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Abstract 

 Virtual energy storage (VES) refers to an indirect method of storing energy without 

using a battery. In a residential setting, VES uses the building structure interior 

appurtenances together with its physical properties as an energy storage device. It 

represents a methodology in energy storage mechanisms to help with load management in 

residential microgrids. It is an approach that is critical to the necessary paradigm shift from 

the less flexible and more costly “demand response” energy market of the present to the 

more flexible and potentially less costly “availability response” energy market of the 

future. This work quantifies VES monetary cost-savings potential for residential homes, as 

part of an effort to develop smart systems (using power sensors, and simple computation 

and control mechanisms) to assist individuals in making decisions about energy use that 

will save energy and, consequently, electricity costs.  

 The project also compares the cost-effectiveness of VES to that of battery energy 

storage (BES)—currently the more traditional and widely-advocated-for approach to 

energy storage for load management. In addition, this project devises a load management 

framework for a residential microgrid, where strategies that enable energy and cost savings 

for both utilities and consumers are tested.  

To make a home act as its own storage device, we need to intelligently control its 

heating, ventilation, and air conditioning (HVAC) system. Through this control, we can 

harness the house’s thermal storage abilities by methods such as preheating or precooling 
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the house (with due consideration to user comfort) during periods when energy is less 

expensive so that this heat or coolness will be retained during higher-cost periods.  

A well-insulated residential home equipped with sensing technology and 

intermittent generation resources will be utilized as a testbed for this project. Using a 

testbed is advantageous as it provides realistic results as well as a platform where behavior 

of the home can be learned. By combining modeling techniques with test results from a 

live testbed, cost-saving solutions can be simulated and later evaluated. 

This work provides a means to determine how to reduce peak demand and save 

costs for both utilities and consumers by changing consumer behavior, while respecting 

consumer thermal comfort preferences. Additionally, by creating the aforementioned 

modeling framework, we provide the load management community with tools by which 

they can readily test their optimization algorithms. By so doing, more efficient algorithms 

can be developed (potentially leading to increased residential energy efficiency). 

 

  



 

 

 

3 

 

1 Introduction 

 In the United States, utilities practice a demand-response, centralized generation-

dispatch model where the amount of energy generated at any instant is controlled to meet 

the customer load, and generation prices respond accordingly. At peak demand periods, 

there is an upswing in generation costs, leading to increased locational marginal prices 

(LMPs)—the price of electricity at any given node in the power transmission system. 

Locational marginal pricing is used by many regional transmission organizations (RTOs) 

to communicate the marginal cost of recently added capacity to the electricity market. The 

LMP is used to determine how much the RTOs pay generators and to establish the marginal 

price of electric energy sales in specific locations [1, 2]. 

 In the electric power industry, load-serving entities (LSEs) employ various pricing 

schemes [3, 4] and implement special programs [4, 5, 6] aimed at changing the consumer’s 

load shape when such load shapes may not be beneficial to the utilities (i.e. if consumer 

load curves decrease utility profit, increase operating costs, or bring about new costs). 

Likewise, the consumer wanting to reduce electrical energy consumption and, 

consequently, monetary costs may engage in a myriad of strategies that help shape their1 

                                                 

 

1 “They” is used as the gender-neutral third-person-singular pronoun in this thesis. The derivative forms of 

“they” are used in a similar manner.  
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demand to match utility supply. These symbiotic interactions comprise what is known as 

load management2.  

 

1.1 Motivation3 

 The demand-following model employed by the power industry is less amenable to 

load management than a hypothetical supply-following model because utility generation is 

often less flexible than consumer consumption (especially when consumers employ 

intermittent distributed generation such as solar and wind). 

 We envision a future where the available generation capacity in the electricity 

market (including intermittent renewables) will drive consumer demand and thus guide 

consumer behavior rather than the other way around. With the growth of renewable 

generation—which is non-dispatchable—and with proper price signals from the utility to 

the consumer, this vision [7, 8, 9] can become a reality: load management can be 

preemptively employed to guide consumer demand in ways that result in cost savings for 

both consumer and utility and thus the power industry can be gradually transformed to a 

                                                 

 

2 Load management is also known by other terms including: demand response, demand-side response, 

demand-side management, energy management, and energy demand management.  
3 The motivation for this thesis was published in the Proceedings of the 2016 ACM Buildsys Conference: C. 

Ononuju, P. Asare and P. Jansson, "Preliminary Exploration of Virtual-Storage-Based Load Management," 

in Proceedings of the 3rd ACM International Conference on Embedded Systems for Energy-Efficient Built 

Environments, Palo Alto, 2016. 



 

 

 

5 

 

supply-following system. Our goal is to create a framework and motivate a load-

management environment that can turn this hypothetical supply-following model into 

reality. 

 

1.2 Load Management Techniques 

 Various techniques enable a load-management environment and the literature 

classifies them into six: peak clipping, valley filling, load shifting, strategic conservation, 

strategic load growth, and flexible load shape [10]. These techniques are illustrated in 

Figure 1.  

 

Figure 1. Load management techniques (reproduced as is from [11]). 
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 Peak clipping refers to reduction of consumer load during peak periods. This can 

be done by turning off (or cycling) appliances during such periods. Valley filling, on the 

other hand, refers to increased energy use during off-peak periods (i.e. times of inexpensive 

generation) in order to meet utility-preferred minimum supply levels. Load shifting refers 

to reducing the amount of energy used when generation is expensive and using these loads 

during cheaper periods, making it essentially a combination of the previous two techniques.  

 Strategic conservation is a general decrease in the aggregate consumer demand 

resulting from special programs [4, 5, 6] that the utility implements. Strategic conservation 

measures can include home weatherization as well as promotion of more-efficient 

appliances: for instance, LED lightbulbs instead of incandescent lightbulbs. Essentially, 

strategic conservation refers to any load management strategy where either new 

appurtenances are installed or existing appurtenances are better utilized. In recent times, 

the term “strategic conservation” has been replaced with “energy efficiency” [6].  

 The opposite of strategic conservation is strategic load growth—a general rise in 

aggregate consumer load due to special programs that utilities promote. However, with 

today’s high levels of energy consumption both in the United States and around the 

globe [12], and with predicted increased global energy demand in the years to come [13], 

strategic load growth is seldom employed [6].  

 Finally, flexible load shape is a technique that applies to adaptable consumers. Such 

consumers may be willing to accept incentives from the utilities in order to decrease load, 
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though this approach can lead to non-optimal comfort levels for the customer—a tradeoff 

which the customer may accept to reap monetary benefits. In recent times, “flexible load 

shape” has been replaced with the term “dynamic energy management” [6]. This technique 

is usually carried out to ensure reliability of transmission and distribution networks as well 

as decrease stress on the grid [10, 14].  

 Each of the six load management techniques typically goes hand-in-hand with 

another of the aforementioned; they have been applied in a myriad of ways in both 

industrial and residential settings. 

 In this thesis, when we carry out residential load management, we are shifting load 

from peak periods to off-peak periods in a way that is expected to provide cost savings for 

both the consumer and the utility. Note, however, that to carry out residential load shifting 

(and thus peak clipping) in a controlled manner, without changing consumer preferences, 

some form energy storage is necessary. Such storage acts as a conduit between peak and 

off-peak loads.  

 We also assume for this project that the consumer is willing to receive, to some 

extent, incentives from the utility to carry out load management. These incentives, 

however, should not decrease the comfort level of the consumer we are considering. 

Therefore, our project employs load shifting, peak clipping, valley filling, and flexible load 

shape techniques in cost-effective ways.  
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1.3 Need for Energy Storage Systems 

 Load management techniques do not explicitly take into account that cycling some 

(or all) appliances during peak periods may cause the consumer significant discomfort. In 

addition, it is possible that the consumer strongly prefers to use certain appliances during 

peak periods—for instance air conditioners on hot summer days.  

To carry out load management with these added considerations, the consumer needs 

a “buffer”—some form of electrical energy storage that will allow them to adequately shift 

energy consumption (as seen by the utility) in a manner that respects utility supply 

preferences. Consumers engage in such load shifting by storing energy when it is cheaper, 

while using the stored energy (in a manner that respects their personal thermal comfort and 

daily routines) when generation is expensive. 

 

1.4 Types of Energy Storage Systems 

 There are various methods and systems by which energy, which is intended for 

subsequent conversion into electricity, can be stored. Luo et al. [15] and Chen et al. [16] 

give a comprehensive review of these technologies. They discuss their characteristics and 

applications while outlining current research and development being conducted on each of 

the technologies. They also inform the reader of the extent to which each technology is 

suitable for integration into the electrical power system. The technologies outlined (in great 

detail) by Luo et al. [15] and Chen et al. [16] include:  
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i. Pumped Hydroelectric Storage  

ii. Compressed-Air Energy Storage  

iii. Flywheel Energy Storage  

iv. Capacitors and Supercapacitors 

v. Superconducting Magnetic Energy Storage  

vi. Solar Fuels  

vii. Hydrogen Storage and Fuel Cells  

viii. Battery Energy Storage  

ix. Thermal Energy Storage  

x. Any combinations of the above-listed (Hybrid Energy Storage) 

 Our project is focused on load management in a residential context. Usually, when 

energy storage is discussed in this context, rechargeable battery energy storage (BES) is 

the most prominent technique mentioned. BES implementations in residential load 

management typically involve load shifting where the battery is charged during cheaper 

off-peak periods so that the energy stored (in chemical form) can be harnessed during peak 

periods when electricity, as reflected by LMP, is expensive. However, BES systems are 

quite costly and their large capital cost may hinder some consumers from adopting them.  
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 On the other hand, virtual energy storage—a kind of thermal energy storage4 

(TES)—is a potentially advantageous alternative to BES. VES is a technique which makes 

intelligent use of the heating, ventilation, and air conditioning (HVAC) system—the largest 

residential energy consumer in the United States [17]. VES uses the physical properties of 

the house to harness thermal storage by methods such as preheating or precooling the house 

during off-peak periods so that this heat or coolness will be retained during peak periods. 

VES is characterized by minimal capital costs—the devices required are low-cost sensing 

and computation with the ability to interact with a relatively cheap and easy-to-install smart 

thermostat.  

 In order to better understand VES energy- and cost-savings potential in a residential 

setting, this project will explore VES load management in comparison to the more 

prevalent and widely-advocated BES approach. Thus we will conduct our analyses on a 

VES system as well as on a variety of batteries suited for residential use (see Table 3).   

 

1.5 Thesis Objectives 

 Though virtual storage is typically used in commercial buildings, this storage 

approach has yet to see systematic use in residential buildings due to difference in scale, 

                                                 

 

4 Energy stored in the form of heat (or coolness).  
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requiring difference in approach. From our fairly substantial research, data on VES 

monetary cost-savings potential does not seem to exist. Therefore, it is the objective of this 

project to quantify this potential for a residential setting, perform cost-effectiveness 

analyses that compare VES relative to BES, and provide a modeling framework where 

various load management strategies (using either storage method) can be tested with cost 

quantification in mind. By doing all this, we can readily verify the relative advantages and 

disadvantages of either storage method and provide a means to evaluate the efficacy of 

various optimization strategies.  

 Our modeling framework will contribute to the field of load management as it will 

create a platform where researchers can test their optimization algorithms. The goal of this 

work, therefore, is not necessarily to determine the best optimization strategy but to create 

a model and provide the tools through which this determination can be made. It is our hope 

that our modeling framework will spur further research into VES in order to reduce 

monetary costs for both consumers and utility companies.  
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2 Background 

2.1 Applications of Load Management Techniques 

 One of the most prominent applications of valley filling is in the charging of electric 

vehicles (EVs) during off-peak periods in order to decrease stress on the grid. Various 

optimization algorithms have been developed to facilitate this process. Gan et al. [18] 

proposed a decentralized protocol, and their protocol was shown to give optimal charging 

profiles. Karfopoulous and Hatziargyrou [19] propose a distributed, multi-agent method 

based on the Nash Certainty Equivalence Principle that considers network impacts. The 

approach of Karfopoulous and Hatziargyrou [19] is shown to efficiently allocate energy 

requirements during off-peak periods, thus achieving valley filling.  

 Ma et al. [20] formulate the problem of decentralized charging of large populations 

of EVs as a class of finite-horizon dynamic games. They come up with a valley-filling 

strategy that is nearly optimal. Zhang et al. [21] propose a decentralized valley-filling 

strategy for EV users in Beijing, China. In their research, they design a day-ahead pricing 

scheme by solving a minimum-cost optimization problem. Results of Zhang et al. [21] 

show that valley filling, through coordinated EV charging, leads to lower power generation 

costs compared to uncoordinated EV charging. 

 Research [22, 23, 24] has shown that peak clipping and load shifting can be applied 

in an industrial setting. Ashok [22] used integer programming to show how these 
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techniques can shave peak load and decrease monthly electricity bills in a steel plant. 

Middelberg et al. [23] obtain similar results for a colliery via an optimal control model. 

Babu and Ashok [24] employ mixed integer linear programming to show the possibility of 

reduced peak demand, and lower electricity bills, for electrolytic process industries. In 

general, peak clipping works in tandem with load shifting. In other words, load shifting is 

usually done to shave the peaks by moving peak load to other times in the day (which may 

or may not be valleys).  

 Supplementary to the peak clipping, valley filling, and load shifting techniques 

performed by the consumer, are a variety of special programs and/or pricing mechanisms 

implemented by the utility [3, 4, 5, 6] to stimulate strategic conservation (energy 

efficiency) as well as to incentivize adaptable customers (dynamic energy management) to 

decrease load in order to relieve the grid of stress. 

 

2.2 Applications of BES Systems 

 BES systems are comprised of a number of electrochemical cells connected in 

series or parallel and producing electricity from chemical reactions [15, 16]. Each cell 

contains two electrodes—a positive anode and a negative cathode—as well as an 

electrolyte which may be in solid, liquid, or gel form [15, 16, 25]. The authors in [15] and 

[16] have presented in-depth analyses of various BES chemistries. In addition, they have 

outlined where such technologies are being deployed all over the world as well as progress 
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that has been achieved with different battery technologies and avenues for future 

exploration.  

 BES systems have been advocated by the electrical power as well as other industries 

because they provide fuel flexibility, decrease congestion in the transmission system, 

stabilize the transmission and distribution systems, improve power quality and reliability, 

enhance frequency regulation, and support the growth of intermittent renewable energy 

technologies [15, 16, 26]. BES technologies have also found applications in everyday areas 

of life where they provide power for a range of consumer items as well as for homes and 

vehicles. In this project, however, we are only concerned with battery technologies that can 

be used for home energy storage. Such battery chemistries can be found in Table 3.   

 BES technologies have been applied in load management in a variety of ways.  

Zhang et al. [27] explored BES in the data center of a commercial building which uses 

TOU5 pricing. They show that monetary savings is possible when energy stored in a UPS 

system during low-TOU periods is harnessed during high-TOU periods. However, Zhang 

et al. [27] used simulated data as opposed to data from a testbed.  

                                                 

 

5 Time-of-use pricing—a pricing mechanism where the day is divided into a few blocks with electricity in 

each block costing a price proportional to the demand for that block. This type of pricing mechanism is 

typically used for commercial and industrial customers. See: B. Spiller, "All Electricity is Not Priced Equally: 

Time-Variant Pricing 101," Environmental Defense Fund, 27 01 2015. [Online]. Available: 

http://blogs.edf.org/energyexchange/2015/01/27/all-electricity-is-not-priced-equally-time-variant-pricing-

101/. 
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 Similar to Zhang et al., Palasamudram et al. [28] employed batteries in a Content 

Delivery Network (CDN). The batteries were charged during off-peak periods and 

discharged during peak periods. Load data was obtained from Akamai’s CDN. It was 

shown that the use of batteries increased power savings in the CDN.  

 BES research has also been carried out in residential settings. Nguyen and Le [29] 

tried to reduce electricity bills while considering user comfort. They provided a framework 

that incorporates a joint optimization model for an HVAC system as well as electric 

vehicles (EVs) in a home. The EVs are designated as battery storage devices for powering 

the HVAC systems during peak demand. Their scheme is shown to give considerable 

energy savings compared to a non-optimized house.  

 Similar to Nguyen and Le, Brush et al. [30] used EV batteries as storage devices in 

order to power a house during peak periods, from energy stored during off-peak periods. 

Unlike Nguyen and Le, however, Brush et al. use real load data from fifteen homes; their 

experiments show significant energy savings. Nevertheless, it is difficult to determine the 

kinds of savings that alternative approaches would have provided Brush et al. 

 

2.3 Applications of VES Systems 

 What we define as virtual energy storage is a thermal-storage-based load-

management technique that utilizes latent heat or coolness provided by a building’s HVAC 
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system, in conjunction with the insulating properties of the building interior (and all 

appurtenances), to create what we call a “virtual battery”. 

 By intelligently controlling the HVAC system in a residence to precool (or preheat) 

the dwelling during off-peak hours so that the latent heat or coolness will be maintained 

during peak periods, energy and electricity costs can be saved.  Leveraging the HVAC 

system—the largest energy consumer in a typical U.S. home [17]—in this way, makes it, 

in essence, an energy storage device. This is because the thermal energy to be utilized later 

is put into the house before intended use, by “charging” the house. 

 VES provides many of the same benefits for which BES systems are advocated. 

VES has strong value propositions for the future of the grid. ISO markets, system operators, 

and transmission and distribution companies can reap benefits from VES which include 

but are not limited to: regulation of power, provision of generation capacity, integration of 

renewables, reduction of congestion in transmission systems, and improvement in power 

quality and reliability [9]. Research into VES over the years has shown favorable results 

which encourage us to deploy this technology.  

 Zhang et al. [27] have used virtual storage in a datacenter by precooling the 

datacenter when energy was readily available (low TOU) and then allowing the servers to 

absorb heat when energy was relatively scarce (high TOU). A similar technique was used 

in our work, albeit for a residential setting [31].  
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 Henze et al. [32], examined ice storage as well as virtual energy storage6 (by HVAC 

precooling) for a commercial building. They determined that the combined cost savings 

for both methods surpass the savings of each individual method. However, the combined 

cost savings for both methods is less than the sum of the savings from each individual 

method. This study is carried out for a commercial building, which uses TOU prices, rather 

than for a home. One disadvantage of this study is that actual utility rates are not used. 

Rather, a peak TOU of $0.20/kWh is assumed and the off-peak TOU is presumed to be 

$0.05/kWh.  

 Similar to Henze et al. [32], Braun [33] simulated the impact of dynamic adjustment 

of HVAC setpoints in a building. Braun found a reduction in peak electricity that varied 

from 10 – 35% compared to baseline levels.  

 Ellis et al. [34] approach VES in a unique way. Rather than preheating the house, 

they turn off the HVAC prior to the occupants’ departure from the home. The rationale 

behind their technique is that the latent heat will keep the occupants warm for the period 

between when the HVAC is turned off and when they exit the building. Ellis et al. [34] 

used real data from two Cambridge, UK homes and three Seattle, USA homes to predict 

                                                 

 

6 Henze et al. use the term “thermal capacitance” which is a measure of how much heat an object can store. 

Thermal capacitance is sometimes referred to as “thermal mass”. See: E. Cheever, "Elements of Thermal 

Systems," Swarthmore College, Erik Cheever, [Online]. Available: 

http://lpsa.swarthmore.edu/Systems/Thermal/SysThermalElem.html#Tcap. 
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departure times for residents. Their analysis predicts a potential 1–8% of savings in gas 

use. However, the HVAC system for this thesis’ testbed will be powered by electricity 

rather than gas.   

 In other work, Braun et al. [35] tested peak clipping and load shifting potential for 

the Iowa Energy Center. They used a simple precooling strategy and found that, cumulative 

peak loads in their test zones was reduced by 9%.  

 When examining work done in the area of VES, one important point to note is that 

climate plays a crucial part. Studies done by Kintner-Meyer and Emery [36] imply that 

VES is most effective in dry climates with a large temperature differential between day 

and night.  

 From our fairly significant research, we have not come across any work that 

quantifies residential VES monetary cost-savings potential to that of BES. However, as 

outlined above, there is a fair amount of research which evaluates the cost and energy 

savings of each individual mechanism. In this work, therefore, we will compare the 

monetary cost-savings potential of both mechanisms, relative to each other. 

  

2.4 The Duck Curve 

 In 2013, the California Independent System Operator (CAISO) released net load 

data, corresponding to a typical spring day (March 31), for the years 2012 – 2020 [37, 38]. 

CAISO used actual net load data for 2012 and 2013 and projected what the net load would 
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look like on March 31 of 2014 through 2020. The results of their projections shown in 

Figure 2 is referred to as the “duck curve” [37, 39], due to its resemblance to the profile of 

a duck.  

 

Figure 2. CAISO Duck Curve showing net load for a typical spring day, for 9 years 

(reproduced as is from [37]). 

 CAISO’s duck curve predicts a yearly decrease in net load from mid-morning to 

late afternoon—the belly of the duck. Further, there is a sharp rise in net load in the early 

evenings—the neck of the duck. The belly of the duck points to over-generation of 
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electricity [37]. Between the hours of 9 a.m. to about 3 p.m., solar PV7 is putting a lot of 

energy onto the grid. However, in the evening, when the sun goes down, solar generation 

is lost. During these times, people are getting back from work and turning on their HVAC 

systems and other appliances [40]. Consequently, there is a huge spike in demand between 

4 p.m. and 7 p.m. which CAISO has to meet by quickly (and inefficiently) ramping up 

generation. Since California is expected to have about 33% of their generation comprised 

of renewable sources by 2020 [41], solutions to the duck curve phenomenon are needed.  

 Multiple strategies have been proffered [37, 40, 42] with load shifting and energy 

storage standing out as prominent answers [37, 40]. Jim Lazar, of the Regulatory 

Assistance Project, has listed ten strategies that will help flatten the duck curve [40, 42]. I 

will repeat Lazar’s strategies verbatim here. They are: 

Strategy 1: Target energy efficiency to the hours when load ramps up 

sharply. 

Strategy 2: Orient fixed-axis solar panels to the west8. 

                                                 

 

7 It is important to note that the duck curve phenomenon is due to utility-scale solar and not residential PV. 

See Report: ScottMadden Management Consultants, "Revisiting the California Duck Curve: An Exploration 

of Its Existence, Impact and Migration Potential," ScottMadden Management Consultants, 2016. 
8 Studies have shown that doing this increases solar PV output in the afternoon while decreasing output in 

the morning. See Report: Pecan Street, "South-Facing Solar Cut Peak Demand from Grid 54% – West-Facing 

Systems, 65%," Pecan Street, 18 November 2013. [Online]. Available: 

http://www.pecanstreet.org/2013/11/report-residential-solar-systems-reduce-summer-peak-demand-by-

over-50-in-texas-research-trial/. 
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Strategy 3: Substitute solar thermal (with a few hours of thermal storage) 

in place of some projected solar PV generation. 

Strategy 4: Implement service standards allowing the grid operator to 

manage electric water heating loads to shave peaks and optimize 

utilization of available resources. 

Strategy 5: Require new air conditioners to include two hours of thermal 

storage capacity under grid operator control. 

Strategy 6: Retire inflexible generating plants with high off-peak must-

run requirements. 

Strategy 7: Concentrate utility demand charges into the “ramping hours” 

to enable price-induced changes in load. 

Strategy 8: Deploy electrical energy storage in targeted locations. 

Strategy 9: Implement aggressive demand-response programs. 

Strategy 10: Use inter-regional power exchanges to take advantage of 

diversity in loads and resources. 

 After all ten strategies are employed, Lazar illustrates the aggregate effect they have 

on the duck curve (see Figure 3). Figure 3 shows that the duck has been transformed into 

a flatter curve that is more manageable—from CAISO’s perspective. 
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Figure 3. Effect of load management and incentive programs on the duck curve 

(reproduced as is from [40]).  

 We see our VES technique having important implications for Strategies 7 and 9. 

Strategy 7 can be used to incentivize VES—consumers could “virtually charge” the house 

by precooling (or preheating) prior to the high-priced ramping hours, so that they reduce 

the amount of money they have to pay during such periods.  

 In addition, concerning Strategy 9, if a large number of CAISO customers were 

precooling during off-peak hours, load would increase during such hours, pushing up the 

belly of the duck. Likewise, the latent coolness maintained in the house during the ramping 

hours would lower the neck of the duck as there would be less need to turn on the air-

conditioning—a chief contributor to the evening ramp-up.  
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 Third-party companies can aggregate these potential VES reductions. Assuming 

some fraction of the third-party earnings is transferred to the consumer, the consumer gains 

money while helping reduce stress on the grid. Similarly, CAISO benefits because they 

will not have to inefficiently ramp up generators. This will reduce their general operation 

costs. 

 VES is one of the multiple demand-side strategies [6, 10] that can help deal with 

the California duck curve phenomenon. A similar line of reasoning holds for Hawaii, where 

the “Nessie curve” [43] has been observed, as well as other states that are increasing their 

solar PV resources. Such states include: Arizona, Georgia, Nevada, North Carolina, and 

Texas [38, 37].  
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3 Methodology: Cyber-Physical Systems 

Approach 

 A cyber-physical system is any system that integrates intelligence into the physical 

world using computational algorithms and sensing devices [44, 45]. The focus is on tight 

coupling between the computational algorithms and the physical world where the 

algorithms affect physical processes and are in turn affected by these physical processes. 

Traditional examples of products that are either considered cyber-physical systems or 

providers of opportunities for cyber-physical systems application include: cars, aircraft, 

manufacturing plants, and the electrical grid [46]. 

 The problem of load management lends itself to a cyber-physical systems solution. 

Nowadays, humans conduct load management by manually reducing their demand during 

peak periods (although some devices are used to aid the process [47]). As mentioned 

previously, physical resources like batteries have been proposed to help with load 

management [15, 16, 26]. Nevertheless, with computer algorithms that can sense physical 

data, load can be managed more optimally and adaptively, and the added intelligence may 

greatly reduce the need for significant investments in physical resources such as batteries. 

 The advantage of cyber-physical systems methods is that they require low-cost 

physical resources like embedded computers [48], appropriate sensors and actuators, and 

networking technologies. With these, the major work is in developing the required 
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intelligence to manage the physical resources to achieve our specific goals (managing 

energy consumption in our case). 

 

Figure 4. Smart residential microgrid from a cyber-physical systems perspective. 

Figure 4 illustrates the general concept of load management from a cyber-physical 

systems perspective. The computer collects information about weather conditions, energy 

prices, condition of energy resources like the battery as well as consumption behavior of 

appliances. Based on such data as well as the (potentially) learned preferences of the 

residents, the computer controls the HVAC system, the battery, and possibly other 

resources in the home so that occupants get optimal use out of energy-consuming 

resources. The algorithms on the computer could also be designed to take the 
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environmental effects of energy consumption choices into account as it acts to shape the 

house load to reduce stress on the grid.  

A major advantage of cyber-physical systems approaches is the ability to model 

complex systems to gain insights into their behavior before implementation, possibly 

following a model-based design approach [49] in doing so. Our work focuses on this 

modeling, but not yet with the intention of following a model-based approach to 

implementation. 

 Our VES approach requires information from the physical world (temperature data 

and some knowledge of the house’s physical response to temperature). With this 

information from the physical world, as well as the electricity cost information, decisions 

that will control the house in such a way that it becomes its own virtual battery [9] can be 

made. The successful implementation of this virtual battery requires that we sense as well 

as control the HVAC behavior, based on the physical temperature data both inside and 

outside the house, since the HVAC system is highly dependent on temperature.  

 Our work provides support for the development of a cyber-physical system that will 

intelligently optimize energy and cost savings in a home. Therefore, though this work does 

not develop a residential-load-management cyber-physical system, it lays the groundwork 

and provides tools for researchers who will develop such systems to build upon.  
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3.1 The Testbed  

 To meet our objective of creating and validating a practical framework for 

residential load management, we use real data from a residential microgrid. A well-

insulated home equipped with sensing technology and intermittent generation resources is 

used as our testbed. Despite the high quality of insulation in this testbed, modeling 

techniques used on it are transferable to homes with various grades of insulation.  The 

testbed [50, 51, 52, 53] is a single-family home in Lewisburg, Pennsylvania, USA. The 

distribution company which supplies power to the home is Citizens’ Electric, a node 

located within the PPL zone of PJM—a regional transmission organization (RTO) in 

northeastern USA. Citizens’ Electric has a pricing scheme that is a fixed rate for half of the 

year. After Citizen’s Electric evaluates the electricity market for the first half of the year, 

they adjust their rate for the second half [54]. Consequently, it might appear that load 

management has no effect on the short-term nominal cost of electricity for a Citizens’ 

Electric customer. Nevertheless, load management, if properly carried out, will help reduce 

long-term nominal electricity prices for such customers. 

 It is important to note, however, that we do not use Citizens’ Electric’s fixed 

electricity rate in this project. Rather, we use PJM’s dynamic locational marginal prices 

(LMPs) as the “local utility electricity rate”. This is because the LMP, which changes 

hourly, reflects the actual cost of energy generation. Since we want to respect utility supply 

preferences, it is necessary to use a model that achieves this aim.   
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 A simplified layout of the testbed showing generators, loads, and relationships 

between energy produced and energy consumed is illustrated in Figure 5.  

 

Figure 5. Residential microgrid testbed setup. 

 Previous researchers [50, 51, 52, 53] have equipped the home with a solar 

photovoltaic (PV) array—fitted out with net metering—and a natural gas generator. The 

PV system takes precedence of generation in the sense that it is always put to use whenever 

there is solar power available [51]. In other words, the two modes of power generation are 

either: grid-tied coupled with solar or natural gas generation coupled with solar. The natural 

gas generator is only used (in island mode) when its generation price is less than the local 

distribution company’s electricity rate. Nevertheless, such a situation hardly ever occurs 

for our testbed. So this scenario can, in some sense, be viewed as hypothetical.   
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 The testbed, depicted in Figure 5, is divided (hypothetically) into two main 

functional parts: an area for energy sources and one for energy sinks (loads). Previous 

researchers have connected power sensors to some of these loads [51, 53]. In addition to 

the power sensors, the researchers in [50, 51, 52, 53]  also installed a smart thermostat—

Ecobee Smart-Si—in the testbed.   

 The mechanisms which comprise virtual energy storage (VES) are marked out by 

the green rounded rectangle in Figure 5. Within this rounded rectangle, we define VES in 

general: the process of increasing the HVAC energy during off-peak periods by cooling or 

heating the house so that the latent heat that is generated will lead to decreased HVAC 

energy use during peak periods.  

 For VES to make sense, the decreased HVAC energy usage in peak should 

correspond to decreased overall HVAC use. In other words, the virtual “charging” by 

preheating (or precooling) should not take up more energy than it displaces in peak. This 

thesis will quantify these peak and off-peak energy use dynamics.  

 Within the green rounded rectangle, it is implied that the smart thermostat and the 

price signals from PJM play important roles in our load management framework. The data 

obtained from this smart thermostat, combined with price signals we obtain from PJM, 

allows us to employ the HVAC system—the largest consumer of energy in the home [17]—

as an energy storage device. 
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 Typically, the way people try to mitigate the large HVAC energy use is by 

purchasing a battery9 and then charging it during off-peak LMP hours which usually 

coincide with the times when the HVAC is being used the least. They then use the battery10 

to supply power to the HVAC system when electricity is most expensive—that is, during 

peak LMP hours. The problem with home batteries, however, is that they are expensive, 

costing anywhere from $1500 to $23000 (see Table 3 [55]). 

 In this project, we will try to see whether a smart thermostat which only costs a few 

hundred dollars can achieve cost and energy savings comparable to those achieved by home 

batteries. (For our experiments, we use the Ecobee Smart Si thermostat which costs about 

$349, including installation [56, 57]).  

 

3.2 Energy and Cost Quantification11 

 We are interested in cost savings from the consumer perspective for reasons 

detailed in Section 1.1. In particular, we consider the scenario where the only available 

                                                 

 

9 Our testbed is not equipped with a battery. However, in order to compare cost-effectiveness of VES to BES, 

we only need to know the ideal capabilities of batteries currently on the market. Such information is publicly 

available online (See Table 3).  
10 The battery shown in Figure 5 is placed on the (hypothetical) demarcation of the testbed because it takes 

on a dual role: it is a source when supplying energy to other appliances and a sink when it is being charged. 
11 Some of the work presented in this Section was published in the Proceedings of the 2017 IEEE Sensors 

Applications Symposium: P. Asare, C. Ononuju and P. M. Jansson, "Preliminary Quantitative Evaluation of 

Residential Virtual Energy Storage Using Power Sensing," in Sensors Applications Symposium, Glassboro, 

2017. A few items, however, have been updated since the Symposium.  
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generation source is the grid. This is because any local (residential) generation sources such 

as PV, wind, and storage mechanisms essentially act to shift load from the grid, thereby 

lowering the customer’s cost of grid use. Our developments will focus on using storage 

mechanisms to shift load from the grid, though translation to approaches like local 

intermittent generation should not be difficult. 

 We focus exclusively on storage mechanisms because, even though intermittent 

generation sources can augment power supply to storage mechanisms, explicitly 

considering these generators would only lead to increasing the cost of equipment, by the 

same amount, for both BES and VES. As such, considering local intermittent generation 

does not influence the relative comparison of VES cost-effectiveness to that of BES.   

 We will mostly consider energy consumed by the HVAC system since this is the 

largest consumer of energy in the residential home [17] and is the one we would like to 

control energy usage on. However, much of our developments can be broadly applied to 

overall energy consumption or other subsets thereof. 

 We have developed a general energy-cost model that defines how cost savings can 

be computed from our physical experimental data. We detail the general energy-cost model 

in Section 3.2.1 and we examine how this energy-cost model relates to BES (in Subsection 

3.2.2) and VES (in Subsection 3.2.3).  
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3.2.1 General Energy-Cost Model  

 Figure 6 shows energy use from the grid in a baseline case and with load shifting 

using a storage mechanism. The motivation for load shifting is that the period of high 

energy usage tends to coincide with when energy generation is most expensive (as reflected 

by LMP). This period is termed the peak period (𝑇𝑝). We explain how this is defined in the 

Chapter 4 where we describe our experiments. But for the purposes of the rest of this 

discussion, simply knowing that 𝑇𝑝 is some well-defined time interval suffices. We save 

costs by reducing the energy used from the grid (however, intermittent sources may also 

provide some energy) during this period.  

 Storage mechanisms help by shifting the HVAC peak load from the grid to 

elsewhere in space and in time. This load shifting means less energy is being used during 

the peak period (from the grid perspective) and hence the utility charges the consumer less 

during that period for the lesser energy demanded.  
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Figure 6. Energy model for general storage based on HVAC grid energy consumption. 

The top graph shows HVAC consumption without storage and the bottom graph shows 

how storage affects HVAC consumption. 

 The difference between energy used in the non-storage case and in the storage case, 

during the peak period, is called the displaced energy (𝐸𝑑) 
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  𝐸𝑑 = 𝐸𝑝|𝑛𝑒𝑠 − 𝐸𝑝|𝑒𝑠 (1) 

In Equation (1), 𝐸𝑝|𝑒𝑠 indicates the energy storage case, 𝐸𝑝|𝑛𝑒𝑠 indicates the case where no 

energy is used, and the energies reference the peak period because this is the period in 

which we focus on saving energy. The term “displaced” is used instead of “discharged” 

because, for comparison of storage mechanisms, it is difficult to delineate how much of 

this difference in energy use was directly from the storage mechanism itself and how much 

was due to other factors such as favorable weather conditions, especially since we are 

focusing on the HVAC—a load that is highly dependent on weather.  

 Storage comes at a cost because we must put energy into the storage mechanism 

earlier in order to be able to use the energy stored at a later time. During the charging period 

(𝑇𝑐), more energy is used than would be used otherwise. This extra energy factors into the 

cost of using the storage mechanism. The extra energy is called the charge energy (𝐸𝑐), 

defined by 

 𝐸𝑐 = 𝐸𝑐|𝑒𝑠 − 𝐸𝑐|𝑛𝑒𝑠 (2) 

 The cost of energy in the LMP-based approach varies hourly, hence to get the 

monetary equivalent (cost) of any of the energies 𝐸𝑑 or 𝐸𝑐, we would have to look at the 

energy each hour over the periods when those aggregate energy values are obtained. The 

cost of either 𝐸𝑑 or 𝐸𝑐 would then be 

 𝐶(𝐸∗) = ∑ 𝐸∗|𝑡𝑘

𝑡𝑘∈𝑇∗

⋅ 𝐿𝑀𝑃𝑡𝑘
 (3) 
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where 𝑇∗ is the period under consideration, 𝐿𝑀𝑃𝑡𝑘
 is the LMP value for the hour 𝑡𝑘 in that 

period, and 𝐸∗|𝑡𝑘
 is the corresponding charge or displaced energy in that hour. Equation (3) 

can be visualized more clearly using Figure 7. 

 

Figure 7. Visualization of cost equation (Equation (3)). 

 Equation (3) is compatible with our modeling framework (details in Chapter 5) 

wherein we simulate the HVAC energy use for VES and BES based on the thermal model 

of our home. However, when we conduct virtual storage tests in a physical experimental 
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fashion (procedure detailed in Chapter 4), computing hourly versions of 𝐸𝑑 and 𝐸𝑐 becomes 

cumbersome. This is because, to calculate 𝐸𝑑 and 𝐸𝑐 for VES experimental days, we need 

to identify baseline days that have temperature profiles similar to those of the VES days. 

Consequently, the charge periods and peak periods for VES days may not necessarily line 

up with those of their corresponding baseline days. We can remedy this issue by modifying 

the cost equation (i.e. Equation (3)) to use the average LMP in the period being considered. 

 𝐶(𝐸∗) = 𝐿𝑀𝑃∗
̅̅ ̅̅ ̅̅ ̅ ⋅ ∑ 𝐸∗|𝑡𝑘

𝑡𝑘∈𝑇∗

 (4) 

The resulting cost in Equation (4) is not exactly the same as using the hourly LMP values, 

but is a close enough approximation.  

 The amount saved by using a particular storage approach is represented by cost of 

𝐸𝑑. This savings comes at a cost. One part of that cost is the operational cost of running 

the storage mechanism (i.e. the cost of the energy one must store to use later—𝐸𝑐). The 

other part is the daily capital cost, which is the total cost of purchase and installation of 

necessary equipment and materials (including possible modifications to the house) for the 

particular storage mechanism amortized yearly over its expected lifetime, given by 

 𝐶(𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) =
𝐶(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 + 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛)

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (5) 

 The daily effective savings, 𝐶(𝐸𝑆), from using storage is the difference between 

the savings due to energy displaced and the total cost of using the mechanism. 

 𝐶(𝐸𝑆) = 𝐶(𝐸𝑑) − (𝐶(𝐸𝑐) + 𝐶(𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)) (6) 
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 A positive 𝐶(𝐸𝑆) value indicates a cost-effective mechanism (i.e. overall savings 

for the customer despite the investment and operational costs). A zero value is still cost-

effective since load shifting has benefits for utilities and generators which, in the long run, 

can reduce per unit cost for the consumer and hence lower total cost. Some negative values 

may be cost-effective in the long term for the same reason. We can use this model to 

compare the relative cost-effectiveness of any two storage approaches. 

3.2.2 BES Special Considerations  

 In this case, the HVAC uses the same amount of energy as it would have used in 

the case where no energy storage was employed (i.e. it behaves the same way). The extra 

energy drawn from the grid during 𝑇𝑐 is due to the energy needed to charge the battery, and 

the lower energy drawn from the grid during 𝑇𝑝 is because part of the HVAC energy is 

supplied by the battery in the peak period. 

 In practice, we can measure 𝐸𝑐 and 𝐸𝑑 for the battery directly by instrumenting it 

with power sensors. The battery is used (at least in our scenario) to offset power that would 

otherwise be used from the grid by the HVAC. Thus, using the battery does not change the 

HVAC behavior. This is partly why 𝐸𝑐 and 𝐸𝑑 are directly measureable. The other reason 

is that the battery is a physically-separate storage device that takes in and discharges energy 

in electrical form which we can directly measure. 

 For BES, 𝐸𝑑 is still considered the displaced energy because the HVAC energy 

usage during the peak period is partly dictated by other physical conditions (weather, 
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insulation, etc.). Hence, even though energy may be readily available in the battery, 

whether that energy is used or not depends on whether the HVAC needs to cool or heat the 

house in the peak period.   

3.2.3 VES Special Considerations  

 In this case, the storage is achieved by modulating the behavior of the HVAC. This 

means the energy used by the HVAC under VES is different from what would be used in 

the case where no energy storage is employed. The extra energy drawn from the grid during 

the charge period, 𝑇𝑐, is due to the energy needed to precool or preheat the house, and the 

lower energy drawn from the grid during the peak period, 𝑇𝑝, is due to the greater periods 

of inactivity of the HVAC since temperature is partly maintained by the latent heat or 

coolness of the house due to precooling or preheating. 

 Since VES requires changes in behavior of the HVAC itself, and is not a separate 

physical storage device, 𝐸𝑐 and 𝐸𝑑 cannot be measured directly. In practice, we would have 

to actually measure 𝐸𝑐|𝑛𝑒𝑠, 𝐸𝑝|𝑛𝑒𝑠, 𝐸𝑐|𝑣𝑒𝑠, and 𝐸𝑝|𝑣𝑒𝑠 to compute 𝐸𝑐 and 𝐸𝑑. Only one set 

of 𝐸𝑐|∗and 𝐸𝑝|∗ can be measured for a given day. This means for any day on which VES is 

used, an equivalent day (with similar physical conditions such as outdoor temperature) 

needs to be found for purposes of computing these values if this is done in physical 

experimental fashion. An alternative would be to use simulation, which would be capable 

of providing a much better equivalent day.  
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 Therefore, in order to generate more accurate VES data that will guarantee 

repeatable experiments and accommodate changing parameters, while allowing us perform 

a myriad of analyses on different days, we need to develop a model of the home.  

 

3.3 Related Work 

In 1991, Kenneth Wacks laid out a visionary plan for load management by home 

automation [58]. One could say that through this paper [58], Wacks motivated residential 

cyber-physical systems, though the devices to enable this vision did not exist at the time.  

 According to Wacks, for any distributed load control to be effective, there needs to 

be: real-time access to information from the utility, computer intelligence that can both 

interpret utility data and determine consumer preferences while communicating with 

appliances in the home [58]. Similar to Wacks, Marchiori et al. [59] voice the need for 

adaptive and intelligent approaches for using residential energy more efficiently.  

 Cyber-physical systems have been employed in a variety of ways in residential 

settings. Many optimization algorithms have been developed by researchers who approach 

the load management problem from different viewpoints. Researchers have looked at 

occupancy sensing as a means of load management—the basic premise being saving 

energy when rooms are unoccupied. In addition to occupancy sensing, model predictive 

control (MPC) and other control methods have been examined.  
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 Occupancy sensing has been explored by Lu et al. [60] who use sensing technology 

to detect occupancy and sleep patterns in a dwelling to determine how these patterns save 

energy. They obtain a 28% savings through their approach, compared to a baseline 

scenario. Lu et al. [60] posit that energy conservation could be increased by automatically 

creating a thermostat setback plan for a home by studying historic user occupancy data. 

Their technique does not change the setback temperature of the user, rather it decides when 

a predetermined setting should come into effect [60]. 

 Whitehouse et al. [61] advocate for re-conceptualizing the way buildings are 

designed in order to make them more suitable for occupancy sensing. Erickson et al. [62], 

use occupancy data collected via camera sensor networks to predict a 14% energy savings 

on a university building.  

 Beltran and Cerpa [63] use MPC and a blended Markov chain (BMC) model to 

estimate the thermal load and occupancy of a university building in order to better control 

the HVAC system; they simulated 15.5% expected savings in the winter with 9.4% in the 

summer. 

 Occupancy sensing is a popular technique in the load management optimization 

process. However, its major drawback is variability of human behavior. Due to this 

unpredictability, unoccupied periods may not necessarily occur during peak demand; and 

thus may not coincide with the opportunity to reduce costs. For instance, if children are at 

home all day during the summer or winter holidays, the HVAC system that relies on 
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occupancy sensing is always on and the utility requirements are not met. Thus, occupancy 

sensing alone is not enough. It needs to be coupled with different schemes to meet the 

utility-required demand during both peak and non-peak periods. By so doing, the user can 

become more energy-responsible to themselves and the utility.  

 Jia et al. [64] evaluate home energy management from the lens of a multi-time scale 

and multi-stage stochastic optimization framework for control of: an HVAC system, an 

electric vehicle, and deferrable loads i.e. loads whose time of use can be moved. The 

underlying principle for this work is MPC. In their work, Jia et al. reduced the large 

optimization problem into smaller, tractable sub-problems. Unlike many load management 

research projects, the work of Jia et al. [64] considers the trade-off between comfort and 

energy savings. One drawback of their work, however, is that data was not collected from 

a live house but rather simulated.  
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4 Physical Experiments, Analyses, and Results12  

 Our residential microgrid consistently collects data on power usage in the home 

using a variety of current transformers coupled to a central device.  

 

Figure 8. Data from microgrid for example day when no energy storage was used. 

 

                                                 

 

12 The work presented in this Chapter was published in the Proceedings of the 2017 IEEE Sensors 

Applications Symposium: P. Asare, C. Ononuju and P. M. Jansson, "Preliminary Quantitative Evaluation of 

Residential Virtual Energy Storage Using Power Sensing," in Sensors Applications Symposium, Glassboro, 

2017. 
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More details on this system can be found in [53]. The HVAC system is usually set to a 

consistent setpoint and no energy savings strategy is typically employed by the residents. 

Data from an example day without any virtual energy storage employed is shown in Figure 

8. 

 

4.1 VES Experiments 

 In summer 2016, we ran a number of virtual energy storage experiments on 8 

different days. Each experiment involved precooling the house by setting the setpoint of 

the HVAC to about 68 °F (this is within the comfort preferences of the residents) for a 

period of time outside the anticipated peak LMP period, and then returning the setpoint 

back to the normal temperature of 73 °F. Data for an example day on which a virtual energy 

storage experiment was conducted is shown in Figure 9. Temperature data is collected 

using the Ecobee Smart Si thermostat, equipped with an online portal from where data is 

downloaded. The HVAC energy data is collected from power sensors, and the real-time 

LMP data is obtained from PJM’s website [65].  

 We used a simple approach when precooling—we manually observed expected 

temperatures and picked times where LMPs were typically out of peak for precooling. 

More sophisticated precooling is possible as we elaborate upon in Section 7.1. Since this 

was a preliminary evaluation conducted to give us a sense of direction for building our 

model, and the realities of physical experiments of this type is that we have no control over 
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the conditions, we had to go with a simple rule of thumb approach to obtain some data that 

would still provide us with insights on virtual energy storage. 

 

Figure 9. Data from microgrid for example day when virtual energy storage was used. 

 

4.2 Data Analysis and Cost-Savings Computations  

 For each of the 8 days, we obtained 𝐸𝑐 and 𝐸𝑑 by identifying an equivalent day 

where no energy storage was used—based on the outside temperature profiles for both 

days—and computing 𝐸𝑐|𝑛𝑒𝑠, 𝐸𝑝|𝑛𝑒𝑠, 𝐸𝑐|𝑣𝑒𝑠, and 𝐸𝑝|𝑣𝑒𝑠 from the HVAC power data. 𝑇𝑝 

(essential to finding 𝐸𝑝|𝑛𝑒𝑠 and 𝐸𝑝|𝑣𝑒𝑠) was defined as the time when the LMP was above 



 

 

 

45 

 

the peak threshold. The peak threshold (dotted lines in LMP plots of Figure 8 and Figure 

9) is the value of the LMP that is one-half a standard deviation greater than the average 

LMP computed from only the positive LMP values for that day 

 
𝐿𝑀𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐴𝑣𝑔(𝐿𝑀𝑃) +

1

2
𝑆𝑡𝑑𝑒𝑣(𝐿𝑀𝑃), 

where 𝐿𝑀𝑃𝑖 ∈ 𝐿𝑀𝑃 | 𝐿𝑀𝑃𝑖 > 0 

(7) 

The monetary costs for 𝐸𝑐 and  𝐸𝑑 are computed using the average LMP method in 

Equation (4). 

 For the computations, we use the average LMP of the virtual storage day because 

that is the day for which we are actually carrying out the energy savings strategy. Although 

the baseline day has its own LMP value, this baseline day is only used as a reference in 

order to enable us compute 𝐸𝑐 and 𝐸𝑑.   

 The capital cost for VES is based on the estimated cost of purchase and installation 

of about $349 for the Ecobee smart thermostat system [56, 57]—which we use to monitor 

and control the HVAC—and an expected lifetime of 3 years based on its warranty [56]. 

This VES cost is inexpensive compared to the estimated purchase and installation costs of 

the BES systems which we compare it to. These BES systems cost between $6500 and 

$7700 (See Table 1)13. 

                                                 

 

13 We used the batteries in Table 1 for our physical experiments but, for our simulations, we updated our 

battery selection as depicted in Table 2. 
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 For our experiments, the house’s quality of insulation was maintained i.e. we used 

the testbed as is—without modifying the house any more than the researchers in [3, 4] had. 

For this reason, insulation costs are not considered capital costs in our specific case. In 

other cases, such consideration may be necessary and insulation would have to be factored 

in. We even see the potential for insulation with active VES to be its own approach to 

improving load management since the passive VES we mention in our insights into virtual 

storage (Section 7.1) can be augmented by this insulation. In general we do not view these 

mechanisms (VES, BES, insulation, etc.) as mutually exclusive. Any combination of them 

can be considered in the model and applied as a strategy if that combination is found to be 

cost-effective. 

 As mentioned earlier, a key part of this work is comparing the cost-effectiveness of 

VES to the more traditional and widely-advocated BES. To do this, for each day, we looked 

for a battery (either grid-synchronous or island-mode-only) that had a capacity as close as 

possible to the 𝐸𝑑  achieved by VES. With this, we then computed the cost savings for that 

battery using the following simplifying assumptions: the battery is used to displace an equal 

amount of energy as the VES mechanism i.e. 𝐸𝑑|𝑏𝑒𝑠 =  𝐸𝑑|𝑣𝑒𝑠; 𝑇𝑐 is the same for BES and 

VES allowing us to use the same average LMP for both mechanisms; and 𝐸𝑐 = 𝐸𝑑, implying 

a 100% efficient battery and also implying that any energy used from the battery during 𝑇𝑝 

was previously put into the battery during 𝑇𝑐. In other words, that the battery was charged 

just the right amount of time such that 𝐸𝑐|𝑏𝑒𝑠 would equal 𝐸𝑑|𝑏𝑒𝑠. We computed  



 

 

 

47 

 

𝐶(𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) for the battery based on its estimated purchase and installation cost, as well 

as its expected lifetime based on its warranty. 

 

4.3 Results 

 Figure 10 (obtained from data in Table 1) shows the results of the cost savings for 

6 out of the 8 virtual storage days.  

 

Figure 10. Results from VES experiments and cost-effectiveness14 comparison to 

equivalent BES for days in summer 2016. 

Figure 10 does not show 2 of the virtual storage days because, for those days, we actually 

had increased energy use in 𝑇𝑝, resulting in negative 𝐸𝑑 which is undesirable. These 

negative 𝐸𝑑 values occurred because on those days, we precooled too late, causing us to 

                                                 

 

14 Cost-effectiveness here is per day. However, in our simulations (Chapter 6), the cost-effectiveness is 

computed on a yearly basis.  
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charge the house during some parts of the peak period. This meant a greater energy use 

than on their comparable baseline days—an unwanted scenario. 

 We learned from these negative 𝐸𝑑 values the importance of precooling right 

before peak—not too early so that energy is not dissipated before its intended time of use 

(i.e. the peak period), and not during the peak period. 

 

Table 1. Results from VES Experiments and Cost-Effectiveness Comparison to 

Equivalent BES for Days in Summer 2016.  

VES  

Day 

 

Eqv. 

NES 

Day 

𝑬𝒅 
kWh 

𝑬𝒄 
kWh 

Equivalent  

BES 

BES  

Capacity 

kWh 

BES 

Expected 

Lifetime 

(years) 

BES 

Equip. 

Cost 

($) 

𝑪(𝑩𝑬𝑺) 

($) 

𝑪(𝑽𝑬𝑺) 

($) 

8/10 8/14 10.9 1.7 

Tesla 

Powerwall 2 

[66] 

13.5 10 6500 -1.16 0.57 

8/11 8/14 3.4 3.5 

Sonnen- 

batterie  

Eco-compact 

[67] 

4.0 10 7700 -1.83 -0.04 

8/31 8/30 8.1 4.9 
Tesla  

Powerwall 2 
13.5 10 6500 -1.61 -0.08 

9/1 8/30 5.1 5.4 

LG Chem 

RESU 6.4EX 

[68, 69, 70] 

6.4 10 6750 -1.84 -0.32 

9/2 9/3 9.1 3.5 
Tesla 

Powerwall 2 
13.5 10 6500 -1.78 -0.21 

9/5 9/6 4.1 3.8 
LG Chem 

RESU 6.4EX 
6.4 10 6750 -1.78 -0.25 

    

 Overall, we found that VES tends to be more cost-effective than BES and in some 

cases by an order of magnitude. Except in one VES case, both approaches had negative 

cost-effectiveness. For the VES case, this is due to the short expected lifetime of the Ecobee 

system as well as its inexpensive purchase and installation cost. These preliminary results 
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give us added motivation for building a model to simulate the house behavior. This model 

will help in further studies of storage mechanisms and their implications for residential 

load management.    

  We expect that with such a model, we can develop better load management 

strategies based on VES, gain better insights into its cost-effectiveness compared to BES, 

and provide tools that can help with reducing cost of these technologies to make them more 

cost-effective, or that will inform policy discussions around incentivizing investment in 

these technologies for the benefit of the entire energy industry. 
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5 Modeling the Cyber-Physical Home 

The testbed described in Chapter 3 can be used in two major ways:  

i. As a data collection platform  

ii. As an adaptive cyber-physical system  

For us to use it as an adaptive cyber-physical system, we need the ability to explore various 

load management strategies. As seen from Chapter 4, physical experiments make it 

difficult to compare multiple strategies, in an “apples-to-apples” fashion for the same day. 

Remember that for each of the 8 days in the physical experiments (Section 4.3) we obtained 

𝐸𝑐 and 𝐸𝑑 by identifying an equivalent day where no energy storage was used. We then 

computed the virtual storage charge and displaced energies by comparing the virtual 

storage day to the somewhat equivalent baseline day.  

 In a physical experiment, once virtual storage was conducted on the house, and we 

collected the data, that was the end of the experimental process—we had no idea what 

might have happened if we had tried to precool in a different way. Thus, we find it 

necessary to build a simulation framework—for modeling a house that can potentially act 

as a cyber-physical system. As discussed in Chapter 3, our approach is a cyber-physical 

systems one because it uses data obtained from wireless sensing technology to adapt to 

changing environmental conditions as well as energy prices [45]. Figure 11 illustrates the 

basic idea behind this operation of the home. 
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Figure 11. Testbed as a cyber-physical system with information flow and control 

indicated. 

 

5.1 General Modeling Framework 

 The aim of our model is to help quantify VES in both energy and monetary terms, 

test and validate home energy optimization strategies of varying complexities, compare the 

energy and cost savings of VES to those of BES, and motivate further research and other 

applications while doing all these in a scalable fashion. The goal of this work is not 

necessarily to determine the best VES and/or BES algorithm but to create a platform 
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through which this determination can be made. Consequently, our model serves as a 

research tool.  

 We build our modeling framework in MATLAB and Simulink and we employ a 

modular approach comprising of the four black boxes outlined in Figure 12. Each black 

box performs specific functions which we detail in Sections 5.2 to 5.5.  

 

Figure 12. General load management framework. 
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5.2 Black Box 1: Data Extraction  

 Simulations in our model run on the recorded actual outdoor temperature for 

previous days of interest as well the recorded real-time LMP data for such days. BB1 takes 

in the archived/recorded real-time LMP and Ecobee Smart Si data files from our testbed. 

The user specifies the date15 and the type of storage being employed—either VES or 

BES—and the black box returns the outdoor temperature recorded by the Ecobee Smart Si 

thermostat, the HVAC temperature setpoint profile for that day (which it generates 

automatically based on the strategy chosen), and the hourly LMP data for the Citizens’ 

Electric node, in the PPL zone, of PJM’s network.  

 The residential testbed is divided into two levels: upstairs and downstairs. For ease 

of analysis, we only use the data from the downstairs thermostat in this our proof-of-

concept framework. In the future, the framework may be expanded to include the upstairs 

section of the house in order to get a more detailed and holistic understanding of our 

specific testbed. Nevertheless, to acquire a fundamental understanding that lets us grasp 

the implications of virtual energy storage on individual as well as global levels, we do not 

                                                 

 

15 Our analysis is focused on spring and summer days in 2016, specifically: June 1, 2016 to August 31, 2016. 

On these days, the HVAC was programmed to cool the house. It is assumed that similar analyses can be 

carried out on days when the HVAC is set to heat the house. 
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need to include both sections of the house. It is our understanding that the implications of 

virtual energy storage will be the same for both sections of the house.  

 

Figure 13. BB1: Data Extraction (detailed). 

 The “Data Extraction" black box is expressed in more detail in Figure 13. In this 

black box, the strategy chosen will determine the setpoint. If BES is selected, then a 

constant setpoint is maintained throughout the day. This is because the battery does not 

change the HVAC behavior; the battery’s purpose is to reduce the amount of energy drawn 
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from the grid during peak periods. Thus, for BES, the HVAC behaves the same as it would 

in the NES case i.e. the case where no energy storage strategy is employed.  

 On the other hand, if VES is selected, the setpoint is kept at a temperature lower 

than the NES (baseline) temperature, for a certain amount of time before peak. This amount 

of time is what we call the charge period—the period when we charge the house by 

precooling. Outside the charge period, the temperature is set at the regular baseline 

temperature.  

 Therefore, the thermostat settings for BES are kept the same as in the NES case. It 

is only when conducting VES that the framework needs to actively manipulate the 

thermostat settings.  

 

5.3 Black Box 2: House Model  

 This black box captures (approximately) the thermal behavior of the house. It is 

currently implemented as a Simulink model. There are two parts to this model. The first is 

the natural thermal model of the house that takes the HVAC behavior into consideration. 

The second part is a model of the HVAC behavior which includes calculations of the power 

used by the HVAC (based on its behavior). 
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5.3.1 Thermal Model (with HVAC) and Model Validation 

Our model of the house is of the form:  

 
𝑑𝑇𝑖𝑛(𝑡)

𝑑𝑡
=  𝛼1(𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑖𝑛(𝑡)) + 𝛼2

𝑑𝑇𝑜𝑢𝑡(𝑡)

𝑑𝑡
+  𝛼3𝛽HVAC(𝑡) (8) 

The terms associated with 𝛼1 and 𝛼2 capture the behavior of the indoor temperature of the 

house when the HVAC is off (where it only reacts to the outdoor temperature). The 

coefficients, 𝛼1 and 𝛼2, are proxies for the insulation as well as temperature response 

properties of the house. The value 𝛼3 represents the effect of the HVAC on the indoor 

temperature and β𝐻𝑉𝐴𝐶(𝑡) is a Boolean variable that indicates whether the HVAC is on or 

off at a particular point in time.  

 

Figure 14. Visual representation of the house thermal model. 
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 The model can be represented visually as shown in Figure 14, where the house 

model takes in the outdoor temperature as well as the HVAC on/off signal and produces 

the corresponding indoor temperature over time (which is fed back into to the model for 

the model to work). 

 The model parameters (𝛼1, 𝛼2, 𝛼3) were determined from data collected on the 

testbed (in spring and summer 2016 for months of June, July, and August) through a 

combination of multiple regressions followed by manual tweaks to the values to ensure a 

better fit.  

 To determine 𝛼1 and 𝛼2, we looked at contiguous data when the HVAC was off. 

There were days in June, July, and August 2016 where we could have set up the house to 

run the “HVAC-off” scenario as the premises was unoccupied for a few days, but since we 

could only get access to control the house later in that period, we had to rely on previously 

collected data and extract as many samples of contiguous data as we could.  

 To determine 𝛼3, we looked at periods where the HVAC was off for a brief interval 

that was followed by the HVAC being turned on. 𝛼3 roughly captures the slope 

representing the change in indoor temperature due to HVAC action. The values we arrived 

at were: 𝛼1 = 2 × 10-5, 𝛼2 = 0.9, and 𝛼3 = -7.5 × 10-4.  

 To validate our thermal model, we ran the archived outdoor temperature and HVAC 

setpoint data through it. We then compared the indoor temperature that the model produced 

to the archived indoor temperature for that day. We computed the root mean-squared error 
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(RMSE) of these indoor temperature data for each day we ran (we ran all the days in June, 

July, and August (92 days)). The RMSEs for different combinations of test data are shown 

in Figure 15.  

 

Figure 15. Root mean-squared error of model output to recorded data. 

 Overall, the RMSE is centered between 2 and 3 oF with some variation between the 

days. We found this to be good enough for our purposes since our aim was to compare 

VES and BES on the same set of conditions, which this model gives us, though the realism 

with respect how accurately it models our particular testbed is limited. 
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5.3.2 HVAC Behavior and Power Model 

 The model of the HVAC system reacts to both the HVAC setpoint and the indoor 

temperature to determine whether or not to turn on the HVAC cooling mechanism. We 

modeled a simple thermostat with hysteresis where cooling is carried out if the indoor 

temperature gets higher than some threshold above the HVAC setpoint. Similarly, the 

HVAC is turned off if the indoor temperature gets lower than a threshold below the HVAC 

setpoint. More complex models can easily be provided in future projects that leverage our 

work.  

 

Figure 16. Hybrid system model of HVAC behavior and power consumption. 

 Also, since we are interested in the power consumption of the HVAC, the model 

also outputs the HVAC power in each state. When we say the HVAC is “off”, we actually 
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mean it is in some idle state drawing idle power. This HVAC behavior and power can be 

captured in the simple hybrid system model [71, 72] shown in Figure 16. We determined 

the values for 𝑃𝑖𝑑𝑙𝑒 and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 from analysis of the HVAC power data recorded by the 

testbed and found 𝑃𝑖𝑑𝑙𝑒 to be around 0.1 kW and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 to be around 4 kW. 

5.3.3 Overall Model 

 The overall model combines the house thermal model with the HVAC behavior 

model. It reacts to the given setpoint data (control input), the outdoor temperature 

(environment), and initial indoor temperature to produce the indoor temperature profile and 

the HVAC power consumption.  

 A part of the “cyber” in the cyber-physical systems model is in the behavior of the 

HVAC itself. The other parts of this “cyber” are actually outside the overall house model 

that is illustrated in Figure 17 and Figure 18. These other “cyber” parts are seen in Black 

Box 1 where we have an algorithm that defines the VES strategy, and in Black Box 4 where 

we have an algorithm that we can apply to find out how to utilize the battery in the most 

cost-effective ways.  

 Note that the HVAC reacts to the setpoint so it can be controlled, to some extent, 

by this variable. In fact, this is how we model VES algorithms in our framework: by 

providing the HVAC with a setpoint that forces it to cool the house down during non-peak 

LMP periods. 
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  The overall model of the house can be viewed in two ways. We can look at it 

simply as connecting the HVAC behavior model to the house thermal model as shown in 

Figure 17. This provides an explicit separation of the HVAC behavior and thermal response 

and also helps with implementation. 

 

Figure 17. Overall model of the house: HVAC behavior model connected to house 

thermal model. 
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 The second way to view this model is as a combined hybrid system, as in Figure 

18, where the behavior of the HVAC is not explicitly shown. This viewpoint provides a 

more compact mathematical representation and can help with developing optimization 

algorithms as well as for performing formal verification [73] on the model and algorithm 

to ensure they behave as expected.  

 Nevertheless, our focus is more on simulation to compare VES to BES and less on 

system development and verification. Despite this focus on simulation, system 

development and verification considerations are still important to keep in mind. 

 

Figure 18. Overall model of the house: viewed as a combined hybrid system.  
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5.4 Black Box 3: VES Cost and Energy  

 This black box, detailed in Figure 19, takes in as input the simulated HVAC power, 

the real-time LMPs for the Citizens’ Electric node on PJM’s network, the total purchase 

and installation cost of VES equipment and the average expected lifetime of this 

equipment.  

 

Figure 19. BB3: VES Cost and Energy (detailed).  



 

 

 

64 

 

 The black box outputs the energy used to virtually “charge” the home as well as the 

energy displaced by this storage mechanism, together with their respective costs. This 

black box also returns the effective amount of money the consumer saves (taking into 

consideration yearly-amortized equipment costs) by deploying virtual storage, 𝐶(𝑉𝐸𝑆).  

 For a given day, we can simulate the HVAC power consumption if VES were 

employed as well as if there was no energy storage (NES) carried out. The difference 

between these two scenarios is simply the definition of the cool setpoint in BB1. The NES 

cool setpoint (same as the BES cool setpoint for reasons detailed in Section 5.2) will be a 

predetermined constant temperature for the entire day. The VES cool setpoint, however, 

will involve precooling a certain number of hours prior to peak.  

 Since, with regards to any day for which virtual storage is simulated, we will need 

to compute 𝐸𝑑 and 𝐸𝑐 (as these are not directly measurable without a point of reference), 

we will have to simulate the same day in the NES mode to provide this baseline reference 

with which we can calculate the VES charge and displacement energies.  

 BB3, presented in Figure 19, makes this requirement clearer by stipulating that the 

HVAC input power for any given day is taken as two data streams: one for VES and the 

other for the exact same day in NES mode. By doing this, we can calculate hourly versions 

of 𝐸𝑑 and 𝐸𝑐 for VES, whereas this was difficult to do when we conducted VES tests in a 

physical experimental fashion. 
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 This hourly 𝐸𝑑 and 𝐸𝑐 data, together with the real-time LMP (also given hourly) 

can be used to calculate 𝐶(𝐸𝑑) and 𝐶(𝐸𝑐) values for VES by using Equation (3) repeated 

here.  

𝐶(𝐸∗) = ∑ 𝐸∗|𝑡𝑘

𝑡𝑘∈𝑇∗

⋅ 𝐿𝑀𝑃𝑡𝑘
 

where 𝑇∗ (𝑇𝑝 or 𝑇𝑐) is the period under consideration, 𝐿𝑀𝑃𝑡𝑘
 is the LMP value for a given 

hour, 𝑡𝑘, in either of the two specified periods, and 𝐸∗|𝑡𝑘
 is the corresponding displaced or 

charge energy for the given hours which comprise 𝑇𝑝 or 𝑇𝑐. 

 We compute total 𝐶(𝐸𝑑) and 𝐶(𝐸𝑐) for the period we considered (spring and 

summer 2016, assuming this duration to represent a typical year of storage use). We also 

computed the 𝐶(𝑉𝐸𝑆) for the year.  

 

5.5 Black Box 4: BES Cost and Energy  

 This black box details how 𝐶(𝐸𝑑), 𝐶(𝐸𝑐), and 𝐶(𝐵𝐸𝑆) are calculated for the BES 

case, using the following inputs: the average expected lifetime of the BES equipment, the 

BES equipment cost, HVAC power, 𝐸𝑑|𝑣𝑒𝑠, real-time LMP, and the charge rate of the 

battery. 

 Since we want to compare virtual energy storage to the more widely-advocated 

battery energy storage in an “apples-to-apples” fashion, we assume (as in Section 4.2) that 

the batteries are used to displace an amount of energy equal to that displaced by VES, 
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leading us to set 𝐸𝑑|𝑏𝑒𝑠 = 𝐸𝑑|𝑣𝑒𝑠 (this will give a conservative estimate that can be used as 

a point of reference to consider other possibilities).  

 

Figure 20. BB4: BES Cost and Energy (detailed). 

To ensure we achieved this specification, we found batteries that are able to supply the 

maximum value of 𝐸𝑑|𝑣𝑒𝑠 that was obtained during the period we considered (spring and 

summer 2016, assuming this duration to represent a typical year of storage use). We want 

these batteries to be able to supply this maximum 𝐸𝑑|𝑣𝑒𝑠 over their lifetime, even after the 
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degradation of capacity to 80% of the original which is commonly marked as the end of 

life [74]. The batteries also have to be able to support the active power demand of the 

HVAC system (roughly 4 kW)16 regardless of their capacity. Of the larger list of batteries 

in Table 3, we ended up with 10 batteries that meet these criteria.  

 In addition to the case where we set 𝐸𝑑|𝑏𝑒𝑠 = 𝐸𝑑|𝑣𝑒𝑠, we considered a second case 

where the battery supplied energy (up to its dischargeable17 capacity) to the HVAC system, 

during the peak period. This scenario is a best-case one. In these best-case scenarios, we 

typically have 𝐸𝑑|𝑏𝑒𝑠 > 𝐸𝑑|𝑣𝑒𝑠. There are two options for the battery discharging its 

dischargeable capacity in peak:  

i. The battery’s dischargeable capacity is greater than the HVAC peak period 

demand. 

ii. The battery’s dischargeable capacity is less than the HVAC peak period 

demand, thus the battery depletes all its dischargeable capacity during 𝑇𝑝 but 

still is unable to meet the entire peak demand. 

 In BB4 (expressed in Figure 20), we see that the total HVAC energy used, on any 

day when the BES mechanism is deployed, will be equal to that used if the NES scenario 

                                                 

 

16 We specify 4.15 kW in our algorithm that selects the battery in order to give us some “buffer”. 
17 We define dischargeable capacity here to mean:  

 Dischargeable Capacity = Usable Capacity × Round-Trip Efficiency (RTE) 
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were employed for the entire day. The reason for this is that we are not modulating the 

HVAC behavior on BES days. Rather, we are simply changing the sources that supply 

energy to the HVAC in the peak period (grid for the entire 𝑇𝑝|𝑛𝑒𝑠; battery for all or part of 

𝑇𝑝|𝑏𝑒𝑠).   

 Since we want to obtain maximum savings, we discharge the battery during the 

hours of 𝑇𝑝 that will give us the maximum 𝐶(𝐸𝑑|𝑏𝑒𝑠). Likewise, we find the minimum 

amount of money it would cost us to charge the battery in the hours leading up to the peak 

period18 i.e. we find the minimum possible 𝐶(𝐸𝑐|𝑏𝑒𝑠). Note that 𝐸𝑐|𝑏𝑒𝑠 is determined using 

the round-trip efficiency (RTE) of the battery: 

 𝐸𝑐|𝑏𝑒𝑠 =  
𝐸𝑑|𝑏𝑒𝑠

𝑅𝑇𝐸
 (9) 

 Finally, similar to Black Box 3 (Section 5.4), we compute yearly 𝐶(𝐸𝑑|𝑏𝑒𝑠), 

𝐶(𝐸𝑐|𝑏𝑒𝑠), and 𝐶(𝐵𝐸𝑆) for both scenarios (𝐸𝑑|𝑏𝑒𝑠 = 𝐸𝑑|𝑣𝑒𝑠 and best-case).     

  

                                                 

 

18 We denote the hours leading up to the peak period by 𝑇𝑝𝑟𝑒 and we define this duration as the hours from 

the start of the day to the peak period. Theoretically, we could also charge the battery the night before BES 

is to be carried out, if LMP prices are more favorable during those hours than on the storage day. However, 

we leave the addition of this level of complexity to future work and we strictly focus on pre-peak hours that 

belong to the BES day. 
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6 Simulation Experiments, Analyses, and Results 

 Using our model developed in Chapter 5 and programmed in MATLAB and 

Simulink, we run BES and VES simulations for 92 days (June 1, 2016 to August 31, 2016) 

that typically have high temperatures and thus would necessitate cooling of the testbed. 

Table 2. Batteries for Comparison to VES. 

Battery Chemistry Usable 

Capacity 

(kWh) 

Charge 

Rate 

(kW) 

Round-

trip 

Efficiency 

Cost19 

(USD) 

Cycle 

Life 

(Cycles) 

LG Chem 

Resu 10 

LiNiMnCoO2 8.8 5.00 0.95 6512 3200 

LG Chem 

RESU 6.5 

LiNiMnCoO2 5.9 4.20 0.95 4884 3200 

Akasol 

neeoQube 

LiFePO4 5.0 5.00 0.98 8880 7000 

DCS PV 10.0 LiFePO4 10.0 5.12 0.98 7399 5000 

BMZ ESS3.0 LiNiMnCoO2 5.4 8.00 0.97 5929 5000 

Magellan 

HESS 

LiNiMnCoO2 11.5 5.00 0.97 15244 4000 

GridEdge 

Quantum 

Na-NiCl2 7.7 4.50 0.95 14800 3500 

Ampetus 

Energy Pod 

LiFePO4 11.5 5.00 0.97 8425 4400 

Sunverge SIS LiFePO4 9.9 5.00 0.96 19240 7000 

Alpha-ESS 

ECO S5 

LiFePO4 13.0 5.00 0.95 9158 6000 

                                                 

 

19 Cost values were originally given in Australian dollars. We converted the values to U.S. dollars. 

Conversion was done based on the currency-market rate on May 10, 2017.   
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 We selected the batteries for our simulation from a choice of 27 batteries taken from 

a well-documented dataset maintained by SolarQuotes [55]. The batteries are listed in 

Table 3 (which is found in Section 10.1 of the Appendix). We picked batteries that would 

meet the HVAC active demand of 4 kW at their steady discharge rate and that had enough 

capacity to offset as much energy as the best possible VES day in the period we considered. 

This gave us 10 batteries (listed in Table 2) for comparison. 

 

6.1 Energy Behavior and Savings Margins 

6.1.1 Energy Behavior 

 The first comparison we performed was in the energy behavior of both VES and 

BES. We wanted to model VES in terms of a battery as much as possible so we considered 

both the capacity and round trip efficiency values as shown in Figure 21.  

 In Figure 21, we can see the cyber-physical nature of VES manifesting itself with 

the variation in both capacity and roundtrip efficiency shown by the error bars. Since VES 

depends on an algorithm reacting to physical conditions to produce the effect of being a 

battery, the behavioral strategy is unfortunately at the mercy of these physical conditions. 

In fact, it is possible for VES (based on the way we defined the displaced energy and charge 

energy—relative to a baseline day) to exhibit roundtrip efficiencies greater than 100% and 

also to have negative displaced energy. For Figure 21, however, we only considered days 
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that would give physically meaningful roundtrip efficiencies (i.e. between 0 and 100%) as 

well as displaced energies that implied positive capacity. 

 

Figure 21. Round-trip efficiency and daily kWh-capacity of storage mechanisms. 

6.1.2 Savings Margins 

 Based on the energy used to charge and discharge both VES and BES, we computed 

the daily savings margins i.e. (𝐶(𝐸𝑑|𝑒𝑠) −  𝐶(𝐸𝑐|𝑒𝑠)) where “es” denotes the storage 
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mechanism—either VES or BES. For the batteries, we looked at two cases. The first was 

assuming that the battery offset as much energy as VES did that day and the second was 

assuming that the battery offset as much of the HVAC peak period energy as it could, given 

its capacity.  

 For both cases, we assume the battery was charged during the period that would 

produce the lowest possible charge cost and was used within the period where cost would 

have been greatest had that energy been consumed from the grid. The rest of our analysis 

considers these two assumptions about BES use. The summary of daily margins is shown 

in Figure 22. 

 

Figure 22. Summary of daily savings margins of storage mechanisms.  
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  The batteries always have positive margins and have higher margins compared to 

VES (which also has some positive margins but also some negative ones). This is because 

we can more easily control when we charge and discharge batteries to ensure we get the 

best possible savings. We are limited, however, in how far ahead of peak we can “charge” 

with VES since charging comes at cost and the house starts to leak energy (even if slowly) 

the moment the HVAC is turned off.  

6.1.3 Insights into Margins 

 We briefly explored factors that might contribute to the daily margin fluctuations 

for VES as well as for the batteries. Figure 23 – Figure 25 show the margins for each day 

in the months of June, July, and August with corresponding profiles of the outdoor 

temperature during the peak and pre-peak hours. 

 Overall, on days where temperatures are higher in the peak period and there is less 

temperature overlap between the peak and pre-peak periods, we see more savings in both 

the VES and BES cases. Further analysis of these relationships could help in the 

development of optimal VES algorithms. 
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Figure 23. Margin-temperature relationship (June). 
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Figure 24. Margin-temperature relationship (July). 
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Figure 25. Margin-temperature relationship (August). 
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6.2 Overall Cost-Effectiveness with No External Incentives 

 

Figure 26. Yearly capital cost and nominal lifetime of storage equipment. 

 To consider the overall cost-effectiveness as mentioned in Section 3.2, we have to 

account for the cost and lifetime of the equipment that allows us to get the savings margins 
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shown previously. The costs and lifetimes20 for the BES mechanisms we considered as 

well as for VES are shown in Figure 26. We look at the equipment cost yearly since it gives 

the consumer a sense of what their typical overall costs will be. 

 Since we only looked at data from three months in the year in spring and summer, 

the implicit assumption is that the consumer is mainly interested in employing storage 

strategies during these three months. However, we note that since the consumer must 

purchase the equipment, they must bear the losses resulting from not employing the 

mechanisms year-round.  

 We also assume that 2016 is a representative year since it is the 2016 savings 

margins we use in our overall cost-effectiveness assessments. To get overall cost-

effectiveness, we combine capital costs with the savings margins as shown in Figure 27.  

 Notice that no VES or BES strategy is cost effective (i.e. they all fail to show 

positive values). This is because even though we get some daily savings by employing 

these strategies, the capital costs dominate and thus make the overall cost-effectiveness 

negative. Therefore, VES is attractive because its capital cost is smaller than those of BES 

and it appears (assuming our model matches some house perfectly) to be more cost-

effective than all the batteries. 

                                                 

 

20 These we obtained by dividing the cycle life in Table 2 by 365.25 days in a year—assuming the battery 

were to be used daily. This is a simplifying assumption, but it gives lifetime values that are reasonable enough 

for us to achieve our aim—to understand the implications of BES and VES relative to each other.  
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 Results shown in Figure 27 allude to the point that there has to be some incentive 

for a residential customer to either purchase a battery or VES equipment, else there is no 

rational economic reason for carrying out these strategies, from a customer’s 

perspective [75]. The next section discusses some of such incentives. 

 

Figure 27. Overall yearly cost-effectiveness without external incentives. For the 

batteries: the blue bars represent the case where 𝐸𝑑|𝑏𝑒𝑠 = 𝐸𝑑|𝑣𝑒𝑠 and the yellow bars 

represent the best-case scenario. 
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6.3 Overall Cost-Effectiveness with PJM Capacity Credit 

Incentives 

 In order for PJM to make sure that there is enough energy supply to meet future 

demand, it operates a capacity market [76, 77]. In this market, generators bid to supply 

energy if called upon at some point in the future. Generators whose bids are accepted are 

expected to have enough capacity so that whenever they are called upon, they will supply 

their capacity obligation.  

 At PJM capacity auctions, traditional power plants as well as demand-side and 

efficiency resources can bid for capacity. In other words, there is no distinction between a 

1-MWh capacity obligation from a coal-fired power plant and a 1-MWh of capacity 

obligation from load management techniques [78]. The power plants and demand-side 

companies who have their bids accepted get paid the agreed capacity rate, regardless of 

whether or not they are later called upon by PJM to supply (or cut down, in the case of load 

management) power [75].  

 Based on this information about PJM’s capacity market, we looked at the case 

where a consumer works to be involved in the capacity market as a generator (probably 

through a third-party demand-response aggregator).  

 For the BES case, we reasoned that the capacity provided would be the average 

capacity over the battery’s lifetime since battery capacities degrade over time. We also 
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assumed an 80% capacity at end of life [74] and linear capacity degradation throughout the 

battery’s lifetime.  

 

Figure 28. Yearly capacity credits for the storage mechanisms. 

 For the VES case, we used the average displaced energy (𝐸𝑑|𝑣𝑒𝑠) in 2016 as its 

capacity. Based on PJM’s capacity agreement with generators in the PPL zone (where our 

testbed is situated) for $163.27/MW-day [77], we estimated the capacity payments that 
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each strategy would receive yearly if residential customers could bid21 into PJM’s capacity 

market. (Again, we are assuming 2016 to be the typical year). Results are shown in Figure 

28.  

 We recomputed the overall cost-effectiveness assuming the customer also receives 

the total22 capacity payment for being a generator in the capacity market. These results are 

displayed in Figure 29.  

 From the results in Figure 29, we see that the capacity payment makes VES become 

cost effective (within the assumptions of our modeling). The Alpha-ESS ECO S5 and the 

DCS PV 10.0 batteries also become cost-effective.  

 These results make sense for VES because the capital cost for VES is fairly small 

so a small incentive is all that is needed in order to cross into positive cost-effectiveness. 

In the case of the two cost-effective batteries, their yearly capital costs are lower than many 

of the other batteries we considered. Also, they have relatively high kWh capacity 

compared to the other batteries.  

   

                                                 

 

21 If this situation were to occur in reality, it is more likely that a third-party demand-response/load-

management aggregator would be in charge of this entire bidding process. In addition, the capacity 

contributions of an individual consumer may not be passed down, in its entire monetary equivalent, from the 

third party to the consumer. 
22 This situation is unlikely—for the same reason in the previous footnote.   
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Figure 29. Overall yearly cost-effectiveness with PJM capacity credits as an external 

incentive. For the batteries: the blue bars represent the case where 𝐸𝑑|𝑏𝑒𝑠 = 𝐸𝑑|𝑣𝑒𝑠 and the 

yellow bars represent the best-case scenario. 

 With respect to capacity, therefore, we see the ratio of yearly capital cost to kWh-

capacity as the deciding factor for whether or not a storage mechanism will be cost-
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effective in a year. In fact, the three mechanisms that give positive cost-effectiveness have 

the three lowest ratios of yearly capital cost to kWh-capacity as illustrated in Figure 30. 

 

Figure 30. Ratio of yearly capital cost to kWh-capacity of the storage mechanisms. The 

PJM capacity credit for the typical year considered (2016) is $59.63/kW-yr. 

 In general, the lower the ratio of capital cost to kWh-capacity, the likelier it is that 

PJM capacity credits will offset a consumer’s investments (also factoring in what it costs 

to charge the storage mechanism).  

 These results highlight the need for incentives to make storage mechanisms 

worthwhile for the customer, given the current costs and lifetimes of these technologies. 
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Nevertheless, general improvements in the technologies (reduced costs or longer lifetimes) 

would make them more cost effective and reduce the need for incentives.  

 On the issue of incentives, we know that rooftop (residential) solar panels are 

affordable because the incentives received in the form of Solar Renewable Energy 

Certificates (SRECs) [79, 80] make their residential deployment more economically viable 

than standalone BES or VES.  

 It is also important to note that, from an incentives perspective, VES is the easiest 

mechanism to incentivize (at least according to our modeling) because it is the closest to 

positive cost effectiveness. On the other hand, the cost-effectiveness of batteries vary 

widely from battery to battery. 
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7 Discussions and Conclusion23 

7.1 Insights into Virtual Energy Storage 

 The first key insight is that virtual energy storage is always going on in a house. 

This phenomenon is governed by the outside temperature (which puts energy into the house 

or draws energy out of it) and the behavior of the HVAC (which, like the outside 

temperature, also puts energy into the house or draws energy from it). In essence, the user 

wanting to maintain a set temperature range in the house is analogous to keeping a “virtual 

battery” within a certain charge. We can call this process passive virtual energy storage. 

On the other hand, the approach we have employed here is what one could call active 

virtual energy storage. In this case, by using sensors and other information sources to 

understand environmental conditions and energy prices, we can improve the cost of active 

energy needed to maintain temperature (or virtual charge) within a certain range of 

temperatures known to be still acceptable to the user. In our data collections, power sensors 

were critical to determining the overall effects of this phenomenon. In a system that takes 

advantage of VES, these sensors and additional information sources would combine to 

form a virtual sensor that the system uses to manage energy use. 

                                                 

 

23 Majority of this Chapter was published in the Proceedings of the 2017 IEEE Sensors Applications 

Symposium: P. Asare, C. Ononuju and P. M. Jansson, "Preliminary Quantitative Evaluation of Residential 

Virtual Energy Storage Using Power Sensing," in Sensors Applications Symposium, Glassboro, 2017. 
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 There are a few key insights about the behavior of virtual energy storage based on 

our explorations that can improve on the simple approach used in this work. First is the 

fact that we are partially in control of “charging” this energy source. For example, if we 

precool the house to about 68°F and then stop active precooling, the outside temperature 

may act to keep the temperature close to this value without any further intervention on our 

part. In this case, one can say that the outside temperature is also “charging” the house. 

This process is something we do not control, but it is something we can anticipate (based 

on weather forecasts) in order to “charge” more intelligently and reduce the amount of 

active energy required. Conversely, the outside temperature may act to “leak” stored 

energy before our desired time of energy use. In traditional BES, we have control over 

when energy goes in and when energy is discharged from the battery, and batteries are 

designed to leak as little energy as possible between charge and use. In VES, however, we 

do not have that luxury of perpetual storage. This means, for example, it is usually better 

to “charge” the house (precool or preheat) closer to when the energy is most needed, 

accounting for the effects (both positive and negative) of the outside temperature as well 

as the monetary cost of the energy needed to “charge” the house. How much “charging” 

needs to be done is also dictated by the outside temperature at the time one intends to 

“charge” and what the final intended temperature after “charge” is. 

 However, it is necessary that we precool or preheat early enough (and outside the 

peak period) for VES. If we precool or preheat too late, we run the risk of putting energy 
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into the house in a manner that results in a VES day having a greater energy usage during 

its peak period than a similar non-energy-storage day. Such a situation is of no benefit to 

the consumer. 

 Another important insight is that VES varies by climate and thus location [36]. 

Therefore, one can expect that in a hotter climate, for instance in Arizona, the summer VES 

savings would be greater than the savings achieved in Pennsylvania because, presumably, 

the air conditioner would be utilized more in Arizona than in Pennsylvania. 

 Lastly, it is important to note that cost-effectiveness analysis of VES is best done 

when a simulation model of the house is available. This allows for data acquisition of a full 

day of non-energy-storage and a full day of VES—both based on the same outside 

temperature—to perform a more accurate comparison. It also allows for a hybrid approach 

where one of these scenarios is collected from the testbed and the other is generated in 

simulation. This overcomes the limitation of a purely experimental approach where no two 

days are exactly alike in terms of outside temperature. 

  

7.2 Conclusion 

 Virtual energy storage represents an interesting opportunity for residential load 

management in an effort to make the energy market more flexible and potentially less 

costly for all involved. Our explorations revealed interesting insights into this phenomenon 
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that will help the future work of developing systems that harness its full benefits while 

keeping costs low.  

 Our cost-savings model revealed some insights into overall cost-effectiveness of 

storage-based approaches to load management and the potential policy implications. Our 

modeling framework makes it possible for us to generate no-energy-storage days for testing 

and evaluation.  In addition, this framework allows for the testing of optimization 

strategies, with modifications for each unique case.  

 It is our hope that other researchers leverage our work to further explore VES by 

testing their home energy optimization strategies, developing better load management 

strategies based on VES, gaining better insights into the cost-effectiveness of VES as 

compared to BES, creating other tools that can help with reducing cost of these 

technologies, informing policy discussions around incentivizing investment in these 

technologies, and a myriad of other applications that will improve the cost-effectiveness of 

residential energy storage to benefit the entire energy industry.  

  



 

 

 

90 

 

8 Future Explorations 

 Future researchers can apply our work as well as improve on it in a myriad of ways. 

We have thought about a few paths for these explorations and improvements and have 

outlined them below. 

 

8.1 Model Accuracy 

 Since this work was carried out to provide a general proof-of-concept framework, 

there were a number of approximations made and conditions assumed. To improve upon 

the model accuracy, some of these approximations and assumptions may need to be 

reconsidered to give way to a more refined and streamlined model. Nevertheless, this 

proof-of-concept framework is highly useful as it illustrates all the analyses available to 

us, while conveying the benefits (and bottlenecks) associated with storage mechanisms. 

 Additionally, in our work, we did not have enough days where we intentionally 

controlled the HVAC behavior (or even turned it off) to see how the indoor temperature 

naturally responds to the outdoor temperature. Fortunately, we were able to obtain a few 

days of this natural thermal data to give us a house model where the predicted indoor 

temperature follows the measured indoor temperature in a general-trends fashion. 

However, availability of more of natural thermal data in the model-building process would 
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have made our model even more robust. Nevertheless, we were still able to demonstrate 

the possibility of energy and cost savings, despite our uncontrolled data. 

 Another avenue for model improvement is the consideration of other factors, 

besides the outdoor temperature, that may have an effect on the indoor temperature. 

Literature tells us that solar radiation affects the indoor temperature [81]. Considering this 

factor and others could potentially improve the accuracy of our model. 

 Also, in our model, we assumed thermal comfort levels had to be fixed for an entire 

day. This is not always true. Future researchers can try to account for situations where the 

user’s comfort preferences might change over the course of a day.  

 We could also consider the effects of the consumer’s HVAC settings (especially 

when they are away for extended periods) on pets and/or plants. And another area of 

potential interest for future researchers could be load management for networked 

neighborhoods. The studies in [29, 82, 83] serve as a good starting point for this 

neighborhood-oriented work.    

 Finally, there is the important issue of model validation. Future work should 

involve conducting the strategies performed on the model in the live testbed to check 

whether model results agree with reality.  
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8.2 Model Optimization 

 Although we noted that our project was not aimed at developing the best 

optimization strategy, this is an interesting avenue for future exploration. There is potential 

for our framework to be leveraged in a more predictive fashion. A good feature of this 

prediction would be the ability of the model to obtain the forecasted outdoor temperature 

from weather websites. This forecasted temperature, although not always spot-on, gives a 

good sense of direction in terms of general expectations for the day and also informs the 

strategies to be carried out.  

 We see the framework in Figure 12 being enhanced in such a way that, given only 

the date as input, the model can determine a valid HVAC use strategy as well as specifics 

of battery storage. In other words, the model could tell us how much pre-heating/cooling 

and how big of a battery is required, while doing all of this adaptively. The model would 

also give the corresponding costs for a chosen storage strategy. These optimizations would 

relieve the user of the task of having to explicitly program the model with the strategy to 

use.  

 

8.3 Renewable Energy Sources 

 We intentionally considered only storage mechanisms (and not renewable energy 

sources) in this project despite the testbed being equipped with on-site solar and natural 

gas generation. The reason was because, for our comparison, such generators would 
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contribute the same cost to both VES and BES and hence would not count as unique costs. 

Omitting these generators from our analysis allowed us focus on the costs that were 

exclusive to either storage mechanism. This enabled us carry out simple “apples-to-apples” 

comparisons of VES relative to BES.   

 However, future work could take into consideration solar and wind, accounting for 

the credits associated with carrying out these techniques. 
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10  Appendix 

10.1  Battery Data 

Table 3. A Selection of Batteries Currently Available on the Market (Data Obtained from 

SolarQuotes [55]). 

Battery Chemistry Usable 

Capacity 

(kWh) 

Charge 

Rate 

(kW) 

Round-

trip 

Efficiency 

Cost24 

(USD) 

Cycle 

Life 

(Cycles) 

LG Chem 

Resu 10 

LiNiMnCoO2 8.8 5.00 0.95 6512 3200 

LG Chem 

RESU 6.5 

LiNiMnCoO2 5.9 4.20 0.95 4884 3200 

Redflow Zcell ZnBr (flow) 10.0 3.00 0.80 9324 3650 

SimpliPhi 

PHI3.4 Smart-

Tech battery 

LiFePO4 2.8 3.10 0.98 3811 10000 

Leclanche 

Apollion Cube 

LiNiMnCoO2 5.4 3.30 0.97 6808 6000 

GCL E-KwBe 

5.6 

LiNiMnCoO2 5.6 3.00 0.95 2701 2555 

Delta Hybrid 

E5 

Lithium-Ion 4.8 3.00 0.90 4884 6000 

ELMOFO E-

Cells ALB52-

106 

Lithium Ion 4.4 5.00 0.96 6061 8000 

Akasol 

neeoQube 

LiFePO4 5.0 5.00 0.98 8880 7000 

Ampetus 

"Super" 

Lithium 

LiFePO4 2.7 1.50 0.95 1702 10000 

                                                 

 

24 Cost values were originally given in Australian dollars. We converted the values to U.S. dollars. 

Conversion was done based on the currency-market rate on May 10, 2017. 
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Fronius Solar 

Battery 

LiFePO4 9.6 4.00 0.90 11507 8000 

DCS PV 5.0 LiFePO4 5.1 5.12 0.98 4366 5000 

DCS PV 10.0 LiFePO4 10.0 5.12 0.98 7399 5000 

BMZ ESS3.0 LiNiMnCoO2 5.4 8.00 0.97 5929 5000 

Aquion Aspen 

48S-2.2 

Aqueous 

Hybrid Ion 

[84] 

2.2 0.68 0.90 1628 3000 

Hybrid 

"Home" Plus 

Lead Crystal 

[85] 

8.2 3.00 0.92 8140 2400 

SolaX Lead 

Carbon 

Pb-C 4.5 4.60 0.88 5173 2000 

Enphase AC 

Battery 

LiFePO4 1.1 0.26 0.96 1480 7300 

Magellan 

HESS 

LiNiMnCoO2 11.5 5.00 0.97 15244 4000 

GridEdge 

Quantum 

Na-NiCl2 7.7 4.50 0.95 14800 3500 

SENEC.home 

Li 10.0 

LiNiMnCoO2 10.0 2.50 0.95 13838 12000 

Sonnenbatterie LiFePO4 16.0 3.00 0.95 22570 10000 

SolaX BOX LiFePO4 11.5 4.60 0.97 10434 4000 

Ampetus 

Energy Pod 

LiFePO4 11.5 5.00 0.97 8425 4400 

Sunverge SIS LiFePO4 9.9 5.00 0.96 19240 7000 

Alpha-ESS 

ECO S5 

LiFePO4 13.0 5.00 0.95 9158 6000 

Fusion Power 

Systems 

Titan-3 

Aqueous 

Hybrid Ion 

8.0 3.50 0.94 10175 4000 
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10.2  Electricity Pricing  

Utilities use pricing schemes to communicate their preferences to consumers. One 

such scheme is real-time pricing (RTP) where electricity prices vary throughout the day, 

usually hourly. Such a scheme is more amenable to large commercial customers than 

residential customers. Nevertheless, some companies such as Commonwealth Edison and 

Ameren Illinois [86, 87] engage in RTP schemes for residential customers.  

 Another pricing mechanism is known as time-of use (TOU) pricing where the day 

is divided into two or three peak and non-peak periods, each period with its own price of 

electricity [3]. This method encourages customers to move their demand away from periods 

when electricity is expensive and use energy when electricity is cheap. However, this 

mechanism does not incentivize customers to reduce energy during such critical times as 

heat wave periods. TOU schemes are mostly used by commercial and industrial customers. 

According to the Environmental Defense Fund [11], most utilities in the United States have 

some form of TOU scheme available to residential customers, however, adoption has been 

low.  

Variable peak pricing (VPP) is a type of TOU pricing where the peak TOU price 

changes from day to day [88] and thus encourages customers to reduce energy use during 

critical peak periods.  
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Figure 31. RTP, TOU, VPP, CPP, and CPR pricing mechanisms (reproduced as is from 

[88]). 

In addition to the aforementioned pricing mechanisms, there is another scheme 

known as critical peak pricing (CPP) where customers pay a flat rate daily but are sent a 

warning notification in advance of a drastic price increase [3]. This enables them to react 

appropriately to reduce demand during such events. A variation on CPP is the critical peak 

rebate (CPR) where customers are compensated for every kWh they reduce during critical 

peak periods [3].  
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Figure 31 illustrates the different pricing schemes for a generic energy demand 

curve. Our project uses LMP (a form of RTP) as pricing scheme. Although our testbed 

operates under Citizens’ Electric fixed rate, we use the LMP because it is more reflective 

of actual utility behavior.  

10.3  Computer Code 

To obtain our MATLAB code, please follow this link: 

 philip.asare.net/research/energy  

In the event that the link is moved, a notice will be displayed on the webpage. 
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