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1. Abstract 

Located within the frontal lobe, the human orbitofrontal cortex (OFC) is widely 

known for its roles in sensory integration, emotion processing, decision-making, and 

goal-directed behaviors. Atypical structural organization of the OFC may explain atypical 

social or motivational behaviors displayed by individuals with brain disorders, such as 

bipolar disorder patients (BP).  

The human brain can be imaged using magnetic resonance imaging (MRI) to 

reveal interesting aspects of the underlying brain architecture. This brain is composed of 

different tissue types, including gray and white matter, as well as various morphological 

features, including sulci & gyri. Within the OFC, the sulci can be labeled and classified 

into a finite number of patterns based on the continuity of the most medial and most 

lateral sulci. Typical patterns (Type I) have previously been found at higher frequencies 

bilaterally in healthy populations, whereas atypical patterns (Type II and Type III) have 

been found at higher frequencies in relative to patients with schizophrenia (SZ).  

In order to characterize differences in morphological properties of structural OFC 

architecture in BP patients (N=46) relative to healthy controls (N=52), we trace OFC 

sulcogyral patterns based on a previously established protocol, employ a voxel-based 

morphometry (VBM) analysis to assess OFC gray matter (GM), and implement a 

diffusion tensor imaging (DTI) tractography analysis to measure white matter tract 

microstructural properties. Chi-square analysis compared sulcogyral pattern frequency 

distributions between groups, and independent sample t-tests compared additional OFC 
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properties. Based on previous work and overlap of symptoms and genetics between BP 

and SZ, we predict that OFC architecture in BP individuals will differ from controls.  

We find that BP displayed increased atypical (Type II and Type III) sulcal pattern 

frequencies relative to controls in the left hemisphere (χ2= 18.6, p < 0.001). T-tests reveal 

that global OFC GM volumes were significantly decreased in both right (p = 0.0338) and 

left (p = 0.0039) hemispheres of BP relative to controls.  BP also exhibit a reduced 

number of tracts in the uncinate fasciculus (UF) relative to controls on the left that 

trended toward significance (p = 0.094). 

Overall, we find atypical OFC structural organization of sulcal patterns, reduced 

gray matter volume, and fewer white matter UF tracts in BP relative to controls, 

especially in the left hemisphere. Exploring and quantifying various structural brain 

properties within the OFC may be useful in assessing individual risk to brain dysfunction 

and facilitate a personalized approach for diagnosis and treatment.	  
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2. Introduction and Background  

The orbitofrontal cortex (OFC) is a region of the prefrontal cortex situated in the 

frontal lobe of the brain, and is located on the ventral surface of the frontal region. The 

OFC has been implicated in personality or behavior for over a century, with more recent 

theoretical work suggesting roles in sensory integration, emotion processing, expectation, 

motivation, decision-making, and goal-directed behaviors (Murray, O’Doherty, & 

Schoenbaum, 2007; Kringelbach, 2005). The OFC is highly connected to multiple brain 

regions, including the hypothalamus, amygdala, insula, medial prefrontal cortex, and the 

basal ganglia (Kringelbach, 2005). The OFC also displays considerable individual 

variability (Chiavaras & Petrides, 2000; Kringelbach, 2005), which can make it 

challenging to understand its role in normal human behavior. Investigating variability and 

abnormal structural organization of the OFC may explain atypical behaviors displayed by 

individuals with various psychiatric disorders (Jackowski et al., 2012).  

Bipolar disorder (BP) is a classification of affective disorders in which patients 

experience episodes of mania or depression, irritable or elated moods, or hypomania. 

There are several subtypes of bipolar disorder, including Bipolar I, Bipolar II, 

Cyclothymia, and Bipolar, unspecified. We focus here on Bipolar disorder I, which is 

characterized by episodes of depression and at least one incident of full-blown mania 

(American Psychiatric Association, 2013; Phillips & Kupfer, 2013). Previous research 

has examined OFC structural variability extensively in disorders such as schizophrenia 

(SZ) (Bartholomeusz et al., 2013; Chakirova et al., 2010; Chiavaras & Petrides, 2000; 
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Lavoie et al., 2014; Takayanagi et al., 2010), but recently, OFC sulcal variability has 

been investigated in BP (Patti & Troiani, 2018). Due to the overlap in behavioral and 

genetic etiology of SZ and BP and previous research implicating atypical OFC variability 

in BP, we choose to investigate OFC structural properties of patients with BP.  

The overall goal of this thesis is to characterize differences in multiple 

morphological properties of the OFC in BP and otherwise healthy controls. We focus on 

three different types of brain metrics and analyses, each described in detail below.  

Further, we describe existing knowledge using each of these analysis methods in patients 

with BP and separately, patients with SZ. Although we did not analyze data from SZ 

patients as part of this thesis work, knowledge on the background of both disorders is 

relevant to interpretation and future directions. 

2.1 Orbitofrontal Sulcogyral Patterns 

Within the OFC, an H-shaped sulcus is formed by the intersection of the medial 

orbital sulcus (MOS), lateral orbital sulcus (LOS), and transverse orbital sulcus (TOS). 

The distinct pattern formed by these sulci varies between individuals and can be 

categorized into one of three identified arrangements (Type I, Type II, Type III) by 

manually tracing the sulci (Chiavaras & Petrides, 2000). Sulcogyral patterns can be used 

as a basis for structural analysis of the internal surface anatomy, as they distinguish 

functionally distinct brain regions and provide a natural topography of the brain’s 
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anatomy. Within the human cerebral cortex, sulcal landmarks can be identified via 

magnetic resonance images (MRI) to classify sulcogyral patterns. 

         Type I is the most common pattern identified in typical populations of humans 

and monkeys (Chiavaras & Petrides, 2000). Type II and Type III patterns have been 

found at higher frequencies in patients with SZ relative to controls (Bartholomeusz et al., 

2013; Chakirova et al., 2010; Lavoie et al., 2014; Takayanagi et al., 2010) and are 

thought to indicate atypical OFC organization. The association of Type I with typical 

phenotype suggests that the Type I pattern may serve as a protective buffer against the 

development of disorders such as SZ. Our lab has recently identified atypical OFC 

sulcogyral patterns in patients with bipolar disorder I (BP I) and attention deficit disorder 

(ADHD), which suggests that sulcogyral patterns may present a morphological indicator 

for increased susceptibility to multiple psychiatric diagnoses (Patti & Troiani, 2018). It is 

unknown whether other gray and white matter volumetric differences are present in the 

OFC of individuals with BP.  

An aim of this study is to characterize structural properties such as orbitofrontal 

sulcogyral patterns in BP and controls. We expect that due to the similarity of clinical 

symptoms and behaviors associated with BP relative to SZ, the frequencies of sulcogyral 

pattern types will be consistent with previous findings in SZ (Carroll & Owen, 2009; 

Chiavaras & Petrides, 2000). That is, we expect that control subjects will exhibit the 

highest frequencies of Type I sulcogyral pattern bilaterally, and we hypothesize BP will 

display higher frequencies of atypical patterns (Type II and Type III) relative to controls. 
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In addition, this study will explore gray matter and white matter differences in the OFC 

between these groups. 

2.2 Gray Matter Volume 

In addition to variability among OFC sulcogyral patterns described above, 

individual differences in gray matter (GM) volume in the brain can be measured to 

further quantify structural brain architecture. One of the most common methods of 

assessing GM differences is voxel-based morphometry (VBM) (Ashburner & Friston, 

2000; Good et al., 2001; Kanai & Rees, 2011). VBM preprocessing results in the 

segmentation of anatomical MRI images into gray matter, white matter, and 

cerebrospinal fluid tissue types. Each subject’s image is then spatially warped into a 

common stereotactic space, and smoothed. Processed images then represent local 

volumes of the selected tissue type (gray matter, white matter, etc.) at individual voxels, 

and differences between groups can be assessed using statistical analyses. These 

statistical maps can also be used to investigate relationships between brain volume 

metrics and behavior in the form of correlations (Kanai & Rees, 2011). 

Structural brain imaging has demonstrated that SZ patients exhibit abnormalities 

in GM relative to controls. In patients with SZ, the H-shaped sulcus has been linked to 

brain volume reduction (Nakamura et al., 2007a). Studies investigating the relationship 

between OFC volumetric differences between healthy controls and SZ patients have 

suggested that reductions in total subregional OFC volumes are typical in chronic SZ 

(Nakamura et al., 2007b; Takayanagi et al., 2010). Several studies have identified GM 
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volume reductions in cortical and subcortical regions of SZ patients, shown in region of 

interest (ROI) analyses (Wright et al., 2000) and VBM analyses (Job et al., 2002; Kubicki 

et al., 2002). VBM analysis of SZ patients also revealed reduced GM volume in anterior 

thalamus, middle prefrontal gyrus, and dorsomedial thalamus relative to control subjects 

(McIntosh et al., 2005). Additionally, progressive GM reductions in the OFC are 

common from the initial onset of the illness (Bora, Fornito, Pantelis, & Yücel, 2012). 

Though GM findings regarding SZ are robust and consistently replicated, the 

structural brain abnormalities underlying BP are less well known. It has been suggested 

that emotional, behavioral, and cognitive deficits manifested in BP are due to a disruption 

in the neurocircuitry of the OFC, which extends to the amygdala, striatum, thalamus, and 

hypothalamus (Monkul, Malhi, & Soares, 2005; Nery et al., 2009; Strakowski, Delbello, 

& Adler, 2005). However, GM volume differences in BP populations are inconsistent and 

less robust. For example, a voxel-by-voxel automated analysis one study demonstrated 

reduced bilateral OFC GM volumes compared to BP I patients (Frangou, Donaldson, 

Hadjulis, Landau, & Goldstein, 2005). However, a VBM analysis found decreased GM 

volumes in the left hemispheres of medicated bipolar I and II patients relative to controls, 

but no differences were found in medication-free BP patients relative to controls (Nugent 

et al., 2006). In a study by Nery et al. (2009) that used manual tracings of the OFC to 

derive regions of interest, there were no differences found in GM volumes of total OFC 

or its subdivisions between controls and mixed BP patients (BP I and BP II). Thus, it 

could be that OFC GM volumes do not represent a general characteristic of BP, but may 

be linked to specific clinical features of the disorder (Nery et al., 2009).  
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A second aim of our study is to further characterize structural OFC properties in 

BP to add to the growing body of literature on this topic. We will employ an automated 

VBM analysis to quantify GM volumes in total OFC and OFC sub-regions in BP and 

controls. We expect that BP patients will display reduced OFC GM volumes relative to 

controls. 

2.3 White Matter/Uncinate Fasciculus  

In addition to gray matter structural properties, white matter (WM) 

microstructural properties can be estimated in the human brain (Fields, 2008; Johansen-

Berg, 2010). Diffusion tensor imaging (DTI) provides a technique to determine WM 

integrity and neuronal connectivity within the brain by employing diffusion-weighted 

magnetic resonance imaging (DW-MRI) to quantify the diffusion of water molecules 

across brain tissue (Skudlarski et al., 2008). DW-MRI provides a quantification of WM 

structural properties, including the degree of water diffusion that results from tissue 

boundaries such as cell membranes across individual voxels within the brain (Alm, 

Rolheiser, Mohamed, & Olson, 2015). Several metrics can be quantified using DW-MRI, 

including fractional anisotropy (FA) and deterministic tractography. FA is an average 

measure of regional WM features, with higher FA values indicating more efficient 

neuronal conduction via WM tracts (Alexander, Lee, Lazar, & Field, 2007; Beaulieu, 

2002). Deterministic tractography methods are a way of visualizing specific white matter 

tracts and estimate the strength of a connection between two selected ROIs. Thus, 
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estimates of tract connectivity in individuals might explain inter-individual differences in 

behavior (Kanai & Rees, 2011). 

The disconnection hypothesis of SZ suggests that the disorder is a result of 

atypical connectivity between the prefrontal cortex and structures such as the thalamus, 

striatum, or temporal lobe (Friston & Frith, 1995; McIntosh et al., 2008). Findings from 

DTI studies have consistently supported the hypothesis, revealing that WM density is 

reduced in SZ patients (Buchsbaum et al., 2006; Burns et al., 2003), and deficits specific 

to the uncinate fasciculus (UF) are present by the first psychotic episode (Price et al., 

2008). The UF is a hook-shaped bundle of WM tracts that connects limbic system regions 

of the OFC, and abnormalities within the UF have been associated with social anxiety 

and depression. Findings supporting the disconnection hypothesis of SZ have also 

extended to bipolar disorder (McIntosh et al., 2008). 

Evidence exists of WM abnormalities and altered connectivity in BP. Prior work 

has suggested that WM is reduced in BP I patients relative to controls (Adler et al., 2004; 

Regenold et al., 2006; McIntosh et al., 2005). Additionally, BP I and SZ patients had 

reduced FA in the anterior limb of the internal capsule (ALIC), anterior thalamic 

radiation (ATR), and in the UF relative to controls (Sussmann et al., 2009). Reductions in 

the UF and ATR were also found in patients with SZ and BP relative to controls 

(McIntosh et al., 2008). 

Our DTI analysis yields a three-dimensional reconstruction of WM tracts within 

the brain of each subject. Because of the limited findings implicating UF deficits in BP, 

we choose to isolate the UF. Isolating tracts of the UF rather than all tracts within the 
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OFC allows us to more precisely reveal its structural connectivity profile, and focus on a 

well-known tract of fibers connecting the OFC to additional brain regions. Thus, a third 

aim of this project is to extract several metrics of WM microstructural properties of 

bilateral UF to quantify WM properties of BP relative to controls. We expect that the 

mean FA values and number of tracts within the UF of BP subjects will be atypical 

relative to control subjects. 

Overall, we are interested in investigating structural brain architecture of BP I 

patients to better understand phenotypic manifestations and biological markers specific to 

the disorder. Additionally, we are interested in exploring whether OFC sulcogyral pattern 

type influences structural connectivity as measured by several other brain analysis 

metrics. Inter-individual differences in regional brain structure frequently co-vary with 

inter-individual differences in functionally connected brain regions, known as structural 

co-variance (Alexander-Bloch, Giedd, & Bullmore, 2013). Employing VBM and DTI 

tractography analyses will allow us to examine how structural properties of the H-shaped 

sulcus within the OFC correspond to connectivity in BP. 
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3. Materials and Methods 

 3.1 Ethics Statement 

	 The research protocol and consent procedures were approved by the Institutional 

Review Boards at the University of California Los Angeles (UCLA) and the Los Angeles 

County Department of Mental Health. All subjects provided written and informed 

consent. 

 3.2 Participants 

	 Structural images were acquired from the OpenfMRI database (accession number 

ds000030), a publically accessible and anonymized data set made available by the 

University of California Los Angeles Consortium for Neuropsychiatric Phenomics and 

can be obtained at: https://openfmri.org/dataset/ds000030/. Participants included right-

handed English- or Spanish-speaking controls, and patients with self-reported bipolar 

disorder. Patients were assessed with the Structured Clinical Interview for DSM 

Disorders (SCID-IV) (First, Spitzer, Gibbon, & Williams, 1995) to verify history and/or 

absence of psychopathology and a urine drug screen to assess drug use. (See Tables 1a 

and 1b for demographic information). Bipolar patients were recruited using a patient-

oriented strategy involving outreach to local clinics and online portals, while controls 

were recruited using advertisements in Los Angeles area newspapers. All candidates were 
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screened via telephone and in person. Additional information about this cohort can be 

found at: 

https://web.archive.org/web/20151229081105/http://www.phenowiki.org/wiki/index.php/

LA5C 

 Control subjects from the larger cohort were only included if they had no Axis I 

diagnosis, as confirmed by the SCID-IV (N=56). In addition, only bipolar patients with a 

confirmed diagnosis for Bipolar I Disorder using the SCID-IV were included (N=49).  

Although the publically accessible data set already excluded participants with 

excessive motion, we additionally excluded several subjects (N=7) whose motion caused 

noise in the orbitofrontal cortex region of the structural image, thus restricting the ability 

to make accurate sulcal tracing classifications (BP N=3, Control N=4). Thus, the cohort 

was reduced to N=98 (BP N=46, Control N=52). Table 1a includes demographic 

information regarding subjects used in the analyses regarding sulcogyral pattern 

classification and the voxel-based morphometry gray matter analysis. 

 

 

 

 

 

 

 

 



	

13 

Table 1a.  Demographic characteristics of all subjects. 

 

During the next analysis in which images were put through our DTI pipeline, 

additional participants were excluded (N=15; BP N=5, Control N=10) due to failing 

quality control checks. Participants were excluded if they were missing diffusion 

weighted image data (i.e. the sequence was not run at all) or due to the angle of 

acquisition removing the temporal lobe out of frame of the image, which limited the 

ability to complete DTI analysis. The final subgroup used for DTI analysis was reduced 

to N=83 (BP N=41, Control N=42). Table 1b includes demographic information 

regarding subjects used in the DTI analysis. 
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Table 1b.  Demographic characteristics of subgroup included in DTI analysis. 

 

3.3 Demographics and Phenotype Characterization 

3.3.1 Demographics 

The study link above contains a complete list of all phenotype variables, some of 

which were acquired in the entire cohort and others in specific patient samples. Relevant 

to the current study, age, gender, education level, and clinician-interview instruments 

pertinent to the phenotype of bipolar patients are reported.  
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	 	 3.3.2 Phenotype Characterization 

Phenotype metrics commonly used to assess psychiatric-disorder specific groups 

are also included to further describe the behavioral phenotype of the subjects. Since the 

majority of clinician-interview instruments were not ascertained on the control subjects, 

several self-report questionnaires that evaluate similar psychometric domains are 

included. These metrics and the purpose for describing them in this analysis are reported 

below, and averages for the subject groups are reported in Table 2. 

 

Table 2.  Phenotypic characteristics. Columns on the left include phenotype 

information on all subjects, and columns to the right are specific to the subgroup of 

subjects included in DTI analysis. (YMRS = Young Mania Rating Scale; HPS = 

Hypomanic Personality Scale; BPII = Bipolar II Summary Score). 
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3.3.2.1 Clinician Interview Instruments 

The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-IV) (First 

et al., 1995) is a clinician-administered assessment used to diagnose DSM-IV Axis I 

mental disorders. All participants were administered this interview. Controls were 

determined based on the confirmation of “No Axis I Diagnosis” and all bipolar patients 

included in this analysis had a confirmed diagnosis of bipolar disorder I. 

Young Mania Rating Scale (YMRS) (Young, Biggs, Ziegler, & Meyer, 1978) is 

an 11-item clinician-administered instrument that was created to evaluate the severity of 

manic episodes in patients with bipolar disorder. Scores range from 0-60 with a cutoff 

score of >20 indicating the presence of manic symptoms. Only bipolar patients were 

administered this assessment. 

3.3.2.2 Self-Report Instruments 

The Hypomanic Personality Scale (HPS) (Eckblad & Chapman, 1986) is a 

Chapman Scale developed to evaluate the overactive, sociable personality style 

associated with episodes of hypomanic euphoria associated with bipolar disorder. This 

self-report assessment consists of 48 True-False items, scores ranging from 0 to 48, with 

higher scores indicating the presence of more features associated with a hypomanic 

personality. This scale is included to demonstrate the differences in mania symptoms 

between patient and control subjects. 
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3.4 Neuroimaging 

3.4.1 Image Acquisition 

Magnetic Resonance Imaging (MRI) scanning was conducted at two different 

locations, Ahmanson-Lovelace Brain Mapping Center and the Staglin Center for 

Cognitive Neuroscience, on a 3T Siemens Trio scanner. High-resolution anatomical 

images (T1-weighted 3D MPRAGE) were collected for each participant with the 

following parameters: 1 mm3 voxel size, 176 axial slices, 1 mm slice thickness, TR = 1.9 

s, TE = 2.26 ms, FOV = 250, matrix = 256 X 256 sagittal plane. As detailed above, 

additional participants were excluded due to excessive motion, which caused noise in the 

OFC region of the structural image. Control subjects were mostly collected on one 

scanner, while the bipolar patient group was roughly split between the two scanners (see 

Table 1a). Regardless of the scanner location, the same sequence was used for all 

subjects. Recent work has confirmed that sulcal pattern characterization is a robust 

measure that is not influenced by the scanner site (Chye et al., 2017). Thus, it is unlikely 

that structural properties such as sulcal pattern type, GM volume, or WM tracts would be 

influenced by scanner site. 
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3.4.2 Preprocessing 

Anatomical images were normalized by stripping non-brain tissue using FMRIB 

Software Library (FSL) Brain Extraction Tool (BET) (Smith, 2002), then aligned along 

the anterior commissure-posterior commissure (AC-PC) plane to adjust for head tilt 

(using FMRIB Linear Image Registration Tool, FLIRT) (Jenkinson, Bannister, Brady, & 

Smith, 2002; Jenkinson & Smith, 2001) after registration to an MNI template, and 

resampled into 1mm cubic voxels (Greve & Fischl, 2009). The fractional intensity 

threshold in BET was set to 0.3, which sometimes resulted in residual skull or brainstem 

being left in the image but assured that portions of the brain surface were not 

unintentionally removed.  

3.4.3 Sulcal Pattern Tracing 

The OFC sulcal patterns were identified from the normalized images and 

classified according to the criteria used in previous characterizations of OFC sulcal 

patterns (Lavoie et al., 2014). OFC sulcal patterns were previously classified in the OFC 

of each hemisphere by three tracers (including author of this thesis, B.B.) blinded to 

subject diagnosis using ITK-SNAP, a digital software application which segments 

structures in 3D medical images (Patti & Troiani, 2018; Yushkevich et al., 2006). 

Following previously published methods, anatomical landmarks serving as boundaries for 

OFC subregions were manually referenced. The appropriate sulcal regions were 

identified according to an explicit tracing and classification procedure, and then manually 
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traced. Once OFC sulci were identified and traced, the OFC sulcogyral pattern type was 

objectively determined in each hemisphere using a previously established classification 

rubric (Patti & Troiani, 2018) defined by Chiavaras and Petrides (2000) and adapted by 

Bartholomeusz et al., (2013), which consists of Type I, II, and III/IV patterns based on 

the continuity of the medial and lateral orbital sulci. (All 98 subjects included in this 

analysis; see Table 1a for details). 

Type I consists of a discontinuous medial orbital sulcus (MOS) and continuous 

lateral orbital sulcus (LOS), Type II a continuous MOS and LOS, and Type III a 

discontinuous MOS and discontinuous LOS (see Figure 1). Comparable to previous 

studies, all subjects with an H-sulcus pattern classified by the rare Type IV pattern 

(continuous MOS and discontinuous LOS) were included with Type III patterns for 

analyses (Bartholomeusz et al., 2013). Each subject’s bilateral OFC sulcal pattern was 

independently traced and classified by three trained tracers (M.P., B.B., & R.V.), 

including the author of this thesis (B.B.), blinded to diagnosis. A subset of 20 randomly 

selected brains (40 hemispheres) were also reviewed by V.T. to confirm classification 

validity. Interrater reliability between tracers and V.T. was very good (К = 0.863 (95% 

CI, 0.726 to 1), p<0.0005). M.P. then re-characterized a subset of brains in order to obtain 

an interrater reliability statistic. Interrater reliability was also very good (К = 0.909 (95% 

CI, 0.787 to 1), p<0.0005). 
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Figure 1.  Examples of different H-sulcus pattern types in sample axial images. Type 

I, on the far left, is characterized by a discontinuous Medial Orbital Sulcus (MOS, in red) 

with a continuous Lateral Orbital Sulcus (LOS, in blue). Type II, shown in the middle, is 

distinguished by continuity in both MOS and LOS. Type III, on the right, is characterized 

by a discontinuous MOS and discontinuous LOS. Orange line indicates Transverse 

Orbital Sulcus (TOS), and green line indicates Intermediate Orbital Sulcus (IOS), which 

are traced to assist in sulcus orientation and identification, but are not relevant to 

sulcogyral pattern type. (Note: The sample subjects included in this image were chosen 

with the same pattern type in both hemispheres for illustrative purposes. It is not typical 

for a subject to exhibit the same pattern type in both hemispheres.) 
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3.4.4 Voxel-Based Morphometry Gray Matter Analysis 

In addition to identifying the sulcal pattern types, a VBM analysis was completed 

to investigate differences in GM volume in specific brain regions of the OFC between 

control and BP groups (Ashburner & Friston, 2000). FSL software was used to extract 

brain information, create a study-specific reference template using a random sample of 20 

images (10 BP, 10 Control), process the population of 98 images, and obtain a 

quantification of gray matter volume. The Automated Anatomical Labeling 2 (AAL2) 

digital atlas of the human brain was used to identify segments of the OFC in a three-

dimensional space (Rolls, Joliot, & Tzourio-Mazoyer, 2015). Masks for the overall left 

and right OFC, as well as medial, anterior, posterior, and lateral subregions were derived 

from regions 25-32 in AAL2 atlas.  These masks were then used to obtain estimates of 

OFC GM, bilaterally. (All 98 subjects were included in this analysis; see Table 1a for 

details). 

3.4.5 Diffusion Tensor Imaging 

Diffusion tensor magnetic resonance imaging (DTI) analysis was employed to 

investigate long-range WM structural connectivity within the OFC. The DTI pipeline 

used in our tractography analysis was adopted from a workflow generously shared by the 

Olson Lab (Metoki, Alm, Wang, Ngo, & Olson, 2017). DTI data were coregistered to a 

T1-weighted MPRAGE scan and aligned to the AC-PC plane. DW-MRI acquired from 

the publically available dataset were put through a processing pipeline in FSL following a 
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typical workflow, which included eddy current correction. The b-vector matrix was then 

corrected for gross subject motion. A binary mask was then created in which the b-naught 

image was extracted from the eddy-corrected DTI file. Using FSL BET, brains were 

extracted and skull matter was stripped (Smith, 2002). Quality control checks were 

implemented after each step to verify the mask’s fit and accuracy of the brain extraction. 

As described previously, several participants were excluded (N=15) in this analysis due 

to excessive motion, missing DWI data, or an inappropriate angle of acquisition (see 

Table 1b for demographic info regarding the subgroup used in DTI analysis). The 

diffusion tensor variable was then created in FSL to fit the tensors to each voxel, yielding 

a measure of fractional anisotropy (FA) extracted from the diffusion images. 

Diffusion ToolKit software (Wang, Benner, Sorensen, & Wedeen, 2007) was used 

to implement a 3D white matter reconstruction of the DWI images, which were viewed 

and further analyzed in TrackVis software (Wang et al., 2007). On a subject-by-subject 

basis, the FSL-preprocessed DTI image created for FA scalar/tensor was overlaid on the 

3D white matter tract reconstruction in TrackVis. White matter tracts specific to the UF 

were isolated bilaterally in each subject according to an objective, standardized protocol 

(Metoki et al., 2017). UF tracts, which connect the temporal and frontal lobes of the brain 

in a hook-shaped fashion, were isolated by placing regions of interest on the temporal and 

frontal lobes of a slice of the coronal plane (Figure 2). This restricted the tract group to 

only contain WM tracts crossing through the manually-positioned ROIs. Figure 2 

provides an example UF region of tracts isolated with two ROIs. Once the UF was 
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isolated, statistical measures were exported using TrackVis software.  These included 

mean FA values and the number of tracts isolated within the UF. 

 

 

 

 

 

 

 

 

 

Figure 2.  Example tractography image of uncinate fasciculus (UF) in left 

hemisphere of sagittal plane in sample DW-MRI image. Regions of interest (ROI 1 in 

red; ROI 2 in blue; shown in image on left) were placed in coronal planes of DW-MRI 

white matter reconstructions in TrackVis software to isolate the UF. Image on the right 

depicts a close-up of a typical hook-shaped bundle of UF tracts. Different colors in 

images represent directionality of diffusion in the individual white matter tracts. 

3.5 Statistical Analysis 

Statistical analyses were performed using SPSS (IBM SPSS 23.0 for Mac, SPSS 

Inc., Chicago, Illinois). We first assessed whether there were any demographic 

differences across groups in gender ratio and scanner site using χ2 statistics. Additionally, 

ROI 1 

ROI 2 
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we assessed whether there were any differences in the demographic variables of age or 

education across groups. In the case that this statistical test was significant between 

controls and BP, analysis was followed up with independent sample t-tests in order to 

compare groups to each other and establish which group differences were driving these 

effects. We also assessed whether there were any phenotypic differences between groups 

on quantitative psychometrics that are relevant to these populations. Similar to 

demographic analyses, we first assessed whether there were differences between groups. 

These comparisons were then followed-up with independent sample t-tests. Analyses of 

demographic and phenotypic differences were not part of the main hypothesis, but were 

completed in order to confirm that BP and controls were different from each other in 

expected ways. Inter-hemispheric distribution of OFC sulcogyral pattern types in the left 

and right hemisphere were established in patients and compared to controls using χ2 

statistics. Following these analyses, the specific pattern type (I, II, or III) which 

differentiates the groups was explored by comparing frequency distributions within one 

pattern relative to all other patterns (i.e. proportion of Type I vs. not Type I, proportion of 

Type II vs. not Type II, and so on) using χ2 statistics. Analyses were then completed to 

confirm whether previously identified phenotypic differences are related to sulcogyral 

patterns. 

Additionally, GM volumetric differences between controls and BP were assessed 

with one-tailed, type two independent sample t-tests. One-tailed t-tests were used here 

because we expected BP patients to display reductions in GM relative to controls. 

Statistics on FA measurements and the number of WM tracts in UF were analyzed using 
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two-tailed, independent sample t-tests to assess differences between controls and BP. 

Two-tailed t-tests were employed because we had no specific expectations as to how the 

tracts would differ in BP relative to controls (i.e., either increased or decreased). For all 

analyses, p-values are reported, and values of p<0.05 are considered to be significant, 

while values of p<0.10 are considered to be trending toward significance. These results 

are not corrected for multiple comparisons.	  
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4. Results 

 4.1 Demographic Differences 

 We assessed demographic differences between BP and HC subjects included in 

the sulcogyral pattern tracing and voxel-based morphometry analyses. Chi-squared 

analyses and independent t-tests comparing BP to HC (t(98)=-2.47, p=0.015) (see Table 

1a) indicated that BP subjects were slightly older. However, OFC sulcogyral patterns are 

thought to be constant throughout life (Armstrong, Schleicher, Omran, Curtis, & Zilles, 

1995), and thus, a slight age difference between our groups should not significantly 

impact the results. We then assessed differences in the distribution of male and female 

subjects within the groups with χ2 statistics (χ2(2, N=98)=2.04, p=0.153, NS). As 

mentioned earlier, subjects within the HC and BP groups were scanned on two scanners 

at separate sites. OFC sulcogyral pattern is a stable brain structure that should not be 

influenced by scanner site. Nonetheless, we used χ2 statistics to assess the distribution of 

patients scanned on each scanner. This analysis revealed that the distribution of patients 

scanned on either scanner was significantly different (χ2(2, N=98)=7.88, p=0.005) (Table 

1a).  

 Upon excluding additional participants whose diffusion-weighted images did not 

pass our quality check (HC N=10, BP N=5), we again assessed demographic differences 

between the groups (HC N=42, BP N=41). We did not expect that the exclusion of 

participants would affect the demographic differences. Nonetheless, we employed χ2 

statistics to assess potential differences in the subgroup of participants in DTI analysis 
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(Table 1b). Chi-squared analyses and independent t-tests comparing the ages of BP to HC 

(t(83)=-2.39, p=0.019) also indicated that BP subjects in the DTI subgroup were slightly 

older. The distribution of male and female subjects remained insignificant (χ2(2, 

N=83)=1.49, p=0.222, NS). Additionally, the distribution of patients scanned on the two 

scanner sites remained significantly different (χ2(2, N=83)=4.63, p=0.031) (Table 1b). 

 4.2 Phenotypic Differences 

 Next we evaluated whether differences existed between the clinician-interview 

and self-report instruments of all subjects between controls and BP with t-tests. 

 We compared scores on the self-report questionnaires acquired in all participants 

to demonstrate differences between HC and BP groups (see Table 2, left panel). Scores 

on HPS (t(98)= - 4.51, p<0.001) and Bipolar II Summary Score (BPII) (t(98)= - 5.37, 

p<0.001) indicate significant differences between HC and BP groups. 

 The exclusion of subjects for the DTI subgroup was not expected to influence 

phenotypic differences. Nonetheless, we compared scores on the self-report 

questionnaires in the subgroup of participants included in the DTI analysis. Scores on 

HPS (t(83)= - 4.29, p<0.001) and BPII (t(83)= - 4.92, p<0.001) indicate significant 

differences between HC and BP groups.  
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 4.3 Sulcal Pattern Types 

 Table 3 contains the number of subjects identified to have each sulcogyral pattern 

type, with a distinction between the left and right hemisphere. Results from χ2 tests are 

depicted in Figure 3. Within the left hemisphere, overall pattern type frequency for BP 

differed significantly from the control group (χ2(2, N=98)=18.6, p<0.001). There was no 

significant difference in sulcogyral pattern frequency between patient groups in the right 

hemisphere (χ2(2, N=98)=0.038, p=0.981, NS).  

 We then assessed which specific pattern types differentiated the groups.  This 

analysis was limited to the left hemisphere, since there was no indication that right 

hemisphere OFC pattern distributions differed between BP and controls. In the left 

hemisphere, BP exhibited a reduced Type I pattern frequency relative to controls (χ2(2, 

N=98)=17.73, p<0.001). There was no significant difference in Type II pattern 

expression between BP and controls (χ2(2, N=98)=3.291, p=0.070, NS). BP patients had 

increased prevalence of Type III patterns on the left hemispheres relative to controls 

(χ2(2, N=98)=11.03, p<0.001). Thus, differences in OFC sulcogyral pattern distributions 

between BP and controls are likely driven by decreased presence of Type I and increased 

presence of Type III in the BP group. 
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Table 3.  Sulcogyral pattern types in orbitofrontal cortex.  

 

 

 

 

 

HC = healthy controls; BP = bipolar 



	

30 

 

Figure 3.  Chi-squared test results of OFC sulcogyral pattern type. Pattern 

frequencies are shown for each Type, organized in columns according to subject group. 

Frequencies of pattern type for each hemisphere of subject group add to a frequency of 1. 

(BP = bipolar disorder). 

 4.4 Voxel-Based Morphometry Gray Matter Analysis 

 Using the AAL2 atlas, a VBM analysis was employed to assess GM volumetric 

differences within the OFC. This was done for overall left and right OFC volume, as well 

as within subregions defined in the atlas.  

To assess GM differences within the entire OFC, left and right OFC masks were 

created by combining medial, anterior, posterior, and lateral OFC subregion masks from 

the AAL2 atlas (combining OFC regions 25-32 in the atlas). These were then used to 
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extract average GM volumes for the left and right OFC. T-tests indicated that BP patients 

exhibited reduced GM volume relative to controls in both the left (p=0.0039) and right 

(p=0.0338) hemispheres of the OFC. 

Next, we extracted average GM volume for each subgregion of the OFC, 

bilaterally. T-tests with one-tailed distribution and two-sample equal variance were then 

employed to assess differences between estimates of GM volumes in BP and controls 

(see Figure 4, purple box).  

No differences existed between the left (p=0.239) and right (p=0.175) 

hemispheres of the lateral OFC for controls and BP (Figure 4, blue box). Within the 

anterior OFC, GM volumes did not differ significantly between controls and BP in the 

right hemisphere (p=0.154). However, BP subjects exhibited decreased GM volume 

relative to controls within the left hemisphere of the anterior OFC (p=0.032) (Figure 4, 

teal box). Within the posterior subregion of the OFC, BP patients displayed reduced GM 

volume relative to control subjects in both the left (p=0.0046) and right (p=0.0414) 

hemispheres (Figure 4, yellow box). Lastly, within the medial OFC, BP subjects showed 

significantly reduced GM volume relative to controls (p=0.0122) in the left hemisphere, 

while there was a trend towards difference between BP and HC subjects’ GM volumes in 

the right hemisphere (p=0.0582) (Figure 4, red box). 
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Figure 4.  Gray matter volumetric differences in local and global OFC. Each masked 

region on the sample brain image corresponds to a callout graph illustrating the gray 

matter volumes within that region in each hemisphere. Yellow represents posterior OFC, 

blue represents lateral OFC, teal indicates anterior OFC, and red signifies medial OFC. 

The purple region represents all OFC subregions for a global analysis. Black bars 

* 
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represent control subjects, and white bars indicate bipolar disorder patients. Significance 

of P<0.05 is denoted by * and significance of P<0.01 is denoted by **. 

 4.5 Uncinate Fasciculus Measurements 

 DTI analysis isolating the white matter (WM) uncinate fasciculus (UF) tracts 

yielded measurements of mean fractional anisotropy (FA). When two-tailed independent, 

two-sample t-tests were employed, no significant differences were found between 

controls (0.352 ± 0.03) and BP (0.349 ± 0.04) mean FA in the left uncinate (p = 0.772). 

Similarly, no significant differences were found between mean FA of controls (0.346 ± 

0.03) and BP (0.336 ± 0.04) in the right uncinate (p = 0.163) (Table 4). 

 In the interest of further quantifying structural properties of the UF in patients, we 

then assessed differences in the number of tracts contained in the UF of both 

hemispheres. Interestingly, in the left uncinate, BP patients exhibited a reduced number 

of tracts (110 ± 36) relative to HC (125 ± 40) trending toward significance (p = 0.094). 

No differences in number of tracts were found between HC (130 ± 47) and BP (125 ± 43) 

in the right uncinate (p = 0.627) (Table 4). 
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Table 4.  Fractional anisotropy (FA) measurements of bilateral uncinate fasciculi 

(UF). Top rows indicate measurements collected from UF of left hemispheres of subjects, 

and bottom rows exhibit results from UF of right hemispheres. Fifteen subjects were 

excluded (HC N=10, BP N=5) prior to DTI analysis, yielding N=83 (HC N=42, BP 

N=41). 
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5. Discussion 

 5.1 OFC Sulcogyral Patterns 

	 Prior work has associated atypical sulcogyral patterns (Type II and Type III/IV) 

within the H-sulcus to disorders such as schizophrenia. In an extension of our lab’s 

previous work (Patti & Troiani, 2018), here we provide evidence that atypical OFC 

sulcogyral patterns may also be present in bipolar disorder. Recent genetic evidence has 

indicated similar underlying etiology for several disorders, including schizophrenia and 

bipolar disorder, amid other forms of developmental brain dysfunction (DBD). The DBD 

model suggests that brain dysfunction manifests in clinical disorders encompassing less 

severe disorders of minimal cerebral dysfunction (eg, learning disabilities, ADHD), 

classic neurodevelopmental disabilities (eg, autism spectrum disorders), and some 

traditional neuropsychiatric disorders (eg, SZ, major affective disorders) (Moreno-De-

Luca et al., 2013). According to this framework, a considerable subset of 

neurodevelopmental and neuropsychiatric diagnoses share risk factors, and the cause of 

each disorder can result in a spectrum of impairment severity (Moreno-De-Luca et al., 

2013).  

 Consistent with our original hypothesis, we find that sulcogyral pattern frequency 

differs in BP patients relative to controls, specifically in the left hemisphere. This 

hypothesis was based on the overlap in symptoms of bipolar disorder and schizophrenia 
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(Maier, Zobel, & Wagner, 2006) and similar underlying genetic etiology (Cardno & 

Owen, 2014; Jackson, Fanous, Chen, Kendler, & Chen, 2013; Lichtenstein et al., 2009). 

 The OFC has been implicated in “personality” and may be critical to cognitive 

skills that make us fundamentally human. Further, abnormalities within the OFC have 

been associated with a range of disorders (Jackowski et al., 2012). It could be that the 

OFC is implicated in disorders due to the complex nature of this cortical region. The OFC 

is divided into subregions that demonstrate distinct cellular architecture and connectivity 

(Carmichael & Price, 1996; Kahnt, Chang, Park, Heinzle, & Haynes, 2012). Given the 

dense interconnections between these cortical and subcortical structures, it is not 

surprising that deviations from typical cortical folding would lead to brain disorders. In 

the context of OFC sulcogyral pattern types, Type I pattern is expected to be the standard 

sulcogyral folding that denotes the ideal spatial arrangement for efficient communication 

between brain regions. Thus, abnormalities relative to the Type I pattern (Type II and 

Type III/IV) likely lead to suboptimal neuronal communication between brain regions, 

which may manifest as atypical cognitive and phenotypic traits, and/or brain disorders.  

 5.2 Gray Matter Analysis 

	 Confirming our hypothesis, the VBM analysis yielded reduced GM volumes in 

overall OFC in BP relative to controls within the left hemisphere. Additionally, GM 

reductions in BP relative to controls were present in left anterior, left and right posterior, 

and left medial OFC subregions. This hypothesis was based on overlapping symptoms 
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between SZ and BP, as well as previous research that has revealed GM reductions in SZ 

(McIntosh et al., 2005) and bipolar patients (Frangou et al., 2005; Nugent et al., 2006). 

Consistent with previous findings, this result adds to the growing body of literature 

regarding GM in bipolar patients, specifically within the OFC.  

 Reduced GM volumes in the OFC is supported by a previous meta-analysis of 

ROI studies, which demonstrated that BP exhibited reduced GM volumes in the frontal 

cortex relative to controls (Arnone et al., 2009). Contemporary models suggest that mood 

dysregulation in BP is the result of frontolimbic abnormalities (Strakowski et al., 2005). 

Specifically, GM reductions in the anterior, posterior, and medial OFC subregions may 

be of functional significance regarding BP. Lesion studies in primates targeting the 

anterior OFC have suggested that the subregion contributes to the regulation of negative 

emotions, such as anxiety and fear responses (Agustín-Pavón et al., 2012). In addition, 

the medial portion of the OFC has been implicated in mood disorders such as depression, 

as damage to this subregion results in deficits in emotion, mood, and social regulation, 

but does not impact cognition (Damasio, Grabowski, Frank, Galaburda, & Damasio, 

1994). Investigating OFC subregions might inform further hypotheses related to 

functional impairments of BP. Assessing structural abnormalities of OFC subregions 

might also contribute to a greater understanding of sulcogyral patterns, as the subregions 

overlap with orbitofrontal sulci.  



	

38 

 5.3 Tractography 

 Partially consistent with our final hypothesis, we found that the average number 

of tracts within the left UF of bipolar patients was trending toward a significant reduction 

relative to controls. However, we did not find significant differences in mean FA 

measurements in either left or right hemispheres between BP and controls. 

 It is meaningful that the number of tracts within the UF was reduced in BP 

subjects relative to controls. White matter tracts are composed of myelinated axons which 

connect gray matter regions and carry nerve impulses between neurons. Thus, given the 

cognitive, behavioral, and emotional impairments associated with disorders such as 

bipolar disorder, it is unsurprising that less tracts exist in BP patients in the UF, which 

connects regions of the limbic system critical for emotion and behavior. Further 

tractography research isolating the UF should include the number of tracts in their 

investigations. 

 Our findings did not indicate any significant FA results within the UF of bipolar 

patients relative to controls. However, the literature demonstrates mixed findings on the 

UF properties of clinical populations relative to controls. Several findings indicate that 

BP exhibit decreased WM relative to controls (Adler et al., 2004; McIntosh et al., 2005; 

McIntosh et al., 2008; Regenold et al., 2006; Sussmann et al., 2009). However, other 

findings report no WM differences in prefrontal subregions (López-Larson, DelBello, 

Zimmerman, Schwiers, & Strakowski, 2002), no FA differences in bipolar UF (Houenou 

et al., 2007), and even increased UF fibers between the left subgenual cingulate and left 
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amygdalo-hippocampal regions (Houenou et al., 2007). Future research should seek to 

clarify the relevance of FA measurements and the specific WM deficits various clinical 

populations demonstrate.  

5.4 Limitations and Future Directions 

The information presented here is not without its limitations. Our results were not 

corrected for multiple comparisons. We should continue to accumulate a database of 

OFC sulcogyral characterizations in several diagnostic groups in order to obtain the 

power necessary to complete rigorous statistical testing with multiple comparison 

correction. Additionally, this study and other work demonstrate significant differences 

between control and patient groups on demographic variables, such as education level, in 

addition to atypical sulcogyral pattern frequencies. It has been shown that individuals 

with mental illness are less likely to pursue higher education relative to individuals 

without mental illness (Eaton et al., 2008). It can be difficult to determine whether 

differences in demographic variables are related to OFC sulcogyral pattern type given the 

close relationship between psychiatric illness and education. Future work might address 

whether educational attainment is associated with OFC sulcogyral pattern type. 

 VBM is a technique that has been used for nearly two decades to quantify gray 

matter differences between groups. The accuracy of VBM depends on precise image 

registration and normalization (McIntosh et al., 2005). Thus, this method of brain 
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analysis does not take into account large variations in brain structure that may be present 

in a more heterogeneous cohort.  

 The DTI pipeline implemented in the present study, though adopted from a 

standardized protocol used in a previous lab (Metoki et al., 2017), was novel to our lab. 

The protocol was performed according to established methods and implemented 

consistently for each subject. However, tractography analysis employed to isolate the UF 

in each subject is based on partially subjective classifications. That is, it was up to the 

independent individual performing tractography analysis to manually place regions of 

interest in the appropriate brain regions in each individual subject bilaterally to yield the 

UF tracts unique to each subject. Future work might aim to automate tractography 

analyses to identify white matter tracts such as the UF in an attempt to reduce any 

potential bias or manual error. 

 Additionally, it is worth noting that subjects within the BP group had exposure to 

various medications prior to and at the time of scanning. Although the OFC continues to 

develop following birth, the sulcal patterns are thought to be laid down during fetal 

development.  Thus, it is unlikely that medication use would contribute to different OFC 

sulcogyral patterns in BP. Medication use could impact gray or white matter architecture 

and it is unclear how this might interact with sulcogyral pattern type. Future work should 

attempt to clarify the effects of medications on brain architecture and its relationship to 

quantitative measures of symptoms. 

 It might also be worth investigating the other subtypes of bipolar disorder. Our 

analysis and previous research on sulcogyral patterns has focused on Bipolar I, but it 
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would be interesting to assess the frequency distributions of sulcogyral pattern types in 

individuals with Bipolar II, Cyclothymia, and/or Bipolar, unspecified. In addition to 

sulcogyral patterns potentially being used to differentiate disorders, further investigation 

of sulcogyral patterns may provide a distinguishable marker between bipolar subtypes. 

 5.5 Concluding Remarks 

 Overall, we find that atypical sulcogyral OFC patterns are found at a higher 

frequency relative to controls within the left hemisphere of bipolar disorder, gray matter 

volumes in the left OFC are significantly reduced in bipolar patients relative to controls, 

and the amount of tracts comprising the UF is significantly smaller in the left UF of 

bipolar patients compared to controls. Interestingly, there is a consistent pattern of 

atypical structural properties specific to the left hemisphere. Exploring and quantifying 

various structural brain properties, specifically within the OFC, such as sulcogyral 

patterns, gray matter volumes, and white matter tracts, could be useful in assessing 

individual risk to disease or brain disorders. Ultimately, the combination of such 

structural properties might assist in a more personalized approach for diagnosis and 

treatment of brain dysfunction.  
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