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Inactivation of [Fe—Fe]-Hydrogenase
by O,. Thermodynamics and Frontier
Molecular Orbitals Analyses

DANIELA DOGARU, STEFAN MOTIU, VALENTIN GOGONEA



Introduction

B oth [Fe-Fe]-hydrogenases as well as [Ni-Fe]-
hydrogenases are enzymes that are impli-
cated in H, metabolism (2H" + 2¢~ < H,), which
occurs in anaerobic media. Of these two bi-metal
enzymes, only [Fe-Fe]-hydrogenases are viable for
H, production, with a reactivity of up to 2 orders of
magnitude larger than [Ni-Fe]-hydrogenases [1, 2].
In hydrogenases, H, evolution, emerging from pro-
ton reduction 2H" + 2¢~ — H,), is essential in
pyruvate fermentation, and in the disposal of ex-
cess electrons. Low-molecular weight biomolecules
such as ferredoxins, cytochrome C3, and cyto-
chrome C6 can act as physiological electron accep-
tors or donors [3].

The hydrogenase H-cluster (Scheme 1) is the ac-
tive site that is comprised of two subunits, the 2Fe
subunit and the cubane [Fe,-S,]*" subunit. The 2Fe
subunit is composed of two iron atoms (Fe,-Feg,
i.e.,, proximal and distal iron) that are bridged by
di(thiomethyl)amine (DTMA) chain and are coordi-
nated by endogenous ligands, i.e., two cyanides,
two terminal carbonyls, and a bridging carbonyl
(COy). Moreover, the S, (of Cys™®?) is the connecting
atom from an Fe atom of the (proximal) cubane
subunit and the Fe, of the 2Fe subunit.

The reason for studying biological H, production
is because the eventual elucidation of the mecha-
nism (for hydrogen synthesis) may benefit re-

The H-Cluster

SCHEME 1. The H-cluster and its subunits, i.e., the
cubane, and the 2Fe subunit. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]
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searchers produce clean fuel, using certain anaero-
bic prokaryotes [4-8].

Previous density functional theory (DFT) as well
as hybrid quantum mechanics/molecular mechan-
ics (QM/MM) calculations [2, 9-16] have been suc-
cessful in clarifying some aspects of the catalytic
properties of the H-cluster.

As in similar computational studies [2, 9], cys-
teine is substituted with CH;-S™, whereas cubane is
replaced' with a H".

Furthermore, computational and experimental
[2,9, 14, 16-41] [Fe-Fe]-hydrogenase H-cluster (and
synthetic H-cluster-like compounds) research sheds
light on the potential redox states of the 2Fe H-
cluster subunit, Fe -Fey, where Fe LFe,' is the re-
duced 2Fe H-cluster subunit, FepI -Fey' is the par-
tially oxidized enzyme subunit, and FepH—FedII is
the fully oxidized, inactive enzyme H-cluster sub-
unit.

The fully oxidized H-cluster, FepH-FedH, has a
H,O molecule or an OH ™~ bound to the Fe4". In our
previous investigation [21], we have inferred that a
vacant (fully oxidized) FepH—FedH (1, Fig. 1) could
also be a viable intermediate in H, synthesis. Re-
gardless of the 2Fe H-cluster subunit redox states,
the proximal cubane [more precisely, a cuboid
(point group: D,d)] always retains a 2+ oxidation
state, [Fe,-S,]*".

The partially oxidized H-cluster (FepH-FedI, 5,
Fig. 1), H,,, is the active form of the hydrogenase
enzyme.” The reduced H-cluster (FepI—FedI, 6, Fig. 1)
has both iron atoms in oxidation states I (being an
intermediate in H, metabolism). According to Liu
and Hu [9], 6 is the cluster having great affinity for
protonation (6 — 8), in capturing a proton from the
side chain of a near by amino-acid, such as Lys*”’.

X-ray crystallography and spectroscopic studies
of hydrogenases, with the latter having been ob-
tained from Clostridium pasteurianum (CPI)[43] and
Desulfovibrio desulfuricans (DdH) [31], led to a better
understanding of the biochemical roles of these
enzymes. The X-ray crystal structure of CPI hydro-
genase shows an oxygen species that may be OH",
or H,O bound to the Fey of the H-cluster. On the
basis of the computational results of Liu and Hu [2]

1The truncation of the cubane, [Fe,-S,]*", and its replacement
by a H* (as well as the replacement of CH,;-S™ for cysteine-S)
had been done to obtain the best compromise with regard to the
computational cost.

ZVoltametric [42] studies show the transition of H, ™ to
H,,®" occurring via a reversible e transfer process to the hy-
drogenase transient state followed by a putative two e~ transfer
(with the latter not reaching the bimetals of the H-cluster).
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FIGURE 1. Reaction pathways |-IV: Oxidation mechanisms of H-clusters that are fully oxidized (1), partially oxidized
(5), and reduced (6). The charges and multiplicities are given in square brackets. The first energy value is for gas
phase, and the second is for ONIOM calculations. Fe, is the proximal iron, and Fe is the distal iron.

(CPI has OH™ in its inactive form according to
X-ray crystal structure), we endeavor to ascertain
whether the air oxidized H-cluster (Fe,-Fey-O,)
converts to Fe,-Fe4-OH species [21].

Our investigation is composed of three differ-
ent subdivisions. (1) Thermodynamic analysis,

for every reaction path mechanism (Figs. 1-3),
implicated in the eventual H-cluster 14 inhibition
by means of O, — OH". (2) Electronic analysis,
for the same paths, which deals with Natural
Bond Orbitals (NBO), as well as Frontier Molec-
ular Orbitals (FMO). (3) Geometrical analysis car-
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FIGURE 2. Reaction mechanism for isomerization, protonation, H,O elimination, and reduction of the inhibited
[Fe—Fe]-hydrogenase H-cluster. The H,O is being removed from a closed-shell cluster. (The charges, multiplicities,

and energy values are presented as in Fig. 1.)

ried out only for appropriate bond breaking and
bond formation.

From the investigated subdivisions, thermody-
namics analysis (Figs. 2 and 3) is of pivotal impor-
tance because it shows that there is just an exer-
gonic path from H-cluster 9’ to the hydroxylated
cluster 14 occurring in the aqueous enzyme phase.
However, from the thermodynamic results (see Fig.
1), it is observed that most reaction steps proceed

exergonically (except 1 — 2, gas phase), leading to
the oxidized cluster 9. Moreover, at the end of each
path, every vacant H-cluster 1, 5, and 6, in spite of
its oxidation states, becomes aerobically inacti-
vated, 9.

Thus, this article is organized as follows: in the
Methods we describe the QM/MM partitioning,
and the methods used for calculations (e.g.,, QM
Hamiltonian, basis sets, and the force field param-

N 4 @I\:i]H
T\ Jo% 7\
__-H-OH
/S / _ /5\ / . S - /O
FED """" Fed _-.+ e._. Fey----- Fed +H - Fe L ——Fe L H20
I 1.8 , | -199.7 = o 13
9'[-1, 1] b 15[-2, 2] -259.9 - 2356
7% e e
s % S .
/S A\ / . /S\ OH ) on®
----- 2H.. Fe,-----Fey +e I:Iep—-—--lilc-zd
-148.9 Il Il _77.4
12 1, 2] ~1415 1310, 2] -86.3 14[-1, 1]

FIGURE 3. Reaction mechanism for reduction, protonation, and H,O removal from the inhibited [Fe—Fe]-hydroge-
nase H-cluster. Here, the H,O is being eliminated from an open-shell cluster. (The charges, multiplicities, and energy

values are presented as in Fig. 1.)



eters). Then, in the Results and Discussion, we
present the computational results organized into
subsections that present and discuss thermody-
namic results, geometrical, and electronic data for
different steps of the reaction pathways, such as
oxygen binding, reduction, oxidation, and water
elimination. Finally, in the Conclusion we give a
summary of our findings.

Methods

In this study, both QM [DFT (in gas phase)] and
OM/MM [DFT/UFF [44] (in aqueous enzyme
phase)] methodologies have been used. The
ONIOM [45] method (DFT for the QM region and
the universal force field (UFF) for the MM region,
implemented in Gaussian 03 [46]) has been applied
to determine the reaction thermodynamics, i.e., AG,
for the inactivation pathways of the H-cluster, and
the [Fe-Fe]-hydrogenase H-cluster (positioned
within the enzyme matrix). Subsequently, the DFT
results have been compared with the ONIOM cal-
culations. The electronic structure of the hydroge-
nase active site (except the proximal cubane) is
investigated by quantum mechanics (Gaussian 03)
using DFT method (B3LYP functional [47, 48]), and
OM/MM with 6-31+G(d,p) basis set. For Fe an
effective-core potential with a double zeta polariza-
tion basis set (LANL2DZ [49, 50]) was used for DFT
gas phase calculations, and a 6-31+G(d,p) basis set
for the ONIOM calculations. In accordance with
experimental and in-silico data low spin states (sin-
glet and doublet) and low oxidation states (I and II)
have been selected for the Fe atoms [2, 14, 35].
Gromacs program [51, 52] was employed to add
hydrogen atoms, water, and counter ions to the
X-ray crystal structure of DdH [Brookhaven Protein
Data Bank id.1HFE]. Hydrogen atoms and a 1 nm
layer of water (2043 molecules) have been added to
the PDB DdH structure. Moreover, Na™ ions have
been randomly inserted into the solvent to neutral-
ize the negative charges encountered therein, e.g.,
the —2 a.u. found on the cubane/cysteine moieties
[53]°. For both basic and acidic amino acids, charges
were assigned by Gromacs algorithm to be at pH 7.
ONIOM geometry optimizations have been per-
formed on the DdH, with the low layer (MM re-
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gion) being frozen,* with the exception of the prox-
imal cubane, whereas the high layer (QM) had only
the iron atoms, Fep-Fed, and the N3, (of the DTMA
bridge) kept frozen; “freezing atoms” is practiced to
reduce computational time. The low layer consists
of all the hydrogenase amino acids as well as its
constituent cubanes, i.e., proximal, medial, and dis-
tal. The high layer is comprised of 2Fe subunit
(which is the moiety of the H-cluster) and Cgand S,
(appertaining to the bridging Cys**?). Moreover,
two linking hydrogen atoms were added between
C, and Cg of Cys® and between S, and an Fe atom
of the proximal cubane. The charge equilibration
method of the UFF was used to describe the elec-
trostatic interactions within the low layer of the
system [54]. The DdH partial charges were obtained
using the charge equilibration method, whereas the
solvent charges were acquired from literature [54]
(9o = —0.706 a.u. and gy = 0.353 a.u.).

Results and Discussion

H-CLUSTER THERMODYNAMICS FOR O,
BINDING, REDUCTION, AND PROTONATION

Figure 1 illustrates different O, inhibition path-
ways of the hydrogenase H-cluster; the H-clusters,
1,5, 6,and 8 [2, 9, 21], of the pathways are obtained
in the reversible catalysis of H,. Reaction 1 — 2
(path I) is endergonic for the gas phase (AG,,, =
+9.8 kcal/mol; gas = gas phase) when O, binds to
the fully oxidized H-cluster (1). ONIOM calcula-
tions, on the other hand, show that O, binding
occurs exergonically (AGoy/vm = —16.6 keal/
mol), shedding light on the sensitivity of hydroge-
nases to O, [55].

Reduction 2 — 3 (AG,,, = —110.2 kcal/mol) as
well as protonation 3 — 4 (AGgas = —136.0 kcal/
mol) proceed exergonically;, ONIOM calculations,
for the hydrogenase matrix, show thate™ transfer is
considerably less exergonic (AGqoy v = —80.4
kcal/mol) relative to protonation which is more
exergonic (AGqyamy = —154.1 kcal/mol). The free
energy differences, in gas versus aqueous enzyme
phases for reactions 2 — 3 and 3 — 4, ensue from
the effect of the electric field of the protein on the
H-clusters 2, 3, and 4, and from the different phase
geometries.

Cluster 4 undergoes reduction and it (4 — 9)
proceeds exergonically in both gas and aqueous



hydrogenase phase (AGg,, = —79.1 kcal/mol;
AGon v = —78.3 keal/mol).

Path 1II starts with the partially oxidized H-clus-
ter 5, (Fe,"-Fe ). The binding of O, to Fe' (Fe4'-O,),
5 — 3, is firmer (AG,,, = —36.1 kcal/mol) than for
Fe'' in 1 — 2 (Feyq"-O,, path I). In contrast, ONIOM
results show that O, binds to the partially oxidized
H-cluster (FepH—FedI, AGom/mm = —7.9 keal/mol)
as well as to the fully oxidized cluster (FepH-FedH,
AGom/mm = —16.6 kcal/mol, 1 — 2, path ). The
remaining two reactions 3 — 4, and 4 — 9 (path II)
are the same as the last two steps of path 1.

In path III, 6 — 7, which starts with the fully
reduced H-cluster 6, (FepI—FedI), the reaction spon-
taneity (AG,,, = —36.0 kcal/mol) is almost identical
to the free energies of reaction 5 — 3. The gas phase
free energy similarity may ensue because both loci
of oxygen binding (Fe4'-O,) are on similar oxidized
species, FedI. However, ONIOM calculations show
smaller reaction spontaneity difference between
aqueous enzyme (AGon/vm = —20.7 kcal/mol)
and gas phase results (AG,,, = —36.0 kcal/mol, 6 —
7), than for O, binding in path I and II. In path III,
protonation (7 — 9) is, once again, largely exergonic
for both phases (AG,,, = —241.9 kcal/mol;
AGonm/vm = —244.9 keal/mol). Moreover, from all
of Figure 1, the above ONIOM calculations show
the highest H" affinity because H-cluster 7 has a
charge of —2 a.u., and also the H" binds to a rather
electronegative atom, viz., oxygen.

In the final path (IV), protonation 6 — 8 is the
second most exergonic reaction in gas phase (AGg,,
= —220.6 kcal/mol) mostly because of the over-all
charge of —2 on the H-cluster 6. ONIOM data (as in
7 — 9) show very high H" affinity (AGom v =
—219.2 kcal/mol) for the hydrogenase H-cluster (in
spite of the fact that the H" is seized by the Fey as
opposed to the more electronegative Fe-O,, 7 —9),
which is comparatively similar to the gas phase
result (AG,,, = —220.6 kcal/mol).

In the last step (8 — 9; path IV), O, is interposed
between Fe4 and the hydride (Fe4'-O,-H, 9). For this
insertion reaction, the O, binding occurs exergoni-
cally in both ONIOM (AGqn/avma = —46.4 kcal/
mol) and the gas phase (AG,,, = —57.3 kcal/mol)
results.

NB: Path IV shows that oxidation of Fe, -Fe4
H-cluster is similar® to the Ni,-Fey hydrogenase
H-cluster obtained from experimental data [56].
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From the earlier thermodynamic results, most
reaction steps proceed exergonically (except 1 — 2,
gas phase), leading to oxidized cluster 9. At the end
of every path, each vacant H-cluster 1, 5, or 6, in
spite of its oxidation states, becomes aerobically
inactivated.

NBO CHARGES AND GEOMETRY
ADJUSTMENT OF INTERMEDIATES IN THE
OXIDATION OF H-CLUSTER

The atoms of the vacant H-clusters 1, 5, and 6
have slightly different natural bond orbital (NBO)
charge distributions. For instance, for cluster 1 the
NBO charges of Fe,-Fe, are quep6 = 0.137 a.u. (9°Fep
= —0.230 a.u.) and g = —0.096 a.u. (§°geq = 0.187
a.u.), whereas in 5, the sign of the partial charges
are reversed only in gas phase, i.e. %, = —0.024
au. (0°pep = —0.227 a.u.) and ¢¥peq = 0.078 a.u. (7 peq
= 0.061 a.u.). Then, the NBO charges for the Fe,-Fey
in cluster 6 (in both phases) are more negative, §%g,,,
= —0.104 au. (@%ep = —0.297 au.) and §¥geq =
—0.117 a.u. (§°peq = —0.160 a.u.) because both met-
als are in a reduced state (see Fig. 1), unlike clusters
1 and 5. Regarding charges on the nitrogen, N3, (of
the DTMA bridge), similarities are seen among
clusters 1, 5, and 6; the NBO charges for N3 are
approximately —0.700 a.u., making this amine
(within the above H-clusters) a relatively important
H" acceptor/donor (vs. amino acids with similar
function in the juxtaposed enzyme matrix, e.g.,
Lys*’) as suggested by Liu and Hu [9]. The non-
bridging S, (of Cys®?) has the following charges:
for 1 4%, = 0.204 a.u. (4°s, = 0.474 a.u.), for 5 g%, =
0.142 a.u. (4°s, = 0.425 a.u.), and for 6 ¢%s, = 0.079
a.u. (4°s, = 0.285 a.u.). Comparing clusters 1, 5, and
6, a sequential drop in NBO charges for Fe, and S
is observed.

When H-cluster 1 is in an oxidized state (in gas
phase), FepH- Fe,", the CO, shifts [9] towards the
Fe,"" and becomes bonded to Fey". The shifted CO,,
bond distance (measured from its bridging carbon,
C,, to the iron atoms) between Cb-FepH is 3.067 A,
whereas C,-Fey" is 1.819 A. When the carbonyl is
close to Fe ", CO,-Fe4", the fully oxidized H-cluster
1 becomes relatively stable versus the quasi-sym-
metric cluster [21] (AH = 14 kcal/mol), which is
also shown by the NBO charge on C,, in CO,, (0.664
a.u.). This may be due to repulsion of charges be-
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tween g%, (0.664 au) and g%k, (0.137 au.),
whereas for the clusters 5 and 6, the partial charges
(7°c, = 0.462 a.u. and g%, = 0.466 a.u., respec-
tively) are less then in 1 because CO,, is bonded to
both iron atoms. However, in the enzyme phase
less shifting of the bridging carbonyl occurs, with
the charges on C,, being similar (4°c;, = 0.536 a.u. for
1, ¢°cp, = 0.497 a.u. for 5, and g°c;, = 0.493 a.u. for 6).
Comparing the reaction spontaneity for O, binding
(in gas phase), which renders clusters 2, 3, and 7,
one may observe that 3 and 7 are more stable than
2. The reason for this stability is essentially due to
the formation of a hydrogen bond between the
exogenous O, and the hydrogen H9 (bonded to N3
of the DTMA bridge) in both 3 and 7. The O1—H9
bond distance is 2.016 A in 3, and O2—H9 bond
distance is 1.765 A in 7, which correlates with the
NBO charges on the mentioned oxygens and hy-
drogens; the partial charges on oxygens are §°o; =
—0.235 au. in 3 and 455, = —0493 au. in 7,
whereas the charge on H9 is 0.439 a.u. in 3, and
0.454 a.u. in 7. Note that CO, is located almost
symmetrically in clusters 2, 3, and 7. Structurally,
clusters 4 and 9 are similar in view of the fact that
both possess a hydrogen bond (H9. . . O1), whereas
CO,, is found to reside quasi-symmetrically in 9, but
asymmetrically in 4 bonded only to FepH. In the
enzyme phase both hydrogen bonds (in clusters 3
and 7) are formed between H9 and O2 of the exog-
enous oxygen (§°o, = —0.210 au. in 3, 4°%5, =
—0452 a.u. in 7, g°49 = 0.443 a.u. in 3, and g°yy =
0.445 a.u. in 7; O2—H9 bond distance is 1.890 A in
3, and O2—H9 bond distance is 1.760 A in 7).

THERMODYNAMICS AND NBO CHARGES
RELATIONSHIP FOR H,0 REMOVAL FROM
THE OXIDIZED H-CLUSTER

Figure 2 depicts a series of reactions (9 —9',9" —
10,10 — 11,11 — 12, 12 — 13, and 13 — 14), which
present the net conversion of 9 to 14. The com-
pounds 9 and 9’ are isomers; 9" is more stable by
47.2 kcal/mol, [which may be, to a certain extent,
attributed to the hydrogen bond formation between
H,O and the N3 of DTMA bridge (N3... H—OH;
i.e., two bonds being broken vs. three being formed
for 9 — 9’, respectively)]. The hydrogen bond
length, N3. .. H, is 1.939 A (and the angle formed
by N3. .. H—O is 168.7°). The distance between the
iron atoms is larger in 9 (2.796 A) than in 9 (2.605
A). During reaction 9 — 9, CO,, moves away from
Fe," [ie., for C,-Fe," 2225 A (9) — 2.771 A (9')].
Also, in Figure 2 (hydrogenase H-cluster 9, and 9'),
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ONIOM geometry optimizations for 9, and 9’ re-
sulted in the same structure for the hydrogenase
H-clusters (AGopn/vm corresponding to 9 — 9" is 0
kcal/mol). The protonation of 9" (9" — 10) produces
a quaternary ammonium ion (NR,") within the
DTMA bridge, which is exergonic for both phases,
viz., AGg,s = —130.7 kcal/mol and AGop/vm =
—138.4 kcal/mol. To wit, the observed high reac-
tion spontaneity for both phases is attributed to the
negatively charged H-cluster 9'. In 10 — 11, H,O is
removed from N3 by means of hydrogen bond
breaking; this reaction (vs. 9" — 10) occurs slightly
endergonically in gas phase (AG,,, = +3.3 kcal/
mol), whereas for QM/MM results, the H,O re-
moval step, 10 — 11, is exergonic (AGoyvm =
—24.1 kcal/mol).

Reduction 11 — 12 (see Fig. 2) is subjected to
an increase in the partial charge of the exogenous
oxygen (%55, = —0.568 a.u. (11) — —0.594 a.u.
(12); AGg,s = —72.8 kcal/mol). Regarding geo-
metrical changes in 11 — 12, the bond distance
between FepH—FedI is increasing from 2.792 A to
3.261 A, whereaos the CO, depart§ from FepII [for
Cy-Fe,"! 2.766 A (11) — 3.188 A (12)]. For the
aqueous enzyme phase result, 11 — 12 occurs
with a relatively large free energy (AGoy, vm =
—95.4 kcal/mol; compared with other neutral H-
cluster reductions), versus the gas phase outcome
(AGg,s = —72.8 kcal/mol); the charge remains
constant on the exogenous oxygen [§°5; = —0.530
a.u. (11) — —0.527 a.u. (12)]. Because of excess
electron density accumulation on O1 (12), the
latter readily captures a proton (12 — 13; AG,,, =
—148.9 kcal/mol). ONIOM calculations, 12 — 13,
confirm the high H" affinity (in Fig. 2, AGowm,mm
= —141.6 kcal/mol) for the hydrogenase H-clus-
ter, which is close to the gas phase result (AG,,, =
—148.9 kcal/mol). The free energy differences
between the given protonations, 12 — 13 versus
9’ — 10, may arise because of the greater stability
of cluster 13 versus 10.

Finally, in Figure 2, an e~ is acquired by the
hydroxyl group (13 — 14; AGgas = —77.4 kcal/mol;

om/mm = —86.3 kcal/mol). Note that the H-
cluster 14 [2, 21] is the starting compound in the
reactivation pathway that ends in the reduced H-
cluster 6 (Fe,'-Fey).

In Figure 3, an alternative pathway (9" — 15, 15
— 16, 16 — 12, 12 — 13, and 13 — 14) has been
investigated. The pathway starts with a reductive
step, rather than with a protonation. Reaction 9" —
15 is slightly exergonic for the gas phase (AG,,, =
—1.8 kcal/mol), whereas ONIOM calculations indi-



cate an endergonic process (AGoy,mm = +25.6
kcal/mol). 9" — 15 is another O, inhibitory step
(in addition to 10 — 11 for the gas phase, Fig. 2)
which seems to explain the O, sensitivity of wild
type DdH. Therefore, mutagenic studies ought to
be performed on [Fe-Fe]-hydrogenase H-cluster
9’ to eliminate its inhibitory path (viz., 9" — 15).
When a H" is in the vicinity of H-cluster 15, 15 —
16 proceeds with the greatest spontaneity (of
Figs. 2 and 3) in gas phase (AG,,, = —199.7
kcal/mol) because 15 has a net charge of —2 a.u.
Note that the ONIOM findings, for step 15 — 16,
confirm the highest free energy (AGoy mm =
—259.9 kcal/mol) of all the potential reaction
mechanisms analyzed for the [Fe—Fe]-hydroge-
nase H-cluster, whereas the gas phase result is
about 60 kcal/mol less exergonic. Water elimina-
tion in gas phase, (16 — 12) is slightly endergonic
(AGg,s = +1.3 kcal/mol), whereas for the aque-
ous enzyme phase it is significantly exergonic
(AG gm/mm = —23.6 kcal/mol). Note that both 10
(see Fig. 2) and 16 (see Fig. 3) lead to the same
compound (12) by H,O elimination. The thermo-
dynamic data are similar for both reactions, 10 —
11 and 16 — 12, because Fey is found in the same
oxidation state (Fey') in both 10 and 16, but Fe,
(being further away from the focal catalytic locus,
Fey) has different oxidation states [FepII (10); FepI
(16)]. The in silico ONIOM result of the H,O
removal step (Fig. 3, 16 — 12), is exergonic
(AGom/mm = —23.6 kcal/mol), just like in step 10
— 11, (Fig. 2, AGonm/vm = —24.1 keal/mol). Also,
close free energies are observed for the gas
phases of 16 — 12 (AG,,, = +1.3 kcal/mol) and
10 — 11 (AGg,s = +3.3 kcal/mol). Next, reactions
12 — 13 and 13 — 14 proceed exergonically
[(AGg,s = —148.9 kcal/mol; AGoyyvm = —141.6
kcal/mol) and (AGgaS —77.4 kcal/mol;
AGon/vm = —86.3 keal/mol), respectively], just
as (previously discussed) in Figure 2. The follow-
ing reactions, 10 — 11 (see Fig. 2) and 16 — 12
(see Fig. 3), show that the entire (oxidative inhib-
itory H-cluster) path has difficulties proceeding
to 14 in gas phase.

From the earlier discussion, it can be seen that
there is only one exergonic path (see Fig. 2) from the
oxidized H-cluster 9’ to the hydroxylated cluster 14
in aqueous enzyme phase. A path starts with H*
transfer (see Fig. 2), whereas the other begins by e~
transfer (see Fig. 3). The gas phase H,O elimination,
from the oxidized H-cluster, proceeds endergoni-
cally in both pathways (Figs. 2 and 3).
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FRONTIER MOLECULAR ORBITAL ANALYSIS

Electronic contributions are now presented for
both phases, which are adduced by the frontier
molecular orbitals in conjunction with the previ-
ously presented free energies.

Upon reduction of open-shell H-clusters, it is
observed that an ¢~ is obtained by a semi-occupied
molecular orbital (SOMO), whereas the closed-shell
clusters receive an e” into the lowest virtual molec-
ular orbital (LUMO). However, when a H" is in the
proximity of an open-shell H-cluster, it can form a
o-bond probably through the interaction of the e~
in the highest occupied molecular orbital (HOMO),
or through the contributions of both HOMO and
SOMO, with the proviso that the SOMO is suffi-
ciently low in energy relative to HOMO. Alterna-
tively, when a H" is near a closed-shell cluster, the
o-bond probably ensues mainly due to the contri-
bution of e”s from HOMO with the H".

Gas phase thermodynamic properties, of the re-
actions in Figures 1-3, are being examined with
regard to frontier molecular orbitals (FMO) shown
in Figs. 4 and 5. Thus, in 2 the LUMO (see Fig. 4) is
mostly localized on the exogenous O, and N3,
which is also corroborated by an increase of NBO
charges on O, and N3 in 3 upon reduction of H-
cluster 2 [¢85; = —0.046 a.u. (2) — —0.235 a.u. (3);
*n3 = —0.568 a.u. (2) — —0.717 a.u. (3)].

Aqueous enzyme phase thermodynamic proper-
ties are next being examined for the reactions of
Figures 1-3 relative to the frontier molecular orbit-
als (FMO).

For 2, LUMO [Fig. 6 (compare to Fig. 4 in gas
phase)] is mostly localized on Sy of Cys® (as op-
posed to cluster 2 in gas phase) owing to the elec-
tronic contribution of the proximal cubane. Addi-
tionally, the localization of LUMO is supported by
a decrease of NBO charge on Sy in 3 upon reduction
of H-cluster 2 [¢°,, = 0.471 a.u. (2) — 0.388 a.u. (3)].

For open-shell clusters, unrestricted B3LYP cal-
culations have been performed which resulted in
different quantum mechanical (QM) energies and
molecular orbital (MO) coefficients for « and S
electrons.

In gas phase, the HOMO,, (the lower energy
HOMO containing a spin up e~) of 3 is predomi-
nantly localized on the exogenous O,, where the
protonation also occurs. However, the HOMOj (the
higher energy HOMO with its spin down e™) is
localized on the DTMA bridge (see Fig. 4).

For the aqueous enzyme phase, the HOMO,, of 3
is less localized on the exogenous O, (relative to the
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LUMO (2)

LUMO, (4)

r

SOMO (4)

HOMO,, (3)

LUMO; (4)

HOMO (6)

HOMO; (3)

SOMO, (4)

HOMO (7)

FIGURE 4. Frontier molecular orbitals (gas phase) for H-clusters LUMO (2), HOMO,, (3), HOMO, (3), LUMO,, (4),
LUMO; (4), SOMO,, (4), SOMOy (4), HOMO (6), and HOMO (7) (where the atom colors, of the H-clusters, are O, red;
C, gray; N, blue; S, yellow; Fe, burgundy; and H, white). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

gas phase situation), but this orbital is essentially
localized on the DTMA bridge.

The HOMOy, relative to the gas phase electronic
distribution, is more localized on the exogenous O,
(see Fig. 6), supporting the greater spontaneity of
H™ transfer (3 — 4).

The SOMO,, of compound 4, in gas phase, is
mostly localized on the DTMA bridge, and, to some

extent, on the exogenous O, and the Fe atoms (see
Fig. 4). SOMOg is more delocalized than SOMO,,.
Following the e™ transfer 4 — 9, the main change in
partial charges occurs on the iron atoms {g°g,, =
—0.141 a.u. (4) — —[0.003 a.u. (9); §°peq = 0.464 a.u.
(4) — 0.025 a.u. (9)]} The change in NBO charges in
4 — 9 can be corroborated by LUMO,, (4; Fig. 4). It
is noteworthy that the ¢~ is transferred into the



HOMO (9')

HOMO, (12)

LUMO, (13)

LUMO (9"

HOMO; (12)
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LUMO (11)

SOMO,, (12)

A

HOMO,(15)

FIGURE 5. Frontier molecular orbitals (gas phase) for H-clusters HOMO (9’), LUMO (9'), LUMO (11), HOMO,, (12),
HOMO; (12), SOMO,, (12), LUMO,, (13), SOMOg (13), and HOMO,, (195). [Color figure can be viewed in the online is-

sue, which is available at www.interscience.wiley.com.]

LUMO,, (—0.15381 Hartrees), for its energy is lower
than that of SOMO, (—0.14425 Hartrees). For the
hydrogenase, LUMO,, (4, Fig. 6) is also lower in
energy than SOMO, (4, Fig. 6) (ELumoe ™™ =
—0.35944 Hartrees, Egopop Y™ = —0.35907 Har-
trees), implying that the e~ is transferred to and
localized on S, of Cys®”. However, this difference
in electron localization is not reflected in the reac-

tion thermodynamics, because 4 — 9 is similarly
exergonic in both phases.

The HOMO of 6, in gas phase, is localized on the
Fey and the CO,, whereas the HOMO of 7 is pri-
marily localized on the exogenous O, but is less
diffused over CO, (see Fig. 4). The proton binds
with high affinity to Fey of H-clusters 6 (Path IV)
and 7 (Path III) because the HOMO orbitals of these
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LUMO (2) HOMO, (3) HOMO, (3)
LUMO, (4) LUMO, (4) SOMO, (4)
SOMO, (4) HOMO (6) HOMO (7)

FIGURE 6. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO (2), HOMO,, (3), HOMOj (3),
LUMO,, (4), LUMO, (4), SOMO,, (4), SOMO, (4), HOMO (6), and HOMO (7). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

clusters are localized on Fey; and exogenous O,,
respectively. In particular, 7 manifestly displays
where protonation occurs, viz., on the exogenous
O, (see Fig. 1).

In aqueous enzyme phase, similar electron or-
bital distributions are encountered for clusters 6
(Path IV) and 7 (Path III), except that S, (of Cys®®)
incurs MO distributions, which may be sustained
by the proximal cubane (that facilitates the e~ trans-
fer).

The HOMO of 9’, is delocalized throughout the
cluster and, has smaller proton affinity in compar-
ison to 6 and 7. However, higher HOMO 9’ ampli-
tude is found on the exogenous O1, DTMA bridge,
and the two irons which may explain why the N3 is
being protonated in this case.

For cluster 11, the LUMO is more localized over
the Fe, than on Fe,, extending from the irons to-
wards the CO, via a linear combination between
the e, orbitals of the iron atoms with the CO, =
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LUMQC (9)

HOMO (9)
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LUMO (11)

HOMO, (12)

LUMO, (13)

HOMO, (12)

SOMO, (13)

SOMO, (12)

HOMO, (15)

FIGURE 7. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters HOMO (9), LUMO (9), LUMO (11),
HOMO,, (12), HOMOq (12), SOMO,, (12), LUMO,, (13), SOMO; (13), and HOMO,, (15). [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

orbitals [9], thus the ¢~ transfer, 11 — 12, changes
the oxidation state of Fep. However, for ONIOM,
the LUMO is localized on S, which is being bereft of
e~ s via an inductive effect of the vicinal cubanes
[9°, = 0.464 a.u. (11) vs. 0.333 a.u. (12)].

Both HOMO,, and HOMOy, of 12, are generally
localized on the Fep (see Fig. 5). However, in this
case, the protonation does not occur at the Fey,
instead it occurs at the exogenous O1 because its

NBO charge is very negative, i.e., g55; = —0.594 a.u.
as opposed to g%g.q = 0.126 a.u. On the other hand,
for the aqueous enzyme phase, both HOMO,, and
HOMOy, of 12, differ in their distribution, espe-
cially HOMO,, having orbital amplitude on the ex-
ogenous oxygen, making it a good H" acceptor.
Cluster 13 is an open-shell cluster, so upon its
reduction an ¢~ may either enter a LUMO,, or a
SOMOg depending on their relative orbital ener-



gies. In the reductive process of H-cluster 13 (for
gas phase), the in silico data explicitly shows that
the orbital energy of LUMO, (E ymos™ =
—0.14850 Hartrees) is lower than the energy of
SOMOyg (Esomog®™® = —0.13886 Hartrees). Never-
theless, these energies are almost identical in the
aqueous enzyme phase (E; yyo," > "¢ = —0.35177
Hartrees, Egomop™?™¢ = —0.35185 Hartrees).
Thus, upon reduction of cluster 13, the e~ could
enter into LUMO,, (Figs. 5 and 7 of both phases).
Upon analysis of the NBO charges of clusters 13
and 14, the OH™ and Fe, of 14 acquire most of the
partial charge ceded by Fe, during the reductive
process 13 — 14.

Finally, in gas phase H-cluster 15 undergoes a
protonation reaction on N3, which is substantiated
by the NBO negative charge decrease, for both
phases, on N3 [¢%\3 = —0.267 a.u. (15) — —0.187
a.u. (16)], while in protein environment the exoge-
nous O, is protonated [7°5, = —0.510 a.u. (15) —
—1.024 a.u. (16)].

Conclusion

Several possible pathways have been investi-
gated for the oxidation of [Fe—Fe]-hydrogenase
H-cluster, and they all proceed spontaneously to
cluster, 9. Each pathway is initiated by an interme-
diate (1, 5, 6, and 8) of the catalytic cycles in H,
metabolism.

In gas phase, O, binding is endergonic for the
fully oxidized H-cluster 1 and exergonic for 8; how-
ever, it is exergonic for the partially oxidized 5 and
reduced 6 clusters. But for aqueous enzyme phase,
the O, binding is exergonic for all oxidation states.
This suggests that the fully oxidized state of the
H-cluster 1 in enzyme environment is more sensi-
tive to O, inhibition.

Our calculations show that in the protein envi-
ronment (Figs. 2 and 3) the hydroxylated H-cluster
14, which is the end product of hydrogenase inhi-
bition,” is obtained from 9 via the fully exergonic
reaction pathway that starts by means of protona-
tion (see Fig. 2). Antithetically, the reaction path-
way that is initiated by means of reduction (Fig. 3,
aqueous enzyme phase) does not proceed to the
hydroxylated H-cluster 14 due to this very ender-
gonic step (AGoy/avma = +25.6 keal/mol).
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The inhibitory steps in gas phase (Figs. 2 and 3)
consist of water removal from a closed shell, 10, and
an open shell, 16, H-cluster (AGgas = +33and +1.3
kcal/mol, respectively), whereas in the aqueous en-
zyme phase there is one inhibitory step, i.e., an e~
transfer from an open shell H-cluster (9', AGon /v
= +25.6 kcal/mol).

From gas phase geometrical analysis CO,, shows
a displacement away from FepH (9 —=9'), but in the
aqueous enzyme phase this CO,, translocation is not
observed; the observed different phase behavior in
the protein environment may be due to the im-
posed immobility on the iron atoms (by means of
“freezing” them).

For the gas phase, cluster 11, LUMO is more
localized over the Fe, than on Fey, extending from
the iron atoms towards the CO, via a linear com-
bination between the e, orbitals of the iron atoms
with the CO,, 7 orbitals [9], thus the e~ transfer, 11
— 12, changes the oxidation state of Fep. However,
for the protein environment, the LUMO is localized
on S, which is being bereft of e”s via an inductive
effect of the vicinal cubanes [, = 0.464 a.u. (11)
vs. 0.333 a.u. (12)].

Lastly, an interesting result from the FMO gas
phase analysis is that an e~ is transferred to the
LUMO,, rather than to the virtual SOMOg, which is
rather unexpected because the virtual SOMOg usu-
ally resides in a lower energy state than LUMO,, for
open-shell compounds. We also found that O, in-
hibited [Fe—Fe]-hydrogenase H-cluster has OH™
bonded to the Fey, and that OH™ is the end product
of O, metabolism, with all aqueous enzyme phase
reaction pathways proceeding exergonically.
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