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Introduction

B oth [Fe-Fe]-hydrogenases as well as [Ni-Fe]-
hydrogenases are enzymes that are impli-

cated in H2 metabolism (2H� � 2e� % H2), which
occurs in anaerobic media. Of these two bi-metal
enzymes, only [Fe-Fe]-hydrogenases are viable for
H2 production, with a reactivity of up to 2 orders of
magnitude larger than [Ni-Fe]-hydrogenases [1, 2].
In hydrogenases, H2 evolution, emerging from pro-
ton reduction (2H� � 2e� 3 H2), is essential in
pyruvate fermentation, and in the disposal of ex-
cess electrons. Low-molecular weight biomolecules
such as ferredoxins, cytochrome C3, and cyto-
chrome C6 can act as physiological electron accep-
tors or donors [3].

The hydrogenase H-cluster (Scheme 1) is the ac-
tive site that is comprised of two subunits, the 2Fe
subunit and the cubane [Fe4-S4]2� subunit. The 2Fe
subunit is composed of two iron atoms (Fep-Fed,
i.e., proximal and distal iron) that are bridged by
di(thiomethyl)amine (DTMA) chain and are coordi-
nated by endogenous ligands, i.e., two cyanides,
two terminal carbonyls, and a bridging carbonyl
(COb). Moreover, the S� (of Cys382) is the connecting
atom from an Fe atom of the (proximal) cubane
subunit and the Fep of the 2Fe subunit.

The reason for studying biological H2 production
is because the eventual elucidation of the mecha-
nism (for hydrogen synthesis) may benefit re-

searchers produce clean fuel, using certain anaero-
bic prokaryotes [4–8].

Previous density functional theory (DFT) as well
as hybrid quantum mechanics/molecular mechan-
ics (QM/MM) calculations [2, 9–16] have been suc-
cessful in clarifying some aspects of the catalytic
properties of the H-cluster.

As in similar computational studies [2, 9], cys-
teine is substituted with CH3-S�, whereas cubane is
replaced1 with a H�.

Furthermore, computational and experimental
[2, 9, 14, 16–41] [Fe-Fe]-hydrogenase H-cluster (and
synthetic H-cluster-like compounds) research sheds
light on the potential redox states of the 2Fe H-
cluster subunit, Fep-Fed, where Fep

I-Fed
I is the re-

duced 2Fe H-cluster subunit, Fep
II-Fed

I is the par-
tially oxidized enzyme subunit, and Fep

II-Fed
II is

the fully oxidized, inactive enzyme H-cluster sub-
unit.

The fully oxidized H-cluster, Fep
II-Fed

II, has a
H2O molecule or an OH� bound to the Fed

II. In our
previous investigation [21], we have inferred that a
vacant (fully oxidized) Fep

II-Fed
II (1, Fig. 1) could

also be a viable intermediate in H2 synthesis. Re-
gardless of the 2Fe H-cluster subunit redox states,
the proximal cubane [more precisely, a cuboid
(point group: D2d)] always retains a 2� oxidation
state, [Fe4-S4]2�.

The partially oxidized H-cluster (Fep
II-Fed

I, 5,
Fig. 1), Hox, is the active form of the hydrogenase
enzyme.2 The reduced H-cluster (Fep

I-Fed
I, 6, Fig. 1)

has both iron atoms in oxidation states I (being an
intermediate in H2 metabolism). According to Liu
and Hu [9], 6 is the cluster having great affinity for
protonation (63 8), in capturing a proton from the
side chain of a near by amino-acid, such as Lys237.

X-ray crystallography and spectroscopic studies
of hydrogenases, with the latter having been ob-
tained from Clostridium pasteurianum (CPI)[43] and
Desulfovibrio desulfuricans (DdH) [31], led to a better
understanding of the biochemical roles of these
enzymes. The X-ray crystal structure of CPI hydro-
genase shows an oxygen species that may be OH�,
or H2O bound to the Fed of the H-cluster. On the
basis of the computational results of Liu and Hu [2]

1The truncation of the cubane, [Fe4-S4]2�, and its replacement
by a H� (as well as the replacement of CH3-S� for cysteine-S)
had been done to obtain the best compromise with regard to the
computational cost.

2Voltametric [42] studies show the transition of Hox
inact to

Hox
cat occurring via a reversible e� transfer process to the hy-

drogenase transient state followed by a putative two e� transfer
(with the latter not reaching the bimetals of the H-cluster).

SCHEME 1. The H-cluster and its subunits, i.e., the
cubane, and the 2Fe subunit. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]
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(CPI has OH� in its inactive form according to
X-ray crystal structure), we endeavor to ascertain
whether the air oxidized H-cluster (Fep-Fed-O2)
converts to Fep-Fed-OH species [21].

Our investigation is composed of three differ-
ent subdivisions. (1) Thermodynamic analysis,

for every reaction path mechanism (Figs. 1–3),
implicated in the eventual H-cluster 14 inhibition
by means of O2 3 OH�. (2) Electronic analysis,
for the same paths, which deals with Natural
Bond Orbitals (NBO), as well as Frontier Molec-
ular Orbitals (FMO). (3) Geometrical analysis car-

FIGURE 1. Reaction pathways I–IV: Oxidation mechanisms of H-clusters that are fully oxidized (1), partially oxidized
(5), and reduced (6). The charges and multiplicities are given in square brackets. The first energy value is for gas
phase, and the second is for ONIOM calculations. Fep is the proximal iron, and Fed is the distal iron.
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ried out only for appropriate bond breaking and
bond formation.

From the investigated subdivisions, thermody-
namics analysis (Figs. 2 and 3) is of pivotal impor-
tance because it shows that there is just an exer-
gonic path from H-cluster 9� to the hydroxylated
cluster 14 occurring in the aqueous enzyme phase.
However, from the thermodynamic results (see Fig.
1), it is observed that most reaction steps proceed

exergonically (except 1 3 2, gas phase), leading to
the oxidized cluster 9. Moreover, at the end of each
path, every vacant H-cluster 1, 5, and 6, in spite of
its oxidation states, becomes aerobically inacti-
vated, 9.

Thus, this article is organized as follows: in the
Methods we describe the QM/MM partitioning,
and the methods used for calculations (e.g., QM
Hamiltonian, basis sets, and the force field param-

FIGURE 2. Reaction mechanism for isomerization, protonation, H2O elimination, and reduction of the inhibited
[FeOFe]-hydrogenase H-cluster. The H2O is being removed from a closed-shell cluster. (The charges, multiplicities,
and energy values are presented as in Fig. 1.)

FIGURE 3. Reaction mechanism for reduction, protonation, and H2O removal from the inhibited [FeOFe]-hydroge-
nase H-cluster. Here, the H2O is being eliminated from an open-shell cluster. (The charges, multiplicities, and energy
values are presented as in Fig. 1.)
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eters). Then, in the Results and Discussion, we
present the computational results organized into
subsections that present and discuss thermody-
namic results, geometrical, and electronic data for
different steps of the reaction pathways, such as
oxygen binding, reduction, oxidation, and water
elimination. Finally, in the Conclusion we give a
summary of our findings.

Methods

In this study, both QM [DFT (in gas phase)] and
QM/MM [DFT/UFF [44] (in aqueous enzyme
phase)] methodologies have been used. The
ONIOM [45] method (DFT for the QM region and
the universal force field (UFF) for the MM region,
implemented in Gaussian 03 [46]) has been applied
to determine the reaction thermodynamics, i.e., �G,
for the inactivation pathways of the H-cluster, and
the [Fe-Fe]-hydrogenase H-cluster (positioned
within the enzyme matrix). Subsequently, the DFT
results have been compared with the ONIOM cal-
culations. The electronic structure of the hydroge-
nase active site (except the proximal cubane) is
investigated by quantum mechanics (Gaussian 03)
using DFT method (B3LYP functional [47, 48]), and
QM/MM with 6-31�G(d,p) basis set. For Fe an
effective-core potential with a double zeta polariza-
tion basis set (LANL2DZ [49, 50]) was used for DFT
gas phase calculations, and a 6-31�G(d,p) basis set
for the ONIOM calculations. In accordance with
experimental and in-silico data low spin states (sin-
glet and doublet) and low oxidation states (I and II)
have been selected for the Fe atoms [2, 14, 35].
Gromacs program [51, 52] was employed to add
hydrogen atoms, water, and counter ions to the
X-ray crystal structure of DdH [Brookhaven Protein
Data Bank id.1HFE]. Hydrogen atoms and a 1 nm
layer of water (2043 molecules) have been added to
the PDB DdH structure. Moreover, Na� ions have
been randomly inserted into the solvent to neutral-
ize the negative charges encountered therein, e.g.,
the �2 a.u. found on the cubane/cysteine moieties
[53]3. For both basic and acidic amino acids, charges
were assigned by Gromacs algorithm to be at pH 7.
ONIOM geometry optimizations have been per-
formed on the DdH, with the low layer (MM re-

gion) being frozen,4 with the exception of the prox-
imal cubane, whereas the high layer (QM) had only
the iron atoms, Fep-Fed, and the N3, (of the DTMA
bridge) kept frozen; “freezing atoms” is practiced to
reduce computational time. The low layer consists
of all the hydrogenase amino acids as well as its
constituent cubanes, i.e., proximal, medial, and dis-
tal. The high layer is comprised of 2Fe subunit
(which is the moiety of the H-cluster) and C� and S�

(appertaining to the bridging Cys382). Moreover,
two linking hydrogen atoms were added between
C� and C� of Cys382 and between S� and an Fe atom
of the proximal cubane. The charge equilibration
method of the UFF was used to describe the elec-
trostatic interactions within the low layer of the
system [54]. The DdH partial charges were obtained
using the charge equilibration method, whereas the
solvent charges were acquired from literature [54]
(qO � �0.706 a.u. and qH � 0.353 a.u.).

Results and Discussion

H-CLUSTER THERMODYNAMICS FOR O2
BINDING, REDUCTION, AND PROTONATION

Figure 1 illustrates different O2 inhibition path-
ways of the hydrogenase H-cluster; the H-clusters,
1, 5, 6, and 8 [2, 9, 21], of the pathways are obtained
in the reversible catalysis of H2. Reaction 1 3 2
(path I) is endergonic for the gas phase (�Ggas �
�9.8 kcal/mol; gas � gas phase) when O2 binds to
the fully oxidized H-cluster (1). ONIOM calcula-
tions, on the other hand, show that O2 binding
occurs exergonically (�GQM/MM � �16.6 kcal/
mol), shedding light on the sensitivity of hydroge-
nases to O2 [55].

Reduction 2 3 3 (�Ggas � �110.2 kcal/mol) as
well as protonation 3 3 4 (�Ggas � �136.0 kcal/
mol) proceed exergonically; ONIOM calculations,
for the hydrogenase matrix, show that e� transfer is
considerably less exergonic (�GQM/MM � �80.4
kcal/mol) relative to protonation which is more
exergonic (�GQM/MM � �154.1 kcal/mol). The free
energy differences, in gas versus aqueous enzyme
phases for reactions 2 3 3 and 3 3 4, ensue from
the effect of the electric field of the protein on the
H-clusters 2, 3, and 4, and from the different phase
geometries.

Cluster 4 undergoes reduction and it (4 3 9)
proceeds exergonically in both gas and aqueous
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hydrogenase phase (�Ggas � �79.1 kcal/mol;
�GQM/MM � �78.3 kcal/mol).

Path II starts with the partially oxidized H-clus-
ter 5, (Fep

II-Fed
I). The binding of O2 to FeI (Fed

I-O2),
5 3 3, is firmer (�Ggas � �36.1 kcal/mol) than for
FeII in 13 2 (Fed

II-O2, path I). In contrast, ONIOM
results show that O2 binds to the partially oxidized
H-cluster (Fep

II-Fed
I, �GQM/MM � �7.9 kcal/mol)

as well as to the fully oxidized cluster (Fep
II-Fed

II,
�GQM/MM � �16.6 kcal/mol, 1 3 2, path I). The
remaining two reactions 33 4, and 43 9 (path II)
are the same as the last two steps of path I.

In path III, 6 3 7, which starts with the fully
reduced H-cluster 6, (Fep

I-Fed
I), the reaction spon-

taneity (�Ggas � �36.0 kcal/mol) is almost identical
to the free energies of reaction 53 3. The gas phase
free energy similarity may ensue because both loci
of oxygen binding (Fed

I-O2) are on similar oxidized
species, Fed

I. However, ONIOM calculations show
smaller reaction spontaneity difference between
aqueous enzyme (�GQM/MM � �20.7 kcal/mol)
and gas phase results (�Ggas � �36.0 kcal/mol, 63
7), than for O2 binding in path I and II. In path III,
protonation (73 9) is, once again, largely exergonic
for both phases (�Ggas � �241.9 kcal/mol;
�GQM/MM � �244.9 kcal/mol). Moreover, from all
of Figure 1, the above ONIOM calculations show
the highest H� affinity because H-cluster 7 has a
charge of �2 a.u., and also the H� binds to a rather
electronegative atom, viz., oxygen.

In the final path (IV), protonation 6 3 8 is the
second most exergonic reaction in gas phase (�Ggas

� �220.6 kcal/mol) mostly because of the over-all
charge of �2 on the H-cluster 6. ONIOM data (as in
7 3 9) show very high H� affinity (�GQM/MM �
�219.2 kcal/mol) for the hydrogenase H-cluster (in
spite of the fact that the H� is seized by the Fed as
opposed to the more electronegative Fed-O2, 73 9),
which is comparatively similar to the gas phase
result (�Ggas � �220.6 kcal/mol).

In the last step (83 9; path IV), O2 is interposed
between Fed and the hydride (Fed

I-O2-H, 9). For this
insertion reaction, the O2 binding occurs exergoni-
cally in both ONIOM (�GQM/MM � �46.4 kcal/
mol) and the gas phase (�Ggas � �57.3 kcal/mol)
results.

NB: Path IV shows that oxidation of Fep-Fed

H-cluster is similar5 to the Nip-Fed hydrogenase
H-cluster obtained from experimental data [56].

From the earlier thermodynamic results, most
reaction steps proceed exergonically (except 13 2,
gas phase), leading to oxidized cluster 9. At the end
of every path, each vacant H-cluster 1, 5, or 6, in
spite of its oxidation states, becomes aerobically
inactivated.

NBO CHARGES AND GEOMETRY
ADJUSTMENT OF INTERMEDIATES IN THE
OXIDATION OF H-CLUSTER

The atoms of the vacant H-clusters 1, 5, and 6
have slightly different natural bond orbital (NBO)
charge distributions. For instance, for cluster 1 the
NBO charges of Fep-Fed are qg

Fep
6 � 0.137 a.u. (qe

Fep
� �0.230 a.u.) and qg

Fed � �0.096 a.u. (qe
Fed � 0.187

a.u.), whereas in 5, the sign of the partial charges
are reversed only in gas phase, i.e. qg

Fep � �0.024
a.u. (qe

Fep � �0.227 a.u.) and qg
Fed � 0.078 a.u. (qe

Fed
� 0.061 a.u.). Then, the NBO charges for the Fep-Fed
in cluster 6 (in both phases) are more negative, qg

Fep
� �0.104 a.u. (qe

Fep � �0.297 a.u.) and qg
Fed �

�0.117 a.u. (qe
Fed � �0.160 a.u.) because both met-

als are in a reduced state (see Fig. 1), unlike clusters
1 and 5. Regarding charges on the nitrogen, N3, (of
the DTMA bridge), similarities are seen among
clusters 1, 5, and 6; the NBO charges for N3 are
approximately �0.700 a.u., making this amine
(within the above H-clusters) a relatively important
H� acceptor/donor (vs. amino acids with similar
function in the juxtaposed enzyme matrix, e.g.,
Lys237) as suggested by Liu and Hu [9]. The non-
bridging S� (of Cys382) has the following charges:
for 1 qg

S� � 0.204 a.u. (qe
S� � 0.474 a.u.), for 5 qg

S� �
0.142 a.u. (qe

S� � 0.425 a.u.), and for 6 qg
S� � 0.079

a.u. (qe
S� � 0.285 a.u.). Comparing clusters 1, 5, and

6, a sequential drop in NBO charges for Fep and S�

is observed.
When H-cluster 1 is in an oxidized state (in gas

phase), Fep
II- Fed

II, the COb shifts [9] towards the
Fed

II and becomes bonded to Fed
II. The shifted COb

bond distance (measured from its bridging carbon,
Cb, to the iron atoms) between Cb-Fep

II is 3.067 Å,
whereas Cb-Fed

II is 1.819 Å. When the carbonyl is
close to Fed

II, COb-Fed
II, the fully oxidized H-cluster

1 becomes relatively stable versus the quasi-sym-
metric cluster [21] (�H � 14 kcal/mol), which is
also shown by the NBO charge on Cb in COb, (0.664
a.u.). This may be due to repulsion of charges be-
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tween qg
Cb (0.664 a.u.) and qg

Fep (0.137 a.u.),
whereas for the clusters 5 and 6, the partial charges
(qg

Cb � 0.462 a.u. and qg
Cb � 0.466 a.u., respec-

tively) are less then in 1 because COb is bonded to
both iron atoms. However, in the enzyme phase
less shifting of the bridging carbonyl occurs, with
the charges on Cb being similar (qe

Cb � 0.536 a.u. for
1, qe

Cb � 0.497 a.u. for 5, and qe
Cb � 0.493 a.u. for 6).

Comparing the reaction spontaneity for O2 binding
(in gas phase), which renders clusters 2, 3, and 7,
one may observe that 3 and 7 are more stable than
2. The reason for this stability is essentially due to
the formation of a hydrogen bond between the
exogenous O2 and the hydrogen H9 (bonded to N3
of the DTMA bridge) in both 3 and 7. The O1OH9
bond distance is 2.016 Å in 3, and O2OH9 bond
distance is 1.765 Å in 7, which correlates with the
NBO charges on the mentioned oxygens and hy-
drogens; the partial charges on oxygens are qg

O1 �
�0.235 a.u. in 3 and qg

O2 � �0.493 a.u. in 7,
whereas the charge on H9 is 0.439 a.u. in 3, and
0.454 a.u. in 7. Note that COb is located almost
symmetrically in clusters 2, 3, and 7. Structurally,
clusters 4 and 9 are similar in view of the fact that
both possess a hydrogen bond (H9. . . O1), whereas
COb is found to reside quasi-symmetrically in 9, but
asymmetrically in 4 bonded only to Fep

II. In the
enzyme phase both hydrogen bonds (in clusters 3
and 7) are formed between H9 and O2 of the exog-
enous oxygen (qe

O2 � �0.210 a.u. in 3, qe
O2 �

�0.452 a.u. in 7, qe
H9 � 0.443 a.u. in 3, and qe

H9 �
0.445 a.u. in 7; O2OH9 bond distance is 1.890 Å in
3, and O2OH9 bond distance is 1.760 Å in 7).

THERMODYNAMICS AND NBO CHARGES
RELATIONSHIP FOR H2O REMOVAL FROM
THE OXIDIZED H-CLUSTER

Figure 2 depicts a series of reactions (93 9�, 9�3
10, 103 11, 113 12, 123 13, and 133 14), which
present the net conversion of 9 to 14. The com-
pounds 9 and 9� are isomers; 9� is more stable by
47.2 kcal/mol, [which may be, to a certain extent,
attributed to the hydrogen bond formation between
H2O and the N3 of DTMA bridge (N3. . . HOOH;
i.e., two bonds being broken vs. three being formed
for 9 3 9�, respectively)]. The hydrogen bond
length, N3. . . H, is 1.939 Å (and the angle formed
by N3. . . HOO is 168.7°). The distance between the
iron atoms is larger in 9� (2.796 Å) than in 9 (2.605
Å). During reaction 9 3 9�, COb moves away from
Fep

II [i.e., for Cb-Fep
II 2.225 Å (9) 3 2.771 Å (9�)].

Also, in Figure 2 (hydrogenase H-cluster 9, and 9�),

ONIOM geometry optimizations for 9, and 9� re-
sulted in the same structure for the hydrogenase
H-clusters (�GQM/MM corresponding to 9 3 9� is 0
kcal/mol). The protonation of 9� (9�3 10) produces
a quaternary ammonium ion (NR4

�) within the
DTMA bridge, which is exergonic for both phases,
viz., �Ggas � �130.7 kcal/mol and �GQM/MM �
�138.4 kcal/mol. To wit, the observed high reac-
tion spontaneity for both phases is attributed to the
negatively charged H-cluster 9�. In 103 11, H2O is
removed from N3 by means of hydrogen bond
breaking; this reaction (vs. 9� 3 10) occurs slightly
endergonically in gas phase (�Ggas � �3.3 kcal/
mol), whereas for QM/MM results, the H2O re-
moval step, 10 3 11, is exergonic (�GQM/MM �
�24.1 kcal/mol).

Reduction 11 3 12 (see Fig. 2) is subjected to
an increase in the partial charge of the exogenous
oxygen (qg

O1 � �0.568 a.u. (11) 3 �0.594 a.u.
(12); �Ggas � �72.8 kcal/mol). Regarding geo-
metrical changes in 11 3 12, the bond distance
between Fep

II-Fed
I is increasing from 2.792 Å to

3.261 Å, whereas the COb departs from Fep
II [for

Cb-Fep
II 2.766 Å (11) 3 3.188 Å (12)]. For the

aqueous enzyme phase result, 11 3 12 occurs
with a relatively large free energy (�GQM/MM �
�95.4 kcal/mol; compared with other neutral H-
cluster reductions), versus the gas phase outcome
(�Ggas � �72.8 kcal/mol); the charge remains
constant on the exogenous oxygen [qe

O1 � �0.530
a.u. (11) 3 �0.527 a.u. (12)]. Because of excess
electron density accumulation on O1 (12), the
latter readily captures a proton (123 13; �Ggas �
�148.9 kcal/mol). ONIOM calculations, 12 3 13,
confirm the high H� affinity (in Fig. 2, �GQM/MM
� �141.6 kcal/mol) for the hydrogenase H-clus-
ter, which is close to the gas phase result (�Ggas �
�148.9 kcal/mol). The free energy differences
between the given protonations, 12 3 13 versus
9�3 10, may arise because of the greater stability
of cluster 13 versus 10.

Finally, in Figure 2, an e� is acquired by the
hydroxyl group (133 14; �Ggas � �77.4 kcal/mol;
�GQM/MM � �86.3 kcal/mol). Note that the H-
cluster 14 [2, 21] is the starting compound in the
reactivation pathway that ends in the reduced H-
cluster 6 (Fep

I-Fed
I).

In Figure 3, an alternative pathway (9� 3 15, 15
3 16, 16 3 12, 12 3 13, and 13 3 14) has been
investigated. The pathway starts with a reductive
step, rather than with a protonation. Reaction 9�3
15 is slightly exergonic for the gas phase (�Ggas �
�1.8 kcal/mol), whereas ONIOM calculations indi-
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cate an endergonic process (�GQM/MM � �25.6
kcal/mol). 9� 3 15 is another O2 inhibitory step
(in addition to 10 3 11 for the gas phase, Fig. 2)
which seems to explain the O2 sensitivity of wild
type DdH. Therefore, mutagenic studies ought to
be performed on [Fe-Fe]-hydrogenase H-cluster
9� to eliminate its inhibitory path (viz., 9� 3 15).
When a H� is in the vicinity of H-cluster 15, 153
16 proceeds with the greatest spontaneity (of
Figs. 2 and 3) in gas phase (�Ggas � �199.7
kcal/mol) because 15 has a net charge of �2 a.u.
Note that the ONIOM findings, for step 15 3 16,
confirm the highest free energy (�GQM/MM �
�259.9 kcal/mol) of all the potential reaction
mechanisms analyzed for the [FeOFe]-hydroge-
nase H-cluster, whereas the gas phase result is
about 60 kcal/mol less exergonic. Water elimina-
tion in gas phase, (163 12) is slightly endergonic
(�Ggas � �1.3 kcal/mol), whereas for the aque-
ous enzyme phase it is significantly exergonic
(�G QM/MM � �23.6 kcal/mol). Note that both 10
(see Fig. 2) and 16 (see Fig. 3) lead to the same
compound (12) by H2O elimination. The thermo-
dynamic data are similar for both reactions, 103
11 and 16 3 12, because Fed is found in the same
oxidation state (Fed

I) in both 10 and 16, but Fep

(being further away from the focal catalytic locus,
Fed) has different oxidation states [Fep

II (10); Fep
I

(16)]. The in silico ONIOM result of the H2O
removal step (Fig. 3, 16 3 12), is exergonic
(�GQM/MM � �23.6 kcal/mol), just like in step 10
3 11, (Fig. 2, �GQM/MM � �24.1 kcal/mol). Also,
close free energies are observed for the gas
phases of 16 3 12 (�Ggas � �1.3 kcal/mol) and
103 11 (�Ggas � �3.3 kcal/mol). Next, reactions
12 3 13 and 13 3 14 proceed exergonically
[(�Ggas � �148.9 kcal/mol; �GQM/MM � �141.6
kcal/mol) and (�Ggas � �77.4 kcal/mol;
�GQM/MM � �86.3 kcal/mol), respectively], just
as (previously discussed) in Figure 2. The follow-
ing reactions, 10 3 11 (see Fig. 2) and 16 3 12
(see Fig. 3), show that the entire (oxidative inhib-
itory H-cluster) path has difficulties proceeding
to 14 in gas phase.

From the earlier discussion, it can be seen that
there is only one exergonic path (see Fig. 2) from the
oxidized H-cluster 9� to the hydroxylated cluster 14
in aqueous enzyme phase. A path starts with H�

transfer (see Fig. 2), whereas the other begins by e�

transfer (see Fig. 3). The gas phase H2O elimination,
from the oxidized H-cluster, proceeds endergoni-
cally in both pathways (Figs. 2 and 3).

FRONTIER MOLECULAR ORBITAL ANALYSIS

Electronic contributions are now presented for
both phases, which are adduced by the frontier
molecular orbitals in conjunction with the previ-
ously presented free energies.

Upon reduction of open-shell H-clusters, it is
observed that an e� is obtained by a semi-occupied
molecular orbital (SOMO), whereas the closed-shell
clusters receive an e� into the lowest virtual molec-
ular orbital (LUMO). However, when a H� is in the
proximity of an open-shell H-cluster, it can form a
�-bond probably through the interaction of the e�

in the highest occupied molecular orbital (HOMO),
or through the contributions of both HOMO and
SOMO, with the proviso that the SOMO is suffi-
ciently low in energy relative to HOMO. Alterna-
tively, when a H� is near a closed-shell cluster, the
�-bond probably ensues mainly due to the contri-
bution of e�s from HOMO with the H�.

Gas phase thermodynamic properties, of the re-
actions in Figures 1–3, are being examined with
regard to frontier molecular orbitals (FMO) shown
in Figs. 4 and 5. Thus, in 2 the LUMO (see Fig. 4) is
mostly localized on the exogenous O2 and N3,
which is also corroborated by an increase of NBO
charges on O2 and N3 in 3 upon reduction of H-
cluster 2 [qg

O1 � �0.046 a.u. (2) 3 �0.235 a.u. (3);
qg

N3 � �0.568 a.u. (2) 3 �0.717 a.u. (3)].
Aqueous enzyme phase thermodynamic proper-

ties are next being examined for the reactions of
Figures 1–3 relative to the frontier molecular orbit-
als (FMO).

For 2, LUMO [Fig. 6 (compare to Fig. 4 in gas
phase)] is mostly localized on S� of Cys382 (as op-
posed to cluster 2 in gas phase) owing to the elec-
tronic contribution of the proximal cubane. Addi-
tionally, the localization of LUMO is supported by
a decrease of NBO charge on S� in 3 upon reduction
of H-cluster 2 [qe

S� � 0.471 a.u. (2)3 0.388 a.u. (3)].
For open-shell clusters, unrestricted B3LYP cal-

culations have been performed which resulted in
different quantum mechanical (QM) energies and
molecular orbital (MO) coefficients for � and �
electrons.

In gas phase, the HOMO� (the lower energy
HOMO containing a spin up e�) of 3 is predomi-
nantly localized on the exogenous O2, where the
protonation also occurs. However, the HOMO� (the
higher energy HOMO with its spin down e�) is
localized on the DTMA bridge (see Fig. 4).

For the aqueous enzyme phase, the HOMO� of 3
is less localized on the exogenous O2 (relative to the
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gas phase situation), but this orbital is essentially
localized on the DTMA bridge.

The HOMO�, relative to the gas phase electronic
distribution, is more localized on the exogenous O2
(see Fig. 6), supporting the greater spontaneity of
H� transfer (3 3 4).

The SOMO� of compound 4, in gas phase, is
mostly localized on the DTMA bridge, and, to some

extent, on the exogenous O2 and the Fe atoms (see
Fig. 4). SOMO� is more delocalized than SOMO�.
Following the e� transfer 43 9, the main change in
partial charges occurs on the iron atoms {qg

Fep �
�0.141 a.u. (4)3 �[0.003 a.u. (9); qg

Fed � 0.464 a.u.
(4)3 0.025 a.u. (9)]} The change in NBO charges in
4 3 9 can be corroborated by LUMO� (4; Fig. 4). It
is noteworthy that the e� is transferred into the

FIGURE 4. Frontier molecular orbitals (gas phase) for H-clusters LUMO (2), HOMO� (3), HOMO� (3), LUMO� (4),
LUMO� (4), SOMO� (4), SOMO� (4), HOMO (6), and HOMO (7) (where the atom colors, of the H-clusters, are O, red;
C, gray; N, blue; S, yellow; Fe, burgundy; and H, white). [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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LUMO� (�0.15381 Hartrees), for its energy is lower
than that of SOMO� (�0.14425 Hartrees). For the
hydrogenase, LUMO� (4, Fig. 6) is also lower in
energy than SOMO� (4, Fig. 6) (ELUMO�

Enzyme �
�0.35944 Hartrees, ESOMO�

Enzyme � �0.35907 Har-
trees), implying that the e� is transferred to and
localized on S� of Cys382. However, this difference
in electron localization is not reflected in the reac-

tion thermodynamics, because 4 3 9 is similarly
exergonic in both phases.

The HOMO of 6, in gas phase, is localized on the
Fed and the COb, whereas the HOMO of 7 is pri-
marily localized on the exogenous O2 but is less
diffused over COb (see Fig. 4). The proton binds
with high affinity to Fed of H-clusters 6 (Path IV)
and 7 (Path III) because the HOMO orbitals of these

FIGURE 5. Frontier molecular orbitals (gas phase) for H-clusters HOMO (9�), LUMO (9�), LUMO (11), HOMO� (12),
HOMO� (12), SOMO� (12), LUMO� (13), SOMO� (13), and HOMO� (15). [Color figure can be viewed in the online is-
sue, which is available at www.interscience.wiley.com.]
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clusters are localized on Fed and exogenous O2,
respectively. In particular, 7 manifestly displays
where protonation occurs, viz., on the exogenous
O2 (see Fig. 1).

In aqueous enzyme phase, similar electron or-
bital distributions are encountered for clusters 6
(Path IV) and 7 (Path III), except that S� (of Cys382)
incurs MO distributions, which may be sustained
by the proximal cubane (that facilitates the e� trans-
fer).

The HOMO of 9�, is delocalized throughout the
cluster and, has smaller proton affinity in compar-
ison to 6 and 7. However, higher HOMO 9� ampli-
tude is found on the exogenous O1, DTMA bridge,
and the two irons which may explain why the N3 is
being protonated in this case.

For cluster 11, the LUMO is more localized over
the Fep than on Fed, extending from the irons to-
wards the COb via a linear combination between
the eg orbitals of the iron atoms with the COb �

FIGURE 6. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters LUMO (2), HOMO� (3), HOMO� (3),
LUMO� (4), LUMO� (4), SOMO� (4), SOMO� (4), HOMO (6), and HOMO (7). [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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orbitals [9], thus the e� transfer, 11 3 12, changes
the oxidation state of Fep. However, for ONIOM,
the LUMO is localized on S� which is being bereft of
e�s via an inductive effect of the vicinal cubanes
[qe

S� � 0.464 a.u. (11) vs. 0.333 a.u. (12)].
Both HOMO� and HOMO�, of 12, are generally

localized on the Fep (see Fig. 5). However, in this
case, the protonation does not occur at the Fed,
instead it occurs at the exogenous O1 because its

NBO charge is very negative, i.e., qg
O1 � �0.594 a.u.

as opposed to qg
Fed � 0.126 a.u. On the other hand,

for the aqueous enzyme phase, both HOMO� and
HOMO�, of 12, differ in their distribution, espe-
cially HOMO� having orbital amplitude on the ex-
ogenous oxygen, making it a good H� acceptor.

Cluster 13 is an open-shell cluster, so upon its
reduction an e� may either enter a LUMO�, or a
SOMO� depending on their relative orbital ener-

FIGURE 7. Frontier molecular orbitals (aqueous enzyme phase) for H-clusters HOMO (9), LUMO (9), LUMO (11),
HOMO� (12), HOMO� (12), SOMO� (12), LUMO� (13), SOMO� (13), and HOMO� (15). [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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gies. In the reductive process of H-cluster 13 (for
gas phase), the in silico data explicitly shows that
the orbital energy of LUMO� (ELUMO�

gas �
�0.14850 Hartrees) is lower than the energy of
SOMO� (ESOMO�

gas � �0.13886 Hartrees). Never-
theless, these energies are almost identical in the
aqueous enzyme phase (ELUMO�

enzyme � �0.35177
Hartrees, ESOMO�

enzyme � �0.35185 Hartrees).
Thus, upon reduction of cluster 13, the e� could
enter into LUMO� (Figs. 5 and 7 of both phases).
Upon analysis of the NBO charges of clusters 13
and 14, the OH� and Fed of 14 acquire most of the
partial charge ceded by Fep during the reductive
process 13 3 14.

Finally, in gas phase H-cluster 15 undergoes a
protonation reaction on N3, which is substantiated
by the NBO negative charge decrease, for both
phases, on N3 [qg

N3 � �0.267 a.u. (15) 3 �0.187
a.u. (16)], while in protein environment the exoge-
nous O2 is protonated [qe

O2 � �0.510 a.u. (15) 3
�1.024 a.u. (16)].

Conclusion

Several possible pathways have been investi-
gated for the oxidation of [FeOFe]-hydrogenase
H-cluster, and they all proceed spontaneously to
cluster, 9. Each pathway is initiated by an interme-
diate (1, 5, 6, and 8) of the catalytic cycles in H2
metabolism.

In gas phase, O2 binding is endergonic for the
fully oxidized H-cluster 1 and exergonic for 8; how-
ever, it is exergonic for the partially oxidized 5 and
reduced 6 clusters. But for aqueous enzyme phase,
the O2 binding is exergonic for all oxidation states.
This suggests that the fully oxidized state of the
H-cluster 1 in enzyme environment is more sensi-
tive to O2 inhibition.

Our calculations show that in the protein envi-
ronment (Figs. 2 and 3) the hydroxylated H-cluster
14, which is the end product of hydrogenase inhi-
bition,7 is obtained from 9 via the fully exergonic
reaction pathway that starts by means of protona-
tion (see Fig. 2). Antithetically, the reaction path-
way that is initiated by means of reduction (Fig. 3,
aqueous enzyme phase) does not proceed to the
hydroxylated H-cluster 14 due to this very ender-
gonic step (�GQM/MM � �25.6 kcal/mol).

The inhibitory steps in gas phase (Figs. 2 and 3)
consist of water removal from a closed shell, 10, and
an open shell, 16, H-cluster (�Ggas � �3.3 and �1.3
kcal/mol, respectively), whereas in the aqueous en-
zyme phase there is one inhibitory step, i.e., an e�

transfer from an open shell H-cluster (9�, �GQM/MM
� �25.6 kcal/mol).

From gas phase geometrical analysis COb shows
a displacement away from Fep

II (93 9�), but in the
aqueous enzyme phase this COb translocation is not
observed; the observed different phase behavior in
the protein environment may be due to the im-
posed immobility on the iron atoms (by means of
“freezing” them).

For the gas phase, cluster 11, LUMO is more
localized over the Fep than on Fed, extending from
the iron atoms towards the COb via a linear com-
bination between the eg orbitals of the iron atoms
with the COb � orbitals [9], thus the e� transfer, 11
3 12, changes the oxidation state of Fep. However,
for the protein environment, the LUMO is localized
on S� which is being bereft of e�s via an inductive
effect of the vicinal cubanes [qe

S� � 0.464 a.u. (11)
vs. 0.333 a.u. (12)].

Lastly, an interesting result from the FMO gas
phase analysis is that an e� is transferred to the
LUMO� rather than to the virtual SOMO�, which is
rather unexpected because the virtual SOMO� usu-
ally resides in a lower energy state than LUMO� for
open-shell compounds. We also found that O2 in-
hibited [FeOFe]-hydrogenase H-cluster has OH�

bonded to the Fed, and that OH� is the end product
of O2 metabolism, with all aqueous enzyme phase
reaction pathways proceeding exergonically.
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