southern

Alaska

Cullen Kortyna
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/honors _theses
b Part of the Geology Commons

Recommended Citation

Kortyna, Cullen, "Provenance signature of a forearc basin modified by spreading ridge subduction: Detrital zircon geochronology and
detrital modes from the Paleogene Arkose Ridge Formation, southern Alaska" (2011). Honors Theses. 37.
https://digitalcommons.bucknell.edu/honors_theses/37

This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in

Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.


https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/honors_theses/37?utm_source=digitalcommons.bucknell.edu%2Fhonors_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

PROVENANCE SIGNATURE OF A FOREARC BASIN MODIFIED BY SPREADING
RIDGE SUBDUCTION: DETRITAL ZIRCON GEOCHRONOLOGY AND
DETRITAL MODES FROM THE PALEOGENE ARKOSE RIDGE FORMATION,
SOUTHERN ALASKA

by

Cullen D. Kortyna

A Thesis

Presented to the Faculty of
Bucknell University
In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science with Honors in Geology
May, 2011

Approved: % f?f ‘ % |
VAR 7

Jeffrey M. Trop
Thesis Advisor, Department of Geology, Bucknell University

Carl Kirby . L
Chair, Department of Geology, Bucknell University



ACKNOWLEDGEMENTS

This thesis is the manifestation of my passion and love for geology, and it would
have never been possible without key support and help from my advisors, colleagues,
friends, and family. First and foremost, | must thank Jeff Trop who introduced me to
geology, and guided me through four years of research and development into a budding
scientist. He has been unwavering in his support and guidance through hundreds of hours
of field work, discussions, revisions, and preparations for conference presentations, all of
which is culminating in this thesis. | would also like to thank him as a friend and mentor
whom without | would not be the man | am today. | am indebted to those who have
assisted me in the field, including Ed Bauer, Nick Fischietto, Bruce Idleman, Christine
Kassab, Ken Ridgway, Dave Sunderlin, Tyler Szwarc, and Jeff Trop. | thank Dwight
Bradley and his family for opening their home to serve as a base camp and Dave King for
providing logistical support while in the field. George Gehrels, Victor Valencia, and
colleagues at the University of Arizona LaserChron Center provided key analytical
assistance, and Bruce Idleman, Christine Kassab, and Jeff Trop assisted in U-Pb zircon
analyses. This study benefitted from valuable discussions and unpublished
geochronologic data exchange with colleagues studying adjacent source terranes,
including Jeffrey Amato, Heather Bleick, Dwight Bradley, Ron Cole, Matt Rioux, and
Alison Till. Craig Kochel provided valuable feedback and guidance in developing my
thesis proposal. Carl Kirby was very helpful in developing and discussing my thesis. |
am indebted to Linda Mertz for her assistance in securing and managing travel itineraries,

expenses, and grants. Brad Jordan provided key support, help, and tutelage in the



preparation of samples and use of certain tools and machines. | want to thank fellow
thesis student Rebekah Morris for her useful revisions, valuable discussion, and
commiseration. Additionally, 1 would like to thank my fellow geology students from
over the years who have inspired me, laughed with me, and made stressful days and
weeks more bearable, namely Ed Bauer, Kaitlin Fleming, Eva Lipiec, Eric Lynch, Erin
Donaghy, Lily Pfeifer, and Tyler Szwarc. David and Melissa Kortyna have given me all
the love and support | could ask for from a father and mother. They fully support my
academic and career interests, and even feign interest long enough for me to talk with
them about my research, findings, and general geology-laden thought processes. My
three younger sisters, Claire, Brighid, and Fiona Kortyna, have been very understanding
of my dedication to my studies and research, especially since | have missed the past three
family vacations to perform field work in Alaska. | want to thank Claire for her
occasional phone calls and text messages, Brighid for her facebook messages, and Fiona
for her handwritten letters and drawings. They all mean very much to me, and remind me
that despite my absence, | am still loved. Finally, | would like to thank Kaitlin Fleming,
whom without I am not sure how | would have survived. From making sure | was eating,
constant words of kindness, and putting up with early morning phone calls to
understanding when | was too tired to do anything on a Friday night but then staying in
the O’Leary computer lab with me until late Saturday night, Kait has been there for me
every step of the way. | will forever be in her debt for her support and unselfishness.
Funding for this study was generously provided by the Geological Society of America —

Northeast Section (to Cullen Kortyna), Bucknell Program for Undergraduate Research (to



Cullen Kortyna), Bucknell Department of Geology Marchand Fund (to Cullen Kortyna),

and National Science Foundation (to Jeff Trop).



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... I
TABLE OF CONTENTS ... %
LIST OF TABLES ... vii
LIST OF FIGURES ... viii
ABSTRACT . 1
INTRODUCTION. ..ottt 3
GEOLOGIC SETTING ..ot 11

STRATIGRAPHY, AGE, AND STRUCTURAL FRAMEWORK OF THE

ARKOSE RIDGE FORMATION ..ottt 20
IMETHODS ...ttt ettt b et e et e e et e e bt e s nbe e beeenne e 23
FIeld SAMPIING ..o 23
Conglomerate Clast COUNTS ..........coeriiiiieieie e s 23
Sandstone Modal ANAIYSES ........ccoiiiiiiiieee s 24
Detrital GEOCNION0IOY ......cveviiiiiiiiiiieee s 24
PROVENANCE DAT A ettt ettt sttt nte e b aeesnee s 26
Conglomerate Clast COUNTS ..........coeriiiiieieie e 29
PlUtONIC PEIrOTACIES ... .ot 30

VOICANIC PELrOfACIES ..o 30

Sandstone Modal ANAIYSES ........ccoiiiiiiiieee s 36
Quartzofeldspathic Petrofacies..........ccccviviiiiiiiiieie e 38

VOICANIC PELIOfACIES ..o 51



Detrital U-PD ZIrCON AGES .....ooiiiieiieriieie ettt 52

DISCUSSION ...ttt sttt e et ettt ebere e eneneeeanes 61
Provenance INtErpretation ...........coveiiieiieieiese e 61
Depositional MOGEL..........coiiiii e 69

ATKOSE RIAGE ... 73
LAVA MOUNTAIN ...t 74
Gray RIAQE ...t 74
BOX CANYON ...ttt 75
General Implications for Forearc Basin Development ..........ccccoevvvenenieinnnenn 76

CONCLUSIONS ..ottt sttt se et e et e e nenenees 82

REFERENQGES ...ttt ettt e sbe e beennee s 84

APPENDIX A: Photomicrographs of SAndstones ............ccocevveiiiiiene s, 97

Vi



LIST OF TABLES

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

POSSIDIE SOUICE TEITANES ..ottt nre s 28
Conglomerate clast count data from Arkose RIidge .........ccccoveriiinininieiicnen, 31
Conglomerate clast count data from Lava Mountain............c.cccceeevevevieeinenenne. 32
Conglomerate clast count data from Gray Ridge...........cccocvevveiiieiicieiiese e 33
Conglomerate clast count data from BoxX Canyon...........ccccceeveeieevieieesieesnene 34
Categories used for point-count data for sandstone samples...........cccccccevennnne. 39

Raw point-count data for sandstone samples of the Arkose Ridge Formation..40
Recalculated point-count data for sandstone samples ...........cccccocvvrviinienenn, 42

Summary of detrital zircon analyses of the Arkose Ridge Formation............... 53

vii



LIST OF FIGURES

Figure 1: Tectonic framework of southern Alaska (Ridgway et al., in press).........c......... 5
Figure 2: Geologic map of south-central Alaska (Ridgway etal., in press).........ccccccevnee. 7
Figure 3: Geologic map of the southern Talkeetna Mountains (Wilson et al., 1998) ....... 9
Figure 4: Age event diagram (Cole et al., 2006) ..........cccveveiiieiieieiieseee e 15
Figure 5: Sediment transport direction in Paleogene strata (Trop et al., 2003; Cole et al.,
200B) .veoeveoeeerereeeee e s eeee sttt et s ettt et e e ee ettt e et ee et s et er e 22
Figure 6: Measured stratigraphic sections through the Arkose Ridge Formation........... 27
Figure 7: Box Canyon conglomerate clast counts plotted in stratigraphic order............. 37
Figure 8: Photomicrographs of framework grains from point counted sandstones......... 44
Figure 9: Sandstone point-count data plotted on a Q-F-L ternary diagram..................... 46
Figure 10: Sandstone point-count data plotted on a Qm-F-Lt ternary diagram............... 47
Figure 11: Sandstone point-count data plotted on a Qm-P-K ternary diagram ............... 48
Figure 12: Sandstone point-count data plotted on a Lm-Ls-Lv ternary diagram ............ 49
Figure 13: Sandstone point-count data plotted on a Lv-(Ls+Lm)-PI ternary diagram ....50
Figure 14: U/Th vs. U/Pb age of Spot analySes..........cccoeviiiiiiiiiieieicic e 54
Figure 15: Probability plots of U-Pb detrital zircon ages from Arkose Ridge................. 56
Figure 16: Probability plots of U-Pb detrital zircon ages from Lava Mountain.............. 57
Figure 17: Probability plots of U-Pb detrital zircon ages from Gray Ridge.................... 59
Figure 18: Probability plots of U-Pb detrital zircon ages from Box Canyon.................. 60
Figure 19: Pie diagrams summarizing conglomerate clast counts.............cc.coevvvrvrinnnnn. 62
Figure 20: Pie diagrams summarizing detrital zircon analyses ...........ccccocvvniiniiieinnnn, 63



Figure 21: Paleogeographic reconstruction of the Matanuska basin in Paleogene time .71

Figure 22: Forearc comparison: southern Alaska and Great Valley forearc basins ........ 77



ABSTRACT

Upper Paleocene—Eocene boulder conglomerate, cross-stratified sandstone, and
laminated carbonaceous mudstone of the Arkose Ridge Formation exposed in the
southern Talkeetna Mountains record fluvial-lacustrine deposition proximal to the
volcanic arc in a forearc basin modified by Paleogene spreading ridge subduction beneath
southern Alaska. U-Pb ages of detrital zircon grains and modal analyses were obtained
from stratigraphic sections spanning the 2,000 m thick Arkose Ridge Formation in order
to constrain the lithology, age, and location of sediment sources that provided detritus.

Detrital modes from 24 conglomerate beds and 54 sandstone thin sections are
dominated by plutonic and volcanic clasts and plagioclase feldspar with minor quartz,
schist, hornblende, argillite, and metabasalt. Westernmost sandstone and conglomerate
strata contain <5% volcanic clasts whereas easternmost sandstone and conglomerate
strata contain 40 to >80% volcanic clasts. Temporally, eastern sandstones and
conglomerates exhibit an upsection increase in volcanic detritus from <40 to >80%
volcanic clasts. U-Pb ages from >1400 detrital zircons in 15 sandstone samples reveal
three main populations: late Paleocene—Eocene (60-48 Ma; 16% of all grains), Late
Cretaceous—early Paleocene (85-60 Ma; 62%) and Jurassic—Early Cretaceous (200-100
Ma; 12%). A plot of U/Th vs U-Pb ages shows that >97% of zircons are <200 Ma and
>99% of zircons have <10 U/Th ratios, consistent with mainly igneous source terranes.
Strata show increased enrichment in late Paleocene—Eocene detrital zircons from <2% in
the west to >25% in the east. In eastern sections, this younger age population increases
temporally from 0% in the lower 50 m of the section to >40% in samples collected >740

m above the base.



Integration of the compositional and detrital geochronologic data suggests: (1)
Detritus was eroded mainly from igneous sources exposed directly north of the Arkose
Ridge Formation strata, mainly Jurassic—Paleocene plutons and Paleocene—Eocene
volcanic centers. Subordinate metamorphic detritus was eroded from western Mesozoic
low-grade metamorphic sources. Subordinate sedimentary detritus was eroded from
eastern Mesozoic sedimentary sources. (2) Eastern deposystems received higher
proportions of juvenile volcanic detritus through time, consistent with construction of
adjacent slab-window volcanic centers during Arkose Ridge Formation deposition. (3)
Western deposystems transported detritus from Jurassic—Paleocene arc plutons that flank
the northwestern basin margin. (4) Metasedimentary strata of the Chugach accretionary
prism, exposed 20-50 km south of the Arkose Ridge Formation, did not contribute
abundant detritus.

Conventional provenance models predict reduced input of volcanic detritus to
forearc basins during exhumation of the volcanic edifice and increasing exposure of
subvolcanic plutons (Dickinson, 1995; Ingersoll and Eastmond, 2007). In the forearc
strata of these conventional models, sandstone modal analyses record progressive
increases upsection in quartz and feldspar concomitant with decreases in lithic grains,
mainly volcanic lithics. Additionally, as the arc massif denudes through time, the
youngest detrital U-Pb zircon age populations become significantly older than the age of
forearc deposition as the arc migrates inboard or ceases magmatism. Westernmost strata
of the Arkose Ridge Formation are consistent with this conventional model. However,
easternmost strata of the Arkose Ridge Formation contain sandstone modes that record an

upsection increase in lithic grains accompanied by a decrease in quartz and feldspar, and



detrital zircon age populations that closely match the age of deposition. This deviation
from the conventional model is due to the proximity of the easternmost strata to adjacent
juvenile volcanic rocks emplaced by slab-window volcanic processes. Provenance data
from the Arkose Ridge Formation show that forearc basins modified by spreading ridge
subduction may record upsection increases in non-arc, syndepositional volcanic detritus
due to contemporaneous accumulation of thick volcanic sequences at slab-window
volcanic centers. This change may occur locally at the same time that other regions of
the forearc continue to receive increasing amounts of plutonic detritus as the remnant arc
denudes, resulting in complex lateral variations in forearc basin petrofacies and

chronofacies.

INTRODUCTION

Throughout its geologic history, southern Alaska has experienced several
dynamic tectonic processes considered to be fundamental to the collisional growth of
continental margins (Trop and Ridgway, 2007). Some of these processes include
subduction of oceanic crust and arc magmatism, accretion of allochthonous terranes, and
exhumation along regional strike-slip faults (Trop, 2008). For example, the Mesozoic
collision of the Wrangellia composite terrane represents the largest addition of juvenile
crust to western North America in the past 100 million years (Coney, 1980; Plafker and
Berg, 1994). Volcanic arcs have been established, terminated, and re-established
throughout southern Alaska’s history. The Cenozoic collision of the Yakutat terrane and
recent activity on some of Alaska’s most prominent faults are reminders that collisional

tectonic processes are still very much active in southern Alaska. Despite Alaska’s



tectonic significance, many of the dynamic processes that have occurred in Alaska’s
geologic history remain poorly understood. One such process that modified southern
Alaska during Paleogene time was the west-to-east oblique subduction of an oceanic
spreading center (Bradley et al., 2003). Geologic evidence of this event is currently
restricted to near-trench plutons in the accretionary prism with associated ages of 62 Ma
in the west to 50 Ma in the east and an Eocene volcanic field that crops out in the central
Talkeetna Mountains (Fig. 1). Both the plutons and the volcanic field have a depleted-
mantle geochemical signature and are inferred to be associated with subduction of an
oceanic spreading center (Cole et al., 2006). Recent studies deduce that deposition in the
Matanuska Valley-Talkeetna Mountains forearc basin overlaps with slab-window
formation, near-trench plutonism to the south, and formation of the Eocene volcanic field
(Trop and Ridgway, 2007; Cole et al., 2006). These forearc strata record a detailed
history of basin evolution modified directly by the subduction of an oceanic spreading
center.

The Arkose Ridge Formation (ARF) consists of a >2000-m-thick sequence of
upper Paleocene-Eocene fluvial-lacustrine sedimentary and volcanic strata deposited
along the arcward (northern) margin of the remnant Matanuska Valley-Talkeetna
Mountains forearc basin in southern Alaska (Fig. 2, 3; Trop et al., 2003; Trop and
Ridgway, 2007). Exceptionally well-exposed in a 50-km-long and 2.5-10-km-wide
outcrop belt in the southern Talkeetna Mountains (Winkler, 1992), these strata are
broadly interpreted as recording exhumation of remnant Jurassic-Cretaceous magmatic
arc plutons as well as Eocene volcanic centers attributed to slab-window magmatism

during spreading ridge subduction (Trop and Ridgway, 2000; Cole et al., 2006; Trop and
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Ridgway, 2007). However, sediment provenance data from these basinal strata are
limited to sparse conventional modal analyses and paleocurrent data that suggest
sediment was eroded from northern source terranes. These previously reported data
cannot give the specific locations, ages, or lithologies of the sediment sources. Clast
count and sandstone modal analyses reported by Trop and Ridgway (2000) do offer some
insight on the lithologies of source terranes, but these data are limited to the westernmost
portion of the outcrop belt. The purpose of this study is to integrate detrital zircon
geochronologic analyses and conventional modal analyses from the entire Arkose Ridge
Formation outcrop belt to better resolve the age, location, and lithology of sediment
sources that contributed clastic detritus. In ancient active-margin settings characterized
by abundant first-cycle detritus, the forearc strata can provide a more complete history of
arc magmatism, topography, and, in this case, slab-window formation than the present
exposure of the arc or volcanic center itself (DeGraaff-Surpless et al., 2002). A refined
provenance analysis of the Arkose Ridge Formation offers improved constraints on
processes that shaped the southern Alaska convergent margin, including the evolution of
paleotopography, magmatic histories of volcanic-plutonic belts, sediment dispersal into

sedimentary basins, and the effect of ridge subduction on basin evolution.

GEOLOGIC SETTING

The following section will summarize the geology surrounding the Arkose Ridge
Formation and introduce the ages, lithologies, and locations of possible source terranes
for the formation. The Matanuska Valley-Talkeetna Mountains forearc basin consists of

a 90-km-long and 20-70-km-wide belt of Mesozoic-Cenozoic sedimentary strata that crop
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out in the Matanuska Valley, southern Talkeetna Mountains, and northern Chugach
Mountains (Fig. 1; Trop and Plawman, 2006). The forearc basin is bounded to the north
by two remnant magmatic arcs (a Jurassic oceanic island arc and a late Cretaceous-
Paleocene continental magmatic arc) as well as the Eocene depleted mantle volcanic field
related to ridge subduction (Fig. 2; Rioux et al., 2007; Cole et al., 2006). To the
southeast, the forearc strata are bounded by Mesozoic meta-sedimentary rocks of the
Chugach subduction complex (Trop and Ridgway, 2000). The Border Ranges fault
system separates the southern margin of the forearc basin from the Chugach subduction
complex (Pavlis and Roeske, 2007). The east-west striking Castle Mountain fault bisects
the forearc basin and bounds the Arkose Ridge Formation to the south. The fault
experienced Eocene-Oligocene dextral strike-slip displacement and Neogene dip-slip
displacement (Trop and Ridgway, 2000; Grantz, 1966; Fuchs, 1980; Little, 1990).
However, the displacement history of the Castle Mountain fault is still poorly understood.
Late Cretaceous-Tertiary piercing points record 20-40 km of dextral offset, but do not
constrain timing of displacement (Grantz, 1966; Clardy, 1974; Detterman et al., 1976;
Fuchs, 1980; Trop et al., 2003). Trop et al. (2005) infer ~130 km of displacement
through the correlation of the Bruin Bay and Little Oshetna fault systems which Pavlis
and Roeske (2007) hypothesize to be strike slip displacement transferred from the Border
Ranges fault system northward to the Castle Mountain fault system.

Studies from the Upper Cretaceous-Paleogene volcanic rocks in the Talkeetna
Mountains document three distinct phases of volcanism: 180 to 145 Ma arc plutons in the
south-central Talkeetna Mountains attributed to the accreted Talkeetna oceanic magmatic

arc, 80 to 60 Ma arc plutons in the southwestern Talkeetna Mountains attributed to
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continental arc magmatism, and 59-36 Ma volcanic rocks and associated intrusions in the
southeastern Talkeetna Mountains related to subduction of an oceanic spreading center
(Fig. 3; Madsen et al., 2006; Cole et al., 2006; Rioux et al., 2007). The Arkose Ridge
Formation unconformably overlies Upper Cretaceous-Paleocene arc plutons in the west
(TKg on Fig. 3), Jurassic plutons in the center (Jpu on Fig. 3), and interfingers with and
unconformably underlies Eocene volcanic rocks of the Caribou Creek volcanic field in
the east (Tv on Fig. 3; Winkler, 1992; Cole et al., 2006).

Both the Upper Cretaceous-Paleocene plutons in the west and the Jurassic plutons
in the center are subvolcanic plutons of two separate magmatic arcs. They are both
composed primarily of diorite, quartz diorite, granodiorite, and tonalite plutons and some
minor mica shist (TKg, Jpu, Ks on Fig. 3; Winkler, 1992). The Talkeetna magmatic arc
is an allochthonous Jurassic andesitic oceanic island arc that accreted onto southern
Alaska in late Mesozoic time (Plafker and Berg, 1994). K-Ar ages on related local
granitoids (Jpu on Fig. 3) yield middle Jurassic biotite ages of 168-169 Ma and two
hornblende ages of 154 and 173 Ma (Winkler, 1992; Csejtey et al., 1978). High precision
U-Pb ages were calculated on Jurassic granitoids and metamorphic rocks (Jpu on Fig. 3)
in both the Eastern and Western Talkeetna Mountains. Samples in the Eastern Talkeetna
Mountains yield ages of 178-169 Ma. Samples in the Western Talkeetna Mountains yield
ages of 153-157 Ma and 190-192 Ma (Rioux et al., 2007).

The late Cretaceous-Paleocene continental magmatic arc, due to north-northwest
subduction (present coordinates) of oceanic plates, intrudes the accreted Talkeetna
magmatic arc (Trop, 2008). Multiple K-Ar ages on the Upper Cretaceous granitoids

(TKg on Fig. 3) from the southern Talkeetna Mountains document a range from 65 to 74
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Ma (£ 2 Ma on average) (Winkler, 1992; Csejtey et al., 1978). Harlan et al. (2003)
performed thermochronologic analyses on the Willow Creek pluton of the Cretaceous
granitoids.  U-Pb ages were used to calculate crystallization ages and Ar-Ar
thermochronologic ages were used to calculate cooling ages. They determined the
Willow Creek pluton was emplaced between 73-63 Ma based on U-Pb data (Harlan et al.,
2003; Trop et al., 2003). Hornblende Ar-Ar ages yield 72.8 to 70.5 Ma and biotite Ar-Ar
ages yield 70-67.9 Ma, which led to calculated cooling rates indicating the pluton was
below 280 °C by 68.8 Ma and below 200 °C by 66 Ma. Bleick et al., (2009) recorded
more diverse U-Pb zircon ages on the Cretaceous granitoids ranging from 90.3 + 0.3 to
67.3 £ 0.2 Ma. Zircon fission track dating (~225°C closure) led to similar calculated
cooling ages of 77 to 66 Ma.

The Eocene Caribou Creek volcanic field, located to the northeast of the ARF,
records the geochemical signature of depleted mantle volcanics related to slab window
volcanism during ridge subduction. The Caribou Creek volcanic field is primarily
composed of thick bedded basalt and andesite lavas (Tv on Fig. 3; Winkler, 1992). The
Eocene Caribou Creek volcanics (Tv on Fig. 3) that locally unconformably overlie the
AREF in the northeast have been dated using “°Ar/*°Ar, yielding ages that range from 49.4
+ 2.2 10 35.6 + 0.2 Ma. An adakite-like tuff beneath the other volcanic rocks yields an
age of 59.0 = 0.4 Ma (Cole et al. 2006). Based on limited age data, deposition of the
Arkose Ridge Formation apparently overlapped with both late Cretaceous-Paleocene and
Eocene phases of volcanism (Fig. 4; Cole et al., 2006; Winkler, 1992). However, prior

to this study the relationship between volcanism and sedimentation was not well
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Figure 4. Age-event diagram
showing isotopic ages from igne-
ous rocks and igneous clasts in
the Matanuska Valley and Talk-
eetna Mountains. Note that onset
of deposition of the Arkose
Ridge Formation was coeval
with timing of slab window
formation in  south-central
Alaska. Slab window formation
is attributed to subduction of a
spreading ridge (Bradley et al.,
2003). Also note that the forma-
tion of the Caribou Creek volca-
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1-Cjestey et al. (1978), Adams et al. (1985). Little (1988). and R.B. Cole and P.W. Layer

(2002, person commun.): 2-Cole et al. (2006), Silberman and Grantz (1984), Panuska et al.

(1990). and Trop et al. (2003 ): 3-Silberman and Grantz (1984), Little (1988), and Little and

Naeser (1989): 4-Triplehorn et al. (1984); 5-Silberman and Grantz (1984): 6-Trop (2008).

Adapted from Cole et al. (2006).
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documented, including whether volcanic centers contributed detritus to the Arkose Ridge
Formation.

The Chugach subduction complex is exposed ~20-50 km south of the ARF and
consists of Jurassic-Paleocene marine metasedimentary and metavolcanic rocks
interpreted as offscraped oceanic strata (Fig. 2). The Border Ranges fault juxtaposes
subduction complex rocks to the south against Paleogene forearc strata (Chickaloon
Formation) that are age equivalent to the Arkose Ridge Formation to the north (BRF on
Fig. 2). A systemic decrease southward in age of strata, deformation and metamorphic
grade across the subduction complex suggests long-lived northward subduction (present
coordinates). The subduction complex includes three distinct belts from north to south:
(1) the McHugh Complex, comprised of spatially limited late Triassic-early Jurassic
blueschist and Triassic to late Cretaceous mélange; (2) the Valdez Group, consisting
mainly of latest Cretaceous marine metasedimentary and minor metavolcanic rocks; and
southernmost, (3) the Orca Group, consisting of offscraped Paleocene-Eocene marine
sedimentary and volcanic rocks (Plafker et al., 1994). Amato and Pavlis (2010) reported
two main detrital zircon age populations for the McHugh Complex of 91-84 Ma and 157-
146 Ma.

Northern source terranes exposed >100 km north of the ARF outcrop belt include,
from north to south, the Yukon-Tanana terrane, the Kahiltna assemblage, and the
Wrangellia composite terrane. The Yukon-Tanana terrane consists of ductilely and
structurally dismembered and dislocated Proterozoic-Paleozoic metamorphic rocks and
arc-related rocks (Mortensen, 1992; Foster et al., 1994; Hansen and Dusel-Bacon, 1998).

U-Pb zircon ages on mafic and felsic metaigneous rocks of the Yukon-Tanana terrane
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yield late Devonian to early Mississippian crystallization ages, ranging from 378-346 Ma
(Dusel-Bacon et al., 2004). Metamorphic rocks of the Yukon-Tanana terrane are faulted
between autochthonous North American crust and outboard allochthonous accreted
terranes (Mortensen, 1992; Foster et al., 1994; Hansen and Dusel-Bacon, 1998). One of
these is the allochthonous Wrangellia composite terrane, one of the largest accreted
terranes in the North American Cordillera. It consists primarily of volcanic and
sedimentary strata of the Peninsular terrane, the Wrangellia terrane, and the Alexander
terrane (Jones et al., 1977; Gehrels and Saleeby, 1987; Plafker and Berg, 1994). The
Paleozoic-Triassic Wrangellia composite terrane accreted during Mesozoic time (Trop
and Ridgway, 2007), and is juxtaposed along the southern margin of the Yukon-Tanana
terrane. Potential source terranes associated with the Wrangellia composite terrane
include the Skolai arc ranging from 320-285 Ma (Hampton et al., 2007). The suture zone
between these two terranes is characterized by complexly deformed rocks and is bisected
by the Denali Fault.

The Kabhiltna assemblage is exposed in a 100 by 300 km outcrop in the Alaska
Range and a 60 by 150 km outcrop in the northern Talkeetna Mountains. The Kahiltna
assemblage records mudstone, sandstone and limestone deposition in a remnant ocean
basin from late Jurassic to middle Cretaceous time (Hampton et al., 2007). In the
northeastern Talkeetna Mountains, the Kahiltna assemblage has been locally
metamorphosed to kyanite-garnet-schist and gneiss. In the northwestern Talkeetna
Mountains, the nonmarine, middle Cretaceous Caribou Pass Formation overlies the
Kahiltna assemblage. The Caribou Pass Formation records deposition of sandstone,

mudstone and conglomerate (Hampton et al., 2007). Upper Cretaceous arc plutons
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intrude the Kahiltna Formation. U-Pb zircon ages from these plutons yield 68.3 to 62.6
Ma ages (Davidson and McPhillips, 2007). Another potential northern source terrane is
the Jack River suite, which consists of volcanic and granitic rocks that were erupted and
emplaced along the suture zone between the Wrangellia composite terrane and southern
Alaska. They unconformably overlie the Jurassic-Cretaceous Kahiltna Formation.
©Ar/Ar ages on the volcanics yielded ages ranging from 56.0 + 0.3 to 49.5 + 0.3 Ma.
A/ Ar ages on the plutons yielded two ages of 54.6 + 0.4 and 62.7 + 0.4 Ma. The Jack
River volcanic and granitic rocks record the magmatic response to terrane accretion and
margin-parallel transport of an accreted terrane after sutured to the margin (Cole et al.,
2007).

U-Pb detrital zircon ages and sandstone modal composition indicate that the
Jurassic-Cretaceous Kahiltna Formation in the central Talkeetna Mountains received
igneous detritus primarily from the Chisana arc (early Cretaceous arc located east of the
Talkeetna arc), the remnant Talkeetna and Chitina (late Jurassic arc located east of the
Talkeetna arc) arcs and Permian-Triassic plutons of the Wrangellia composite terrane.
Minor populations of detrital zircon ages indicate other sources of detritus from the
Devonian-Mississippian plutons of the Yukon-Tanana terrane and the late Triassic-early
Jurassic Taylor Mountains batholith located in the Yukon-Tanana terrane (Hampton et
al., 2007).

The Upper Cretaceous Matanuska Formation (Km on Fig. 3) consists of
submarine ramp/slope lithofacies, characterized by sandstone, conglomerate, and
mudstone deposited by mass slumps, slides, debris flows, and turbidity currents into the

forearc basin of the late Cretaceous-early Paleocene magmatic arc (Trop, 2008).
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Stratigraphically, it precedes deposition of the Arkose Ridge Formation in the forearc
basin. Additionally, there is a regional angular unconformity between the Matanuska and
Arkose Ridge Formations. Inferred base-level changes across the unconformity exceeded
fluctuations in eustatic sea-level (<100 m; Haq et al., 1988), requiring tectonically driven
uplift (Trop, 2008). Deposition of the Matanuska Formation was prior to forearc uplift
related to the subduction of progressively younger oceanic lithosphere inboard of an
oceanic spreading center. This forearc uplift is posited to accommodate the upsection
change from submarine ramp/slope to alluvial-fluvial facies between the Matanuska
Formation and the Arkose Ridge Formation (Trop, 2008). U-Pb detrital zircon data in
sandstones and U-Pb ages of granitoids clasts from the Matanuska Formation suggest that
the Jurassic-Cretaceous arc plutons of both the Talkeetna and late-Cretaceous-early
Paleocene arcs were important sediment sources. Sparse Paleozoic-Triassic detrital
zircons indicate minor sediment contribution from more northerly sources in the Yukon-
Tanana and Kabhiltna terranes (Trop, 2008). The presence of 77-71 Ma detrital zircons in
sandstone and 79-77 Ma granitic clasts in conglomerate, along with Maastrichtian (71-65
Ma) ammonite and foraminifera fossils, imply that the coeval Cretaceous-Paleocene
magmatic arc plutons were unroofed relatively quickly. Trop (2008) reports a maximum
of 6-7 m.y. passed between zircon crystallization, pluton exhumation, and detrital zircon
deposition.  Assuming pluton emplacement depths of ~6-12 km, typical of silicic
continental-arc plutons (Martel et al., 1998; Scaillet and Evans, 1999; Scaillet et al.,
2001), estimated latest Cretaceous unroofing rates range from 0.75 to ~1.00 mm/yr (Trop,

2008).
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STRATIGRAPHY, AGE, AND STRUCTURAL FRAMEWORK OF THE
ARKOSE RIDGE FORMATION

Published geologic studies provide a general framework on the sedimentology,
geochronology, paleoclimate, and structural framework of the ARF. The western part of
the ARF outcrop belt consists of siliciclastic and minor volcanic strata with preserved
thicknesses >2000 m (Trop and Ridgway, 2000; Kortyna et al., 2009). Geologic mapping
and measured stratigraphic sections show that four lithofacies associations dominate the
stratigraphy. Boulder conglomerate and subordinate sandstone occur in paleovalleys
incised into underlying Jurassic-Cretaceous granitic plutons. Cross-stratified sandstone,
conglomerate, and carbonaceous mudstone record anastomosing and braided fluvial
systems with bifurcating channels and vegetated floodplains. Laminated carbonaceous
mudstone, shale, and tuff represent small floodplain lakes. Cross-stratified sandstone,
heterolithic sandstone/mudstone, in situ coalified tree trunks, and minor lavas record
deposition and minor effusive volcanism in tidally influenced fluvial-estuarine
deposystems. Eastern ARF strata consist of siliciclastic and volcanic strata with
preserved thicknesses >900m (Kassab et al., 2009). Strata consist of conglomerate with
pumice/tuff clasts, cross-stratified sandstone, carbonaceous siltstone, and coal that
represent fluvial-lacustrine environments routinely influenced by pyroclastic eruptions.
Volcanic interbeds include welded tuff-breccia with bombs, welded lapilli tuff,
crystalline tuff, pyroclastic flows, and sparse lavas. To the southwest, sections between
the Kings and Chickaloon Rivers are dominated by carbonaceous mudstone and cross-
stratified sandstone that represent fluvial-lacustrine environments. Volcanic interbeds

include pumice-rich lapilli tuff, laminated crystalline tuff, pyroclastic flows, and rare
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lavas. Southwestward lithofacies transitions and paleocurrent data indicate that
volcanogenic strata were partly derived from the Caribou Creek volcanic field (Kassab et
al. 2009), but provenance data have not been reported. Overall, sediment provenance
data from these basinal strata are limited to sparse conventional modal analyses and
paleocurrent data that suggest sediment sourced from northern source terranes (Fig. 5).
Age constraints from ARF strata are limited to a handful of conventional
radiometric ages from volcanic interbeds and biostratigraphic ages from plant fossils. K-
Ar radiometric ages from volcanic interbeds demonstrate a late Paleocene to early Eocene
depositional age. Whole rock ages from two rhyolite tuffs yield ages of 50.5 £ 1.5 Ma
and 45.5 + 1.8 Ma (Silberman and Grantz, 1984). Alkali feldspar from a rhyolite ash-
flow tuff yielded a 51.4 + 1 Ma K-Ar age (Silberman and Grantz, 1984). A basaltic dike
cross-cutting the ARF yielded a 46.1 + 2.8 Ma whole-rock K-Ar age (Silberman and
Grantz, 1984; Winkler, 1992). Plant fossils from ARF strata include diverse leaf, seed,
and axis (stem/shoot) fossils delicately preserved in laminated siltstone and sandstone
(Lecomte et al., 2010; Sunderlin et al., 2011). Age-diagnostic taxa support a Paleocene-
Eocene depositional age for the ARF (J. Wolfe cited in Winkler, 1992). Foliage types
include several species of conifer and broadleaf, as well as examples of Equisetites
cycad fronds and a palm frond. The fine preservation of all elements suggests that these
plant assemblages were minimally transported out of habitat. Habitats of living relatives
and fluvial-lacustrine sedimentary strata indicate that this flora represents a moderately
diverse floodplain forest community. This assemblage suggests warm to cool temperate
paleotemperatures during the deposition of the ARF (Lecomte et al., 2010; Sunderlin et

al., 2011).
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Northwest-dipping reverse faults, southeast-verging folds and northwest-striking
normal faults deform Arkose Ridge Formation strata along the entire width of the outcrop
belt (Winkler, 1992; Kortyna et al., 2009; Kassab et al., 2009). The orientation of these
structures is consistent with the dextral transpressive shortening along the adjacent Castle
Mountain Fault, a regional northeast-striking strike-slip fault. The reverse faults along
with available age data from the Arkose Ridge Formation indicate contractile

deformation during early Eocene or younger time.

METHODS
Field Sampling

Sandstone samples were collected within the context of measured stratigraphic
sections for petrographic and detrital geochronological analyses. Fist-sized samples of
medium-to coarse-grained sandstone were collected for petrography. Care was taken to
locate samples with the least visible diagenetic alteration and organic content. For detrital
geochronology, 10-15 kilograms of fist-sized medium-to coarse-grained sandstone
samples were collected from outcrop faces. During sampling, special care was taken to

attempt to avoid sampling veins and faults and contamination from soil and other rocks.

Conglomerate Clast Counts

A total of 24 conglomerate clast counts were obtained in the field within the
context of measured stratigraphic section where conglomerate was present in the section.
Each count was performed on a randomly selected 1 by 1 meter surface of a single

conglomerate bed. The lithologies of 100 conglomerate clasts were identified per
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conglomerate bed. See Tables 2, 3, 4, and 5 for raw clast count data and recalculated

detrital modes for each stratigraphic section.

Sandstone Modal Analyses

Standard petrographic thin sections were made from 54 medium- to coarse-
grained sandstones that were obtained within the context of measured stratigraphic
sections. One half of each thin section was stained for plagioclase and potassium
feldspar. All thin sections were examined to determine common framework grains and
proper counting grid. Thin sections were point counted using an automated modal
analysis system and polarizing microscope. 400 framework grains were counted per
section to ensure a 2-o confidence range of 5% or less for any calculated modal
composition (Van Der Plas and Tobi, 1965). Sandstones were point counted using both
the Gazzi-Dickinson and “traditional” methods (Dickinson, 1970; Ingersoll et al., 1984),
so that granitic rock fragments could be noted independently. Matrix and cement were
not counted. See Tables 6, 7, and 8 for petrographic point-counting parameters, raw

point-count data, and recalculated detrital modes, respectively.

Detrital Geochronology

Care was taken throughout sample processing to avoid biasing the final separate
of detrital zircon grains by size, shape, or color. Fist-sized sandstone samples were
crushed to granule and finer grained particles using a jaw crusher. All remaining material
was then pulverized to sand and finer grained particles using a disc mill. Material was

pulverized through multiple steps with the discs spaced progressively closer together.
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The sample was sieved between each pulverizing run to avoid pulverizing
monocrystalline zircon grains. Most samples yielded 6-8 kilograms of pulverized sand
and silt. Samples were then shipped to the University of Arizona or Lehigh University
where zircon grains were separated in a clean lab using conventional density and
magnetic techniques, including a Wilfley table, methylene iodide, and a Franz magnetic
separator. Every sample yielded hundreds or thousands of detrital zircon grains. For
each sample, all detrital zircons were mounted in a 1” diameter round epoxy plug and
polished to half thickness. Photomicrographs were taken of all mounted zircons using a
light microscope to guide spot analyses.

Isotopic analyses were conducted using a laser-ablation-inductively-coupled-
plasma-mass-spectrometer (LA-ICP-MS) at the Arizona LaserChron Center utilizing
methods described by Gehrels et al. (2006, 2008). At minimum, 100 zircon crystals from
each sandstone sample were randomly selected for analysis. Individual zircons were
ablated using a New Wave DUV193 Excimer laser using a spot diameter of 10-35
microns and a pit depth ranging from 4-15 microns. Ablated material was carried with
helium gas into a plasma source of an isoprobe equipped with a flight tube of sufficient
width such that U, Th and Pb isotopes were measured simultaneously (Gehrels et al.,
2006). After every fourth or fifth measurement of an unknown detrital zircon, analyses
were calibrated against a measurement of a Sri Lanka zircon standard (563 + 3.2 Ma;
Gehrels et al., 2008). For each spot analysis, 2’Pb/”°U and **Pb/**®U ratios and
apparent ages were calculated using the Isoplot software program (Ludwig, 2003). Raw
data are presented in Appendix 1. The systematic error, which includes contributions

from the standard calibration, the age of the calibration standard, the composition of
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common Pb and the *®U decay constant, is 1-2% based on similar analyses (Gehrels et
al., 2008). The data were filtered according to precision (10% cutoff) and discordance
(30%) and then plotted on Pb/U Concordia diagrams and age probability plots (Ludwig,
2003). Age probability curves were then constructed by calculating a normal distribution
for each analysis based on the reported age and uncertainty, then summing the probability
distributions of all acceptable analyses into a single curve. Interpretations derived from
the detrital age spectra focus on clusters of ages because single age determinations may
be compromised by Pb loss and/or inheritance. However, it is highly unlikely that three
or more grains will experience Pb loss and/or inheritance and still yield the same age.
U/Th ratios are plotted to evaluate the degree to which metamorphic fluids were present
during crystal growth (Rubatto, 2002; Gehrels et al., 2008; Johnston et al., 2009), aiding
in discriminating detrital grains derived from metamorphic versus igneous/sedimentary

sources.

PROVENANCE DATA

Modal analyses of conglomerate clast counts and sandstone thin sections and
detrital zircon age determinations help resolve sediment provenance and determine the
erosional history of bedrock sources, including the lithologies and locations of these
source terranes (Fig. 6). These data allow for the reconstruction of basin drainage
pathways, and the development of the first depositional model of the Arkose Ridge
Formation.

Published compositional data from the Arkose Ridge Formation are limited to

reconnaissance studies by Trop and Ridgway (2000) and Winkler (1978). Those workers
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Figure 6. Generalized stratigraphic sections measured through Arkose Ridge. Lava Moun-
tain, Gray Ridge, and Box Canyon. A total of 23 clast counts (brown hexagons) were
collected from conglomerate beds. A total of 54 sandstone petrography samples (green
squares) were collected for modal analyses. A total of 15 sandstone samples (blue circles)
were collected for U-Pb detrital zircon analyses. Lithofacies and paleobotanical analyses
demonstrate that these strata were deposited in alluvial paleovalleys. anastomosing to braided
fluvial systems, floodplain ponds and lakes, and tidally influenced streams. Measured

sections adapted from Trop et al. (2003), Kortyna et al. (2009), and Kassab et al. (2009).
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Table 1. - Possible Source Rocks for the Arkose Ridge Formation

Abbrev. in
Terrane Fig. 3 Age

Lithologies

Rocks Located >50 Km North of ARF in the Northern Talkeetna Mountains/Alaska Range

Yukon-Tanana Tn. NS Precambrian-Paleozoic
Wrangellia Composite Tn. NS Late Jurassic-

Kahiltna Assemblage NS Late Jurassic-Middle Cretaceous
Caribou Pass Fm. NS Middle Cretaceous

Pelitic and quartzose schist
Mudstone, sandstone

Mudstone, sandstone, and limestone
Sandstone, mudstone, and
conglomerate

Rocks Located <50 Km North of the Arkose Ridge Formation in the Southern Talkeetna Mountains

Talkeetna Magmatic Arc Jpu Middle-Late Jurassic

Jurassic Metamorphic NS Early-Middle Jurassic
Assemblage

Alaska Range-Talkeetna TKg Late Cretaceous-Early Paleocene
Mtn. Magmatic Arc

Hatcher Pass Schist Ks Late Cretaceous-Paleocene
Caribou Creek Volcanic Tv Late Paleocene-Eocene

Center

Rocks Located South of the Arkose Ridge Formation/Castle Mountain Fault
Matanuska Formation Km Middle-Late Cretaceous

Rocks Located South of the Border Ranges Fault in Chugach Accretionary Prism

Granodiorite, Diorite, Quartz
Diorite, Tonalite, Trondhjemite

Amphibolite, Foliated Quartz
Diorite, Trondhjemite

Granite, Granodiorite, Diorite
Quartz Diorite, Tonalite

Greenschist

Basalt, Andesite

Sandstone, mudstone, and
conglomerate

McHugh Complex Mzs Late Triassic-Early Jurassic Blueschist

Valdez Group NS Late Cretaceous Metasedimentary, metavolcanic
rocks

Orca Group NS Paleocene-Eocene Sedimentary, volcanic rocks

Notes: NS = Not Shown; See Fig. 3 for age sources; Lithologies from Winkler (1992).
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performed sandstone modal analyses on samples obtained from the westernmost part of
the outcrop belt (Arkose Ridge on Fig. 1). These prior studies show that sampled
sandstones from the Arkose Ridge have average framework grain modes of Q:F:L =
23:67:10 and Qm:F:Lt = 21:68:11 and average framework mineral modes of Qm:P:K =
23:76:1. Sandstones classify as feldspathic arenites and plot mostly in the “continental
block-basement uplift” provenance field. Subangular plagioclase feldspars dominate the
feldspar population (Qm:P:K = 23:76:1) with minor plagioclase feldspars contained
within plutonic fragments. The quartz population is dominated by monocrystalline
quartz, subordinate quartz within plutonic fragments, minor polycrystalline quartz, and
rare chert grains.  Lithic fragments include abundant metamorphic grains with
subordinate volcanic grains and rare mudstone grains (Lm:Lv:Ls = 79:21:0). Lathwork
grains composed of plagioclase phenocrysts in dark glassy matrix dominate the volcanic
population. Metamorphic lithic grains are dominated by mica schist and minor quartz
tectonite. Plutonic fragments are common and consist mainly of plagioclase feldspar,
monocrystalline quartz, biotite, and muscovite. Clinopyroxene and amphiboles make up
rare accessory minerals. Trop and Ridgway (2000) do not report detrital geochronologic
ages, and their sandstone modal analyses are limited to the westernmost (Arkose Ridge

on Fig. 3) extent of the Arkose Ridge Formation.

Conglomerate Clast Counts

The conglomerate clast counts document two main petrofacies, a western

petrofacies characterized by enrichment of plutonic clasts and an eastern petrofacies
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characterized by enrichment of volcanic lithologies. See Tables 2, 3, 4, and 5 for raw and
recalculated conglomerate clast count data.
Plutonic Petrofacies

The plutonic petrofacies comprise conglomerate clast compositions from the
Arkose Ridge and Lava Mountain stratigraphic sections. This petrofacies is characterized
predominantly by felsic plutonic clasts. Conglomerates from the Arkose Ridge section
contain, in summary, an average of 85% felsic plutonic clasts, 4% siliceous tuff clasts,
2% amphibolite clasts and 9% vein quartz and minor chert. Felsic plutonic clasts are
primarily granite with minor granodiorite. Conglomerates exposed 22-km east of Arkose
Ridge at Lava Mountain are similarly dominated by felsic plutonic clasts and subordinate
volcanic lithologies. Lava Mountain conglomerates have an average clast composition of
80% felsic plutonic clasts, <1% mafic-intermediate volcanic, <1% felsic volcanic, <1%
metamorphic clasts, and 19% gabbro, quartz, and chert clasts. At Lava Mountain, the
felsic plutonic clasts are predominantly unclassified granitoids (probable granodiorite),
diorite, and quartz diorite.
Volcanic Petrofacies

The volcanic petrofacies comprise conglomerate clast compositions from the
eastern stratigraphic sections at Gray Ridge and Box Canyon. This petrofacies is
characterized by conglomerates enriched in volcanic lithologies that increase in
abundance upsection. Conglomerates from the Gray Ridge section contain an average of
66% volcanic clasts, 25% unclassified felsic granitoid clasts, and 9%
greenstone/metabasalt clasts. Mafic-intermediate volcanic lithologies make up 61% of

the clast composition and include basaltic, basaltic-andesitic, and andesitic compositions.
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Table 2. Clast count data for conglomerate of the Arkose Ridge Formation at Arkose Ridge

Clast Type (lithology)

Raw

Felsic Plutonic

granodiorite

granite

Mafic-Intermediate Volcanic
none reported

Felsic Volcanic

tuff, siliceous

Metamorphic

amphibolite

Other

chert, tan to gray

vein quartz

Total number of clasts counted

Recalculated

% Felsic Plutonic

% Mafic-Intermediate VVolcanic
% Felsic Volcanic

% Metamorphic

% Other

1m

80

101

87.13
0.00
8.91
1.98
1.98

78 m

88

15
107

82.24
0.00
0.00
2.80

14.95

Summary

8
168

16
208

84.62
0.00
4.33
2.40
8.65
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Table 3. Clast count data for conglomerate of the Arkose Ridge Formation at Lava Mountain

Clast Type (lithology, color, grain size, foliation)

Raw 0*m O0**m 476m 725m Summary
Felsic Plutonic

unclassified granitoid, green/gray, coarse 104 96 0 0 200
unclassified granitoid, medium 1 0 0 0 1
unclassified quartz rich granitoid, fine 0 0 1 0 1
diorite, coarse 0 0 29 0 29
quartz diorite, white, coarse 0 0 9 64 73
quartz diorite, coarse, foliated 0 0 2 3 5
trondhjemite, white, coarse 0 0 16 11 27
Mafic-Intermediate Volcanic

basaltic andesite(?), dark gray 0 0 0 1 1
Felsic Volcanic

unclassifed siliceous volcanic, green, fine 0 0 2 0 2
Metamorphic

gneissic gabbro 0 0 1 0 1
Other

gabbro, green, medium to coarse 1 10 36 17 64
gabbroic diorite, coarse 0 0 1 0 1
vein quartz 2 4 0 0 6
quartz 0 0 4 5 9
chert, black 0 0 0 1 1
Total number of clasts counted 108 110 101 102 421
Recalculated

% Felsic Plutonic 97.22 8727 56.44  76.47 79.81
% Mafic-Intermediate Volcanic 0.00 0.00 0.00 0.98 0.24
% Felsic Volcanic 0.00 0.00 1.98 0.00 0.48
% Metamorphic 0.00 0.00 0.99 0.00 0.24
% Other 278 1273 4059 2255 19.24

Notes: 0*m = mapping station 072209CMK09; 0**m = mapping station 072109JMT12
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Felsic volcanic lithologies, mainly tuff, comprise 5% of the clast composition. In
addition, conglomerates display an upsection increase in volcanic clasts from ~30% of
counts at the bottom of the section to as much as 85% of counts higher in the section.
There is also an upsection increase in greenstone/basalts from 0% at the bottom of the
section to as much as 16% higher in the section. Overall, Box Canyon 15 km to the east
of Gray Ridge contains a similar concentration of volcanic clasts. Conglomerates from
the Box Canyon section have an average composition of 66% volcanic clasts, 25% felsic
plutonic clasts, 8% greenstone clasts, and 2% gabbro, quartzite, chert, and quartz clasts.
Mafic-intermediate volcanic lithologies make up 38% of the clast composition and
include basaltic, basaltic-andesitic, and andesitic compositions.  Felsic volcanic
lithologies, mainly tuff, tuff breccia, and pumice, comprise 28% of the clast composition.
The Box Canyon section displays a distinct upsection increase in volcanic clasts, from

~40% at the bottom of the section to ~90% near the top of the section (Fig. 7).

Sandstone Modal Analyses

Sandstone samples for modal analyses were collected from three stratigraphic
sections; Arkose Ridge (published in Trop and Ridgway, 2000) and Lava Mountain in the
west, and Gray Ridge in the east. These sections divide into two main petrofacies based
on modal composition. Overall, these two facies mirror the conglomerate clast count
data, essentially splitting the formation into a western petrofacies characterized by
enrichment of quartzofeldspathic mineral grains and plutonic lithic fragments and an

eastern petrofacies characterized by an enrichment in volcanic lithic grains. See Tables
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993 % felsic plutonic

B % mafic volcanic
B % felsic volcanic
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Figure 7. Clast counts of conglomerate from Box Canyon plotted in stratigraphic order
next to the generalized stratigraphic section. n = number of individual clasts counted per
conglomerate bed. Each histogram summarizes a single clast count. Note the upsection
increase in volcanic clasts (red) from ~40% at the base of the section to ~90% near the top

of the section. See Tables 2. 3. 4. and 5 for details.

37



6, 7, and 8 for point-counting parameters and raw and recalculated point-count data,
respectively.
Quartzofeldspathic Petrofacies

The quartzofeldspathic petrofacies comprise sandstone modal compositions from
the western sections at Arkose Ridge and Lava Mountain. Point-counted sandstones are
moderately to poorly sorted, with angular to subrounded framework grains. Most
samples are very closely packed and contain sparse visible matrix and minor calcite
cement. Overall, modal percentages for these western sandstones are dominated by
plagioclase feldspar, monocrystalline quartz, and plutonic fragments, with minor schist
fragments and accessory minerals (Fig. 8). Mean modal compositions for the Lava
Mountain section are Q:F:L = 36:54:10 and Qm:F:Lt = 26:54:19. Sandstones classify as
feldspathic arenites and plot mostly in the “continental block-basement uplift”
provenance field (Fig. 9, 10). Subangular plagioclase feldspars dominate the feldspar
population (Qm:P:K = 33:67:0) with subordinate plagioclase feldspars contained in
plutonic fragments (Fig. 11). The quartz population is dominated by monocrystalline
quartz, polycrystalline quartz, and quartz contained in plutonic fragments. Rare chert
grains are also present. Lithic fragments include abundant mica schist grains with minor
mudstone grains (Lm:Lv:Ls = 94:0:6, Fig. 12). Plutonic fragments are common and
consist mainly of plagioclase feldspar, monocrystalline quartz, biotite, and muscovite
(Fig. 13). Abundant amphiboles and subordinate sphene, muscovite and biotite make up

minor accessory minerals.
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Table 6. Categories used for point-count data for sandstone samples of the Arkose Ridge Formation

Raw

Qm Monocrystalline quartz (single crystals)

Qm/Pl  Quartz in plutonic fragments

Qpg Polycrystalline quartz

Qe Embayed monocrystalline quartz

Cc Impure chert

Cm Impure muddy chert

P Plagioclase feldspar (single crystals)

P/PI Plagioclase feldspar in plutonic fragments

K Potassium feldspar (single crystals)

K/PI Potassium feldspar in plutonic fragments

Lvl Volcanic lithic fragments (lathwork textures)

Lvu Undifferentiated volcanic lithic fragments (primarily lathwork textures)
Lvf Volcanic lithic fragments (felsitic to microlitic textures)

Lva Volcanic lithic fragments (highly altered)

Lss Sedimentary lithic fragments (quartzose to quartzofeldspathic siltstone)
Lsm Sedimentary lithic fragments (shale)

Lsa Argillaceous metasedimentary lithic fragments, weakly foliated

Lmm  Mica schist and subordinate chlorite schist lithic fragments, foliated
Lmt Quartz-mica tectonite and subordinate quartz-mica-feldspar tectonite, foliated
Lmc Metachert, foliated

Cp Clinopyroxene

ol Olivine

Am Amphibole

Mu Muscovite (single crystals)

Bi Biotite

M/PI Mica grains (muscovite and biotite) in plutonic fragments

Sp Sphene

Zr Zircon

Recalculated

Q Total quartzose grains (=Qm+Qm/Pl+Qpg+Qe+C+Cm)

F Total feldspar grains (=P+P/PI+K+K/PI)

L Total unstable lithic grains (=LvI+Lvu+Lvf+Lva+Lss+Lsm+Lsa+Lmm+Lmt+Lmc)
Pl Total plutonic fragments (=Qm/PI+P/PI+K/Pl+M/PI)

Lv Total volcanic lithic fragments (=LvI+Lvu+Lvf+Lva)

Ls Total sedimentary lithic fragments (=Lss+Lsm+Lsa)

Lm Total metamorphic lithic fragments (=Lmm-+Lmt+Lmc)

Lt Total lithic grains (=Qpg+C+Cm+Lv+Ls+Lm)

Notes: See Tables 7 and 8 for raw and recalculated data, respectively.
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Figure 8. Photomicrographs of representative framework grains from point counted
sandstone samples. (A) and (B) Plutonic fragments with quartz and plagioclase feldspar
subgrains. (C) Plutonic lithic grain with plagioclase and potassium feldspar subgrains.
(D) and (E) Lathwork and microlitic volcanic lithic grains with plagioclase feldspar laths
and sparse quartz subgrains; subordinate mudstone lithic grain with quartz subgrains in
the upper right of (E). (F) Microlitic volcanic lithic grain. (G) Biotite schist fragment
with minor quartz and plagioclase feldspar. (H) Mudstone lithic grain with siliceous
microfossils (probable radiolaria). (A), (B), and (G) are from Lava Mountain. (C), (D),
(E), (F), and (H) are from Gray Ridge. (A), (B), (C), (D), and (F) are in cross-polarized
light. (E), (G), and (H) are in plane light. Thin sections stained for plagioclase (red

stain) and potassium feldspar (green stain).
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Figure 9. Sandstone point-count data from the Arkose Ridge Formation plotted on a Q-

Transitional
Arc

=

F-L ternary diagram. See Table 6 for grain parameters. Note that western sandstone
samples (Arkose Ridge — red circles, and Lava Mountain — blue triangles) largely overlap
the continental block-basement uplift provenance fields, whereas eastern sandstone
samples (Gray Ridge — green diamonds) mainly overlap the dissected, transitional and
undissected volcanic arc provenance fields. Provenance fields are from Dickinson et al.

(1983). n = total number of sandstone samples point-counted in each location.
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Figure 10. Sandstone point-count data from the Arkose Ridge Formation plotted on a
Qm-F-Lt ternary diagram. See Table 6 for grain parameters. Note that western
sandstone samples (Arkose Ridge — red circles, and Lava Mountain — blue triangles)
largely overlap the continental block-basement uplift provenance fields of Dickinson et
al. (1983), whereas eastern sandstone samples (Gray Ridge — green diamonds) mainly
overlap the dissected, transitional and undissected volcanic arc provenance fields. n =

total number of sandstone samples point-counted in each location.
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Figure 11. Sandstone point-count data from the Arkose Ridge Formation plotted on a
Qm-P-K ternary diagram. See Table 6 for grain parameters. Arkose Ridge sandstone
samples are plotted as red circles, Lava Mountain sandstone samples are plotted as blue
triangles, and Gray Ridge sandstone samples are plotted as green diamonds. Note overall
enrichment of plagioclase feldspar relative to potassium feldspar in Lava Mountain and
Arkose Ridge samples, but relative enrichment of potassium feldspar in Gray Ridge

samples. n = total number of sandstone samples point-counted at each location.
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Figure 12. Sandstone point-count data from the Arkose Ridge Formation plotted on a

Lm-Ls-Lv ternary diagram. See Table 6 for grain parameters. Note that most western
sandstone samples (Arkose Ridge — red circles, and Lava Mountain — blue triangles) are
enriched in metamorphic lithic grains, whereas eastern sandstone samples (Gray Ridge —
green diamonds) are dominated by volcanic lithics. n = total number of sandstone
samples point-counted at each location. Three sandstones from the uppermost Arkose
Ridge locality are enriched in volcanic lithics, consistent with reworking of volcanic

interbeds in the upper part of the section locally.
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Figure 13. Sandstone point-count data from the Arkose Ridge Formation plotted on a
Lv-(Ls+Lm)-PI ternary diagram. See Table 6 for grain parameters. Note that western
sandstone samples (Arkose Ridge — red circles, and Lava Mountain — blue triangles) are
dominated by plutonic and metamorphic lithic grains, whereas eastern sandstone samples
(Gray Ridge — green diamonds) are dominated by volcanic lithic grains. n = total number

of sandstone samples point-counted at each location.
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Volcanic Petrofacies

The volcanic petrofacies comprise sandstone modal compositions from the
eastern section at Gray Ridge. No sandstone samples for petrography were collected
from Box Canyon due to the presence of conglomerate beds throughout the section.
Point-counted sandstones are moderately to poorly sorted, with angular to subrounded
framework grains. Most samples are closely packed and contain sparse calcite cement
and minor volcanic pseudomatrix. Volcanic pseudomatrix was counted as volcanic lithic
grains. Overall, modal percentages for the eastern sandstones are dominated by
plagioclase feldspar, quartz, and volcanic lithic fragments with subordinate potassium
feldspar, plutonic fragments, schist fragments, and sedimentary lithic grains (Fig. 8).
Mean modal compositions for the Gray Ridge section are Q:F:L = 23:34:43 and Qm:F:Lt
=17:34:49. On Q:F:L and Qm:F:Lt discrimination diagrams these sandstones classify as
feldspathic to lithic arenites and overlap the “continental block-basement uplift”,
“dissected arc”, “transitional arc”, and “undissected arc” provenance fields (Fig. 9, 10).
Subangular plagioclase feldspars and subordinate potassium feldspars make up the
feldspar population (Qm:P:K = 32:53:15) with subordinate feldspars contained within
plutonic fragments (Fig. 11). The quartz population consists of monocrystalline quartz,
subordinate polycrystalline quartz and quartz within plutonic fragments, and minor
embayed quartz, chert, and muddy chert. Lithic fragments include abundant volcanic
grains and subordinate metamorphic and sedimentary grains (Lm:Lv:Ls = 15:73:11; Fig.
12). Volcanic grains consist of most felsic and mafic compositions. Mafic volcanic
grains contain plagioclase feldspar phenocrysts in a dark glassy matrix, whereas most

felsic volcanic grains contain both plagioclase feldspar laths and quartz in a granular,

o1



microlitic texture. Metamorphic grains include mica schist, quartz-mica tectonite, and
metachert. Siltstone, shale, and weakly foliated argillite are common sedimentary grains.
Plutonic fragments are common and consist mainly of plagioclase feldspar,
monocrystalline quartz, potassium feldspar, and muscovite (Fig. 13). Amphiboles,

olivine, muscovite, sphene, zircon and clinopyroxene make up the accessory minerals.

Detrital U-Pb Zircon Ages

A total of 15 medium-grained sandstone samples were collected for detrital zircon
geochronologic analyses. Detrital zircon analyses were collected from four stratigraphic
sections; Arkose Ridge (3 of 15 detrital zircon samples collected) and Lava Mountain (5)
in the west, and Gray Ridge (4) and Box Canyon (3) in the east (Fig. 6). U-Pb zircon
analyses of 1415 individual grains document mainly Mesozoic to Cenozoic ages (98.2%
of analyzed grains) and minor Precambrian to Paleozoic ages (1.8%). Three Mesozoic-
Cenozoic age populations dominate the analyzed grains: 60-48 Ma (Late Paleocene to
Eocene; 17.2%), 85-60 Ma (Latest Cretaceous to Early Paleocene; 62.5%), and 200-100
Ma (Jurassic to Early Cretaceous; 12.5%). Subordinate Mesozoic populations are 100-85
Ma (Early Late Cretaceous; 5.4%) and 251-200 (Triassic to Early Jurassic; 0.6%).
Precambrian-Paleozoic populations include 416-318 Ma (Devonian-Mississippian;
1.3%), Cambrian (0.1%), and Precambrian (0.4%) ages. See Table 9 for summary of
detrital zircon geochronologic analyses. Greater than 99% of analyzed zircons yield
U/Th values <10, and greater than 97% of analyzed zircons are <200 Ma (Fig. 14).

Akin to the compositional data, the detrital samples may be separated into two

distinct chronofacies based on detrital zircon age populations. Overall, the distinction
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Figure 14. U/Th vs. U/Pb age of spot analyses of 1415 detrital zircons from 15 sandstone

samples. Note that >97% of zircons are <200 Ma and >99% of zircons have <10 U/Th

ratios. Inset shows details for grains <250 Ma and <20 U/Th.
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between the two chronofacies is made by the amount of Late Paleocene-Eocene (60-48
Ma) grains present. The western sections comprise a Jurassic-early Paleocene
chronofacies that contains a sparse population of 60-48 Ma grains whereas the eastern
sections comprise a Late-Paleocene-Eocene chronofacies that contains a major 60-48 Ma
detrital zircon population. Western sections (Arkose Ridge and Lava Mountain) that
make up the plutonic petrofacies based on compositional data contain mainly Latest
Cretaceous-Early Paleocene (85-60 Ma) and Jurassic-Early Cretaceous (200-100 Ma)
detrital age populations consistent with the Jurassic-early Paleocene chronofacies. A
total of three detrital geochronologic samples were collected at Arkose Ridge. U-Pb
analyses of 297 individual zircon grains document mainly Latest Cretaceous-Early
Paleocene (85-60 Ma; 88.6%) ages (Fig. 15). Subordinate Mesozoic populations are 100-
85 Ma (Early Late Cretaceous; 8.8%), 200-100 Ma (Jurassic-Early Cretaceous; 2.4%),
and 251-200 Ma (Triassic-Early Jurassic; 0.3%). There are no reported Precambrian-
Paleozoic ages. It is important to note there are also no reported Late Paleocene-Eocene
(60-48 Ma) ages from the westernmost section at Arkose Ridge. A total of five samples
were collected at Lava Mountain. Analyses of 413 grains document mainly Mesozoic
ages. Two Mesozoic-Cenozoic populations dominate: 85-60 Ma (Latest Cretaceous-
Early Paleocene; 67.8%) and 200-100 Ma (Jurassic-Early Cretaceous; 21.1%) (Fig. 16).
Subordinate populations are 60-48 Ma (Late Paleocene-Eocene; 1.5%), 100-85 Ma (Early
Late Cretaceous; 7.5%), 251-200 Ma (Triassic-Early Jurassic; 1.2%), 416-318 Ma
(Devonian-Mississippian; 0.7%), and Precambrian (0.2%). Note that 60-48 Ma (Late

Paleocene-Eocene) grains only constitute 1.5% of Lava Mountain detrital zircon samples.
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Figure 15. Age probability plots showing
distribution of U-Pb age determinations for
298 detrital zircon grains from three sand-
stone samples collected from the Arkose
Ridge section of the Arkose Ridge Forma-
tion. Age determinations represent indi-
vidual spot analyses from separate detrital
zircon grains. U-Pb ages are plotted as a
normalized relative-probability distribution
(Ludwig, 2003). Relative heights of peaks
correspond to statistical significance.
Orange bar denotes 65-90 Ma age range of
adjacent/underlying plutons (TKg on Fig.
3). Note dominance of 70-90 Ma age popu-

lations consistent with TKg age range.
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Figure 16. Age probability plots showing
distribution of U-Pb age determinations for
413 detrital zircon grains from five sand-
stone samples collected from the Lava
Mountain section of the Arkose Ridge
Formation. Age determinations represent
individual spot analyses from separate
detrital zircon grains. U-Pb ages are plot-
ted as a normalized relative-probability
distribution (Ludwig. 2003). Relative
heights of peaks correspond to statistical
significance. Orange bar denotes 65-90 Ma
age range of adjacent Cretaceous plutons
(TKg on Fig. 3). Gray bar denotes 152-177
Ma age range of adjacent/underlying Juras-
sic plutons (Jpu on Fig. 3). Note upsection
change from 150-170 Ma age populations
consistent with Jpu age range at the base of
the section to 65-80 Ma age populations
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Lava Mountain samples also display a distinct upsection change in dominant age
population from 200-100 Ma to 85-60 Ma grains (Fig. 16).

Although the eastern sections at Gray Ridge and Box Canyon contain substantial
populations of 85-60 Ma and 200-100 Ma detrital grains, they are separated into a
separate chronofacies due to the addition of another major age population consisting of
Late Paleocene to Eocene (60-48 Ma) grains. A total of four samples and 382 grains
were analyzed from Gray Ridge. Three Mesozoic-Cenozoic populations dominate the
analyzed grains: 60-48 Ma (Late Paleocene-Eocene; 33.5%), 85-60 Ma (Latest
Cretaceous-Early Paleocene; 54.2%), and 200-100 Ma (Jurassic-Early Cretaceous; 9.4%)
(Fig. 17). Subordinate populations are 100-85 Ma (Early Late Cretaceous; 1.6%), 416-
318 Ma (Devonian-Mississippian; 1.0%), and Precambrian (0.3%). Analyses of 323
grains from three samples collected at Box Canyon document mainly Mesozoic to
Cenozoic ages (Fig. 18). Dominant populations are 60-48 Ma (Late Paleocene-Eocene;
34.1%), 85-60 Ma (Late Cretaceous-Early Paleocene; 41.8%), and 200-100 Ma (Jurassic-
Early Cretaceous; 14.9%). Subordinate Mesozoic populations include 100-85 Ma (Early
Late Cretaceous; 4.0%) and 251-200 Ma (Triassic; 0.3%). Paleozoic and Precambrian
age populations are 416-418 Ma (Devonian-Mississippian; 3.4%), 488-542 Ma
(Cambrian; 0.3%), and Precambrian (1.2%). There is an upsection increase in 60-48 Ma
grains as well as an upsection younging of the 60-48 Ma age population peak in both
Gray Ridge and Box Canyon samples (Fig. 17, 18). For example, at Gray Ridge the
youngest major age peak evolves upsection from 69.5 to 60-59 to 58 Ma over a

stratigraphic thickness of 844 meters (Fig. 17).
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Figure 17. Age probability plots showing
distribution of U-Pb age determinations for
382 detrital zircon grains from four sand-
stone samples collected from the Gray
Ridge section of the Arkose Ridge Forma-
tion. Age determinations represent indi-
vidual spot analyses from separate detrital
zircon grains, U-Pb ages are plotted as a
normalized relative-probability distribution
(Ludwig, 2003). Relative heights of peaks
correspond to statistical significance.
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adjacent Cretaceous plutons (TKg on Fig.
3). Note upsection change from 60-75 Ma
age populations consistent with TKg age
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with ages of the slab window volcanic

center (Tv on Fig. 3).
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Figure 18. Age probability plots showing
distribution of U-Pb age determinations for
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stone samples collected from the Box
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DISCUSSION
Provenance Interpretation

Compositional and detrital zircon data from the Arkose Ridge Formation indicate
sediment derived mainly from Jurassic-Eocene igneous source terranes exposed north of
the sampled forearc strata. This interpretation is consistent with the lithofacies trend that
shows a southward decrease in grain size, from boulder conglomerate and cross-stratified
sandstones of the Arkose Ridge Formation to thick packages of mudstones and coals of
the Chickaloon Formation (Winkler, 1992; Trop et al., 2003). This southward lithofacies
trend is further supported by paleocurrent data that show a general south- to
southwestward-directed paleoflow (Fig. 5). Modal data from sandstone and
conglomerate display two distinct petrofacies and chronofacies, respectively. Together,
these provenance data support deposition of the Arkose Ridge systems in at least two
separate drainage networks that may have been separated by a significant drainage
divide.

Separation of the Arkose Ridge Formation spatially into at least two distinct and
separate coeval river systems is based on five major lines of evidence. First and
foremost, the eastern sections contain abundant volcanic lithic grains and <60 Ma detrital
zircons (34% of zircons), whereas the western sections contain sparse volcanic lithic
grains and <60 Ma detrital zircons (0.8% of zircons are <60 Ma) (Fig. 9, 10, 19, and 20).
Second, the western sections have the highest abundance of mica schist lithic grains, but
sparse sedimentary lithic grains, whereas the eastern sections a have much lower amount
of metamorphic grains together with a substantially higher abundance of sedimentary

lithic grains (Fig. 12). Third, western sections have very minor amounts of potassium
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Figure 19. Pie diagrams summarizing conglomerate clast counts for each stratigraphic
section (Arkose Ridge, Lava Mountain, Gray Ridge, and Box Canyon). See Fig. 3 for
explanation of geologic map units. See Tables 2, 3, 4, and 5 for raw and summary clast
count data. Note that western strata (Arkose Ridge and Lava Mountain) are dominated
by felsic plutonic clasts, consistent with derivation from Mesozoic arc plutons exposed
directly north of the sampled strata, whereas eastern strata (Gray Ridge and Box Canyon)
are dominated by volcanic clasts, consistent with derivation from the Paleocene-Eocene
volcanic field exposed east of the ARF outcrop belt. Detrital geochronologic ages

support this interpretation (Fig. 20).
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Figure 20. Pie diagrams summarizing detrital zircon analyses for each stratigraphic
section (Arkose Ridge, Lava Mountain, Gray Ridge, and Box Canyon). See Fig. 3 for
explanation of geologic map units. See Figs. 15, 16, 17, and 18 for relative probability
plots. Note that western detrital zircon samples (Arkose Ridge and Lava Mountain) are
dominated by 200-60 Ma grains, consistent with derivation from 177-67 Ma arc plutons
exposed directly north of the sampled strata, whereas eastern detrital zircons samples
(Gray Ridge and Box Canyon) are enriched in <60 Ma grains, consistent with derivation
from the 59-35 Ma volcanic field exposed east of the sampled strata. Compositional data

support this interpretation (Fig. 19).
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feldspar compared to the eastern sections (Fig. 11). Fourth, western sections contain rare
grains of Paleozoic to Precambrian detrital zircons (0.6%), whereas eastern sections
contain much more (3.0%). Fifth, Triassic aged zircons are in higher relative abundance
in the western sections (6 grains total) than in the eastern sections (1 grain total).

The combination of provenance data from the Arkose Ridge Formation allows for
a detailed discussion of source terranes and the geometry of the drainage basin. The
following sections will provide a detailed interpretation of these data. The plutonic
petrofacies contained in the western half of the outcrop belt at Arkose Ridge and Lava
Mountain is most similar to detritus derived from continental block-basement uplift belts
(Fig. 9, 10). The abundance of plutonic clasts in conglomerate, in combination with
sandstone enriched in quartz, feldspar, and plutonic rock fragments indicates derivation
from mainly plutonic source terranes. This petrofacies is consistent with sediment
derived from underlying Jurassic-Paleocene arc plutons exposed directly north of the
Arkose Ridge and Lava Mountain sections; specifically, plutons from the late
Cretaceous-Paleocene Alaska Range-Talkeetna Mountains belt (90-67 Ma; Bleick et al.,
2009) and the Jurassic Talkeetna magmatic arc (177-153 Ma; Rioux et al., 2007) (Fig.
19). The dominant detrital zircon age populations (85-60 Ma and 200-100 Ma) from
Arkose Ridge and Lava Mountain directly overlap with the ages of these two local source
terranes. Moreover, the clast types identified in the conglomerate and sandstone from the
western sections are closely similar to lithologies exposed in these igneous source
terranes. A slight decrease in peak age of the detrital age populations upsection from 80
to 72 Ma supports unroofing of different Alaska Range-Talkeetna Mountains arc plutons

through time (Fig. 15, 16). Alternatively, migration of drainage networks through time
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produced the observed changes in detrital peaks, such as northward erosion as drainages
expanded or stream capture.

The volcanic petrofacies contained in the eastern half of the outcrop belt at Gray
Ridge and Box Canyon is most similar to detritus derived from dissected, transitional and
undissected volcanic arcs (Fig. 9, 10). The abundance of volcanic clasts in conglomerate,
and volcanic lithic grains and plagioclase feldspar in sandstone coupled with subordinate
plutonic clasts in conglomerate and plutonic fragments in sandstone indicate derivation
from mainly volcanic and plutonic source terranes. The abundance of volcanic detritus in
this petrofacies is consistent with sediment derived from the Paleocene-Eocene Caribou
Creek volcanic center that crops out to the east of the Arkose Ridge Formation (59-36
Ma; Cole et al., 2006) (Fig. 19). A major 60-48 Ma detrital zircon age population from
Gray Ridge and Box Canyon is consistent with derivation from the volcanic center (Fig.
20). Moreover, the observed upsection increase in volcanic lithic grains and <60 Ma
detrital zircons in eastern deposystems reflects the incorporation of higher proportions of
juvenile volcanic detritus through time, consistent with adjacent construction of the slab-
window volcanic center during deposition (Fig. 7). Subordinate plutonic detritus and
substantial 85-60 Ma and 200-100 Ma zircon age populations are consistent with
derivation of subordinate detritus from the Alaska Range-Talkeetna Mountains and
Jurassic Talkeetna arc plutons (Fig. 19, 20). Given the prevalence of plutonic grains and
Jurassic-Cretaceous detrital zircon ages in the Gray Ridge and Box Canyon sections, the
proposed eastern fluvial network must have received detritus from arc plutons that

cropped out along the drainage divide or further north.

65



Subordinate metamorphic and sedimentary fragments in both the gravel and sand
indicate minor non-igneous source terranes provided sediment to the Arkose Ridge
Formation (Fig. 12). The change in abundance of mica schist fragments from the
plutonic petrofacies (~9% of the sands) to the volcanic petrofacies (~2% of sands) is
consistent with the higher concentration of potential metamorphic sources exposed to the
west. The low-grade metamorphic clasts common in western samples are lithologically
comparable with bedrock exposed directly north and west of the sampled strata. At
Hatcher Pass (Fig. 3), biotite schist with 75 Ma and older detrital zircons crops out <10
km west of Arkose Ridge strata at Arkose Ridge (Bradley et al., 2009). Largely
unexplored metamorphic rocks reportedly also crop out among the Mesozoic plutons
exposed between Arkose Ridge and Lava Mountain (Winkler, 1992). Metamorphic
lithologies are also presented in more distant sources in the northern Talkeetna Mountains
(Wilson et al., 1998), but unstable, fine-grained lithic grains would likely break down
into monocrystalline grains during long distance (>100 km) transport.

The Late Cretaceous-Paleocene schist of Hatcher Pass is greenschist-facies schist
with a bracketed depositional age between 61 Ma (age of peak metamorphism) and 77-75
Ma (maximum depositional age, Bradley et al., 2009). Harlan and others (2003) reported
Paleogene metamorphic ages using the “°Ar/**Ar method (61 to 57 Ma). Detrital zircon
ages Yyielded probability density curves with four Cretaceous peaks from 76 to 102 Ma
(the youngest four zircons determine a maximum depositional age of 77-75 Ma), two
Late Jurassic peaks at 155 and 166 Ma, three early Jurassic to Late Triassic peaks at 186,
197, and 213 Ma, minor Carboniferious peaks at 303 and 346 Ma, and a minor

Paleoproterozoic peak at 1828 Ma (Bradley et al., 2009). Recycling of the Hatcher Pass
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schist detrital zircons into the Arkose Ridge Formation is consistent with the observed
detrital ages from Arkose Ridge and Lava Mountain. The largely unexplored
metamorphic rocks that reportedly crop out among the Mesozoic plutons between Arkose
Ridge and Lava Mountain reportedly comprise intermixed amphibolites, foliated quartz
diorite and lesser trondhjemite. Although the metamorphic rocks are principally
amphibolites, they include minor biotite-quartz-feldspar gneiss present locally. The
amphibolites and associated metamorphic rocks are correlated to rocks exposed further
north that have a K-Ar age of 176 Ma (Cjestey and others, 1978). The foliated quartz
diorite probably represents a broad contact zone with Jurassic arc plutons (Winkler,
1992). Given its proximity to the western sections, the Hatcher Pass schist is most likely
the primary source of metamorphic grains seen in thin section in western samples.
Unfortunately, it is not possible to support this conclusion using detrital zircon ages due
to the overlap of detrital zircon ages in the schist with the crystallization ages of zircons
in the surrounding plutons. Therefore, through the ages alone we were unable to resolve
individual detrital zircons in the Arkose Ridge strata of metamorphic origin from those of
igneous origin. However, >99% of analyzed zircons yielded <10 U/Th values which is
consistent with nearly all detrital zircons being of igneous origin. This suggests that the
surrounding igneous rocks (plutons and volcanic centers) mainly supplied detrital zircons
to the Arkose Ridge Formation and not local metamorphic rocks.

Siltstone, shale, and argillite fragments in Arkose Ridge Formation sandstones
suggest erosion and recycling of Jurassic-Cretaceous sedimentary strata such as the
Jurassic Tuxedni, Chinitna, and Naknek Formations (Winkler, 1992) and Cretaceous

Matanuska Formation (Trop, 2003), as well as more distant strata, including the late
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Jurassic-Cretaceous Kahiltna Assemblage and Caribou Pass Formation, exposed >50 km
north of the basin. Sediment recycling is consistent with the presence of an angular
unconformity between the Arkose Ridge Formation and underlying Jurassic-Cretaceous
sedimentary strata in the Matanuska Valley/Talkeetna Mountains (Winkler, 1992). The
sedimentary fragments are most common in the volcanic petrofacies (~6% of the sands)
and less common in the plutonic petrofacies (~0% of the sands). This increase in
abundance from west to east is notably opposite of the east to west increase in abundance
of mica schist fragments. Rare chert and metachert grains likely indicate minor sediment
derivation from the Proterozoic-Paleozoic Yukon-Tanana Terrane. Similarly, detrital age
populations show that Paleozoic to Precambrian grains are more prevalent in the eastern
petrofacies (~3.0%) than in the western facies (~0.6%). Paleozoic-Precambrian ages are
interpreted to be recycled from the Kahiltna and Caribou Pass Formations and/or sourced
directly from the Yukon-Tanana Terrane, exposed >100 km north of the sampled strata
(Hampton et al., 2007).

The general paucity of lithologies commonly contained in the Chugach
accretionary prism such as metachert, metabasalt, metasandstone, and argillite in the
compositional data indicates that the medisedimentary and metavolcanic strata of the
Chugach accretionary prism did not contribute abundant detritus to the Arkose Ridge
Formation. Additionally, the Castle Mountain Fault that bounds the Arkose Ridge
Formation to the south is an active dextral strike-slip fault that is thought to have been
active since Mesozoic time. However, the displacement history of this fault is poorly
constrained. Late Cretaceous-Tertiary piercing points record 20-40 km of offset, but do

not constrain timing of displacement (Grantz, 1966; Clardy, 1974; Detterman et al., 1976;
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Fuchs, 1980; Trop et al., 2003). Trop et al. (2005) infers ~130 km of dextral offset
through correlation of the Bruin Bay and Little Oshetna fault systems that Pavlis and
Roeske (2007) hypothesize to be strike slip displacement transferred over from the
Border Ranges fault system. To help constrain the displacement history of the Castle
Mountain fault, provenance data may be used to link any source terranes across the fault
to the Arkose Ridge Formation. Any well-defined source terranes across the fault may
then be able to provide a rough piercing point across the fault. However, the general
compositional and detrital zircon data are unable to resolve any strike-slip motion on the
Castle Mountain Fault post-deposition of the Arkose Ridge Formation. Since the fault
bounds the formation to the south and all sediment is interpreted to be sourced from the

hanging wall, no piercing points are available to estimate the amount of strike separation.

Depositional Model

In Late Cretaceous (Campanian-Maastrichtian) time, sedimentary strata were
deposited in a forearc position between a coeval continental-margin arc to the north and a
trench-accretionary prism to the south (Trop, 2008). In the southern Talkeetna
Mountains and Matanuska Valley, submarine slope and ramp strata of the Matanuska
Formation were deposited on a trenchward (southward) dipping basin floor (Trop, 2008).
Sedimentation into the forearc basin was interrupted during Paleocene time when a mid-
ocean spreading ridge subducted underneath southern Alaska (Bradley et al., 2003; Cole
et al., 2006; Trop and Ridgway, 2007). Progressively thicker, more buoyant oceanic
crust in front of the spreading ridge subducted shallowly causing subaerial uplift of the

forearc and cessation of marine deposition in the basin. Additionally, the shallow

69



subduction angle caused the cessation of continental arc magmatism, prompted the
erosion of the volcanic edifice, and exhumation of subvolcanic plutons (TKg on Fig. 3).
Subsequent erosion and unconformity development occurred in the forearc basin,
apparently until the slab-window passed underneath the forearc region. Slab-window
magmatism associated with ridge subduction led to the construction of the Caribou Creek
slab-window volcanic center from Paleocene to Eocene time (59-36 Ma) (Cole et al.,
2006). Coeval to the formation of the volcanic center, the absence of subducting crust in
the slab-window prompted rapid subsidence and resumption of sedimentation in the now
subaerially exposed Matanuska forearc basin as fluvial-lacustrine systems of the Arkose
Ridge and Chickaloon Formations (Trop et al., 2003; Kortyna et al., 2009; Kassab et al.,
2009; Ridgway et al., in press). River systems flowed from the north and northeast
regions of the Matanuska Basin based on paleocurrent data and lithofacies trends (Trop et
al., 2003). Provenance data from this study supports deposition of the Arkose Ridge
systems in at least two separate drainage networks that may have been separated by a
significant drainage divide where the western river network primarily fed plutonic
detritus from Mesozoic remnant arc plutons that cropped out to the northwest of the
Matanuska basin and the eastern river network primarily fed volcanic detritus from the
nascent Caribou Creek volcanic center that was being constructed northeast of the basin
coeval with deposition (Fig. 21). Furthermore, the western river system transported
minor schist fragments from local metamorphic sources exposed northwest of the
sampled strata whereas the eastern river system transported recycled sedimentary
fragments from Mesozoic sedimentary rocks exposed to the northeast. Additionally, the

amount of volcanic detritus supplied to the eastern river systems increased through time
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Figure 21. Paleogeographic reconstruction of the Matanuska basin during late Paleocene-
Eocene time, based on integration of lithofacies, paleocurrent, compositional, and detrital
geochronologic data. Black circles represent detrital geochronologic samples analyzed
from the Arkose Ridge Formation. Note that the black circles are grouped into discrete
localities, from left to right, Arkose Ridge, Lava Mountain, Gray Ridge, and Box
Canyon. Note that western fluvial-lacustrine deposystems (Arkose Ridge and Lava
Mountain) deposited plutonic and metamorphic detritus derived (eroded) from Mesozoic
arc plutons and metamorphic rocks that cropped out to the northwest of the basin.
Eastern fluvial-lacustrine deposystems (Gray Ridge and Box Canyon) primarily
deposited juvenile volcanic detritus from a coeval slab window volcanic center located
northeast of the basin (Caribou Creek volcanic field, CV). Abbreviations are as follows:
Paleogene sedimentary basins: MB-Matanuska basin; CIB-Cook Inlet basin. Major
Paleogene volcanic belts: CTV-Central Talkeetna Mountains volcanics; JV-Jack River
volcanics; CB-Cantwell basin volcanics. Major faults: DF-Denali fault; CMF-Castle
Mountain fault; BRF-Border Ranges fault. Intrusive igneous rocks: MI-Matanuska
intrusives; PI-Prince William sound intrusives. #A-City of Anchorage. Adapted from

Trop and Ridgway (2007).
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as the slab-window volcanic center was constructed. The following sections will outline
the depositional history for each stratigraphic section.
Arkose Ridge

The section at Arkose Ridge was deposited as part of the western drainage
network (Fig. 21). This section of the river was adjacent to and infilled paleovalleys
incised into the Latest Cretaceous-Early Paleocene plutonic belt from which it received
the majority of its sediment based on high concentrations of plutonic clasts in
conglomerate (85% of clasts), quartz, plagioclase feldspar, and plutonic fragments (Q:F:L
= 23:67:10; Lv:(Ls+Lm):Pl = 12:47:41), and a main detrital age population (85-60 Ma;
88.6%) that matches the age of the Late Cretaceous-Early Paleocene arc plutons.
Additionally, subordinate plutonic sediment that couldn’t be compositionally resolved
from the main Late-Cretaceous-Early Paleocene belt carried by tributary streams that
drained from nearby Jurassic and Early Late Cretaceous plutons based on detrital ages
(200-100 Ma; 2.4%; 100-85 Ma; 8.8%). Alternatively, these ages could reflect recycling
of zircons from local metamorphic rocks (e.g. Hatcher Pass schist), but the U/Th-U/PB
age data indicate that the detrital zircons are mainly of igneous origin (Fig. 14). The
relative abundance of mica schist (Lm:Lv:Ls = 79:21:0; ~9% of total grains) is probably
derived primarily from the local Hatcher Pass schist northwest of the basin, although the
source terrane could also potentially be the poorly constrained Jurassic amphibolite unit
to the north or no longer exposed at the surface. Upsection decreases in the age peaks of
the detrital zircon age populations could represent the unroofing of the Late Cretaceous
plutons or the migration of drainage networks through time such as northward erosion as

the drainages expanded or stream capture.
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Lava Mountain

The Lava Mountain section was deposited within the western river system near
the middle of the basin (Fig. 21). It received a majority of its sediment from the Late
Cretaceous-Early Paleocene Alaska Range-Talkeetna Mountains and Jurassic Talkeetna
magmatic arcs based on high concentrations of plutonic clasts in conglomerate (85% of
clasts), quartz, plagioclase feldspar, and plutonic fragments (Q:F:L = 23:67:10;
Lv:(Ls+Lm):Pl = 12:47:41), and a main detrital age population (85-60 Ma; 88.6%) that
matches the age of the Late Cretaceous-Early Paleocene arc. Relatively abundant mica
schist grains (Lm:Lv:Ls = 94:0:6) were most likely derived from the Hatcher Pass schist
that cropped out along the northwest margin of the basin. At the base of the section, the
dominant age population is 200-100 Ma grains that match the Jurassic Talkeetna
magmatic arc plutons. Additionally, plutonic clasts in the basal boulder conglomerate are
the same lithology as the Jurassic arc plutons. This signature is completely overridden
by a Late Cretaceous-Early Paleocene detrital age signature upsection. This relationship
is consistent with the base of the section being deposited in paleovalleys incised into the
underlying bedrock (in this case, Jurassic granitoids with which the Lava Mountain
section shares a high-relief, unconformable contact) from which the main signature is the
underlying bedrock. As the basin matures, this local Jurassic bedrock source was
overridden by sediment from nearby Cretaceous granitoids of the Alaska Range-
Talkeetna Mountains arc.
Gray Ridge

The Gray Ridge section was deposited within the eastern river network near the

middle of the basin (Fig. 21). It received sediment from the Eocene volcanic center that
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was constructed by slab-window magmatism northeast of the basin based on abundant
volcanic detritus and <60 Ma (33.5%) detrital grains that match the compositional and
age signature of the volcanic field. Gray Ridge also continued to receive sediment
eroded from granitoids related to the Late Cretaceous-Early Paleocene Alaska Range-
Talkeetna Mountains arc and the Jurassic Talkeetna arc based on the presence of plutonic
detritus in conglomerate and sandstone and detrital age populations (85-60 Ma and 200-
100 Ma; 54.2% and 14.9%, respectively). The distinct change in petrofacies and
chronofacies between Gray Ridge and Lava Mountain underlies the need for a drainage
divide between the eastern and western river networks. Near the base of the Gray Ridge
section, the dominant detrital signature is plutonic based on a high abundance of plutonic
detritus and 85-60 Ma zircons, before quickly grading to volcanic detritus and <60 Ma
age peaks upsection. This upsection increase in volcanic detritus and <60 Ma zircons is
consistent with the construction and growth of the adjacent volcanic field during
deposition of the Arkose Ridge Formation.
Box Canyon

The Box Canyon section was deposited within the eastern river network on the
east side of the basin (Fig. 21). It received sediment from the Eocene volcanic center that
was constructed by slab-window magmatism northeast of the basin based on abundant
volcanic detritus and <60 Ma (34.1%) detrital grains that match the compositional and
age signature of the volcanic field. Box Canyon continued to receive sediment eroded
from granitoids related to the Late Cretaceous-Early Paleocene Alaska Range-Talkeetna
Mountains arc and the Jurassic Talkeetna arc as well, based on the presence of plutonic

detritus in conglomerate and sandstone and detrital age populations (85-60 Ma and 200-
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100 Ma; 41.8% and 9.4%, respectively). Box Canyon, however, has a high abundance of
volcanic detritus and <60 Ma grains throughout the section unlike Gray Ridge which had
plutonic detritus and >60 Ma grains at the base, although the zircon age peaks do young
upsection. This slight difference between the eastern sections is due to the proximity of
Box Canyon to the nascent volcanic center.

Both Gray Ridge and Box Canyon were apparently isolated from metamorphic
sources exposed north of the basin (e.g. Hatcher Pass schist), evidenced by the relatively
minor metamorphic detritus whereas a relative abundance of sedimentary fragments and
>245 Ma zircons show it received recycled material from Mesozoic sedimentary strata
such as the local Tuxedni, Chititna, Naknek, and Matanuska Formations (Trop, 2008;
Winkler, 1992), as well as the more distant Caribou Pass Formation, Kahiltna
Assemblage, and Yukon-Tanana Terrane that the western sections did not.

General Implications for Forearc Basin Development

Previous forearc basin studies, such as studies from the Great Valley forearc
basin, show that as a volcanic arc denudes, sandstone modal analyses record an increase
in quartz and feldspar and a decrease in lithic grains (DeGraaff-Surpless et al., 2002;
Dickinson, 1982; Dickinson, 1995; Ingersoll and Eastmond, 2007; Fig. 22A). This
change occurs throughout the forearc as the volcanic edifice erodes and an increasingly
larger amount of the underlying arc plutons are exposed. In Alaska, Upper Cretaceous
marine forearc strata (uppermost Matanuska Formation) and the western strata of the
Arkose Ridge Formation are consistent with this progression (Fig. 22B). The
composition of the Upper Cretaceous Matanuska Formation is most similar to sandstone

derived from dissected volcanic arcs (Trop, 2008). The abundance of volcanic lithic
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Figure 22. (A) Mesozoic sandstone (purple circles) and modern fluvial sand (U-
undissected volcanic arc setting, T-transitional volcanic arc setting, D-dissected volcanic
arc setting, B- continental block-basement uplift setting) point-count data from studies in
the ancient and modern Great Valley forearc basin plotted on a Q-F-L ternary diagram
(Dickinson and Gehrels, 2000; Ingersoll and Eastmond, 2007). See Table 6 for grain
parameters. Note that as a volcanic arc denudes, modal analyses in both modern sands
and ancient sandstones record an increase in quartz and feldspar grains and a decrease in
lithic grains (indicated by arrow). (B) Cretaceous marine sandstone (green squares; Trop,
2008) and Paleogene fluvial sandstone (blue circles and triangles and red diamonds; this
study) detrital modes from the Matanuska-Talkeetna Mountains forearc basin plotted on a
Q-F-L ternary diagram. Blue circles and triangles are point-count data from the western
sandstones (Arkose Ridge and Lava Mountain). Red diamonds are point-count data from
the eastern sandstones (Gray Ridge). Note that the progression from the Upper
Cretaceous marine strata to the western sandstones of the Paleogene fluvial strata
matches the general progression towards enrichment of quartz and feldspar at the expense
lithic grains, similar to the Great Valley forearc basin (Fig. 22A), consistent with
progressive denudation of the volcanic arc edifice and increased sediment sourcing from
dissected subvolcanic arc plutons. Eastern sandstones record an opposite progression,
due to proximity to a newly constructed volcanic center linked to slab window
magmatism associated with ridge subduction. (C) Relative probability plots of detrital
ages from representative western and eastern sandstone samples. Yellow bar denotes
depositional age of the Arkose Ridge Formation. Note in the western sandstone, detrital

age populations reflect erosion from remnant arc plutons and are older than the age of
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deposition (yellow bar). In the eastern sandstone, however, juvenile volcanics from the
constructing slab window volcanic center results in erosion of syndepositional volcanic,

providing a detrital zircon peak that matches the depositional age (yellow bar).
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grains, plutonic rock fragments, and plagioclase feldspar indicate derivation from both
volcanic and plutonic source terranes that is concordant with denuding the late
Cretaceous Alaska Range-Talkeetna Mountains magmatic belt (Trop, 2008). The
composition of the western strata of the Paleocene-Eocene Arkose Ridge Formation is
most similar to sandstone derived from continental block-basement uplift setting (this
study). The abundance of plutonic rock fragments and plagioclase feldspar indicate
derivation from plutonic source terranes, and is compatible with the further denudation of
the late Cretaceous Alaska Range-Talkeetna Mountains magmatic belt. Additionally, the
paucity of volcanic lithic grains is consistent with the complete erosion of the volcanic
edifice. This relationship is consistent with the progression towards quartz and feldspar
traditionally seen in forearc basins as the volcanic arc denudes. The eastern strata of the
Arkose Ridge Formation, however, record an opposite progression, with increasing
volcanic lithic grains through time at the expense of quartz and feldspar (Fig. 22B). This
is due to its depositional proximity to a slab-window volcanic center.

Furthermore, as the volcanic arc denudes through time, the detrital U-Pb zircon
age populations of a sedimentary formation in a typical forearc setting become
significantly older than the age of deposition (Fig. 22C). The western strata of the
Arkose Ridge Formation are consistent with this progression with major age populations
of Latest Cretaceous-Early Paleocene (85-60 Ma) and Jurassic-Early Cretaceous (200-
100 Ma), but a depositional age of Early Paleocene-Eocene. The eastern strata of the
Arkose Ridge Formation, however, contain a third major age population (Late Paleocene-
Eocene; 60-48 Ma) that significantly overlaps with the depositional age of the Arkose

Ridge Formation due to local juvenile volcanics supplied by a slab-window volcanic
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center. Conventional provenance models predict reduced input of volcanic detritus to
forearc basins during exhumation of the volcanic edifice and exposure of subvolcanic
plutons (Dickinson, 1995). However, Arkose Ridge Formation data show that forearc
basins modified by ridge subduction may record upsection localized increases in non-arc,
syndepositional volcanic detritus due to contemporaneous construction of slab-window

volcanic centers (Kortyna et al., 2010).

CONCLUSIONS

New compositional and detrital geochronologic data from the Arkose Ridge
Formation documents the Paleocene-Eocene erosional history of bedrock source terranes,
and depositional and tectonic framework of the Matanuska Valley-Talkeetna Mountains
forearc basin. Conglomerate and sandstone compositional data document detritus
dominated by plutonic clasts, plagioclase feldspar, and monocrystalline quartz in western
sections, and volcanic clasts, plagioclase feldspar and subordinate plutonic clasts in the
eastern sections. Detrital zircon geochronologic data show three main age populations of
200-100 Ma, 85-60 Ma, and 60-48 Ma, and may be split into two chronofacies. Western
sections are dominated by a Jurassic-early Paleocene chronofacies and sparse 60-48 Ma
grains, whereas eastern sections are dominated by a Late Paleocene-Eocene chronofacies
that has a major 60-48 Ma population. Overall, the detrital zircon and compositional data
are consistent with the paleocurrent data and lithofacies trends that show a southward
decrease in grain size in the Arkose Ridge Formation and Chickaloon Formations. This
is concordant with sediment derivation from northern source terranes. A western,

plutonic petrofacies is most similar to a continental block-basement uplift setting that,
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along with the Jurassic-early Paleocene chronofacies, is consistent with the erosion of
Mesozoic arc plutons that presently crop out to the northwest of the Matanuska basin and
directly underlie the sampled sections. An eastern, volcanic petrofacies is most similar to
a dissected-undissected volcanic arc setting that, along with a Late Paleocene-Eocene
chronofacies, is concordant with the erosion of the Paleocene-Eocene Caribou Creek
volcanic center that presently crops out along the eastern margin of the basin. The
paucity of metasedimentary detritus suggests the Chugach accretionary prism did not
supply significant sediment to the Arkose Ridge Formation. The eastern strata received
higher proportions of juvenile volcanic detritus through time despite not being in an
active arc setting, consistent with construction of the adjacent slab-window volcanic
center, likely due to subduction of an oceanic spreading ridge and associated slab-
window magmatism. Conventional provenance models predict a decrease in volcanic
detritus to forearc basins due to the denudation of the volcanic edifice. These data show
that in a forearc basin modified by spreading ridge subduction, non-arc volcanic detritus
related to slab-window magmatism provides an important component of forearc basin

fills.
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APPENDIX A:
PHOTOMICROGRAPHS OF POINT-COUNTED SANDSTONES
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Appendix A. Labels for photomicrographs of point counted sandstones

Raw
Am  Amphibole
K Potassium feldspar (single crystals)

K/PlI  Potassium feldspar, plagioclase feldspar, and quartz in plutonic fragments
Lmm Mica schist and subordinate chlorite schist lithic fragments, foliated

Lmt  Quartz-mica tectonite and subordinate quartz-mica-feldspar tectonite, foliated
Lsa  Argillaceous metasedimentary lithic fragments, weakly foliated

Lsm  Sedimentary lithic fragments (shale)

Lss Sedimentary lithic fragments (quartzose to quartzofeldspathic siltstone)
Lvf  Volcanic lithic fragments (felsitic to microlitic textures)

Lvl Volcanic lithic fragments (lathwork textures)

P Plagioclase feldspar (single crystals)

Pl Plagioclase feldspar and quartz in plutonic fragments

Qe Embayed monocrystalline quartz

Qm Monocrystalline quartz (single crystals)

Qpg  Polycrystalline quartz
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