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sites also lead to an overall reduction in beta-lactam affinity. To
illustrate, substitutions at position R244 or N276 of SHV-1 lead to
different levels of resistance to ampicillin, in both cases well above
the clinically relevant breakpoints. However, different levels of
resistance to ampicillin-clavulanate are seen with each of these
substitutions which may translate into different inhibitor-resis-
tant phenotypes (34).

With the above notions in mind, we sought to determine if
substitutions in important amino acids impair the ability of cla-
vulanic acid to inhibit BlaC and, as a result, jeopardize the use of
future �-lactamase–inhibitor combinations against M. tuberculo-
sis. Based on observations with other class A enzymes, we focused
on Ambler positions 220, 244, and 237 of the carboxylate-binding
region, as well as S130 (Fig. 1A). To this end, we assessed the effect
on enzymatic activity, as well as the susceptibility of the variant M.
tuberculosis strains to the ampicillin-clavulanate combination.

MATERIALS AND METHODS
Protein expression and mass spectrometry. A pET28-based plasmid car-
rying a truncated sequence of blaC (�1–39blaC) (35) was used as the tem-
plate for site-directed mutagenesis of Ambler positions R220, A244, S130,
and T237 as previously described (36), using mutagenic primers. Primers
used in this procedure are listed in Table 1. After the mutations were
confirmed by sequencing, the plasmids expressing 6His-tagged BlaC mu-
tant proteins were electroporated into Escherichia coli BL21/DE3 cells, and
protein expression was induced with 1 mM isopropyl �-D-1-thiogalacto-
pyranoside (IPTG) at an optical density at 600 nm (OD600) of 0.8. After

incubation for 18 h at 16°C, cells were harvested and lysed using a QIA-
express nickel-nitrilotriacetic acid (Ni-NTA) fast-start kit, followed by
nickel column purification of the His-tagged protein according to the
manufacturer’s protocol (Qiagen Inc., Valencia, CA). To remove the His
tag, the eluted protein was incubated with thrombin (Novagen, Madison,
WI) overnight at 4°C (1.6 units per mg protein). The cleaved protein was
separated from the 6His tag peptides by size exclusion chromatography
using a HiLoad 16/60 Superdex 75 column (GE Healthcare Life Science,
Uppsala, Sweden).

Mass spectrometry. The sizes of all generated proteins were deter-
mined using electrospray ionization (ESI) mass spectrometry (MS). Spec-
tra were generated on an Applied Biosystems (Foster City, CA) QStar Elite
quadrupole time-of-flight mass spectrometer equipped with a TurboIon
spray source. Protein samples were desalted using a C18 ZipTip (Millipore,
Billerica, MA) following the manufacturer’s protocol. Eluted proteins
were diluted with 50% acetonitrile and 0.2% formic acid. The samples
were infused at a rate of 0.5 �l/min, and data were collected for 2 min.
Spectra were deconvoluted using the Applied Biosystems Analyst pro-
gram (Framingham, MA).

Kinetic analysis. Steady-state kinetics were performed on an Agilent
8453 diode array spectrophotometer (Agilent, Palo Alto, CA) in sodium
phosphate buffer (50 mM, pH 7.2) and a 1-cm-path-length cuvette. Vmax

and Km were determined from initial steady-state velocities for nitrocefin
(NCF) (�ε482 � 17,400 M�1 cm�1) and ampicillin (�ε235 � �900 M�1

cm�1). The kinetic parameters were obtained using iterative nonlinear
least-squares fit of the data to the Henri-Michaelis equation using Origin
8.0 (OriginLab, Northampton, MA) according to the following equation:
v � Vmax[S]/(Km � [S]).

A plateau of steady-state velocities was only observed at very high
substrate concentrations, which impaired the ability to determine Km and
kcat in a precise manner. However, the ratio of kcat/Km remained stable
during serial experiments and hence is a more accurate reflection of en-
zyme properties.

Given the high Km for NCF even with the wild-type enzyme, the desire
to choose substrate concentrations well above the Km was balanced against
the negative impact of high NCF concentrations on viscosity of the reac-
tant solution and the precision of spectroscopic measurements. There-
fore, NCF was used at 100 �M for wild-type enzyme (about double the Km

of NCF; results were corrected for Km of NCF) and 200 �M for mutant
enzymes.

We determined the Ki for the inhibitors by measuring initial steady-
state velocities in the presence of a constant concentration of enzyme with
increasing concentrations of inhibitor against the indicator substrate NCF
(100 �M for wild-type enzyme and 200 �M for mutant enzymes). Assum-
ing a competitive mode of inhibition, initial velocity (v0) measurements im-
mediately after mixing yield a Ki which closely approximates Km, as repre-

FIG 1 Enzyme structures of BlaC wild type— comparison with SHV-1. (A)
BlaC with meropenem bound as an acyl-enzyme. The residues subjected to
mutagenesis are highlighted. The A244 position is in dark blue and the S130
position is in red on the ribbon (PDB entry 3DWZ). (B and C) Meropenem
interaction with the carboxylate binding site of BlaC (PDB entry 3DWZ) (B)
and in comparison with SHV-1 (C). Note the different positions of the guani-
dinium group in BlaC (R220) versus SHV-1 (R244).

TABLE 1 Primers used

Primer Sequence (5=–3=)
BlaC-R220A-F1 CACCGGAGCCAAGGCCATCCGAGCGGGCTTTC
BlaC-R220A-R1 GAAAGCCCGCTCGGATGGCCTTGGCTCCGGTG
BlaC-R220S-F1 CCGGAGCCAAGAGCATCCGAGCGGGCTTTC
BlaC-R220S-R1 GAAAGCCCGCTCGGATGCTCTTGGCTCCGG
BlaC-S130G-F1 GCGATACGCTATGGCGACGGCACCGC
BlaC-S130G-R1 GCGGTGCCGTCGCCATAGCGTATCGC
BlaC-T237A-F1 ACAAGACCGGGGCCGGTGACTACGGA
BlaC-T237A-R1 TCCGTAGTCACCGGCCCCGGTCTTGT
BlaC-T237S-F1 GACAAGACCGGGAGCGGTGACTACGGA
BlaC-T237S-R1 TCCGTAGTCACCGCTCCCGGTCTTGTC
BlaC-A244R-F1 GGTGACTACGGACGACGCAACGACATCGCGGTC
BlaC-A244R-R1 GACCGCGATGTCGTTGCGTCGTCCGTAGTCACC
BlaC-NdeI CATATGCGCAACAGAGGATTCGGTCG
BlaC-SalI GTCGACTGATATCGATCGCCACTAC
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sented by the following equation: v0 � (Vmax[S])/(Km(1 � Ki) � [S]), where
[S] represents substrate concentration.

IC50, defined as the inhibitor concentration resulting in a reduction of
NCF (�M) hydrolysis by 50%, was determined by measurements of initial
velocities after 5 min preincubation of enzyme with inhibitor.

Ki values were corrected for nitrocefin affinity according to the follow-
ing equation: Ki(corr) � Ki(obs)/(1 � [NCF]/KmNCF).

Strain construction. The full-length blaC gene was PCR amplified
from M. tuberculosis genomic DNA using primers BlaC-NdeI and BlaC-
SalI (Table 1). The DNA fragment was then cloned into the integrative
vector pMV361 (37) using NdeI and SalI restriction enzymes. Site-di-
rected mutagenesis was performed as described above, and the mutations
were confirmed by sequencing.

Competent cells of the parental M. tuberculosis strain H37Rv and its
derived �blaC1 mutant (PM638) (38) were prepared as described previ-
ously (39). Plasmids expressing wild-type and variant BlaC enzymes were
transformed into competent cells by electroporation (39). Transformants
were selected on 7H10 (Difco) agar medium supplemented with 0.05%
Tween 80, oleic acid-albumin-dextrose-catalase (OADC) (BD), and
kanamycin (50 �g/ml) at 37°C.

Antibiotic susceptibility testing. Antibiotic susceptibility testing of
M. tuberculosis strains for ampicillin and clavulanate was performed using
microtiter plate assays with 14 days of incubation, as previously described
(40).

Immunoblotting. A polyclonal rabbit antibody was raised against the
truncated BlaC protein (Josman, LCC, Napa, CA) and was purified using
protein G column purification (GE Healthcare Life Science). M. tubercu-
losis strains were grown in roller bottles containing 100 ml 7H9 (Difco)
medium supplemented with 0.05% Tween 80 and OADC (BD) at 37°C
over 14 days. The bacteria were harvested by centrifugation and resus-
pended in Tris-buffered saline (TBS) containing proteinase inhibitor
cocktail (Roche). Cells were pelleted and frozen at �80°C. After thawing,
the cells were resuspended in 2 ml phosphate-buffered saline (PBS) con-
taining proteinase inhibitors. Cells were disrupted by sonication on ice.
Unbroken cells and cell debris were removed by centrifugation (4,000
rpm, 15 min) at 4°C.

Proteins in cell lysates were separated on SDS-PAGE gels and trans-
ferred to a polyvinylidene difluoride membrane (Invitrogen). The mem-
brane was blocked using 5% bovine serum albumin (BSA) in TBS (20 mM
Tris-HCl [pH 7.4], with 150 mM NaCl) overnight. After being washed
with TBS, the membrane was incubated with the purified anti-BlaC anti-
body (0.2 �g/ml) in TBS containing 5% BSA for 2 h. The membrane was
washed in TBS containing 0.05% Tween 20 (TBS-T) and incubated with
protein G-horseradish peroxidase conjugate (Bio-Rad) at a 1:20,000 dilu-
tion for 1 h. After being washed with TBS-T, the blot was developed using
an enhanced chemiluminescence (ECL) developing kit (GE Healthcare
Life Sciences) according to the manufacturer’s instructions. Purified trun-
cated BlaC was used as a control. Sensitivity was assessed using serial
dilutions of the purified BlaC protein.

Crystallization. The hanging drop vapor diffusion method was used
for crystallization of BlaC-R220A. The composition of the well consists of
0.1 M HEPES (pH 7.5) and 2 M NH4H2PO4, which makes the final pH of
the well solution 4.1. Protein at a concentration of 12 mg/ml was mixed
1:1 with the well solution and incubated at 10°C. The mutant was initially
seeded with the native enzyme crystals, and then after iterative crystal
growths, the pure mutant crystals were obtained. Iterative microseeding
resulted in efficient crystal growth as well as improved morphology, pro-
ducing diffraction-quality crystals of the mutant enzyme. Glycerol (20%)
was added to the solution as a cryoprotectant.

Data collection and refinement. Data were collected at the Brookhaven
National Laboratory on line X29. The data were processed using
HKL2000 (41). A previous structure of the apo M. tuberculosis �-lacta-
mase (10) (PDB entry 2GDN) was used to phase the data, using the CCP4
software suite (42). Multiple rounds of structural refinement and model
building were performed in Refmac5, Phenix (43–45), and Coot (46).

Structure figures were generated using PyMOL (47). For data collection
statistics for the structures as well as the final refinement statistics, see
Table 6.

Homology modeling and minimization. The crystal structures of the
BlaC R220A mutant and wild-type BlaC (PDB entry 2GDN) were used as
templates for homology modeling of R220S, R220A-A244R (template,
R220A mutant), and S130G (template, PDB entry 2GDN), respectively.
The molecular visualization program SWISS PDB Viewer was used to
manipulate the position of amino acid residues. The predicted model was
also checked for psi and phi torsion angles using the PDBsum Ramachan-
dran plot (48). The initially found model was further improved by the
steepest-descent energy minimization method using the GROMACS soft-
ware package (49, 50). After 5,000 steps of steepest-descent minimization
had been performed, the molecular dynamics simulation for 300 ps was
carried out to examine the quality of the model structures and check its
stability. Finally, the stereochemical quality of the model was checked by
the PROCHECK method. PyMOL (47) and XMGrace (51) were used to
analyze and to prepare structural diagrams.

Molecular docking. Molecular docking for this study was carried out
by using the program AutoDock Vina 1.1.2 (69). Vina utilizes its global
search algorithm to find the best binding pose after a thorough docking
calculation. The three-dimensional (3D) structure of meropenem was
downloaded from RCSB protein data bank from cocrystal structure (PDB
entry 3DWZ). The 2D structure of clavulanate was made by using Chem-
Draw Ultra 8.0 and transformed to a 3D structure using Chem3D Ultra
8.0 (70). After that the two ligands were parameterized using the
PRODRG2 server (71). The AutoDock tool (ADT) (72) had been exten-
sively used to prepare all the structures and setup the docking protocol.
The BlaC R220A was used as a static receptor. All the polar hydrogens
were assigned, nonpolar hydrogens were merged, and PDBQT files were
created by adding Gasteiger charges to the receptor as well as for the
ligands. The AutoTors utility of ADT was used to define all possible tor-
sions of the rotatable bonds of ligands. A grid map around the receptor
active site was defined with the dimensions of 20 � 20 � 20 points, a grid
center of �4.0 ��1.0 � 90.0, and spacing of 1.0 Å between the grid points.
All the docking calculations were run to produce 10 docking poses for
each ligand. The docked poses with the highest binding affinities were
considered for further analysis.

Protein data accession number. Atomic coordinates and experimen-
tal structure factors have been deposited in the Protein Data Bank (PDB
ID 4JLF).

RESULTS
Production of variant BlaC proteins. Primers for site-directed
mutagenesis were designed to introduce single amino acid substi-
tutions at Ambler positions 220 (R ¡ A and R¡ S), 130 (S¡ G),
and 237 (T ¡ A and T ¡ S) using a plasmid containing wild-type
�1-39blaC (truncated) as the template (Table 1). The mutated
plasmids were transformed into E. coli DH10B by electroporation.
Plasmid-containing colonies were selected on LB agar containing

TABLE 2 AMU calculated and measured by mass spectrometry

Mutation(s)

AMU (Da)a

Calculated Measured (	3)

None (wild type) 28,784 28,784
R220A 28,699 28,699
R220S 28,715 28,716
R220A, A244R 28,784 28,785
S130G 28,754 28,754
T237A 28,754 28,755
T237S 28,770 28,771
a AMU, atomic mass unit. 	3 indicates the error range in Da.
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kanamycin (20 �g/ml). The mutant bla genes were confirmed by
sequencing of both strands of the derived plasmids. A second mu-
tation (A244R) was later introduced into the plasmid containing
blaCR220A. Plasmids expressing mutant bla genes were then trans-
formed to E. coli BL21/DE3 cells by electroporation and transfor-
mants selected on kanamycin agar. The variant enzymes were ex-
pressed and purified. All proteins were purified to homogeneity
(
95%). SDS-PAGE analysis revealed single bands of similar sizes
for all variant enzymes. Electrospray ionization-mass spectrome-
try (ESI-MS) was used to measure atomic mass and confirm iden-
tity (Table 2).

Kinetic characterization of variant enzymes. Table 3 summa-
rizes our kinetic data showing that all variant (single-substitution)
enzymes possessed a significantly reduced catalytic activity for
both NCF and ampicillin. In contrast, the R220A-A244R double-
mutant enzyme exhibited partial restoration of catalytic activity.
All variant enzymes demonstrated a significant increase in both Ki

and IC50s for all tested inhibitors, including the carbapenems
(imipenem, meropenem, ertapenem, and doripenem). Again, the
R220A-A244R enzyme partly restored inhibitor susceptibility
(Tables 4 and 5).

Examination of the crystal structure of the R220A mutant;
role of a positive charge in BlaC. A crystal of the variant R220A
enzyme was generated and analyzed to determine if loss of activity
in the R220 variant was caused by a change in the active site struc-
ture or by the lack of positive charge provided by the arginine
residue. The crystal structure of the R220A variant BlaC enzyme
was obtained at 2.1 Å. The crystal belonged to space group
P212121. Refinement statistics are summarized in Table 6.

Comparison of the R220A structure with the wild-type enzyme
revealed that the overall structure of the active site is preserved,
including the K234-T235-G236 motif (Fig. 2A and B). The struc-
ture of R220A also reveals that the T237 side chain is rotated away

from the substrate binding cavity and productive interaction is
lost (Fig. 2C). Together with the kinetic data, these results show
that the positive charge provided by the guanidinium side chain of
R220 plays a direct functional role in catalysis.

Effect of inhibitor-resistant mutations on �-lactam suscep-
tibility of M. tuberculosis. To assess the impact of substitutions
that confer inhibitor resistance on susceptibility of M. tubercu-
losis to �-lactam–�-lactamase inhibitor combinations, the blaC
mutant alleles were used to complement the M. tuberculosis
H37Rv�blaC1 mutant (38). The blaC genes were cloned into the
integrative vector pMV361; thus, their expression in mycobacteria
is coupled to the heat shock promoter hsp60 (37). Expression of
BlaC proteins in H37Rv�blaC1 was assessed by immunoblotting
using the anti-BlaC antibody. Specific recognition of BlaC by the
antibody was confirmed, with a detection limit of 8 ng, as assessed
by serial dilutions (Fig. 3A). Expression of BlaC proteins was de-
tected in all variant strains by immunoblotting of protein prepa-
rations using equal amounts of total protein. Some slight differ-
ences in density of the bands were observed (Fig. 3B and C). These
apparent differences were compared to wild-type BlaC expression
levels using densitometry (http://rsbweb.nih.gov/ij/). Relative ex-
pression levels ranged from 0.5 (H37Rv�blaC1/blaC) to 2.7
(H37Rv�blaC1/T237S), with the majority falling between 0.7 and
2.3.

Since clavulanic acid was shown to inactivate BlaC, we focused
our analysis on this inhibitor in combination with ampicillin:
growth was assessed in the presence of ampicillin (10 �g/ml) alone
or ampicillin (10 �g/ml) plus clavulanic acid (5 or 10 �g/ml).
These concentrations are clinically relevant (as established by the
CLSI in 2008; MICs for susceptible Enterobacteriaceae are �8
�g/ml for ampicillin and �8/4 �g/ml for amoxicillin/clavulanate
[52]).

As expected, the wild-type M. tuberculosis H37Rv was resistant

TABLE 3 Catalytic activities of wild-type and variant enzymes

Mutation(s)

Nitrocefin Ampicillin

Km (�M) kcat (s�1) kcat/Km (�M�1 s�1) Km (�M) kcat (s�1) kcat/Km (�M�1 s�1)

None (wild type) 56 	 4 75 	 2 1.34 	 0.1 44 	 2 16.8 	 0.2 0.4
R220A 587 	 103 5 	 1 0.01 2,100 	 350 18 	 2 0.01
R220S 2,230 	 830 31 	 10 0.01 511 	 334 8 	 3 0.02
R220A, A244R 394 	 37 35 	 2 0.1 1,600 	 1,124 64 	 33 0.04
S130G 641 	 87 13 	 1 0.02 2,847 	 1,311 25 	 9 0.01
T237A 630 	 100 17 	 2 0.03 700 	 83 42 	 3 0.06
T237S 130 	 4 74 	 1 0.57 64 	 11 6 	 0.3 0.1

Values are least square fits for the Henri-Michaelis equation (see “Kinetic analysis” in Materials and Methods) 	 standard errors (errors of 	10% have been omitted for clarity).
See Materials and Methods for a discussion of methodological limitations.

TABLE 4 Inhibitor kinetics of variant enzymes compared to the wild type for mechanism-based inhibitors

Mutation(s)

Clavulanate Sulbactam Tazobactam

Ki (�M) IC50 (�M) Ki (�M) IC50 (�M) Ki (�M) IC50 (�M)

None (wild type) 32 	 1 1.7 	 0.2 14 	 1 1.6 	 0.2 49 	 3 2.5 	 0.2
R220A 
100 
100 
100 
100 
100 
100
R220S 
100 
100 
100 
100 
100 
100
R220A, A244R 
100 33 	 3 
100 23 	 2 
100 37 	 4
S130G 
100 
100 
100 108 	 10 
100 
100
T237A 
100 17 	 2 
100 16.4 	 0.2 
100 7.9 	 0.1
T237S 94 	 14 6.7 	 1.2 22 	 1 0.9 	 0.2 58 	 10 1.8 	 0.2
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to ampicillin but susceptible to ampicillin-clavulanate. In con-
trast, the �blaC1 deletion mutant was susceptible to both (Fig. 4A
and B). Transformation of the plasmid expressing wild-type BlaC
(�blaC1/blaC) restored the wild-type phenotype, suggesting that
the ampicillin resistance is dependent solely upon BlaC expres-
sion. Most importantly, the “inhibitor-resistant” substitutions in
BlaC did not result in clavulanic acid resistance. The strain pos-
sessing the T237S mutant showed minimal growth in the presence
of 5 �g/ml clavulanate, but its growth was inhibited at the higher
concentration. This was in contrast to the in vitro kinetic analysis that

showed impaired catalytic activity and enzymatic resistance
against clavulanate.

Assessment of �-lactamase activity after prolonged incuba-
tion with clavulanate. The drug susceptibility testing raises the
possibility that the prolonged exposure of M. tuberculosis to cla-
vulanate due to its extremely slow growth may provide sufficient
inhibition in the variant BlaC enzymes despite the in vitro kinetics
that indicated otherwise. To further test this hypothesis, we incu-
bated wild-type BlaC and variant enzymes at a similar clavulanate
concentration (5 �g/ml) for 24 h to obtain serial measurements of
enzyme activity. Similar to the wild-type enzyme, the T237A and
T237S proteins were completely inactivated within minutes
and the R220A-A244R enzyme within 1 h. The remaining mu-
tants were initially unaffected; however, after several hours of
incubation, a significant reduction of activity was observed
(Fig. 5A and B).

DISCUSSION

The primary goal of our study was to determine if substitutions
that are expected to confer resistance to clavulanic acid have a
significant effect on M. tuberculosis susceptibility to ampicillin-
clavulanate. To test this, we constructed a set of variant �-lacta-
mases with substitutions at the R220, S130, and T237 sites. We
next examined the crystal structure of the BlaC(R220A) mutant
protein to gain further insights. Finally, we assessed the impact of
these mutations on �-lactam susceptibility of M. tuberculosis. Our
analysis provided critical insights regarding the use of this combi-
nation in clinical practice.

Role of R220 as a substitute for R244 in BlaC of M. tubercu-
losis; insights from biochemical and structural analyses. Exam-
ination of common class A �-lactamases (TEM-1 and SHV-1)
shows that the positive charge typically located at R244 plays an
important role in substrate binding as part of the carboxylate-
binding region, as well as in activation of mechanism-based inhib-
itors (17–21). In TEM-1, positions R244 and A220 are function-
ally interchangeable with respect to catalytic efficiency and
inhibitor susceptibility (21). In BlaC, position 244 is occupied by
an alanine, whereas R220 provides the alternate positive charge
corresponding to position R244 in other class A enzymes (35).
Similar to R244 in TEM and SHV, the positive guanidinium group
of R220 forms a hydrogen bond with the carbonyl oxygen of the
G236 peptide backbone and the OH group of T237, both residues
of the KTG motif (12, 35, 53, 54) (Fig. 1A and B).

Our kinetic data clearly show that loss of R220 in BlaC renders
the enzyme catalytically impaired, more so with the alanine than
with the serine substitution. We were unable to determine if this
altered activity is due to an elevation of Km or a reduction in kcat. In

TABLE 5 Inhibitor kinetics of variant enzymes compared to the wild type for carbapenems

Mutation(s)

Imipenem Meropenem Ertapenem Doripenem

Ki (�M) IC50 (�M) Ki (�M) IC50 (�M) Ki (�M) IC50 (�M) Ki (�M) IC50 (�M)

None (wild type) 5 	 0.4 0.8 	 0.1 9.0 	 0.7 0.5 	 0.05 12.4 	 1.3 1 	 0.1 5.6 	 0.5 0.24 	 0.02
R220A 
100 90 	 2.1 
100 
100 
100 
100 
100 70 	 9
R220S 
100 55 	 2 
100 
100 
100 
100 
100 96 	 8
R220A, A244R 
100 23 	 1 
100 10 	 1 
100 10 	 1 
100 6 	 0.3
S130G 
100 
100 
100 
100 
100 
100 
100 97 	 9
T237A 
100 62 	 7 
100 60 	 5 
100 57 	 5 
100 38 	 3
T237S 11.8 	 1.2 0.8 	 0.05 13 	 4 0.53 	 0.03 25 	 3 0.58 	 0.05 10.6 	 1 0.29 	 003

TABLE 6 Summary of data collection and refinement statistics for the
BlaC-R236A mutant apo crystal structurea

Statistic or parameterb Valuec

Wavelength (Å) 1.0
Temperature (K) 100
Resolution range (Å) 50.0–2.1

Reflection 15,203 (4,651)
Completeness (%) 100 (99.68)
I/�(I) 40.0 (6.0)
Redundancy 8 (7.3)
Space group P212121

Unit cell (Å)
a 49.41
b 67.43
c 74.63
� � � �  90.0°

Molecules per a.u. 1

Refinement statistics
R-work (%) 13.39
Rfree (%) 17.71
No. of atoms 2,296

Protein (chain A) 1,993
Phosphate 25
Water 278

RMSD
Bond length (Å) 0.007
Bond angles (°) 1.098
Overall (chain A) 13.88
Protein main chain (chain A) 12.64
Protein side chain (chain A) 15.31
Phosphate 38.29
Water 31.76

a The X-ray source was the NSLS beamline X29.
b a.u., asymmetric unit; RMSD, root mean square deviation.
c Values for the highest-resolution shell are in parentheses.
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parallel with the catalytic impairment, we observed elevated Ki

and IC50s for all mechanism-based inhibitors (clavulanic acid, sul-
bactam, and tazobactam). Interestingly, reintroduction of the
positive charge in the 244 region partly restored both catalytic
efficiency and inhibitor susceptibility (21).

Comparing our BlaC R220A crystal structure with the wild-
type enzyme (PDB entry 2GDN) (35) revealed an overall preser-
vation of the active site with only a minor rotation of the hydroxyl
group of T237. As a result, we hypothesize that that R220 serves as

a stabilizer of the KTG motif: R220 builds a hydrogen bridge with
T237, which allows a productive interaction between the hydroxyl
group of T237 and the carboxyl-group of the substrate (Fig. 2C).
In Ambler class A enzymes, position 276 is usually occupied by
asparagine, whereas in BlaC this is occupied by glutamate. Inter-
estingly, TEM variant enzymes with an N276D substitution are
inhibitor resistant. It is thought that the negative charge of the
aspartate neutralizes the positive charge of the R244 guanidinium
group (55). In BlaC, E276 is in close proximity to R220 (2.6 Å),

FIG 2 Crystal structure of the R220A variant enzyme. (A) Overall crystal structure. (B) Electron density map for the R220A mutant crystal structure. (C and D)
Comparison of the wild type (C) and R220A variant enzyme (D). Note the different orientations of T237 residues. (E) Overlay of KTG motif in the R220A
(orange) and E276 (green) enzymes.
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already weakening the positive charge of guanidinium. In the
R220A variant enzyme, this glutamate side chain is shifted toward
the KTG motif, where it may provide an unopposed negative
charge, leading to profound impairment of substrate and inhibi-
tor binding (Fig. 2D).

Does BlaC require a strategically positioned water molecule to
be inactivated by clavulanate? The secondary ring opening of cla-
vulanate requires a strategically positioned water molecule which
donates a proton for saturation of the double bond at position C2
(32). In TEM �-lactamases, R244 coordinates this water molecule
(32). In SHV, a water molecule is not readily seen in the crystal
structure of the apo-enzyme (PDB entry 1SHV) (56). On the basis
of mutagenesis studies, Thomson et al. suggested that the coordi-
nating water molecule is recruited from the solvent during sub-
strate interaction (34). A review of the available BlaC-ligand struc-
tures reveals differences with regard to the role of water molecules.
In the structure of the apo-enzyme, no water molecule coordi-
nated by R220 is seen (PDB entry 2GDN) (35). Similarly, the
interaction of the C4 carboxylate group of cefamandole with S130,

T235, T237, and possibly R220 (shortest distance � 3.6 Å) takes
place without evidence of a water molecule in both K73A (PDB
entry 3NY4) and E166A (PDB entry 3N8S) enzyme structures
(15). In contrast, the C3 group of meropenem, in an orientation
similar to that of the carboxylate group of clavulanate, binds to
T235 and a coordinated water molecule, which forms a hydrogen
bond to the carbonyl oxygen of T216 and the guanidinium group
of R220 (Fig. 6A and B) (PDB entry 3DWZ) (12). Unlike R244 in
SHV-1, R220 in BlaC does not interact directly with the C3 car-
boxylate of meropenem. A careful examination of our R220A
structure revealed that a water molecule is present in a location
similar to that of the BlaC-meropenem structure, which is in con-
trast to the apo-enzyme structure.

Based on the crystal structure of BlaC with meropenem, we
have created a model of the Michaelis complex of clavulanate and
BlaC with a water molecule in the active site (Fig. 6C). We propose
that the guanidinium group on R220 serves to polarize the water
molecule in order to allow donation of the proton, which allows
secondary ring opening of clavulanate (Fig. 6A and B; shortest
distance to guanidinium group � 3.3 Å).

Role of S130 in BlaC. S130 is a conserved amino acid residue
among class A enzymes and plays an important role in substrate
binding and proton donation during �-lactam ring opening (57,
58). Furthermore, S130 is an important residue for mechanism-
based inhibitors: the serine hydroxyl group can form a second
covalent bond with reactive intermediates of the inhibitor, leading
to cross-linking of the inhibitor within the active site (59). The

FIG 3 Protein expression of BlaC in M. tuberculosis. Immunoblotting was
carried out using a rabbit raised polyclonal antibody against BlaC. (A) Expres-
sion of BlaC in H37Rv. (B and C) Expression of variant BlaC in H37Rv�blaC
mutants.

FIG 4 M. tuberculosis H37Rv susceptibility assay with ampicillin with and
without clavulanate. (A and B) Susceptibility assay. Visually detectable growth
after 14 days incubation indicates resistance. Concentrations are in �g/ml.
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latter step seems to be important for permanent inactivation of
certain �-lactamases. Indeed, several inhibitor-resistant class A
variant enzymes which bear a serine-to-glycine mutation have
been described (60–62).

In both TEM and SHV enzymes, the missing serine hydroxyl
group is partly compensated for by a repositioned water molecule
(62, 63), leading to altered catalytic activity. Furthermore, the
S130G mutant enzymes exhibit high Ki values and lower partition
ratios (kcat/kinact), which can result in an inhibitor-resistant phe-
notype (62). In accordance with other class A enzymes, the S130G
variant of BlaC clearly demonstrates resistance to mechanism-
based inhibitors, as well as carbapenems, which parallels signifi-
cant loss of catalytic activity. This will be pursued further.

Role of T237 in BlaC. Position 237 in the majority of �-lacta-
mases is occupied by alanine or serine, and its functional impor-
tance is seen in the backbone nitrogen that forms, in conjunction
with serine 70, the oxyanion hole. This oxyanion hole positions
the carbonyl oxygen of the �-lactam during hydrolysis (64). While
BlaC is effectively inhibited by carbapenems, this �-lactamase
shares the threonine residue at position 237 with class A carbap-
enemases, most notably KPC-2 (65). T237 acts as an important

residue in binding of the carboxylate group of �-lactams, as has
been shown in the crystal structures of BlaC with carbapenems
and cefamandole (14, 15). Notably, T237 also interacts with the
R220 residue as detailed above. Based on these observations and
recent data from studies with KPC-2 mutants, we suspect that
mutations at this position may alter inhibitor susceptibility in
BlaC (66).

In contrast to all other variations, the T237S mutation led to
only minor impairment of catalytic function due to an increased
Km value (130 	 4 �M versus 56 	 4 �M, resulting in a 
50%
reduction of NCF hydrolysis). In parallel, modest increases in Ki

were observed for clavulanate (3�) and sulbactam (2�), but no
increase was observed for tazobactam. Similarly, IC50s for clavu-
lanate and sulbactam nearly doubled, while IC50s for tazobactam
were essentially unchanged. Overall, based on IC50s, all inhibitors
retained their activity against the T237S variant enzyme.

The T237A variant of BlaC resulted in a 50-fold reduction of
NCF hydrolytic activity, driven by both an increase of the Km value
and a decrease of kcat. Similarly, the Ki values for all tested inhib-
itors as well as carbapenems were 
100 �M, and IC50s for clavu-
lanate, sulbactam, and tazobactam were increased 10- to 35-fold.

In summary, while the T237S mutation had a modest impact
on increasing inhibitor resistance, the T237A variant enzyme re-
sulted in a remarkable increase in resistance to inhibitors and to
carbapenems, but at the cost of a significant reduction in catalytic
activity. With the exception of T237S, all variant enzymes showed
impaired susceptibility to mechanism-based inhibitors and car-
bapenems.

Correlation between enzyme kinetics and M. tuberculosis
drug susceptibility: growth, cell wall turnover, and protein
turnover rates. To our knowledge, this is the first study that as-
sessed the impact of BlaC mutations on in vivo susceptibility of M.
tuberculosis. Surprisingly, the introduction of substitutions into
M. tuberculosis did not lead to ampicillin-clavulanate resistance in
broth cultures. We were able to restore the wild-type resistance
profile by complementing the BlaC deletion mutant with a plas-
mid bearing the native blaC sequence, which supports our chosen
model. Furthermore, BlaC expression was detected for all mutant
strains by immunoblot analysis, with minor differences in expres-
sion level between the engineered variants. Remarkably, all mu-
tant strains exhibited low-level ampicillin resistance, indicating
sufficient expression of BlaC, and even mutants that generated
enzymes with high-level in vitro resistance to clavulanate contin-
ued to be susceptible to clavulanate in broth culture within the
tested range. This is in stark contrast to work similarly done in
Gram-negative bacteria (see reference 64 for a review), which re-
veals generally good correlations between kinetic data and suscep-
tibility testing, after accounting for differences in expression level.

Our data nicely demonstrate that there is a startling difference
between kinetic data and mycobacterial susceptibility testing.
Growth kinetics and cell wall turnover in mycobacteria are re-
markably slow compared to those in Gram-negative bacteria. We
postulate that kinetic data derived from observations over min-
utes may not reflect the true impact of �-lactam–inhibitor com-
binations on mycobacterial growth. To support this, we incubated
our mutant enzymes with clavulanate for a prolonged period of
time at a concentration of 5 �g/ml, similar to the concentration
used in the susceptibility testing of M. tuberculosis. Our results
were notable. First, measurement of �-lactamase activity after a
period of hours revealed that even highly resistant enzymes even-

FIG 5 Time-dependent enzyme inactivation by clavulanate (5 �g/ml). The
curves represent best fits for first-order decay. Note the different time scales of
the plots. (A) Slow deactivation within hours. Note the small residual activity
of the R220A, R220S, and S130G enzymes after 24 h (around 30%). (B) Rapid
deactivation within minutes. No recovery of activity was detected at 24 h (data
not shown).
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FIG 6 Model of the role of R220 in substrate binding. (A) Comparison between the wild-type BlaC-meropenem-bound structure (green) and the R220A variant
enzyme (orange). W1, water from 3DWZ (wild-type BlaC-meropenem-bound) crystal structure; W2, water from the BlaC R220A mutant structure. (B) Impact
of the R220A substitution on the T237 residue and binding of meropenem. (C) Model of clavulanate. The BlaC Michaelis complex shows the impact of R220A.
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tually were inactivated by clavulanate. Second, as expected, this
process follows a first-order-decay kinetic behavior (Fig. 5) with
remarkable differences in enzyme half-life: the wild type and the
T237A and T237S mutants were completely inactivated within a
few minutes (Fig. 5A), the R220A-A244R enzyme was inactivated
within 1 h, and the R220A, R220S, and S130G enzymes were in-
activated only after a period of several hours (Fig. 5B). The latter
group did have about 30% residual activity at 24 h. Lastly, the rate
of inactivation corresponded well to the determined IC50s for cla-
vulanate of the mutant enzymes: the higher the value, the longer
the time to inactivation.

The interaction of mechanism-based inhibitors with enzymes
may be paradoxical; i.e., inhibitors with low Kis may initially in-
activate the enzyme but eventually undergo hydrolysis with sub-
sequent slow recovery. This was not the case for the tested BlaC
variant enzymes; a gain in function was not observed at 24 h,
indicating prolonged inactivation of the enzymes, which is in con-
cordance with the observed resistance patterns in vivo. In contrast,
for BlaC inhibition with sulbactam and tazobactam, but not with
clavulanate, substantial recovery of enzyme activity has been ob-
served within 1 h (67). On the other hand, it has been shown for
S130G mutations in SHV that impaired inhibitor affinity may
result in relative inhibitor resistance, which still can lead to pro-
gressive loss of enzyme activity with time, due to the permanent
nature of the inactivation (63). Given the very high Ki values for all
tested inhibitors, we propose that a model that implies decreased
affinity is most consistent with our observations.

In conclusion, the in vivo inhibitor resistance phenotype is a
function of time-dependent inactivation of the �-lactamase and
growth rate of the bacteria of interest. Given that the generation
time of M. tuberculosis is close to a day, slow irreversible inhibition
can overcome relative inhibitor resistance.

Implications for clinical treatment. Our results favor the no-
tion of BlaC being an important therapeutic target, and we are
cautiously optimistic that resistance to �-lactam combinations
with clavulanate will not arise on the basis of structural alteration
of the enzyme. This is favored by the long generation time and the
irreversible nature of inhibition. Given the propensity of M. tu-
berculosis for generating resistance to all classes of agents in clinical
use, we expect that resistance to �-lactam combinations will fol-
low the same path, and more studies, including epidemiological
surveys in areas with high �-lactam antibiotic use, are needed in
order to determine potential resistance mechanisms. This may
occur at different levels, including membrane transport/permea-
bility, alterations in penicillin-binding proteins, and regulation of
BlaC expression, but is less likely to occur on the basis of yet-
unrecognized mutations in the BlaC enzyme (68).
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