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Pradip K. Biswas . Jiansen Niu
Tobias Frederico . Valentin Gogonea

Numerical simulation and graphical analysis of in vitro benign
tumor growth: application of single-particle state bosonic
matter equation with length scaling

Abstract We describe the application of a non-linear
single-particle state bosonic condensate equation to
simulate multicellular tumor growth by treating it as a
coupling of two classical wave equations with real
components. With one component representing the ampli-
tude of the cells in their volume growth phase and the other
representing the amplitude of the cells in their proliferation
or mitosis phase, the two components of the coupled
equation feed each other during the time evolution and are
coupled together through diffusion and other linear and
non-linear terms. The features of quiescent and necrotic
cells, which result from poor nutrient diffusion into a
tumor, have been found to correspond quite well to
experimental data when they are modeled as depending on
higher cell density. Classical hallmarks of benign tumor
growth, such as the initial rapid growth, followed by a
dramatic collapse in the proliferating cell count and a
strong re-growth thereafter appear quite encouragingly in
the theoretical results. A tool for graphical analysis of the
tumor simulation results has been developed to provide
morphological information about tumors at various growth

stages. The model and the graphical analysis can be
extended further to create an effective tool to predict/
monitor tumor growth.

Keywords Multicellular tumor . Computer simulation .
Heisenberg equation . Length scaling

Introduction

Tumors arise as a consequence of unrestricted cell division.
This unrestricted cell division is supposed to be possible
due to a mutation of the p53 transcription factor, which
otherwise functions as a tumor suppressor gene in normal
tissues. In response to DNA damage, p53 activation results
either in the induction of the cyclin-dependent kinase
inhibitor p21 and cell cycle arrest or in the induction of
genes that induce programmed cell death through the
transcriptional factor p53. One molecular mechanism
through which unrestricted cell growth can be achieved is
through mutation of p53. Mutated non-functional p53 can
no longer induce either cell cycle arrest or programmed cell
death in response to DNA damage [1].

Thus, we can associate the functional role of the p53
protein in cells (the biological building blocks) with that of
the Pauli exclusion principle, which restricts the fermions
(the elementary building blocks of matter) in occupying the
same quantum state. On the other hand, bosons do not obey
the Pauli exclusion principle, and a single-particle bosonic
state can be occupied by any number of bosons. Thus, the
statistical behavior of fermions and bosons resembles that
of normal and cancer cells, where the number of normal
cells is regulated by p53 protein while the population of
cancer cells is unregulated. In the same way as fermions
and bosons are distinguished by their spins (half-integral
for fermions and integral for bosons), normal and cancer
cells may be distinguished by the presence of a wild type or
mutated p53 gene.

Guided by this analogy, a mathematical equation relating
to a single-particle bosonic state was applied to the growing
cancer cells in a tumor state with relative length-scaling [2, 3].
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The primary impetus in applying such a model to tumor
growth was that the growth dynamics of a single-particle
state bosonic condensate matter and that of a multicellular
tumor of cancer cells may follow the same mathematical
equation but with different length scales. Such modeling
may provide us crucial information about tumor morphol-
ogy and be applied in simulations of tumor-drug interactions.
However, the basic problem in applying a single-particle
state atomic (bosons) equation to the aggregate of tumor
cells is that while the atoms are quantum particles and their
wave functions may be represented by a complex function,
the biological cells are classical objects and must be
represented by real functions. Here we describe how the
Gross-Pitaevskii (GP) equation (a mean-field approxima-
tion version of the complex single-particle state Heisenberg
equation) could be regarded as a coupling of two real clas-
sical wave equations and employed to model the morphol-
ogy and growth dynamics of benign tumors successfully.

In vitro simulations of benign tumors in three dimen-
sions have revealed that they are finite-size and inhomo-
geneous aggregates of cancer cells, which appear in a
bound spheroid form [4–6]. In vitro tumor culture data [4]
reveals a strong oscillatory pattern for the proliferating cell
count with intricate features of partial collapse and re-
growth. Although the collapse may be attributed to the start
of a necrotic process [4], there is no current explanation,
either from mathematical models or biological data, to
explain the subsequent spurt in growth, since in an in vitro
growth angiogenesis or neo-vascularization [7] are not
possible and the necrotic waste, which is a toxic product, is
unlikely to trigger a spurt in growth. During avascular
growth (benign tumor) or its in vitro simulation, the
diffusion of nutrients attenuates in the central region as the
tumor grows in size. Consequently, the cells in the central
region grow slowly and some enter a quiescent phase,
where they no longer proliferate. With further increase in
tumor size, where nutrient diffusion into the central region
is further reduced, some of the quiescent cells enter a
necrotic phase and the tumors develop a central necrotic
core [4]. As the necrotic contribution increases, the
avascular tumors enter a dormant phase, striking a balance
between the rates of mitosis and necrosis. Experimentally,
it has been found that before entering the dormant phase,
the cell count shows a great deal of fluctuations [4]
mentioned above. This strong fluctuation, which has been
described in [2, 3], may result from squeezing and
relaxation of the tumor during its oscillations, and has
never been addressed by any other theoretical model.

In previous theoretical modeling of tumors, the emphasis
was given to the simulation of tumor morphology, immune
response and estimation of the effect of administered drugs
[8–16]. The simplest tumor model uses ordinary first-order
differential equations in an empirical form and simulates
cell number or volume growth by using various mitosis and
necrosis rates and immunological reactions [8, 9]. Such
models do not consider any of the physical interactions
occurring in the cell aggregate. The second type of study
employs spatio-temporal (diffusion-type) equations [10–
12], which include cell mobility or kinetic factors, or use a
cellular automaton model [13–15] to simulate the tumor
structure by minimizing the energy of the system with each
additional cell added to the aggregate. These calculations
explicitly consider cell-cell interactions, and show that
these interactions play a crucial role in determining the
dormant size (for benign tumors), the morphology and the
growth dynamics of a tumor [13–15]. However, these
results do not reproduce the oscillatory nature of the in
vitro proliferation dynamics. This points towards the
presence of non-linear potentials in the cell aggregate and
the necessity of treating the tumor as a bound state of
cancer cells. As far as the non-linear effects are concerned,
their effects have been studied elaborately in connection
with immunological reactions in the growth profile of a
tumor [16]. Apart from the non-linear cell-cell interaction,
the behavior of the tumor’s growth might be severely
affected by the influence of the surrounding medium. In the
non-linear matter wave model [2, 3] described below, both
the non-linear cell-cell interactions and the effect of the
external field is taken into account considering that the
aggregate of cells in the tumor is in an energy minimized
bound state arising out of their kinetic energy, interaction
potential energy, and the potential energy from the external
field of the surrounding medium and water.

Methodology

Single-particle state Gross-Pitaevskii (GP) equation
and its dimensionless form

The time-evolution dynamics of a single-particle state
bosonic condensate with feeding of atoms to the con-
densate from the thermal cloud and loss of atoms from the
condensate through recombinations is described by the
extended GP equation [17, 18]:

ih
@

@t
� ¼ � h2

2m
r2 þ 4�h2a

m
�j j2 þ Vext þ i

�

2
h!� 2i�

4�ha

m!

� �2

h! �j j4
" #

� (1)

where the two-body atom-atom interaction is described
by the s-wave scattering length a and is represented as:
v r; r0ð Þ ¼ 4πh2a

�
m� δ r � r0ð Þ; wherem is the mass of the

atoms; δ is the Dirac delta function. For two-body attractive
interactions, a is negative in sign, while for repulsive
interactions the sign of a is positive. γ and ξ are parameters
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concerning feeding to and dissipation from the condensate.
The term proportional to γ provides an exponential growth
for the order parameter Φ and hence for the number density
Φj j2 . The Φj4�� term leads to a clustering of two atoms into
a dimer formation from three-body interactions. This results
in a loss of atoms from the condensate wave function Φ in
the form of dimer.

N tð Þ ¼
Z

Φ r; tð Þj j
2

d3r (2)

R2 tð Þ� � ¼
R
r2 Φ r; tð Þj j2d3rR
Φ r; tð Þj j2d3r (3)

Dividing Eq. (1) by hω and introducing a dimensionless
length: x ¼ 2

p �
l0

� 	
r (where l0 ¼ h=mω

p
), and time:

τ=ωt, we recast Eq. (1) as

i ℏ
@

@τ
Φ ¼ �r2

x þ η Φj j2 þ V xð Þ þ i
γ
2
� 2iξη2 Φj j4

h i
Φ

(4)

Here V xð Þ ¼ Vext=ℏω and η ¼ 4πal20 . Using a dimen-
sionless order parameter: φ x; τð Þ ¼ 4π aj jp

l0Φ we arrive
at the following complex wave equation [2, 3]:

i
@

@τ
φ x; τð Þ ¼ �r2

x � φj j2 þ V xð Þ þ iγ0 � iξ0 φj j4
h i

φ x; τð Þ
(5)

where φ is a complex matter field representing the atoms in
the condensate; γ 0 ¼ γ

�
2; ξ0 ¼2ξ , and the negative sign

of the scattering length a (attractive interaction) is
explicitly taken into account in Eq. (5).

Equivalence of GP equation with two coupled
equations with real components

For application of the GP equation to a classical system we
interpret φ as a two component field with real components
φ1 and φ2 where φ ¼ φ1 þ iφ2 . In terms of these real
components, one can rewrite Eq. (5) in the form of two
coupled equations as follows:

d

dτ
φ1 x; τð Þ ¼ �r2

xφ2 x; τð Þ � φj j2φ2 x; τð Þ
þ V xð Þφ2 x; τð Þ þ γ 0φ1 x; τð Þ
� ξ0 φj j4φ1 x; τð Þ

(6)

d

dτ
φ2 x; τð Þ ¼r2

xφ1 x; τð Þ þ φj j2φ1 x; τð Þ � V xð Þφ1 x; τð Þ

þ γ0φ2 x; τð Þ � ξ0 φj j4φ2 x; τð Þ
(7)

Rearranging, we rewrite them as:

d

dτ
φ1 x; τð Þ ¼γ0φ1 x; τð Þ � ξ0 φj j4φ1 x; τð Þ

� r2
x � V xð Þ þ φj j2

h i
φ2 x; τð Þ

(8)

d

dτ
φ2 x; τð Þ ¼γ0φ2 x; τð Þ � ξ0 φj j4φ2 x; τð Þ

þ r2
x � V xð Þ þ φj j2

h i
φ1 x; τð Þ

(9)

From Eqs. (8) and (9), we see that the first term of the right
hand side (r.h.s) can give rise to the so-called first-
generation tumor model, providing exponential growth
with the growth rate determined by the parameter γ'. The
second term on the r.h.s accounts for depletion in the cell
number that resembles necrosis and in this model this
necrotic contribution is taken as proportional to the square
of number density ρ (where ρ ¼ φj j2 in dimensionless
units mentioned above); the proportionality constant being
the parameter ξ'. The rest are coupling terms concerning
diffusion, external potential, and cell-cell interaction,
respectively. The model, as it stands now, introduces a
simplification in terms of having the same growth and
depletion rates for both φ1 and φ2 components. This
simplification allows us to combine the two equations into
a complex field equation (Eq. 5), which is solved
numerically. For simplicity of the numerical task, we
restrict the application to in vitro growth of multicellular
tumors in three dimensions, which reveal a spherical
symmetry [4]. Assuming the external potential V(x) to be
spherically symmetric, as is the case for an in vitro tumor
growth, and defining ϕ ¼ ϕ� x;we arrive at the following
equation in one dimension:

i
@

@τ
ϕ x; τð Þ¼ � d

dx2
� ϕj j2

x
þ V xð Þ þ iγ0� iξ0

ϕj j4
x4

" #
ϕ x; τð Þ

(10)

643



In terms of ϕ, the number of particles in the bound state
and the mean-square radius of the bound state are given by:

NðtÞ ¼
Z

Φðr; tÞj j2d3r

¼ 4π
8π aj j

l0
2

p �
Z

ϕðx; τÞj j2dx

¼ 1

2 2
p

aj j l0 � nðτÞ

(11)

R2 tð Þ� � ¼
R
r2 Φ r; tð Þj j2d3rR
Φ r; tð Þj j2d3r

¼ l20
2
�
R
x2 ϕ x; τð Þj j2dxR
ϕ x; τð Þj j2dx ¼ l20

2
x2 τð Þ� � (12)

where n τð Þ ¼ R
ϕ x; τð Þj j2dx:

Length scaling of the coupled matter wave equation

To simulate the tumor, we study a trial value of l0 of the
form: [2, 3, 19]

L0 ¼ l0 � effective size of cell in tumor

effective size of atom in condensate
(13)

Similar correlations between classical statistical me-
chanics and multicellular systems have been studied

previously by Arlotti et al. [20] The length scaling
redefines the cell number and the tumor radius as:

N τð Þ ¼ 1

2 2
p

aj j L0 � n τð Þ

¼ l0

2
p

d

� �
� D

2 aj j
� �

� n τð Þ: l0

2
p

d

� �
� n τð Þ

(14)

R τð Þ ¼ L0
2

p x2 τð Þh i
p

¼ l0

2
p

d

� �
� D� x2 τð Þh i

p
(15)

The value of D, the effective size of a cell, is obtained
from the measured data of [4] while the value of l0/d is
fixed by selecting an appropriate solution of the GP Eq. (5)
for the short-range, attractively interacting, and externally
trapped atomic condensate [17, 18].

Time-independent form of the coupled matter wave
equation

Considering V xð Þ ¼ Vext=hω we write down the stationary
form of Eq. (10) as:

� d

dx2
� ψj j

x
þ V xð Þ


 �
ψ ¼ βψ (16)

where β ¼ μ
�
ω; μ representing the chemical potential

(average single-particle energy). This Eq. (16) has various
stable, metastable, or unstable solutions [21] correspond-
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Fig. 1 In vitro growth profile
of a benign tumor. Culture data
of Folkman and Hochberg [4]
for the multicellular spheroids
developed in agar with V79
Chinese hamster lung cells
(circles); simulation results as
obtained from the coupled non
linear matter wave equations
(thick solid line)
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ing to various values of β. Each solution corresponds to a
particular value of N aj j�l0 (see Eq. 11).

Numerical methods

The time-independent Eq. (16) is solved numerically using
the Runge-Kutta method [22] as described in the work of
Edward and Burnett [23], and Gammal et al. [24] and
employed in previous calculations [2, 3]. This equation
has various solutions depending on the number of par-
ticles [21, 24]. We choose a minimum-energy solution

with only a few particles and then propagate the solution
in time by feeding it to Eq. (5). The time-dependent
Eq. (5) is discretized using the Crank-Nicholson differ-
ence [22] and the resulting set of tri-diagonal equations
are solved using the Gaussian elimination method [22] as
implemented in [2, 3].

Results and discussions

In this work, we focus on the simulation of the
experimental data for the growth of multicellular spheroids
that developed when V79 Chinese hamster lung cells are

Fig. 2 Screen shot from the graphical analysis tool showing clustering of cells in the initial tumor (up); cell density profile (down)
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grown in soft-agar. We approximate the hydration effect of
agar on the cell aggregate as a constant gauge potential
experienced by the cells. We model it by V xð Þ ¼ V0:
Firstly, we solve the time-independent form of the single-
particle state Gross-Pitaevskii Eq. (16) for different bound-
state solutions as a function of various sets of values for V0

and β (the constant gauge potential can be absorbed in the
redefinition of β). Despite the constant external gauge

potential, the stationary solution is stable due to the
attractive nature of the cell-cell interactions. Then, we
propagate each solution in time, employing Eq. (5) and plot
the number of cells (as obtained from Eq. 14) against time.
In Fig. 1, the experimental result for the V79 cell colony
and the theoretical results for the proliferating cell count
obtained with V0=1.5, γ=0.5, and ξ=0.001 are shown. It can
be seen that there is significant agreement between the two

Fig. 3 Screen shot from the graphical analysis tool showing simulation results after 10 days: clustering of cells of the tumor (up); cell
density profile (down)
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sets of results once the time scale (t ¼ τ=ω ) is chosen such
that ω corresponds to a value ω∼1 per day, that is
ω ¼ 1

�
24� 60� 60ð Þ sec 1:

From the measured proliferation count (solid curve with
circles; Fig. 1), we find that 1) initially the number of cells
increases in a steep exponential fashion; 2) it attains a local
peak at around day-23; 3) next it suffers a partial collapse;
4) after completing the collapse, it again starts a strong
exponential growth at around day-29. The second experi-
mental growth phase had a short duration and gradually
stabilizes with a viable cell count around N∼105. From the
thick solid curve of Fig. 1, we see that all the characteristic
features of tumor growth described above are present in the
theoretical results, including the approximate positions of
the peaks, collapse, and re-growth.

To understand the collapse and re-growth phenomena
described above, we study the density profile of the cell
aggregate. We find that as the cell number increases, the

central density (in units of ϕ x; tð Þ�x�� ��2 ) also increases
rapidly, leading to a greater contribution to the necrotic
process. When the central density reaches a maximum of
104 near day-24, the increased attractive potential triggers a
visible partial collapse of the cell aggregate; with the
central region being affected the most. In the process of
collapse, there appears an increase in the clustering of cells
and consequent necrotic contribution leading to the
formation of a necrotic core [4, 13]. The contribution to
the necrotic core diminishes the attractive potential in
tumor (in its bound state), which results in a volume
expansion of the tumor. As the volume expands, the cell-
density decreases, which in turn paves the way for a greater
nutrient diffusion. A greater nutrient diffusion might be
responsible for the second exponential growth, which
according to the model is possible because of an oscillation
of tumor volume. While the model explicitly reveals the
oscillation in tumor size, the impetus in the growth arises in
part from a sharp decrease in the necrotic contribution and
also in part from the diffusion term (although, the diffusion
term here represents cell diffusion).

To achieve a more critical understanding of the cell
proliferation kinetics, we have developed a graphical
analysis tool to study the tumor growth. Figure 2 represents
the initial tumor as given by the solution of the time-
independent Eq. (16). From the plot of the density
distribution of the cells we find that initially the cell
growth and proliferation occur mostly at the center, leading
the cell density to be the highest at the center. This
eventually leads to necrosis in this central region, as the
higher cell density retards the nutrient diffusion. In this
model, the above scenario has been captured by introdu-
cing a term in the equation that provides attenuation of
proliferating cells as a function of (density)2. From Fig. 3,
we see that this term leads to the modeling of a central
necrotic core. Also from the diagram, we find that the
central necrotic core is surrounded by densely proliferating
cells and the cell density resembles an onion-type structure.

The graphical analysis enables us to visualize and under-
stand the density profile of the proliferating cells, which is
crucial information in order to optimize the effect of drugs.
Our current work is addressing this latter issue.

Summary and conclusions

We present here an application of the non-linear Schrödinger
equation to the cell aggregate of a multicellular tumor
considering it as a coupling of two wave equations with
real components. The simulation results reproduce the
experimentally observed oscillatory pattern in the growth
profile of a tumor and explain the spurt in cell growth in the
aftermath of a partial collapse in terms of a volume
expansion and resulting increment in the nutrient diffusion
due to a lesser attractive potential of the cell aggregate. The
study indicates that the necrotic contribution during the
growth of a tumor could be preceded by a small localized
clustering of cells, thus reducing the probability of nutrient
diffusion inside the cluster. The graphical analysis de-
scribed here provided us with invaluable information about
the time evolution of the density profile of the proliferating
cells, which is essential in developing effective strategies
for administering drugs.
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