
Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

2010

FPGA Based Design for Accelerated Fault-testing
of Integrated Circuits
Joe Dunbar
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Dunbar, Joe, "FPGA Based Design for Accelerated Fault-testing of Integrated Circuits" (2010). Master’s Theses. 28.
https://digitalcommons.bucknell.edu/masters_theses/28

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bucknell University

https://core.ac.uk/display/216949164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/28?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

FPGA BASED DESIGN FOR ACCELERATED FAULT-TESTING OF

INTEGRATED CIRCUITS

by

Carson Dunbar

A Thesis

Presented to the Faculty of
Bucknell University

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Electrical Engineering

Approved: __________________________
 Advisor

Department Chairperson

Engineering Thesis Committee Member

Engineering Thesis Committee Member

_______04/2010_____
(Date: Month and Year)

I, Carson Dunbar, do grant permission for my thesis to be copied.

ii

Dedication:

This work is dedicated to Carson and Carol Dunbar for their constant support in my

studies and their constant encouragement with any of my endeavors.

I would also like to thank Professor Kundan Nepal for his advice and large contribution

to this work with both experience and revisions.

iii

Contents:

 Dedication...ii

 Table of Contents...iii

 List of Tables..iv

 List of Figures..v

 Abstract...ix

Chapter 1: Introduction..1

Chapter 2: Background..6

Chapter 3: Xilinx Virtex II Architecture..18

Chapter 4: Error Insertion..30

Chapter 5: Algorithm For Testing..41

Chapter 6: Results..59

Chapter 7: Conclusions and Future Work..77

Bibliography..80

Appendices...84

 Appendix 1: C++ Code for fault induction..84

iv

 Appendix 2: C++ code for creating all other verilog files.........................92

 Appendix 3: Variable Instantiation Data...108

 Appendix 4: Variable Input Test Vector Data...118

v

List of Tables:

Table 2-1. Typical defects in a standard PCB..7

Table 4-1: Example Directed Graph Table3..36

Table 4-2: C17 Directed Graph Output...38

Table 5-1: Example Output for Step 3-f-iii..54

Table 6-1: Results from behavioral simulation and hardware emulation for C432

benchmark circuit...60

Table 6-2: Area and timing results for C432 circuit simulated with 10000 vectors

and variable instantiations running at clock frequency of 25MHz. 537 faults were

detected with 36 input vectors...62

Table 6-3: Results from C432, static number of instantiations, variable vector

tests..65

Table 6-4. Description of Benchmark circuits...72

Table 6-5: Best fault detection based on faults found, vectors used, and time (done

with 32 iterations)..74

Table 6-6: Comparison of ISCAS and MCNC circuit input test pattern counts

using various tests..76

vi

List of Figures:

 Figure 2-1. Single Stuck-At Fault at an internal node of a circuit……...…………8

Figure 2-2. Initialization Fault………………………………………………….....9

Figure 2-3. Multiple Stuck-At-Faults……………………………………………10

Figure 2-4. Bridging Fault…………………………………………………....….11

Figure 2-5. Stuck Open Fault……………………………………………………12

Figure 2-6. Stuck short Fault…………………………………………………….12

Figure 3-1. FPGA General Architecture ………………………………………...18

Figure 3-2. Virtex II Pro slice configuration………………………………….....19

Figure 3-3. Physical Layout of FPGA (XC2VP30) …………………………......20

Figure 3-4. Layout of C432 design on the XC2VP30…………………………...21

Figure 3-5. Block diagram of the Xilinx Development Board………………….22

Figure 3-6. Functional blocks of the PowerPC 405 processor…………………...24

Figure 3-7. Interconnects in the Virtex II Pro…………………………………....25

Figure 3-8. RS232 implementation……………………………………………....26

Figure 3-9. FIFO layout using BRAM…………………….……………………..27

vii

Figure 3-10. Clock Generator block diagram……………………………………29

Figure 4-1. Fault Equivalence in series of logic gates, wires, and fan outs……...31

Figure 4-2. Collapsed fault set using dominance…...32

Figure 4-3: a. Standard fault locations. B. A circuit with the checkpoints marked

(X)..34

Figure 4-4: Fault insertion multiplexer…..35

Figure 4-5: Output Comparison…...35

Figure 4-6. Example Directed Graph Circuit…...36

Figure 5-1. A block diagram of the FPGA emulation system supported through

software running on a host compute..41

Figure 5-2: Fault detection algorithm…...….43

Figure 5-3: A block diagram of the FPGA emulation system and Power PC

supported through software running on a host computer…..............................….46

Figure 5-4: State diagram of the fault detection algorithm……............................49

Figure 5-5. Flowchart of emulation algorithm…...50

Figure 5-6: A 4-bit LFSR with taps at bits 3 and 4…..52

Figure 5-7: Fault changing process……..55

viii

Figure 5-8: Combining new test vector data with recorded data. All test vectors

are displayed here in Hexadecimal notation…..56

Figure 6-1. Total time taken for test pattern generation using random vectors for

C432 as a function of the number of instantiations…...63

Figure 6-2: Total FPGA hardware resources used for test pattern generation using

random vectors for C432 as a function of the number of instantiations................64

Figure 6-3. Plot of number of vectors tested versus faults found for 32

instantiations of C432……..66

Figure 6-4. Plot of total time taken versus number of vectors tested for 32

instantiations of C432…..67

Figure 6-5. Graph of number of vectors tested versus number of vectors

needed..69

Figure 6-6. Graph of vectors tested vs vectors needed for z9sym….....................71

Figure 6-7. Graph of Instantiations Vs Time for z9sym……................................72

Figure 6-8. Fault coverage percentage in the benchmark circuits….....................75

Figure 7-1. Bit counter in the current algorithm…..78

Figure 7-2. Improved bit counter…...79

ix

Abstract:

In the past few decades, integrated circuits have become a major part of everyday life.

Every circuit that is created needs to be tested for faults so faulty circuits are not sent to

end-users. The creation of these tests is time consuming, costly and difficult to perform

on larger circuits. This research presents a novel method for fault detection and test

pattern reduction in integrated circuitry under test. By leveraging the FPGA’s

reconfigurability and parallel processing capabilities, a speed up in fault detection can be

achieved over previous computer simulation techniques. This work presents the

following contributions to the field of Stuck-At-Fault detection:

• We present a new method for inserting faults into a circuit net list. Given any circuit

netlist, our tool can insert multiplexers into a circuit at correct internal nodes to aid in

fault emulation on reconfigurable hardware.

• We present a parallel method of fault emulation. The benefit of the FPGA is not only

its ability to implement any circuit, but its ability to process data in parallel. This

research utilizes this to create a more efficient emulation method that implements

numerous copies of the same circuit in the FPGA.

• A new method to organize the most efficient faults. Most methods for determining

the minimum number of inputs to cover the most faults require sophisticated software

programs that use heuristics. By utilizing hardware, this research is able to process

data faster and use a simpler method for an efficient way of minimizing inputs.

1

Chapter 1: Introduction

Since the invention of the transistor circuit in 1925, computing has been changed

drastically. Every year circuits become smaller as the technology to build them becomes

more sophisticated. Researchers and circuit developers strive to accommodate Moore’s

Law and increase the number transistors on a circuit by two times every eighteen months.

This trend has continued for almost four decades and thus current processing units have a

transistor count on the order of 109.

This large number of transistors and the increase in complexity of modern integrated

circuits (ICs) make it almost impossible for engineers to manually check for errors in

every part of their circuitry. Faults can manifest themselves as permanent defects in

wires and transistors during the complex manufacturing steps. Transient errors can also

arise during circuit runtime due to delay mismatch, excess leakage current and other

parameter variations. Some of these faults and errors can be checked for during

production and the IC can be discarded before it causes errors for the end-user. One such

error, the stuck-at-fault deals with wires within the circuit being stuck at either a high

voltage, a stuck-at-one fault (SA1), or stuck at a low voltage, a stuck-at-zero fault (SA0).

A general way to test for stuck-at faults after manufacturing is to run a set of input

stimulus and compare the output of the integrated circuit with a set of expected outputs.

Any deviation from the expected output set results in a functional error. Since the number

of input stimulus grows exponentially with the number of inputs to the circuit, finding a

representative subset of the circuit is of utmost importance. Automatic Test Pattern

2

Generation (ATPG) is a technique that aims at finding a compact and optimal test-set to

detect all possible faults in the system. For test pattern generation, there have been two

main methods of generating input vectors –circuit simulation and emulation.

 Simulation uses a computer program to determine the best possible vectors. As with any

process there are a number of strengths and weaknesses associated with simulation.

Simulation allows engineers to reproduce any detail of a circuit. Engineers may also

decide to simulate higher level behavior before they decide to simulate a net list. This is

done primarily to see that the higher levels of behavior fall within the acceptable

performance boundaries. The major downfall to the idea of simulation is that to

comprehensively simulate a complex circuit for all possible faults, a standard desktop

computer will not be enough. This logically leads to the fact that it is not possible to test

all possible inputs for circuits with larger input vectors. On the other hand emulation, a

recent development due to improvements in the area of Field Programmable Gate Arrays

(FPGA), allows for a hardware based solution to this issue.

With the advent of the FPGA and its proliferation in research laboratories, creating

hardware implementation of simulation techniques has become a viable alternative. Until

1985, when the FPGA was first commercially available [1], it was not logical to use

hardware to perform tasks where software was needed for its ability to modify routines

with ease. Each change in software would correspond to a new hardware design and a

new IC to being created in hardware. This would be costly, both in design and

production. The true advantage of the FPGA over simulation techniques and producing

3

application specific integrated circuits (ASICs) to determine test patterns comes from its

ability to be continually reprogrammed. FPGAs can perform any task that an ASIC can,

but can be programmed with a new circuit after one has already been implemented. This

also means that a circuit can be implemented in hardware without cost. FPGAs can also

be tested thoroughly in hardware, not just simulated, a big advantage over its ASIC

counterpart. FPGAs also have the advantage of being able to perform software-like

processes more efficiently than a computer can. This means there is usually a significant

speed up for a specific task that an FPGA performs over the same task performed on a

central processing unit (CPU).

 An FPGA uses a hardware description language (HDL), Verilog or VHDL, that allows

for circuits to be programmed as either net lists, a group of predefined ICs such as AND

and OR gates, or using a syntax similar to most current programming languages, such as

C++ and JAVA. HDL facilitates the transfer of simulation techniques to an FPGA and

allows for programmers to develop ICs easier using concepts that software developers

use.

Main Contributions

This thesis presents a novel method for fault detection and test pattern reduction in

integrated circuitry under test. By leveraging the FPGA’s reconfigurability and parallel

processing capabilities, a speed up in fault detection can be achieved over previous

computer simulation techniques. This thesis presents the following contributions to the

field of Stuck-At-Fault detection:

4

1. We present a new method for inserting faults into a circuit net list. Given any circuit

netlist, our tool can insert multiplexers into a circuit at correct internal nodes to aid in

fault emulation on reconfigurable hardware.

2. We present a parallel method of fault emulation. The benefit of the FPGA is not only

its ability to implement any circuit, but its ability to process data in parallel. This

research utilizes this to create a more efficient emulation method that implements

numerous copies of the same circuit in the FPGA.

3. A new method to organize the most efficient faults. Most methods for determining

the minimum number of inputs to cover the most faults require sophisticated software

programs that use heuristics. By utilizing hardware, this research is able to process

data faster and use a simpler method for an efficient way of minimizing inputs.

 Organization of the Thesis

Chapter 2 of this thesis provides a brief background on fault-detection and ATPG in

integrated circuits. It also provides a discussion on manufacturing tests; its importance in

circuit production as well as an exploration of how it different testing techniques are

implemented. Lastly this chapter discusses existing work directly related to this thesis.

Chapter 3 provides an introduction to the architecture of the Xilinx Virtex II Pro FPGA -

the main implementation platform for this research. The chapter will also go over the

process of using the Xilinx for this research and the limitations that had to be dealt with.

5

Chapter 4 discusses stuck-at-fault models and presents our approach of accurately

modeling them using multiplexers. Then the chapter also describes the physical process

of mapping the faults to the FPGA and how each fault can be emulated with a simple

command.

Chapter 5 introduces our algorithm for testing stuck-at-faults in an FPGA. It also

discusses our technique of using test results generated in the FPGA to create a compact

set of patterns that can be used to test all faults in the original circuit. Chapter 6 presents

and analyzes the results obtained from our approaches described in chapters 4 and 5.

Finally chapter 7 offers some conclusions and presents some relevant future research

ideas.

6

Chapter 2: Background

Manufacturing Defects

During the manufacturing process of any circuit, any number of defects may occur and

thus faults are generated. Wafer testing is implemented at the end of the manufacturing

process for integrated circuits (ICs) to make sure that the IC is working correctly. During

this process, a series of inputs drive the ICs and the outputs are observed and compared to

expected results. Any ICs that do not pass the initial test are tested again to see if on chip

resources can help to repair faults that are found. If this cannot be done then redundancy

that is built into the chip will be tested and if this fails the chip is marked faulty. The only

time that this process can be avoided is when the actual cost of producing the ICs is lower

than that of testing them individually.

For every circuit that is produced there can be a large number of sources for permanent

faults. Table 1 shows how these faults are distributed in standard printed circuit boards

(PCBs). All possible faults are caused by four different types of defects: process defects,

material defects, age defects, and package defects [2].

 Process defects and material defects come from an imperfection in the materials used

during the creating of a circuit. This is caused predominantly by dust on either the mask

or wafer surface or in the chemicals during the photolithography process. The presence

of dust and other foreign objects causes unexposed photoresist areas or unresist pinholes.

This leads to excess unetched material in an improper area or excess etching in an

incorrect area. These issues can lead to incorrectly placed or absent contact windows,

7

parasitic transistors, oxide breakdown, and material imperfections. Errors of this kind

account for about 60% of the defects in manufactured circuits [3].

Age defects are problems that occur over time and with repeated use of a device. These

defects include and are not limited to time-dependent dielectric breakdown, charge

breakdown, hot carrier injection, negative bias temperature instability, and

electromigration. While these defects were largely ignored before; the increased scaling

of transistors and the increased variability in the manufacturing process has forced the IC

industry to run efficient tests to measure reliability against aging. For testing, the wafer

or device is subjected to variety of stress-measures (thermal, high current etc.) and a

reliability curve is generated that extrapolates the measured data to predict the operating

lifetime of a device [4].

Finally, package defects are issues that are related to the actual physical housing of any

circuit. If there is an opening or leads are broken a different set of faults is created.

Usually these errors will be detected during testing as an open [5].

Defect Type Frequency of Occurrence (%)
Shorts
Opens

Missing components
Wrong components

Reversed components
Bent leads

Wrong analog specifications
Defective digital logic
Performance defects

51
1
6
13
6
8
5
5
5

Table 2-1. Typical defects in a standard PCB [2]

8

Fault Models

Before we talk about integrated circuit testing, it is important to propose a model for how

and why faults occur and how their existence impacts the rest of the circuitry. For

efficient manufacturing test, the following fault models are generally used.

 Stuck-At-Fault – This fault occurs when a signal line within a circuit is permanently set

to either logic high, 1, or a logic low, 0. This fault model does not have a specific cause;

rather, it is an abstract fault model with numerous causes, some of which are faults that

are described below. Figure 2-1 shows a portion of a circuit where an internal circuit line

has been permanently stuck-at-0. This incorrect value at this node propagates to the rest

of the circuit and causes an incorrect outcome at the output. The incorrect output due to

the fault is shown in parenthesis at each affected node. The stuck-at fault model is one of

the most popular fault models and is the subject of research in this thesis.

Figure 2-1. Single Stuck-At Fault at an internal node of a circuit.

As stated above, the category of stuck-at-faults contains a number of different

classifications that current simulators use.

9

Potentially Detectable Fault – This fault is characterized as an unknown state (X)

at a primary output (PO). There is a probability of detection associated with it

mostly around 50%

Initialization Fault – An initialization fault is a error in a circuit that interferes

with the initialization of any kind of memory device, i.e. flip flops. One such

example of this is a flip-flop’s clock which has a stuck-at-fault and is left in an

inactive state. Figure 2-2 below shows how an initialization fault can affect a

circuit. Due to the SA0 at the input, A, it becomes impossible to determine what

the output of Q will be at any moment in time.

Figure 2-2. Initialization Fault

Hyperactive Fault – Hyperactive faults are defined as a signal that causes a large

number of signals in a circuit to differ from their correct value.

Redundant Fault – This fault has no test because it does not affect the input-output

function of a device in any detectable way. They are often removed simply for

circuit optimization. This definition applies to combinational circuitry but it can

also apply to sequential circuitry. In sequential circuits the definition is vague and

so these faults more fall into the undetectable fault category.

10

Undetectable Fault – Faults that fall under this category simply are impossible for

test generators to detect.

In addition to single stuck at faults, there are situations where numerous stuck-at-

faults may be in a circuit. This is called a multiple stuck-at-fault model and it

can cause single stuck-at-fault tests to fail. In most situations where there are

multiple stuck at faults, the faults will not mask each other and not affect the

effectiveness of a single stuck-at-fault test. If the faults do manage to mask each

other the single stuck-at-fault test becomes ineffective although this is statistically

unlikely to occur [2].

Figure 2-3. Multiple Stuck-At-Faults

Bridging Fault – This fault is defined as a short between groups of signals. This may

cause an OR bridge or an AND bridge which are ones dominant or zeros dominant

respectively. These faults can be found with tests used for finding stuck-at-faults.

11

Figure 2-4. Bridging Fault

These faults can fall under the category of potentially detectable stuck-at-faults because it

is not know whether a line will be pulled up or pulled down with a short at any point at

time, this is why it is assigned an X value at the site of the short and from the output

onwards. Because of this, the bridging fault will not always be detectable.

Delay Fault – This fault is active when the combinational logic delay exceeds the

specified clock period. The variation in the manufacturing process can cause certain

portions of a circuit to be slower than other parts of the circuits causing internal signals to

arrive at different times and cause functional failure. The fault is usually modeled as

either a gate delay fault model where a single gate is assumed responsible for producing

the slow response or a path delay fault model where certain interconnects and paths are

responsible for slow propagation of a signal. This fault is outside the scope of this

research and will not be dealt with.

Stuck-Open and Stuck-Short Faults – This fault is defined as a single transistor that

has either been stuck open, no current will ever pass through, or stuck short, lacking the

ability to stop current. As with bridge faults, the stuck-open faults can be detected by

running a sequence of stuck-at fault detection vectors.

12

Figure 2-5. Stuck Open Fault

Figure 2-6. Stuck short Fault

These two faults are specific ways that stuck-at-faults can occur. From Figures 2-5 and

2-6, it can be seen that the outputs of specific transistors can take on a permanent low or

high signal thus causing a SA1 or an SA0.

This thesis will primarily deal with the stuck-at fault model. Due to the nature of the

stuck-open, stuck-close, and bridging faults, they will also be covered as stuck at faults in

this thesis.

13

Related Work on fault simulation and detection

For the past few decades, fault checking has been done by a variety of different types of

simulators. There are a variety of approaches that have been developed to simulate

stuck-at faults in different ways [2]. Serial fault simulation enumerates all possible

correct outcomes of a circuit, saves them to a file, and compares them with a circuit that

has a certain input vector. This method takes, at most, N-times (where N is the number

of faults) the computer time that a true-value simulator1 does, although it can be shorter if

numerous faults are found with one vector. This method is used primarily for

combinational logic circuits as it cannot compensate for transitional signals without

significant modification.

Building upon serial fault simulation, parallel fault simulation was developed [2]. This

method can only be used with combinational logic circuitry. By using the word length of

a machine it tests up to the word length minus one number of vectors i.e. a 32-bit word

could test 31 vectors at a time. The remaining bit is used as the signal value of the fault

free circuit as a comparison. This process cannot compensate for the fall and rise of

signals, but it does allow for the ability to control which fault is being tested in a circuit.

Another simulation method is deductive fault simulation[6]. This method tests one

vector at a time and creates lists of possible faults that can be detected on every wire. At

every gate, logic is used to determine which of the faults in the lists will be propagated.

For example, if an OR gate is present and an input is a true, no faults will propagate. If

1
 True-value simulator – A simulation and detection of one fault through comparison with a clean circuit.

14

the input is false, a fault will propagate. A fault that propagates to a primary output is

considered a fault that is found by the vector. Given certain specifications, this method

can be incredibly fast, but factors such as multiple signal states and variable delays can

require major changes in the implementation of the method.

Concurrent fault simulation is a simulation technique that uses numerous copies of

every gate in the circuit to determine if the circuit has faults [7]. Similar to deductive and

serial fault simulation, this method iterates through each possible input vector. Then, by

creating a number of gates that could possibly have faulty inputs it propagates all the

possible outputs forward. If there are any incorrect values at the output, that vector is

determined to be able to detect faults. This simulation technique is the most general of

all of the previously listed techniques because it works with different circuit models,

faults, signals states, and timing models.

Roth’s TEST DETECT algorithm was developed in 1966 by J. P. Roth at IBM [8] to

reduce the total computational complexity of parallel fault simulation by exploiting the

relationship between faults. This algorithm starts by testing the true value of the circuit

with a vector, then injects a fault at a certain wire and designates either a D (representing

an error) or a D-not at the fault site. This technique is unique because it propagates the D

throughout the circuit with a technique called D-Calculus and if the D reaches a primary

output then the fault is designated as found with the tested vector.

The TEST DETECT technique was improved upon with differential fault simulation

[9]. This technique eliminated the need for the D-calculus and the need to constantly

15

restore the true-value of the circuit every time a new stuck-at fault was tested. This

makes the algorithm simple to implement and reduces the number of simulation runs by

approximately half.

Recent research is moving toward improving fault detection speeds by hybridizing these

simulation techniques and improving the technology upon which they run. In [10] the

authors use Graphics Processing Units (GPUs) as opposed to general purpose processors

(GPPs) to simulate faults. GPUs are designed for multithreaded processes which makes

testing multiple faults more efficient. The findings of this research are that it is orders of

magnitude faster to use a GPU rather than a GPP to process the gates in parallel. Results

have also shown that systems with more GPUs, the results would be even faster.

Instead of just using simulation, researchers have also focused their efforts into fault

emulation [11]. The use of FPGAs has shown to be more efficient at fault checking for

sequential circuits which have large numbers of input vectors and long input sequences.

Other improvements in the future are also discussed such as better hardware, an

automated synthesis flow to the testing environment, and better partitioning methods for

emulation of fault list partitioning in an academic environment where industrial grade

hardware is not accessible.

 The same authors use an FPGA to emulate faults for various circuits in a serial manner

[12]. The authors created a process by which they create a circuit on an FPGA and use

injected multiplexers to control test vectors and stuck-at faults. They also use a series of

decoders to decide which vectors indicate faults in the circuit. The results showed that

16

the use of FPGA emulation was faster than simulation. The drawback to this was that

there is a synthesis time required, where the circuit is mapped onto the FPGA, and this

requires a much larger amount of time than simulation. Synthesis time in a larger circuit

is longer than simulation, but it becomes less significant as the number of inputs and

possible test vectors increases. The authors note, that if this technique is used in testing

larger circuits as well as sequential circuits the technique can be a useful fault finding

method.

In [13-14], the approach is to emulate circuit faults using the D-algorithm on FPGAs.

The D-Algorithm has been proven to be able to be implemented in hardware. It allows

for the speed of hardware without needing specific circuit-testing hardware. The authors

were able to implement fine-grain parallel processing, such as forward/backward

implications and conflict checking. Forward/backward implications are the process of

checking for errors by first counting upwards in the inputs and then counting down.

Error checking in both directions is necessary for generating the smallest number of test

vectors. Conflict checking is a process that checks reactions within a circuit in response

to a change in the inputs. These inputs are then propagated to the primary outputs in both

correct and faulty circuits.

Other researchers have built upon the use of FPGAs and proposed their own techniques

for speeding up the process. The researchers in [15] proposed two techniques to increase

the speed of the fault simulation process by injecting numerous independent faults into

the same circuit and injecting multiple dependent faults at the same time. Synthesis time

17

is the bottleneck of the FPGA’s usage. By reducing the number of reconfigurations the

overall time for emulation is dramatically reduced.

The authors of [16] introduce a technique that takes advantage of the internal look-up

tables (LUTs) of FPGAs and is distinct from other FPGA-based fault emulation

techniques. They use a technique of reducing stuck at faults called fault dominance,

which states that certain faults “dominate” other faults in a circuit and allows for some

faults to be ignored. This can help to both reduce the number of faults checked for and

reduce the checking logic. If a set of gates with a dominant fault at the output can be

grouped together and emulated by a single LUT the circuit size will reduce and the

emulation time will drop significantly.

Emulation has also become a topic of research in the field of fault location. The

researchers of [17] attempt to use fault emulation with FPGAs to figure out where a

specific hardware fault is located within both sequential and combinational circuits. By

using a ranking system they were able to remove the need for any software, including

large software-based fault dictionaries. They found that the increase in performance was,

on average, around 300 times faster than traditional simulation techniques.

18

Chapter 3: Xilinx Virtex II Architecture

Generic Xilinx FPGA Architecture

All Xilinx FPGAs follow a specific architecture scheme that starts with a number of input

and output blocks (IOBs) that surround the core logic. The core logic is made up of

configurable logic blocks (CLBs) which have a number of resources that help connect

them to each other and the IOBs. These CLBs are what is responsible for producing the

desired result of the programmer.

Figure 3-1. FPGA General Architecture [18]

To program the device, there is an internal static memory that determines how the CLBs

will behave and how they will connect to one another. The data that goes here is loaded

into the FPGA at power up or reconfigured by the user. Figure 3-2 shows what makes up

a CLB. Each one contains sets of what are basically RAM devices with 16 addresses.

19

These act as LUTs and shift register loop up tables (SRLs). These are then connected to

multiplexers and arithmetic logic which determine what data to pass into the

register/latch for the final output.

Figure 3-2. Virtex II Pro slice configuration [19]

The CLBs are where all of the data is stored and different logical processes are

performed. The LUTs store data that is know before initialization while the

register/latches are the places where processed data is stored.

Virtex II Pro FPGA Architecture

The primary processor in this research was the Virtex II Pro FPGA - the Xilinx Virtex-II

Pro Development System. The board houses a Xilinx XC2VP30 FPGA with 30,816

Logic Cells, 136 18-bit multipliers, 2,448Kb of block RAM, and two PowerPC Processor

20

cores [19]. In Figure 3-3, the physical layout of an FPGA similar to the chip used in this

design is shown. The only appreciable difference is the lack of two PowerPC CPUs in

this, but because this design only uses one of these it is an acceptable example of the

hardware being used.

Figure 3-3. Physical Layout of FPGA (XC2VP30) [19]

21

Figure 3-4. Layout of C432 design on the XC2VP30

It can be seen that there are several columns of CLBs, BRAM columns and the Digital

Clock Managers throughout the device. In a direct comparison, Figure 3-4 shows the

actual layout of the Virtex II Pro FPGA that we are using for this research. The major

difference between the two is that there are two PowerPC CPUs in the FPGA used in this

research. In addition to these difference, the actual implementation of the C432 fault

detection algorithm (described in Chapters 5 and 6) is shown in the highlighted blocks of

the layout. Figure 3-5 below is the block diagram of the Xilinx Development Board with

the C432 fault detection core implemented. The components of both Figure 3-3 and

Figure 3-5 will be explained thoroughly in this chapter.

22

Figure 3-5. Block diagram of the Xilinx Development Board

23

Power PC

The PowerPC is built with a 64-bit architecture that can run in a 32-bit mode. It is meant

to work as a processor for system-on-a-chip designs. This CPU was designed with 5

pipeline stages, 16 KB of instruction and data caches, and can run at clock rates of up to

and above 400 MHz[20]. There are three different levels of architecture that the

PowerPC provides and are described in [21]. These include the User Instruction-Set

Architecture (UISA), Virtual Environment Architecture (VEA), and Operating

Environment Architecture (OEA) .

The UISA level is the base level for the PowerPC architecture. This level defines the

architecture that the user’s software should be compatible with. All of the instruction set,

user-level registers, data types, floating-point memory conventions, memory model,

programming model, and exception model as seen by the user are defined by the UISA.

After the UISA is the VEA which defines the features in the architecture that allow

applications to create and change code, make memory storage discernable, and optimize

the performance of the memory-access.[Xilinx ug018]. This environment also defines

the cache and memory models, the timekeeping resources from a user perspective, user

mode resources that are primarily used by system-library routines. The storage model of

this architecture level, defines the storage-control instructions that are defined in the

PowerPC VEA. Storage-control instructions are used to manage the interactions of

instruction and data caches. The storage attributes, write-through, cacheability, memory

coherence, guardian, and endian, are defined by the storage model as well. Finally the

24

storage model controls the operands, their requirements and how they affect the

performance.

The OEA defines the parts of the architecture that allows the CPU to work as an

operating system. This includes input and output interactions and memory control.

Privileged access and exception handling is also dealt with in this architecture.

Figure 3-6 below is a diagram of the PowerPC with blocks representing it capabilities as

a CPU and the interconnections between the different processing elements. The PLB

interface is described as being directly connected to the cache units. From here the data

is sent to either the instruction or data processor.

Figure 3-6. Functional blocks of the PowerPC 405 processor [21]

25

Processor Local Bus (PLB)

To connect the different parts of this design, the PLB is implemented. In Figure 3-4, this

is represented by the beige lines that connect different parts of the design. Every device

connected to this bus is regulated by the device. As described in [19] the PLB can run at

either 32 or 64 bits, but for this design only the 32 bit operation is needed. Below in

Figure 3-7, it can be seen how the PLB connects to the major blocks.

Figure 3-7. Interconnects in the Virtex II Pro [19]

RS232 UART

Because output speed was not a major concern, an RS232 serial communications port

was used to connect the output of the Xilinx Development Board to a hyperterminal

application on the user’s computer. This is a standard 9-pin UART device that

handshakes with a computer’s COM port. Depending on the design, this device was used

at speeds ranging from 9600-115200bits/sec. The implementation of this device is

described in [22].

26

This RS232 serial port uses voltages ranging between +5 and +15V for a logical high and

-5 and -15V for a logical low. These voltages ensure that the signal will be able to be

read even at the maximum cable length of 50 feet. The RS232 port has five signals that

are communicated between itself and the FPGA. These include the RS232_TX_DATA,

RS232_DSR_OUT, RS232_CTS_OUT, RS232_RX_DATA, and RS232_RTS_IN. The

RS232_TX_DATA, or transfer signal, carries the output signal and the

RS232_RX_DATA, or receive signal, carries the input data (not used in this design).

The other three signals, RS232_DSR_OUT, RS232_CTS_OUT, and RS232_RTS_IN, are

the data set receive, clear to send, and request to send signals. These are the hardware

control signals that allow both ends of the connection to know whether or not data is

being sent, ready to be sent, or it needs permission to be sent respectively. Figure 3-8

below shows how the connections for each of these signals are connected to the RS232

transceiver on the Xilinx Board.

Figure 3-8. RS232 implementation [22]

27

First In First Out Memory/Block RAM

Between the Power PC and the FPGA core that was implemented was a first in, first out

(FIFO) memory cell that exchanged input and output data between the two processors.

These FIFOs act as data buffers that can be accessed at any time. There is both a write

and receive FIFO with respect to the FPGA core. From the PowerPC a user may input

data into the receive FIFO, and this data may be extracted from the FPGA. The write

FIFO works in reverse, taking data in from the FPGA core and having it read in the

PowerPC. In addition to the data inputs and outputs, there are other signals that can be

tapped from these FIFO regarding how much data is stored in either, whether or not they

are full, or if they are close to being full. In Figure 3-9, the block diagram of a FIFO

interconnect is shown. It is seen where the signals described above are placed and how

they are connected to the BRAM.

Figure 3-9. FIFO layout using BRAM [23]

28

Clock Generator

The block of this design that was used to control the clocks, was aptly name the clock

generator. Described in [24] and made up of several Digital Clock Managers (DCMs), a

Phase Locked Loop (PLL), and several buffers and inverters, this device takes in an

external clock and allows the user to create several other clocks that run at different

frequencies and with different phase shifts.

In Figure 3-10 below, the block diagram for the clock generator is shown. The first half

of the device is where the user defined clocks are implemented. The input clock is put

through a PLL so that the clocks may be synchronized and then through the DCM where

different clocks can be created with specific frequency and phase shift requirements.

Using the DCM it is also possible to create faster clock speeds than original input signal.

From here these clocks are buffered to improve signal strength and then sent out to the

cores that use them.

The bottom half of the Figure 3-10 block diagram describes the clock signal sent

throughout the FPGA. This clock signal is sent through a DCM for tuning and then sent

out to a clock distribution network that is present throughout the entirety of the FPGA.

This allows for clocks to be accessed from almost anywhere on the FPGA without losing

significant signal strength or losing time due to delays. The clock is also sent back in so

that it may be compared to the original input clock to make sure they are synchronized.

29

Figure 3-10. Clock Generator block diagram [24]

JTAG, System Reset, and Additional Buses

In addition to the devices mentioned above, there are several peripheral devices used for

controlling interconnections within the development board shown in Figure 3-4. These

include the JTAG PPC controller and the system reset and their respective busses which

are described in [23-24]. Both of these devices are responsible for controlling the

PowerPC CPUs in the Xilinx FPGA.

The JTAG PPC block is responsible for controlling the connection between two different

PowerPC CPUs when they are implemented in the FPGA. Only one PowerPC is

instantiated in this design so this device is negligible. The system reset block on the

other hand is responsible for initializing both the PowerPC and the FPGA. All

initializations determined in the Verilog code are implemented in this block as well as the

PowerPC CPU.

30

Chapter 4: Error Insertion

With any method of fault testing and test vector generation, faults need to be simulated in

a working version of a circuit. This can be a daunting task because of all of the possible

fault sites. There are faults on every input, intermediate output, and fan out. To reduce

this number, the concepts of fault dominance and fault equivalence are used.

Fault Equivalence

Fault equivalence is defined as two faults that are triggered by the same signals. If two

faults x and y are equivalent; and if fault x is triggered by a specific input signal, then

fault y will as well. The test for this is shown below in Equation 4-1.

�����⨁��(�) = 0

Equation 4-1. The Indistinguishability Condition, determines if two faults are identical or
equivalent [2]

By using Equation 4-1 a large number of faults can be eliminated from consideration

immediately. In [2] it is stated that an n-line circuit this is an inefficient process and

requires 2(n2-n) pairs of faults to be compared. To improve this reduction algorithm, a

comparison of faults that surround different Boolean gates can be used to find equivalent

faults. These equivalences can be seen in Figure 4-1. For example, consider the two-

input AND gate shown in Figure 4-1. It has two inputs and one output. Each input and

output node can be either stuck at 1 or 0. This gives the total fault count for the AND as

3. However, consider the case input A stuck-at-0. To test this fault, we would excite A

by exciting a 1 at the input and propagate the reaction of node A to the output by making

31

the second input B a logic 1. So input vector <A,B> = <1,1> propagates the fault A

stuck-at-0 to the output, the expected value at the output is a 1 but we see a 0. Hence,

<1,1> detects A stuck-at-0. Similarly, <1,1> also detects fault B-stuck-at-0 and C-stuck-

at-0. Hence, faults A-stuck-at-0, B-stuck-at-0 and C-stuck-at-0 are considered equivalent.

A vector that detects one will detect all the three faults. Similar analysis can be used for

the Stuck-at-1 problem for the AND gate and can be expanded to find equivalence in the

other logic gates.

Figure 4-1. Fault Equivalence in series of logic gates, wires, and fan outs

Fan-out trees are special cases. Figure 4-1 suggests no equivalence between the faults in

the fan out stem and the branches. The reason there appears to be no equivalent faults for

the fan-out is because the two branches may have independent stuck-at-faults that differ

from the stem. This means that fan outs cannot have their faults reduced through

equivalence.

32

Fault Dominance

In addition to the concept of fault equivalence is the idea of fault dominance described in

[2]. In fault equivalence two faults have the exact same tests and thus can be eliminated.

Fault dominance states that if all the tests for fault F1 are a subset of the tests for fault F2,

then F2 dominates F1. Figure 4-2 shows the idea of fault dominance in a regular

combinational circuit. Consider two faults, input F1 output F2, both stuck-at-1 faults. For

the F1 stuck-at-1, the only vector that would excite F1 and propagate the result to the

output is <0,1,1>. For the F2 stuck-at-1 we need to excite fault F2 (i.e. output F2 needs to

be made a 0). This can be done by setting one or more of the inputs to be a 0. Figure 4-2

shows the 7 possible input vectors that could test F2 stuck-at-1. The test of F1 is a subset

of the F2 test and hence can be eliminated. Using such dominance relationship, it can be

found that for a three input AND gate, the only faults that need to be tested are stuck-at-0

on all of the inputs and a stuck-at-1 on only any one input.

Figure 4-2. Collapsed fault set using dominance

Fault Dominance can be stated with three basic rules laid out in [2]:

1. Any Boolean gate with n inputs will require n+1 stuck-at-faults to be considered.

2. To collapse faults on any gate the first step is to eliminate the faults on the output as

long as one type of fault (SA1 for AND and NAND; SA1 for OR and NOR) is

33

modeled on all of the inputs. The other type of fault (SA0 for AND and NAND; SA0

for OR and NOR) can be reduced to only one input.

3. For NOT gats and non-inverting buffers, the output faults may remain as long as both

fault types are modeled on the inputs. Fan outs have no collapsing methods.

Checkpoint Theorem

With the use of the concepts of fault equivalence and fault dominance, a more efficient

method of fault modeling can be hybridized. The method used for determining fault

locations in this research is the checkpoint theorem. In [2] a checkpoint is defined as all

of the primary inputs to a circuit as well as all fan out branches that occur within the

circuit. The checkpoint theorem then states that by testing all checkpoints for stuck-at-

faults, all possible stuck-at-faults are tested for as well. Looking at Figure 4-3, the

difference between standard fault locations and checkpoint fault locations can be seen.

The out puts of the first level of AND gates do not need to be checked due to fault

dominance. This also applies to the outputs of the second level of AND gates assuming

they are not primary outputs. In a circuit that has more levels, the number of faults drops

drastically. This would mean more fan outs and lines and the same number of primary

inputs.

34

Figure 4-3: a. Standard fault locations. B. A circuit with the checkpoints marked (X).

Although the checkpoint theorem does not reduce as far as using a complete combination

of fault equivalence and dominance, it is easy to implement in code and does provide a

significant reduction in fault sites. For example in the benchmark C499 there are 499

lines which would imply 998 potential fault sites. With the checkpoint theorem, this is

immediately reduced to 594 fault sites, a reduction of approximately 59.5%.

Physical Description of Error Insertion

For this research the method of simulating errors was the use of a two to one multiplexer.

At every check point a multiplexer was inserted with connections as specified in Figure

4-4. The first input is the original line from the circuit that would carry the correct data.

When the select bit is on it specifies that this specific fault is being activated and

depending on the input to S1, either a SA1 or SA0 will be inserted into the circuit.

35

S0

O

S1 S

Select fault

on/off

Fault(SA0 or SA1)

Original Line

Output

Figure 4-4: Fault insertion multiplexer

To simplify the outputs for the user, the output of the circuit with the fault is compared to

that of a fault-free circuit with the use of a series of XOR gates as shown in Figure 4-5.

Each output from the faulty circuit is compared to its fault-free equivalent and if there is a

high output, the fault has been detected. All of the outputs are then put through an OR

gate and this gives a simple high or low answer as to whether or not any of the outputs

detected the fault.

Figure 4-5: Output Comparison

36

Multiplexer Installation Algorithm

For this research it is assumed that circuits that will be produced will be in a structural

netlist format. That is, all circuitry will be described in gate format and all lines between

gates will be specified directly. Under this assumption a program in C++ was developed

to determine where and how to implement a multiplexer. It uses a directed graph similar

to Table 4-1 to log all gates and their inputs and outputs. Figure 4-6 represents the circuit

that is described in Table 4-1. This helps to determine the number of fan outs and inputs

as needed by checkpoint faults.

Name Type Parents
N1 Primary Input Null
N2 Primary Input Null
N3 NAND N1, N2
N4 NOR N1,N2
N5 AND N3,N4
N6 OR N2,N3
N7 AND N5,N6
N8 XOR N7,N4

Table 4-1: Example Directed Graph Table

Figure 4-6. Example Directed Graph Circuit

Because this research uses checkpoint faults to determine all stuck-at-faults, the first

locations to check are the inputs. Standard Verilog netlist files, such as Example 1 the

37

C17 benchmark circuit, begin with an instantiation where a “module” is declared with a

listing of all of the input and output ports. The next line is usually an input declaration.

This line is detected by the code and all of the input wires are logged. They are flagged

as primary inputs of the circuit and will be used later. After this, the program goes

through all of the gates and logs their inputs and outputs.

Example 4-1: Code for benchmark circuit c17

After all of the gates have been successfully logged in a format similar to Table 4-1, the

output wires from other gates that lead into them are all stored into a vector. This vector

is cycled through numerous times, and if the wire appears more than once it is stored in

another vector along with the number of times it has been detected. For example in Table

4-1 N1 is used two times, N2 is used three times; N3 is used two times and so on. By

doing this, all possible fan outs are detected. With all fan outs and primary inputs

detected, it is now possible to install multiplexers into the circuit accurately.

38

Name Type Parents
N1 PI Null
N2 PI Null
N3 PI Null
N6 PI Null
N7 PI Null
N10 NAND N1, N3
N11 NAND N3, N6
N16 NAND N2, N11
N19 NAND N11, N7
N22 NAND N10, N16
N23 NAND N16, N19

Parents used more than once: Null,N3,N11,N16

Table 4-2: C17 Directed Graph Output

In the next step of this process, a new file is opened for writing. The module, input, and

output lines are copied directly from the original netlist into the new file. The declaration

of wires is also copied over but it has an addendum of all the extra wires needed by the

multiplexers. After this is finished, the input multiplexers are installed in a manner

similar to Figure 4-2. With primary inputs, the original wire goes into the multiplexer

and a wire named the same with a “_0” is the designated output wire. This is done with

the fan outs except that the number isn’t always zero. They are enumerated based on the

number of fan out wires there are i.e.(“_0”, “_1”, “_2”, …) At the end of the file, a

module is instantiated for the multiplexer. The completed product can be seen below in

Example 4-2. The multiplexers are number in the order they are created and all

additional inputs can also be seen.

39

Example 4-2: C17 Benchmark Circuit with Multiplexers added into the design

40

Instantiation of the Multiplexers

To implement any one of these errors at a time, an excitation signal must be sent from the

main algorithm to an instantiated copy of a circuit, i.e. the circuit in Example 4-2. This is

done through a series of bits with the width equaling the number of potential fault sites.

Example 4-3 shows how this is done. When a specific fault needs to be excited, the main

algorithm will store a value of all 0s and one 1 into a vector, that shares its width with the

number of fault sites. This vector is passed from the main algorithm to an instantiation of

a circuit and the values are each sent to the select bit of the multiplexer it corresponds to.

 Mux10 Mux9 Mux8 Mux7 Mux6 Mux5 Mux4 Mux3 Mux2 Mux1 Mux0
C17-1 0 0 0 0 0 0 0 0 0 0 1
C17-2 0 0 0 0 0 0 0 0 0 1 0
C17-3 0 0 0 0 0 0 0 0 1 0 0

Example 4-3: Excitation table for three instantiations of C17.

In this way, all faults can be simulated individually or if need be in different

combinations. As stated in previous chapters, it is not efficient to test numerous faults at

once because of masking. If there are not enough instantiations to detect all faults at

once, this process is cycled until all faults are detected.

41

Chapter 5: Algorithm For Testing

While performing this research there were a number of phases of implementation,

assessment, and redesign. Essentially, there were three main phases where the algorithm

concept was sound but the programming and implementation needed to be changed due

to a bottleneck that plagued the speed of the algorithm. While the FPGA core itself was

able to perform the fault detection algorithm quickly, we noticed a severe bottleneck in

the transmission of the results for further processing. In this Chapter, we detail the

different approaches taken, and describe the algorithms used for fault detection and test-

set compression.

Approach 1: Hardware emulation with support software on host computer

For the first part of this research, the test pattern generation algorithm was in its most

basic form. The FPGA was connected to a host computer that supplied the input stimulus

to the circuit under test, and acted as a support machine to receive output data from the

FPGA and do post-processing on the data. The basic configuration is shown below in

Figure 5-1.

Figure 5-2. A block diagram of the FPGA emulation system supported through software running
on a host computer.

42

The key steps of this approach are outlined below:

1. Implement as many instantiations of a benchmark circuit on the FPGA as the

FPGA fabric will permit.

2. Insert a unique fault in each instantiation.

3. Generate random input vector on the host computer and, through a RS232 serial

cable, send them to the FPGA board.

4. Apply the same random input vectors to the original copy and the fault inserted

copies of the benchmark circuit

5. Send the outputs out from the FPGA to a hyperterminal connection on the host

computer through the RS232 serial port.

6. Repeat steps 2-5 until all possible faults are detected with given number of

random input vectors.

7. Save data to a text file

8. Using the computer, analyze the data for the best possible input vectors based on

output data

After all of the benchmark circuit input vectors and fault detection output data was

displayed on the hyperterminal display, a way of determining the most efficient input

vectors was needed. To do this a program was written in Matlab that would determine

which input could detect the most faults, and then eliminate those faults from further

consideration.

This vector compression algorithm proceeds in the following steps:

43

1. Detect the vectors with the most faults

2. Log the vector

3. Eliminate faults found by vector from future consideration

4. Repeat steps 1-3 until all detected faults have been accounted for

Figure 5-2: Fault detection algorithm (Rows are vectors, Columns are detected faults)

(a)Original fault detection with first vector found (b) Second vector chose to cover most faults
left (c)Third vector chosen to cover the rest of the faults (d) All faults have been detected

Consider the example shown in Figure 5-2(a). The example shows a circuit’s fault and

vector pair. The circuit had a total of 17 faults and was simulated with four random

vectors. Figure 5-2(a) is the original list received directly through the RS232 port from

the FPGA. Our goal is to find the minimum set of vectors that will detect all 17 faults.

Vector #3 detects 13 out of the 17 faults - the largest number of faults in this example.

Our algorithm compares the four vectors, detects the ability of Vector #3 to detect 13

faults and retains this vector in the compressed test-set. We then create a binary mask

equal to the width of the faults. This mask is initialized with 0s in the location of the

faults detected already by the vectors saved in the compressed test-set and 1s in other

locations. After retaining Vector #3, the binary mask (00000001000010011) is put

44

through an AND gate with the fault-vector pair creating the pair shown in Figure 5-2(b).

In Figure 5-2(b), Vectors #2 and #4 both detect the largest number of faults, and the first

vector of the two is chosen automatically. A new mask is created and the process repeats

until all detected faults are accounted for as shown in Figures 5-2(c) and (d). In this very

trivial example, we started with four random vectors that were used to simulate the faults

and our compressed test-set retained only three of those four vectors.

The main benefit of this approach that involved fault simulation in the FPGA and vector

compression on the computer was mostly in the ease of use. Xilinx ISE was a familiar

program and provided the infrastructure to simulate and implement the designs with ease.

It also allowed for designs to be implemented in schematic form, an alternative to

Verilog. This allowed for easy visualization of the modules and made the RS232

interface between the FPGA and computer easier to understand and implement. Matlab

provided another simpler interface yet a powerful mathematical tool to perform the

compression algorithm described earlier.

There were several issues with this approach to test pattern generation and compression.

The first issue was that of the serial interface between the FPGA and the computer. This

first implementation was designed and implemented using Xilinx ISE and thus did not

have native RS232 serial port compatibility. To work around this, an existing sample

Xilinx design was found that implemented an RS232 serial port. This design was then

stripped down to just its serial port utility. Once this was determined to be working, data

had to be formatted in groups of eight bits and sent to a relatively small buffer provided

45

by the original design. In addition to this, the timing of the entire circuit had to be

monitored and controlled diligently so that data could be sent out correctly.

The second major issue with this design was the need to take data from the hyperterminal

and in turn put it in a text file and then run the Matlab code with the text file of all the

collected data. The constant saving and opening of large text files took extra time.

Although the compression algorithm was easy to write in MATLAB, the runtime was

relatively slow because Matlab is an interpreted language and runs usually slower than

compiled languages.

The next design would address these two issues by eliminating the need for a basic serial

port design and the need to run external code to determine the best test vectors.

Approach 2: Hardware emulation with support software on PowerPC core within the

FPGA

The second approach to an improved ATPG emulation on an FPGA was to use the

embedded PowerPC CPU on the FPGA circuit. The PowerPC CPU is able to run code

written in C and input and output data to the FPGA cores through the use of a dedicated

data bus (described in Chapter 3). The data transmission over serial lines between the

FPGA core and the host computer was no longer needed removing the serial

communication bottleneck. At the same time, the compression algorithm could be written

directly in C and run in the PowerPC so constant saving and opening of large text files in

MATLAB was not needed eliminating the slow runtime experienced in Approach 1.

46

The use of the PowerPC core required the use of the Xilinx Platform Studio, a

significantly more powerful utility for running different circuits on the Virtex II Pro

board. This design suite came with preconfigured RS232 serial port which was

significantly more versatile and user friendly.

Figure 5-3: A block diagram of the FPGA emulation system and Power PC supported through
software running on a host computer.

This new setup is shown in Figure 5-3. The host computer is primarily used to compile

and download the code to the PowerPC and the FPGA core. The new approach can be

summarized using the following steps:

1. Implement as many instantiations of a benchmark circuit on the FPGA as the FPGA

fabric will permit

2. Insert a unique fault in each instantiation.

3. Randomly generate an input in the PowerPC and store in on-board RAM.

4. Send the input vector to the FPGA through the internal bus.

5. Run the original circuit and all instantiated faulty circuits using this random vector.

6. Send the outputs from the FPGA core back to the PowerPC to be stored in RAM

7. Repeat steps 1-6 for the number of vectors that are to be tested

47

8. Perform test-vector compression algorithm described in Approach 1, on the PowerPC

and store the compressed result in RAM.

9. Send only the compressed test-set to the host computer using RS232 interface of the

PowerPC and display the result using a hyperterminal.

With this new setup, the C code on the PowerPC sent randomly generated input vectors

to the circuits created in the FPGA. The FPGA core with the fault detection algorithm

then processed the input vectors and sent back the detected faults. All of the inputs and

faults were stored in a DDR RAM module present in the FPGA board. The DDR RAM

module was utilized because local BRAM was too small to hold all the data that the

Power PC needed to store. Finally, the PowerPC ran the algorithm for deciding the most

efficient inputs and then using the RS232 serial port, it outputted in an easier to read

format which inputs would cover the most faults.

There were significant issues with this design as well. Despite the speed of the FPGA

fault detection algorithm, there was a significant bottleneck with the Power PC’s speed

when determining the best input vectors. With any large circuit, the algorithm for

determining the best inputs took minutes to run. Because this circuit needed to access

external RAM and was burdened with overhead processing, it could not process the sheer

amount of data needed to in a timely manner. Another revision was made to eliminate

these issues.

48

Approach 3: Hardware emulation with built-in random vector generator

The culmination of previous experiences led to the final incarnation of this emulation

algorithm and implementation technique. In the final rendition of the algorithm, most

functionality is transferred to the implemented FPGA core so that hardware speeds can be

effectively utilized. This required a re-thinking of how the core would work and how

data would be processed. The inputs and outputs were also drastically changed and the

need for DDR RAM was eliminated. The core itself runs as a finite state machine which

is shown in Figure 5-4. As seen in flowchart in Figure 5-5, the algorithm goes through a

number of decisions and processes that are repeated several times. Each of these will be

described in detail in the following paragraphs.

49

N
o
t a

ll fa
u
lts

te
s
te

d

N
o

t
a

ll
fa

u
lt

co
u

n
te

d

S
u
r p
a
s s
e
d

Figure 5-4: State diagram of the fault detection algorithm.

50

Wait until test

vector size has

been recieved

Have the full

number of vectors

been tested yet?

No Yes

Generate new

random vector

Condense found

faults into one

memory array

Acquire a set of

fault data for new

vector

Have all faults

been accounted

for?

Compare vector to

previously tested

vectors

More faults

covered?

No

Replace previous

best data with new

data on faults

covered and which

input

Count total faults

found thus far

Total Faults >

Previous test?

Add 1 to final

vector count

Output faults

counted, total

vectors found thus

far and newest

vector.

Has the program

checked enough faults

or tested enough

vectors?

Increment

intermittent

vectors count.

Reset intermittent

vector count to 0

No

No

Yes

End emulation

Figure 5-5. Flowchart of emulation algorithm

51

The core of this program is run on the FPGA. The FPGA core contains the good version

of the circuit and several faulty instantiations. After the circuits have been instantiated in

the core, the core waits for the user to specify the number of randomly generated test

vectors to examine. This user generated number is received from the PowerPC core. Until

this number is received, the FPGA core containing the fault emulation hardware simply

remains in the idle state.

Once this user generated number is received, the program starts with its initializations in

Main State 1 of Figure 5-4. This is shown as the first decision box in the flowchart of

Figure 5-5. If the user specified number has not been reached, a new test vector is

generated with the use of a linear feedback shift register (LFSR). A number of

intermediate variables (e.g. total faults count) are reset to zero, and the threshold counter

is incremented by one. Once this is complete the state is changed from S1 to S2.

An LFSR is a circuit that is used for the generation of pseudo-random vectors. The width

of the LFSR is the width of the number of inputs to the circuit. Figure 5-6 shows an

example of a 4-bit LFSR. The four-bit shift register with feedbacks from Q1 and Q2 as

shown below produces a four-bit sequence (seemingly in random fashion) as long as the

register is initialized in a sequence other than 0000 (An XNOR gate can be used instead

of the XOR gate, but the initialization has to be something other than 1111). Since this is

a four-bit register, the sequences will repeat after the 15th clock cycle. The initialization

sequence is called the seed, and as can be seen, the newest state of the register is a linear

function of its previous state. Depending on the seed, the values will follow a seemingly

52

random pattern until all possible values are extinguished and the original value is the

current state again.

Figure 5-6: A 4-bit LFSR with taps at bits 3 and 4

The algorithm is summarized in the following steps:

1. Define constants for running the algorithm

2. Instantiate as many possible copies of fault injected benchmark circuits and one

clean circuit into the FPGA

3. Run the algorithm which has several steps and sub-steps:

a. Initialize all intermediary values and generate new input test vectors with

the use of an LFSR.

b. WHILE all fault locations have NOT been tested:

i. Insert SA0 faults into the circuit.

ii. Compare outputs of fault injected circuits and clean circuit. Record

any discrepancy into memory location as fault data.

iii. Change fault signal from an SA0 to an SA1 by tying the ERROR

line from Logic 0 to Logic 1.

iv. Repeat Step ii for SA1 fault.

53

v. Change fault locations by increasing specific registers and go back

to step i.

c. Count all NEW faults detected with the new input vector.

d. If the faults detected thus far number larger than previous data:

i. Overwrite stored previous best input vector with current input

vector.

ii. Overwrite previous best fault data with current fault data.

iii. Overwrite previous best detected faults total with current detected

faults total.

e. Repeat steps a-d until the user defined number of vectors has been tested.

f. When this is done, the program moves into main state 2 of Figure 3 with

the following sub-steps

i. Add the newly detected faults to currently saved faults detected

list.

ii. Detect if any new faults were actually generated.

iii. If new faults were found, output new data as seen in Table 1.

iv. Re-initialize data and move back to main state 1 of Figure 3 (i.e.

Step 3 (a)).

4. Repeat step 3 until all possible faults found are detected or another user-defined

trigger is flagged.

54

Input Vector Total Faults Detected Total vectors used Time(1/100 sec)
F12BCD 123 1 20
A3DAF8 205 2 40
B98321C 267 3 61
C18EB24 301 4 81

Table 5-1: Example Output for Step 3-f-iii. The Input vector is in Hexadecimal notation.

Table 5-1 gives a typical display of how the output from the FPGA after being processed

and sent to the computer would look like. Each line represents step 3f being run one

time. First you have the newest useful input vector in a hexadecimal format. Next is the

cumulative total of faults that have been detected so far. After that is the cumulative

number of input vectors that detect the fault recorded thus far. Finally the time is

cumulative so in Figure 5-4 each step takes about 20ms.

Part b of step 3 is where all of the fault detection takes place. This state runs through four

different sub-states. The first sub-state is where the fault data from the instantiated

circuits is recorded in a predefined memory array (step 3-b-i). Because this array may

change in size dependant on a user, the number of times data must be recorded is

variable.

The second state is where the faults that are being simulated are switched from an SA0 to

an SA1 (step 3-b-ii). This transition can be seen in the change from Figure 5-7a to 5-7b

or Figure 5-7c to 5-7d. Here simulated fault bit is being changed from an logic low to a

logic high. Technically this fault signal is sent to every fault site, but only one fault site

is active at a time.

55

After this is completed the data is recorded again (step 3-b-ii). The positions of the faults

that are being tested are then changed along with a re-initialization of the fault type back

to SA0 (step 3-b-iv). The difference between an active fault and an inactive fault is the

select signal. To change the fault site, the select signal to fault 1 changed from logic high

to logic low, and the fault 2 site has its select signal changed from logic low to logic high.

Also the simulated fault line goes back to a logic low from logic high. This can also be

seen in the transition from Figure 5-7b to 5-7c. This process is repeated until all possible

fault locations have been accounted for.

Figure 5-7: Fault changing process

(a) fault one activated with SA0 (b) fault one activated with SA1
(c) fault two activated with SA0 (d) fault two activated with SA1

56

The third state of main state 1, or part c of step 3, is this process involved with counting

all of the faults that were detected with a test vector. This is done in a series of loops.

Each loop starts with putting the first memory cell of the new data and the first memory

cell of the stored data through a bit-wise OR gate and storing it in a temporary vector.

This temporary vector holds the potential faults that could be detected for certain fault

locations with the currently tested input vector and can be seen in Figure 5-8.

Figure 5-8: Combining new test vector data with recorded data. All test vectors are displayed here
in Hexadecimal notation.

In Figure 5-8, the new data is the series of bits that was taken from comparison of the

clean benchmark circuit and the fault inserted circuit. The recorded data is the series of

bits that accounts for all faults that have been previously detected. As stated above the

result represents potential data to be recorded in a later state. Every memory cell goes

through this until all data is accounted for. To reduce the number of clock cycles needed

to run this, the fault testing data is reset at the end of this state as well.

For the fourth state, or part d of step 3, a comparison of previously recorded data is used

to determine which the best vector is. When the algorithm runs the first time, the first

vector is recorded and then subsequent vectors are compared and replace previously

stored vectors if they can cover more faults. When the new vector is stored, the faults it

can cover are stored as well for a comparison against subsequent test vectors.

57

Main state 2 is the second main state of this algorithm, represented as part f of step 3.

When the user-defined number of vectors has been tested, main state 2 is initialized.

Within this state are a number of sub-states. The first of these sub-states combines the

fault coverage of the best vector recorded thus far in a manner similar to Figure 7, but this

time it is permanent. After this is complete the next state determines how many faults

have been covered by the recorded vectors until this point using data calculated in the

third main state. If this number is not greater than previous iterations, then the algorithm

finishes and outputs a finished signal. If the number is greater, the data regarding this

vector is outputted to the hyperterminal. This data includes the vector, how many faults

have been detected so far, and how many vectors have been recorded. The final sub-

state checks the number of faults detected and vectors tested. If either of these numbers

is greater than the user-defined limits the program will terminate at this point, otherwise

the entire process begins again to find another vector.

With this new incarnation of the fault detection algorithm there are several improvements

over the previous two approaches. First there is a major increase in speed because all

processing is done in hardware and not on the PowerPC. There is also an increase in

simplicity for the interaction between the FPGA and PowerPC. The algorithm that

controls the FIFO data transfers only needs to worry about one vector of data being sent

to the FPGA. Every other data transfer is from the FPGA to the PowerPC. Because of

this, after the FIFO control sends the vector of data from the PowerPC to the FPGA, it

can be put in an infinite loop of waiting for data from the FPGA to be sent to the

58

PowerPC. Because of the primary use of the FPGA, no RAM is needed and simplifies

the design on the PowerPC end by a significant amount.

Although there are several benefits to this design, there were several drawbacks that were

unavoidable. Because this design is more centered on the FPGA, synthesis time had to

be dealt with when testing. There was also an added level of complexity that is

associated with transferring code designed for a CPU and HDL code designed for an

FPGA. Due to the size of the design, simulation was nearly impossible because it took

longer to process data than actually synthesis.

59

Chapter 6: Results

In order to verify the validity of our test-set generation algorithm, we used some circuits

from the ISCAS and the MCNC benchmark suites. All experiments were run on the

Xilinx Virtex-II Pro Development System. The board houses a Xilinx XC2VP30 FPGA

with 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb of block RAM, and two

PowerPC Processor cores. The design was synthesized using the Xilinx ISE Design Suite

10.1.

The verilog code generated from our C++ script, was tested in a behavioral simulator to

verify its correctness and to get a general idea of how long the test would take when

implemented in hardware. Once this was completed, the algorithm was implemented in

an actual FPGA. This chapter will discuss the result of both the simulation and

implementation.

Simulation Results:

For this research, simulation was used as a step between design and implementation.

Simulation was used to verify the output of the FPGA . While simulation of the Verilog

code was able to display all internal signals, allowing for better debugging, the time taken

to complete was orders of magnitude larger than implementation. This bottleneck limited

the circuit size being simulated to smaller benchmarks circuits with a few hundred gates.

60

C432 Emulation C432 Simulation

Input Vector
Faults
Detected

Input
Vector
Number

Time(ns) –
100 MHz Input Vector

Faults
Detected

Input
Vector
Number

Time(ns)
– 1 GHz

9784DC851 84 1 7673140 9784DC851 84 1 116150

DC62AA93B 147 2 12381300 DC62AA93B 147 2 232190

A08F52AEE 187 3 17250780 A08F52AEE 187 3 348230

97227207C 220 4 22120740 97227207C 220 4 464270

7041256E3 253 5 26987740 7041256E3 253 5 580310

2BEF86068 286 6 31855220 2BEF86068 286 6 696350

53326F5A2 314 7 36722700 53326F5A2 314 7 812390

146C583D1 341 8 41590180 146C583D1 341 8 928430

7207C84B2 367 9 46455180 7207C84B2 367 9 1044470

8B2E44E40 389 10 51330020 8B2E44E40 389 10 1160510

585C10495 406 11 56204860 585C10495 406 11 1276550

BCF94BE5E 421 12 61079700 BCF94BE5E 421 12 1392590

62AA93BC9 435 13 65954540 62AA93BC9 435 13 1508630

55047A957 448 14 70829380 55047A957 448 14 1624670

7CBCED4CC 459 15 75704220 7CBCED4CC 459 15 1740710

F55CF7708 468 16 80579060 F55CF7708 468 16 1856750

ED9784DC8 475 17 85451420 ED9784DC8 475 17 1972790

5916D060C 481 18 90323780 5916D060C 481 18 2088830

4ED9784DC 487 19 95196140 4ED9784DC 487 19 2204870

9BCF94BE5 493 20 100068500 9BCF94BE5 493 20 2320910

2F979DA99 498 21 104950700 2F979DA99 498 21 2436950

BBB93C46C 503 22 109832900 BBB93C46C 503 22 2552990

94C145EAB 507 23 114715100 94C145EAB 507 23 2669030

92F16F482 510 24 119597300 92F16F482 510 24 2785070

CB913903E 513 25 124479500 CB913903E 513 25 2901110

3E52F979D 516 26 129361700 3E52F979D 516 26 3017150

AC978B7A4 518 27 134243900 AC978B7A4 518 27 3133190

90964988B 520 28 139125620 90964988B 520 28 3249230

5C10495B8 522 29 144007820 5C10495B8 522 29 3365270

7EC8B5AA9 524 30 148890020 7EC8B5AA9 524 30 3481310

97CBCED4C 526 31 153772220 97CBCED4C 526 31 3597350

4580917C7 528 32 158654420 4580917C7 528 32 3713390

592F16F48 529 33 163536620 592F16F48 529 33 3829430

E44E40F90 530 34 168416340 E44E40F90 530 34 3945470

F212C9311 531 35 173297860 F212C9311 531 35 4061510

45916D060 532 36 178179380 45916D060 532 36 4177550

C8B683067 533 37 183060900 C8B683067 533 37 4293590

61

95D617041 534 38 187942420 95D617041 534 38 4409630

54D282BCC 535 39 192823940 54D282BCC 535 39 4525670

D282BCCC0 536 40 197705460 D282BCCC0 536 40 4641710

Table 6-1: Results from behavioral simulation and hardware emulation for C432 benchmark
circuit.

As an example, the results of the hardware emulation and functional simulation of the

circuit C432 are presented in Table 6-1. The circuit is a 27-channel interrupt controller

consisting of 160 logic gates, 36 inputs and 7 outputs. Both simulation and emulation are

done with the exact same Verilog netlist generated from the C++ code. The C++ netlist

generation code took 0.734 seconds to run. The generation time varies based on the size

of the circuit netlist and is presented in Table 6-5 for every benchmark circuit tested.

Table 6-1 shows that the best input vectors (shown in the table in hexadecimal format),

number of faults detected and the number of useful input vectors are exactly the same in

both the emulation and simulation. This agreement verifies the functional correctness of

the hardware implementation of the fault detection algorithm. There is however a

difference in the times reported for the simulation and hardware emulation. During

simulation, the Verilog simulation software interacts with a test bench file differently

than how the PowerPC and the data bus interact during hardware emulation. The

simulation hence underestimates the time taken for hardware emulation by an order of

magnitude.

62

Implementation Results:

Although simulation can help determine whether or not a set of Verilog coded algorithms

could work, they do not necessarily translate to hardware correctly. The final goal of this

research was to implement a series of benchmark circuits in a Xilinx Virtex II Pro FPGA

and record the final outputs given a number of different stimuli.

In this section, we present the results for circuit C432 in detail and summarize the results

we obtained for the other benchmark circuits. Details of each circuit and extended results

can be found in Appendices 3-5.

Results for Benchmark Circuit C432

Instantiations Time(sec)
Slices
%

Slice FF
%

Slice LUTs
%

1 23.56 27 9 23

2 11.81 24 8 23

4 5.93 23 8 22

8 3 23 8 22

16 1.53 24 8 23

32 0.84 29 8 28

64 0.49 38 9 36
Table 6-2: Area and timing results for C432 circuit simulated with 10000 vectors and variable
instantiations running at clock frequency of 25MHz. 537 faults were detected with 36 input

vectors

For the first set of data, Table 6-2 shows how increasing the number of instantiated faulty

circuits can affect the time it takes for the algorithm to run. For every 2n number of

instantiations, where n is increasing, the number of vectors needed and faults found

remained static. This was somewhat expected because, increasing the instantiation allows

different faults to be detected in parallel without really changing which input vectors are

63

needed for the detection of the faults. From column 2 of Table 6-2, we see that as the

number of C432 instances are increased, the time required to find all detectable faults

decreased inversely to the number of faulty C432 instantiations (1/x). This logarithmic

relationship is clear in Figure 6-1.

Figure 6-1. Total time taken for test pattern generation using random vectors for C432 as a
function of the number of instantiations.

By observing the data in Table 6-1 and Figure 6-1, it can be seen that time decreases

logarithmically with the number of instantiations. For every increase in the number of

instantiations by two times the previous test, the time halves as well. This shows how the

scalability of this can be very beneficial to larger circuits where the fault testing with one

fault at a time would have an extremely long runtime.

0

5

10

15

20

25

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty C432 Instantiations

64

Figure 6-2: Total FPGA hardware resources used for test pattern generation using random vectors
for C432 as a function of the number of instantiations.

In Figure 6-2, we also compare the hardware resource usage on the FPGA as a function

of the number of instantiations. The primary hardware resources on the FPGA fabric are

the Look-up-tables (LUTs), the slices and the slice registers. It can be seen that the Look-

up-table hardware and the slices go up as more copies of C432 are instantiated in the

fabric. We see that the slice registers are almost constant at around 8-9%. However, when

only one module was instantiated, we found that the number of slices and the LUTs are

higher than that when four modules are instantiated. This is probably because of the

synthesis tool’s resource sharing optimization routines.

Using 32 instantiations of the C432 circuit and a varying number of random input

vectors, we next ran experiments to determine how many faults were found, the number

of vectors needed to find these faults, and the time it took to process them. C432 has

0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48 56 64

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty C432 Instantiations

Instantiations Vs Slice FF%

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

65

68719476736 (236) possible input vectors. Given the rate at which the time increases for

different amounts of tested vectors, seen below in Column 4 of Table 6-3, to test every

input vector of C432 would take approximately 60.90 days. This is an unacceptable

amount of time. Thus the goal of this experiment was to find exactly how many random

input vectors needed to be tested to obtain a reliable result.

Vectors
Tested

Faults
Found

Number of
Vectors Needed Time (s)

10 258 10 0.04
20 374 19 0.09
40 405 23 0.11
80 460 33 0.16
160 496 40 0.19
320 526 46 0.22
640 536 47 0.23
1280 536 43 0.21
2560 537 39 0.23
5120 537 36 0.43
10240 537 36 0.86
20480 537 35 1.66
40960 537 35 3.33
81920 537 33 6.27
163840 537 32 12.16
327680 537 33 25.09

Table 6-3: Results from C432, static number of instantiations, variable vector tests

The number of vectors to be tested for each iteration of the test was entered manually.

The initial number was chosen so that a significant range of vectors could be tested given

the maximum number of possible input vectors. From here the next iteration the number

of vectors was doubled and the experiment was run again. From Table 6-3, it is clear that

for very small input test set (from 10-160 vectors), a significant number of faults are left

undetected. However, once 2560 vectors are tested, all 537 detectable faults in the circuit

66

are captured. There is no increase in detection even when 327680 vectors are tested as

can be seen in Figure 6-3. Figure 3 clearly shows the stability point around 2560 input

vectors. This stability point is based around the number of faults found and the number

of vectors that are needed to detect them. This confirms that only a subset of input

vectors must be tested to represent all possible input vectors.

Figure 6-3. Plot of number of vectors tested vs. faults found for 32 instantiations of C432.

The circuit C432 has 277 checkpoint locations and this means there are 544 possible faults.

Table 6-3 shows that 537 total faults were found; that leaves 7 faults unaccounted for. This is a

98.7% fault detection rate which is generally considered an acceptable detection rate. Upon

further investigation, we found that these 7 missing faults were actually redundant faults. A

redundant fault is defined as an untestable fault in a combinational circuit that does not cause any

change in the input/output logic function of the circuit [2]. It is common for circuit designer to

add redundancy in the design to counteract glitches due to logic hazards. These redundant logic

0

100

200

300

400

500

600

1 4 16 64 256 1024 4096 16384 65536 262144

F
a

u
lt

s
F
o

u
n

d

Number of Vectors Tested

67

structures do not change the overall function of the circuit – they merely allow the circuit output

to remain stable and glitch free when different circuit paths switch with different delay.

Table 6-3 also shows that these 537 faults are found in 0.23 seconds which leads to another

observation. Consider Figure 6-4, which shows a plot of the total time taken as a function of the

Number of Vectors tested. There is very little change in the time due to the number of vectors,

until approximately 4096 vectors are tested. The PowerPC directive that outputs data takes

significant amount of time to run and masks the time of the fault detection algorithm. It is not

until a significant number of vectors are tested, that the algorithm’s speed begins to slow down

into a detectable range. Once the number of vectors being tested fall into this range, the increase

in time follows the number of vectors being tested in a linear fashion.

Figure 6-4. Plot of total time taken vs. number of vectors tested for 32 instantiations of C432.

The other fault detection stability point is the number of vectors that are needed to test a

circuit. Figure 6-5 shows how when the number of vectors tested increases, so does the

0

5

10

15

20

25

30

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
(s

)

Number of Vectors Tested

68

final test set size until a certain point. This point is where the maximum number of faults

was found in Figure 6-3 and Table 6-3. After this point no new faults are to be detected,

but by testing more vectors, it is possible to decrease the number of input vectors needed

obtain the maximum fault coverage. Although this test can be run for all possible inputs,

this is not an efficient testing method and should be avoided. From Figure 6-5 it can be

seen that at around 4096 tested vectors the number of useful vectors begins to stabilize in

range of 32-34.

In this graph there is an interesting change in the number of useful vectors at 163840

tested vectors. At this point there is a local minimum of 32 useful vectors and it is

surrounded by 33 useful vectors on both sides. This can be explained by maximum fault-

minimum vector algorithm that is described in chapter 5. Without the use of advanced

heuristic techniques, which would slow down this algorithm, it is possible that one useful

vector may mask another vector that would help reduce the final number of useful

vectors. This is one trade-off this algorithm takes for the advantage of increased

processing speed.

69

Figure 6-5. Graph of number of vectors tested vs. test set size

Outlying Data

In a number of other circuits we found some variation from the trend we saw for C432.

We found variations usually in circuits that were either significantly smaller (eg. Z9sym

from MCNC benchmark) or significantly larger (eg. C1355 and C880 from ISACS) than

C432. In both C1355 and C808, due to their large size, when 64 instantiations were

implemented, the standard 25MHz clock speed could not be met. To fix this, the speed

was dropped to 12.5MHz, and both circuits were implemented without error. We found

that certain area constraints are due to timing requirements. The FPGA uses more LUTs

to overcome certain timing issues and as a result the design becomes too large to fit on

the device. By dropping the speed the number of LUTs implemented drops.

The issue with dropping the speed is that the time improvement due to the number of

instantiations was negated by the drop in clock speed. In a larger FPGA such as the

0

5

10

15

20

25

30

35

40

45

50

1 4 16 64 256 1024 4096 16384 65536 262144

T
e

st
 S

e
t

S
iz

e

Number of Vectors Tested

70

Virtex V, this would not be an issue because there are more resources, including the

timing dependent LUTs. For simplicity the speed was dropped by one half, which does

not need to be done for professional use.

Another issue that varies from circuit to circuit is the stability point. Certain circuits such

as C1355 have a stability point that is much more apparent, without fluctuations (similar

to the plot for C432 shown in Figure 6-3). On the other hand there are circuits that seem

to never reach a stability point. This is due to the small size of the circuit and the smaller

number of inputs. Circuits like Z5xp1 and z9sym have 7 and 9 inputs respectively

restricting the total number of input vectors that can be tested to 128 and 512. For both

these circuits, we found some faults that were difficult to observe at the output and

required the full input set to be tested. This can be seen in Figure 6-6 which shows the

plot of the vectors tested versus the vectors need for circuit z9sym. As can be seen in

Figure 6-6, we were able to find faults up until all possible vectors are tested.

71

Figure 6-6. Graph of vectors tested vs. vectors needed for z9sym

The last piece of interesting data to be found in the appendices is that some times do not

decrease logarithmically with the number of vectors or instantiations tested. As was

stated in the explanation of the data for C432, when an algorithm’s time is below a

certain threshold the output directive in the PowerPC takes longer and masks the

algorithm’s timing. For the smaller circuits like C17, z9sym, and Z5xp1 this is apparent

through all or most of their instantiation or vector tests. In the graph Figure 6-7 below,

the line at the bottom is where the speed of the PowerPC output directive started to mask

the speed of the FPGA fault detection algorithm. Despite increases in the number of

instantiations, the time remained at 0.39 seconds because the number of useful input

vectors remained the same.

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256 512

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

72

Figure 6-7. Graph of Instantiations vs. Time for z9sym

Summary of Results for the ISCAS and MCNC benchmark circuits

In this section, we summarize the result of our algorithm applied to circuits from the

ISCAS and MCNC benchmark suites. The benchmark circuits have the following

characteristics:

Table 6-4. Description of Benchmark circuits

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

T
im

e
(s

)

Instantiations

Circuit Inputs Outputs # of
Gates

Circuit
Depth

Function Benchmark
Suite

c1355 41 32 546 23 32-bit Error Correcting circuit ISCAS

c17 5 2 6 3 Simple NAND chain ISCAS

c432 36 7 160 29 27-channel interrupt controller ISCAS

c499 41 32 202 23 32-bit Error Correcting circuit ISCAS

c880 60 26 383 23 8-bit Arithmetic Logic Unit ISCAS

Clip 9 5 144 11 Unknown MCNC

rd73 7 3 148 13 Unknown MCNC

t481 16 1 74 14 Unknown MCNC

Z5xp1 7 10 166 10 Unknown MCNC

z9sym 9 1 147 12 Unknown MCNC

73

As a summary of the results that were found, Table 6-5 describes the best possible

outcomes dependent on three factors.

1. Largest number of faults detected

2. Smallest number of vectors to detect 1.

3. Shortest time to detect previous two factors

The first criterion for deciding the best data was the fault detection percentage. This is

the most important factor because missing potential stuck-at-faults can cost a

manufacturer money, especially if an error systematically occurs in an undetected region.

The next criterion was the size of the test set. Smaller test sets mean faster chip

verification and saves money for manufacturers. Although the time for running this test

may be longer, as is the case for C880, reducing the test set will be beneficial during

manufacturing where the same circuit verifications will be run numerous times. Once

these criteria are met, the best data was organized based on the time it took to perform the

fault detection.

74

Table 6-5: Best fault detection based on faults found, vectors used, and time (done with 32
instantiations)

Table 6-5 shows the results for the total number of random vectors generated, total

number of vectors in the compressed set, the maximum number of faults in the circuit and

the number detected. It also reports the total time taken for vector generation and the total

time taken by our C++ code to recognize the checkpoints, insert faults and generate a

new Verilog netlist. Some benchmark circuits (e.g. C432 and C880) were run longer even

though all possible detectable faults were found with less vectors. Having more vectors

enabled us to do the final compression more efficiently. As seen in Figure 6-8, the fault

coverage of our approach is excellent with most circuits showing a coverage well over

97%. In all circuits, we are able to detect all non-redundant faults. The lowest coverage

was for Z9sym at a rate of 88.7%. No additional faults can be detected for Z9sym because

all possible vectors were tested. We found that the coverage of the collapsed fault-set for

this circuit using Mentor’s FastScan also provides only a 87.5% coverage. The less than

Circuit

Vectors
Tested

Vectors
Needed

Maximum
number of
faults

Faults
Found

Fault
Coverage

Time
Taken
(s)

Verilog Code
Generation
Time

Maximum
Number of
vectors

c1355 5120 84 1618 1610 0.995 2.75 5.031 2.19902E+12

c17 8 6 22 22 1 0.0329 0.14 32

c432 163840 32 544 537 0.987 12.16 0.734 68719476736

c499 1280 52 594 586 0.986 0.34 0.938 2.19902E+12

c880 327680 25 994 994 1 32.77 2.563 1.15292E+18

Clip 512 48 428 415 0.969 0.24 0.453 512

rd73 128 72 404 404 1 0.367 0.438 128

t481 2048 33 194 194 1 0.17 0.188 65536

Z5xp1 128 46 476 470 0.987 0.23 0.578 128

z9sym 512 75 462 410 0.887 0.39 0.531 512

75

100% coverage can be attributed to redundant faults and masking of some faults due to

the use of dominance relationships as stated in Chapter 4.

Figure 6-8. Fault coverage percentage in the benchmark circuits

To measure the effectiveness of our approach, we compare our results to existing results

from [27], [28], [29] and to Mentor Graphic’s FastScan ATPG tool. All circuits were run

with 32 instantiations on the FPGA with a system clock frequency of 25MHz. Table 6-6

compares and summarizes the results for the different benchmark circuits. Results for the

MCNC benchmark circuits were not available in previously published work of [27], [28]

and [29] so the comparison is made only with FastScan for these circuits.

0

0.2

0.4

0.6

0.8

1

1.2

c1355 c17 c432 c499 c880 clip rd73 t481 Z5xp1 z9sym

F
a

u
lt

 C
o

v
e

ra
g

e
 %

Benchmark Circuit

76

Circuit [27] [28] [29] FastScan Our
C432 47 32 57 50 32
C499 59 52 54 54 52
C880 30 17 62 43 25
C1355 86 84 86 87 84
Clip N/A N/A N/A 59 48
Rd73 N/A N/A N/A 71 72
T481 N/A N/A N/A 35 33
Z5xp1 N/A N/A N/A 47 46
Z9sym N/A N/A N/A 77 75

Table 6-6: Comparison of ISCAS and MCNC circuit input test pattern counts using various tests

Table 6-6 suggests that in several cases, our results produce the smallest test set and

match the pattern count of the best test set sizes shown in [2]. For MCNC circuits where

previously published data was not available, our approach produces a smaller test set than

Mentor Graphic’s FastScan for all circuits except rd73.

77

Chapter 7: Conclusions and Future Work

Conclusions:

As circuitry becomes larger and more complicated, computers and other computational

devices will be utilized more for design checking and fault modeling. Without this, it

would take years to do what is now done in seconds. Also, with FPGA’s becoming more

widespread, it is logical that they be utilized in ways that would replace software analogs.

Hardware will almost always be faster than software and with improved synthesis

techniques, using an FPGA can be a good replacement for a large number of software

algorithms.

As stated in previous chapters, the top priority of this fault detection algorithm was to

determine how increasing the number of parallel instantiations of a fault injected circuit

could improve the run time. It has been proven that the speed increases inversely, (1/x),

to the number of faulty circuit instantiations implemented, especially in the larger

circuits. The use in smaller circuit will not be advantageous, but at the same time,

circuits that cannot utilize this concept efficiently are small enough to be simulated in

software quickly anyway. It is only in the larger circuits that have millions of possible

inputs that would need hardware speed increases over traditional simulation.

In addition to this, the algorithm has been shown to have an excellent fault coverage rate.

Some run times may be seen as much longer than others, but this is because there was a

trade-off in terms of the number of useful vectors dropping or the number of faults

78

detected increasing. In the appendices it can be seen that this can algorithm can run

significantly quicker if certain trade-offs are acceptable.

Future Work

The work presented in this research can be improved upon in a number of ways:

Due to time constraints certain aspects of the algorithm were not able to be completed or

optimized. The first issue was that of timing. There are a number of places where combinational

logic delay forced the FPGA core to run at slower speeds. This included the section of code

where the faults were counted. This was done with a section of code that counted bits

individually in a sequential order. To improve this, adding groups of bits would have been more

efficient and would have improved the speed.

Figure 7-1. Bit counter in the current algorithm

Figure 7-1 is an example of how the adding was done in the current fault detection algorithm.

The program simply lines up a large number of adders in a row. One input is a bit from a vector

whose logic high bits are being counted and the other input is the total number of logic high bits

counted thus far.

79

Figure 7-2. Improved bit counter

Figure 7-2 represents the improved bit counter. In this design there are only log2

(rounded up to the next integer) levels of logic, significantly reducing the logic delay

associated with the Figure 7-1. In this design, every group of two bits is added together,

these totals are then added together until all logic high bits are counted.

In addition to this, more efficient fault detection algorithms could be used with this

research to further decrease runtime. Because the objective of this research was to

determine if the parallel nature of FPGAs could be utilized to increase the speed of fault

detection, the actual fault detection algorithm was not made as efficiently as possible.

Research such as [12] and [13] have shown significant strides in serial emulation, and

combined with this research could potentially show even faster speeds.

80

Bibliography:

[1] P. Clarke. (2010, March 29) Xilinx, ASIC Vendors Talk Licensing. [Online].

Available: http://www.eetimes.com/story/OEG20010622S0091

[2] M.L. Bushnell, V.D. Agrawal, Essentials of electronic testing for digital, memory and

mixed-signal VLSI circuits. Boston: Springer, pp.57-120, 2005.

[3] D. Moore and H. Walker, Yield Simulation for Integrated Circuits.

Boston/Dordrect/Lancaster: Kluwer Academic Publishers, pp.22-55, 1987.

[4] S. Foley, J. Molyneaux, A. Mathewson, An evaluation of fast wafer level test methods

for interconnect reliability control, Microelectronics Reliability, Volume 39, Issue 11,

November 1999, Pages 1707-1714

[5] C. Cohn and C. A. Harper, Failure-free Integrated Circuit Packages: Systematic

Elimination of Failures. New York: McGraw Hill, p. 151, 2005.

[6] H. Y Chang and J. G. Chappel, "Deductive techniques for simulating logic circuits",

Computers, pp. 52-59, March 1975

[7] E. G. Ulrich and T. Baker,"The concurrent simulation of nearly identical digital

networks," In ACM IEEE Design Automation Conference, pp 145-150.

[8] J. P. Roth, “Diagnosis of automata failures: A calculus and a method”, IBM Journal

of Research & Development, vol. 10, pp. 278-291, July 1966

81

[9] W. T. Cheng and M. L. Yu, "Differential fault simulation for sequential circuits",

Journal of Electronic Testing, vol. 1, pp. 7-13, July 1990

[10] K. Gulati, and S. Khatri, “Towards acceleration of fault simulation using graphics

processing units,” In Proceedings of the 45th Annual Conference on Design Automation,

pp. 822-827, 2008.

[11] P. Ellervee, J. Raik, and V. Tihhomirov, “Fault emulation on FPGA: a feasibility

study,” In Proceedings of the 21st NORCHIP Conference, Riga, Latvia, pp.92-95, 2003.

[12] P. Ellervee, J. Raik, and V. Tihhomirov, “Environment for fault simulation

acceleration on FPGA,” In Proceedings of the 9th Biennial Baltic Electronics

Converence, pp.217-220, 2004.

[13] D. Saab, F. Kocan, and J. Abraham, “Massively parallel/reconfigurable emulation

model for the d-algorithm,” In Proceedings of the Reconfigurable Computing Is Going

Mainstream, 12th International Conference on Field-Programmable Logic and

Applications, pp. 1172-1176, 2002.

[14] F. Kocan, and D. Saab, “Concurrent d-algorithm on reconfigurable hardware,”

Proceedings of the 1999 IEEE/ACM international conference on Computer-aided design,

pp.152-156, 1999.

[15] K. Cheng, S. Huang, and W. Dai, “Fault emulation: a new methodology for fault

grading,” In IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol 18, Issue 10, pp.1487-1495, 1999.

82

[16] J. S. Augusto, C. B. Almeida, and H. C. Neto., “A modular reconfigurable

architecture for efficient fault simulation in digital circuits,” In Lecture Notes in

Computer Science: Field-Programmable Logic and Applications, pp.818-827, 2003.

[17] F. Kocan, and D. Saab, “Dynamic fault diagnosis of combinational and sequential

circuits on reconfigurable hardware,” Journal of Electronic Testing: Theory and

Applications, Vol. 23, Issue 5 pp.405-420, 2007.

[18] B. Zeidman. (2010, March 29) The Death of the Structured ASIC. [Online].

Available: http://chipdesignmag.com/display.php?

[19] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet, [Online]

Available at: http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf.

[20] PowerPC 405-S Embedded Processor Core User’s Manual Version 1.1, [Online]

Available at: http://www-03.ibm.com/technology/power/licensing/cores/ppc405.html

[21] PowerPC 405 Processor Block Reference Guide, [Online] Available at:

http://www.xilinx.com/support/documentation/user_guides/ug018.pdf

[22] Xilinx University Program Virtex-II Pro Development System, [Online] Available

at: http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

[23] FIFOs Using Virtex-II Block RAM, [Online] Available at:

http://www.xilinx.com/support/documentation/application_notes/xapp258.pdf

83

[24] Clock Generator (v3.02a), [Online] Available at:

http://www.xilinx.com/support/documentation/ip_documentation/clock_generator.pdf

[25] JTAGPPC Controller, [Online] Available at:

http://www.xilinx.com/support/documentation/ip_documentation/jtagppc_cntlr.pdf

[26] Processor System Reset Module, [Online] Available at:

http://www.xilinx.com/support/documentation/ip_documentation/proc_sys_reset.pdf

[27] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: a method to generate

compact test sets for combinational circuits,” in International Test Conference, 1991,

pp. 194–203.

[28] M. C. Hansen and J. P. Hayes, “High-level test generation using physically-induced

faults,” in IEEE VLSI Test Symposium, 1995, p. 20.

[29] E. Bareisa, V. Jusas, K. Motiejunas, and R. Seinauskas, “Test generation at the

algorithm-level for gate-level fault coverage,” Microelectronics Reliability, vol. 48, no. 7,

pp.1093 – 1101, 2008.

84

Appendix 1: C++ Code for fault induction

// ErrorAnalysisAndMuxInsertion.cpp : Defines the e ntry point for the console
application.
//

#include "stdafx.h"
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <stdio.h>
#include <conio.h>
#include <ctime>
using namespace std;

class cirGraph{
public :
 string Name; //Name of node
 string Type; //Node Type
 int Level; //Level
 vector<string> Parents; //Nodes above
 vector<string> Children; //Nodes below
 void clrGraph(); / /Clears all data in class
};
void cirGraph::clrGraph(){
 this ->Name = "" ;
 this ->Type = "" ;
 this ->Level= 0;
 this ->Parents.clear();
 this ->Children.clear();
}
string deleteSpaces(string);
void GraphEntries(string, vector<cirGraph> &nodeFill);
void ParentCheck(vector<cirGraph> &checkParents, vector <string> &usedMore, vector<string>
&inputs, vector< int > &usedMoreNum);
void textInsert(string,string,vector<string> &usedMulti ple, vector<string> &inputs,
vector< int > &usedMoreNum);
int main(void)
{
 std::clock_t start = std::clock();
 int i = 0;
 vector<cirGraph> nodes;
 vector<string> usedNumerous, inputs;
 string benchmarkname = "t481" ;
 vector< int > usedNumerousNum;
 string fileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ ".v" ; //input file
 string outFile = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ "test.v" ; //output file
 cout << outFile;
 GraphEntries(fileName, nodes);
 int size = nodes.size();
 cout << "Name, Type, Parents" << endl;
 for (i=0 ; i< size; i++){
 //Outputs the
current data from the clrgraph vector
 cout << nodes.at(i).Name << ", " << nodes.at(i).Type;
 int childrenSize = nodes.at(i).Children.size();
 int parentSize = nodes.at(i).Parents.size();
 for (int k = 0; k < parentSize; k++)
 cout << ", " << nodes.at(i).Parents.at(k);
 cout << endl;
 }

85

 ParentCheck(nodes,usedNumerous,inputs, usedNumerou sNum);
 size = usedNumerous.size();
 cout << "Parents used more than once: " << usedNumerous.at(0);
 for (i=1;i<size;i++) //Outputs to terminal the nodes that are used numer ous times
 cout << "," << usedNumerous.at(i); / /in the file
 cout << endl;
 textInsert(fileName, outFile, usedNumerous, inputs , usedNumerousNum);
 std::cout<< ((std::clock() - start) / (double)CLOCKS_PER_SEC) << '\n' ;
 getch();
 return 0;
}
/* Searches the input file given, and sets up the c irGraph class with data from
it. */
void GraphEntries(string file, vector<cirGraph> &nodeFi ll)
{
 size_t commapos, semicolpos;
 ifstream inFile;
 inFile.open(file.c_str());
 string templine, line;
 cirGraph x;
 int pos=0;
 int input = 0;

 if (!inFile){ //Makes sure that the file is usable
 cerr << "Unable to open file datafile.txt" ;
 //exit(1);
 }
 //Search File For Graph Entries
 while (!inFile.eof()){
 getline(inFile,line);
 //Find Primary Inputs
 string input = "input" ;
 if (line.rfind(input) != string::npos){
 semicolpos = line.find_first_of(";");
 line.replace(line.rfind(input),input.length(), "");
 commapos = line.find_first_of(",");
 while (semicolpos != string::npos){
 commapos = line.find_first_of(",");
 if (commapos != string::npos){
 templine = line.substr(0, line.find_first_of(","));
 templine = deleteSpaces(templine);
 line =
line.substr(line.find_first_of(",")+1,line.size()-line.find_first_of(",")-1);
 }
 else if (commapos == string::npos){
 templine = line.substr(0, line.find_first_of(";"));
 templine = deleteSpaces(templine);
 line =
line.substr(line.find_first_of(";")+1,line.size()-line.find_first_of(";")-1);
 }
 x.Name = templine;
 x.Level = 1;
 x.Parents.push_back("Null");
 x.Type = "PI" ;
 nodeFill.push_back(x);
 x.clrGraph();
 input = 1;
 semicolpos = line.find_first_of(";");
 commapos = line.find_first_of(",");
 }
 if ((semicolpos == string::npos) && (commapos != strin g::npos)){
 templine = line.substr(0, line.find_first_of(","));
 templine = deleteSpaces(templine);
 line = line.substr(line.find_first_of(",")+1,line.size()-
line.find_first_of(",")-1);
 x.Name = templine;
 x.Level = 1;

86

 x.Parents.push_back("Null");
 x.Type = "PI" ;
 nodeFill.push_back(x);
 x.clrGraph();
 }
 }
 else if ((line.find_first_of("(") != string::npos) &&
(line.rfind("module")==string::npos)){
 if (line.find_first_of(" ") < 1)
 line.replace(0,line.find_first_not_of(" "), "");
 templine = line.substr(0, line.find_first_of(" "));
 x.Type = templine;
 line = line.substr(line.find_first_of("(")+1,line.size()-
line.find_first_of("(")-1);
 commapos = line.find_first_of(",");
 templine = line.substr(0,line.find_first_of(","));
 templine = deleteSpaces(templine);
 x.Name = templine;
 line = line.substr(line.find_first_of(",")+1, line.size()-
line.find_first_of(",")-1);
 commapos = line.find_first_of(",");
 while (commapos != string::npos){
 templine = line.substr(0,line.find_first_of(","));
 templine = deleteSpaces(templine);
 x.Parents.push_back(templine);
 line = line.substr(line.find_first_of(",")+1, line.size()-
line.find_first_of(",")-1);
 commapos = line.find_first_of(",");
 }
 templine = line.substr(0,line.find_first_of(")"));
 templine = deleteSpaces(templine);
 x.Parents.push_back(templine);
 line.clear();
 templine.clear();
 nodeFill.push_back(x);
 x.clrGraph();
 }
 }
 inFile.close();
}
/*Given a specific string, this function deletes al l white spaces in front of and behind
the string*/
string deleteSpaces(string phrase)
{
 size_t space = phrase.find_first_of(" ");
 while (space != string::npos){
 phrase.replace(space,1, "");
 space = phrase.find_first_of(" ");
 }
 return phrase;
}
//Checks all the nodes found in cirGraph vector and creates two vectors.
//One contains strings with all the node names used more than once.
//The other contains the number of times each of th ese nodes are called.
void ParentCheck(vector<cirGraph> &checkParents, vector <string> &usedMore, vector<string>
&inputs, vector< int > &usedMoreNum){
 vector<string> all;
 int i, j, pSize, count, allSize,aSize;
 int written =0;
 int checkParentsize = checkParents.size();
 string check;
 for (i=0;i<checkParentsize;i++){

 //Cycles through all parents and assigns them to a
 pSize = checkParents.at(i).Parents.size();

 //vector of strings called "all"

87

 for (j=0;j<pSize;j++)
 all.push_back(checkParents.at(i).Parents.at(j));
 if (strcmp(checkParents.at(i).Parents.at(0).c_str(), "Null") == 0){
 inputs.push_back(checkParents.at(i).Name);
 }
 }
 allSize = all.size();
 for (i=0;i<allSize;i++){

 //Cycles through vector "all"
 check = all.at(i);
 count = 0;
 for (j = 0; j<allSize;j++){

 //Counts the number of times a string shows up in " all"
 if (strcmp(check.c_str(),all.at(j).c_str()) == 0)
 count++;
 }
 aSize = usedMore.size();

 for (j = 0;j<aSize;j++){

 //If a parent is used more than once it is placed i n the
 if (strcmp(usedMore.at(j).c_str(),check.c_str()) == 0)
 //string
vector usedMore and the number of times it is used
 written = 1;

 //is placed in int vector usedMoreNum. If a Parent is already
 }

 //accounted for it is skipped here.
 if ((count > 1) && (written == 0)){
 usedMore.push_back(check);
 usedMoreNum.push_back(count);
 }
 written = 0;
 }
}
//Inserts all the text into the output file
//Creates a file with updated module, inputs, outpu ts, wires, and gates
//Also inserts Muxs where needed
//At the end it inserts a mux function to every fil e
void textInsert(string file,string ofile, vector<string > &usedMultiple, vector<string>
&inputs, vector< int > &usedMoreNum){
 //declarations
 ifstream inFile(file.c_str());
 ofstream outFile(ofile.c_str());
 if (!inFile){

 //Make sure the file is accessible
 cerr << "Unable to open file datafile.txt" ;
 exit(1);
 }
 if (!outFile){
 cerr << "Unable to open file datafile.txt" ;
 exit(1);
 }
 bool inputMux = false ;

 bool inputUsed = false ;
 int i, j;
 int count = 0;
 int size = usedMultiple.size();
 int done = 0;
 int inputNum = inputs.size();
 int muxNum = 0;

88

 int erased = 0;
 int used = 0;
 int condition = 1;
 char buffer[100] ;
 vector< int > num;
 vector< int >::iterator it;
 string line, templine, templine2, fullLine;
 string module = "module " ;
 size_t commapos;
 for (i=0;i<size;i++)
 count += usedMoreNum.at(i);
 while (!inFile.eof()){
 erased = 0;
 used = 0;
 getline(inFile,line);
 fullLine = line;
 if ((line.rfind("module") != string::npos) && (line.rfind("end") ==
string::npos)){ //Adds all the inputs that
are needed to the module line
 templine = line.substr(line.find_first_of("e")+1,
line.find_first_of("(")-line.find_first_of("e")-1);
 templine = deleteSpaces(templine);
 templine = templine.append("test");
 templine = module.append(templine);
 line = line.substr(line.find_first_of("("), line.size()-
line.find_first_of("("));
 line = templine.append(line);
 templine = line.substr(0,line.find_first_of(")"));
 for (i = 0;i<count;i++){
 itoa(i,buffer,10);
 templine.append(",SS");
 templine.append(buffer);
 }
 templine.append(", errsig);");
 fullLine = templine;
 }
 templine.clear();
 if ((line.rfind("input") != string::npos) && (line.rfind("//") ==
string::npos)){ //Adds all the inputs that
are needed to the input line
 templine = line.substr(0,line.find_first_of(";"));
 for (i = 0;i<count;i++){
 itoa(i,buffer,10);
 templine.append(",SS");
 templine.append(buffer);
 }
 templine.append(", errsig;");
 fullLine = templine;
 }
 templine.clear();
 if ((line.rfind("wire") != string::npos) && (line.rfind("//") ==
string::npos)){ //Puts all wires that
are needed at nodes on the wire line
 templine = line.substr(0, line.find_first_of(";"));
 for (i = 0; i<inputNum;i++){
 templine.append(", ");
 templine.append(inputs.at(i));
 templine.append("_0");
 }
 for (i = 0; i<size; i++){
 for (j = 0; j<usedMoreNum.at(i); j++){
 if (usedMultiple.at(i).rfind("Null") ==
string::npos){
 itoa(j+1,buffer,10);
 templine.append(", ");
 templine.append(usedMultiple.at(i));
 templine.append("_");

89

 templine.append(buffer);
 }
 }
 }
 templine.append(";");
 fullLine = templine;
 }
 if ((line.find_first_of("(") != string::npos) &&
(line.rfind("module")==string::npos)){ //Finds first
line with a "(" that doesn't have a "module"
 if (done == 0){

 //All new inputs muxes are put here if done != 1
 for (i = 0;i<inputNum;i++){
 outFile << "mux Mux" << muxNum << "(" <<
inputs.at(i) << "_0, SS" << muxNum << ", errsig, " << inputs.at(i) << ");" << endl;
 muxNum++;
 }
 done = 1;
 }
 templine2 = line.substr(0, line.find_first_of(",")+1);
 //On the first
line it checks all of the inputs and outputs
 line = line.substr(line.find_first_of(",")+1, line.size()-
line.find_first_of(",")-1);
 commapos = line.find_first_of(",");

 while (commapos != string::npos){

 //If there is a comma the while loop starts checkin g inputs
 inputMux = false ;
 templine = line.substr(0,line.find_first_of(","));
 templine = deleteSpaces(templine);
 for (j = 0;j<inputNum;j++){
 if (templine.compare(inputs.at(j)) == 0){
 inputMux = true ;

 }
 }
 for (i = 0;i<size;i++){
 if ((templine.compare(usedMultiple.at(i)) == 0) &&
(templine.compare("Null") != 0)){ //If an input matches a usedMultiple
entry a mux is added to the file
 if (erased == 0){

 //and the inputs to the original line are changed t o match the input
 fullLine = templine2;
 erased = 1;
 }
 for (j = 0; j < inputNum; j++){
 if (templine.compare(inputs.at(j)) ==
0){
 outFile << "mux Mux" <<
muxNum << "(" << usedMultiple.at(i) << "_" << usedMoreNum.at(i) << ", SS" << muxNum << ",
errsig, " << usedMultiple.at(i) << "_0);" << endl;
 inputUsed = true ;
 }
 }
 if (!inputUsed)
 outFile << "mux Mux" << muxNum << "("
<< usedMultiple.at(i) << "_" << usedMoreNum.at(i) << ", SS" << muxNum << ", errsig, " <<
usedMultiple.at(i) << ");" << endl;
 inputUsed = false ;
 fullLine.append(usedMultiple.at(i));
 fullLine.append("_");
 itoa(usedMoreNum.at(i), buffer, 10);
 fullLine.append(buffer);

90

 fullLine.append(",");
 muxNum++;
 usedMoreNum.at(i) = usedMoreNum.at(i) -1;
 used = 1;
 }
 }
 for (j = 0;j<inputNum;j++){

 //If a line contains one of the original
inputs
 if ((inputMux) && (templine.compare("Null") != 0) &&
(used == 0) && (templine.compare(inputs.at(j))==0)) { //The input must be changed
to what the input mux has
 if (erased == 0){
 fullLine = templine2;
 erased = 1;
 }
 fullLine.append(inputs.at(j));
 fullLine.append("_0");
 fullLine.append(",");
 used = 1;
 }
 }
 if ((used ==0) && (erased == 1)){

 fullLine.append(line.substr(0,line.find_first_of(",")+1));
 }
 templine2.append(line.substr(0,line.find_first_ of(",")+1));
 line = line.substr(line.find_first_of(",")+1, line.size()-
line.find_first_of(",")-1);
 commapos = line.find_first_of(",");
 used = 0;
 }
 templine = line.substr(0,line.find_first_of(")"));
 templine = deleteSpaces(templine);
 inputMux = false ;
 for (j = 0;j<inputNum;j++){
 if (templine.compare(inputs.at(j)) == 0)
 inputMux = true ;
 }
 for (i = 0;i<size;i++){
 if (templine.compare(usedMultiple.at(i)) == 0){
 if (erased == 0){
 fullLine = templine2;
 erased = 1;
 }
 for (j = 0; j < inputNum; j++){
 if (templine.compare(inputs.at(j)) == 0){
 outFile << "mux Mux" << muxNum << "("
<< usedMultiple.at(i) << "_" << usedMoreNum.at(i) << ", SS" << muxNum << ", errsig, " <<
usedMultiple.at(i) << "_0);" << endl;
 inputUsed = true ;
 }
 }
 if (!inputUsed)
 outFile << "mux Mux" << muxNum << "(" <<
usedMultiple.at(i) << "_" << usedMoreNum.at(i) << ", SS" << muxNum << ", errsig, " <<
usedMultiple.at(i) << ");" << endl;

 inputUsed = false ;
 fullLine.append(" ");
 fullLine.append(usedMultiple.at(i));
 fullLine.append("_");
 itoa(usedMoreNum.at(i), buffer, 10);
 fullLine.append(buffer);
 fullLine.append(");");
 muxNum++;

91

 used = 1;
 usedMoreNum.at(i) = usedMoreNum.at(i) -1;
 }
 }
 for (j = 0; j < inputNum; j++){
 if ((templine.compare(inputs.at(j)) == 0) &&
(templine.compare("Null") != 0) && (fullLine.find(inputs.at(j)) == string:: npos)){
 if (erased == 0){
 fullLine = templine2;
 erased = 1;
 }
 fullLine.append(inputs.at(j));
 fullLine.append("_0");
 fullLine.append(");");
 used = 1;
 }
 }
 for (j = 0;j<inputNum;j++){

 //If a line contains one of the original inputs
 if ((inputMux) && (templine.compare("Null") != 0) && (used
== 0) && (templine.compare(inputs.at(j))==0)){ //The input must be changed
to what the input mux has
 if (erased == 0){
 fullLine = templine2;
 erased = 1;
 }
 fullLine.append(inputs.at(j));
 fullLine.append("_0");
 fullLine.append(");");
 used = 1;
 }
 }
 if ((used == 0) && (erased == 0)){
 templine2.append(line.substr(0,line.find_first_ of(";")));
 templine2.append(";");
 fullLine = templine2;
 }
 else if (used == 0){
 fullLine.append(templine);
 fullLine.append(");");
 }
 line.clear();
 templine.clear();

 }
 outFile << fullLine << endl;

 //Add line to file
 }

 / /Next two lines are adding the mux information
 outFile << "module mux(y,sel,b,a); \ninput a,b,sel; \noutput y ; \n \nwire
sel,a_sel,b_sel; \n \nnot U_inv (inv_sel,sel); \nan d U_anda (a_sel,a,inv_sel), \nU_andb
(b_sel,b,sel); \nor U_or (y,a_sel,b_sel); \n \nendm odule \n \n" ;
 inFile.close();
 outFile.close();
}

92

Appendix 2: C++ code for creating all other verilog files

// InstantiationCreator.cpp : Defines the entry poi nt for the console application.
//

#include "stdafx.h"
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <stdio.h>
#include <conio.h>
#include <math.h>
using namespace std;

string readFile(string);
int numIn(string);
int ssIn(string);
int numOut(string);
void writeSimulate(string, string, string, int , int , int , int);
void writeBlock(string, string, string, int , int , int , int);
void write_user_logic(string, string, string, int , int , int , int);
void writeTest(string, string, int , string);
void writePPCcode(string, string);
string deleteSpaces(string);

int main(void)
{
 int instantiations = 32;
 string benchmarkname = "t481" ;
 string fileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ ".v" ; //input file
 string testFileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ "test.v" ; //input file
 string outSim = "E:\\Users\\Joe Dunbar\\Documents\\Verilog_files\\V erilog_files\\"
+ benchmarkname + "\\" + benchmarkname + "simulate.v" ; //output file
 string outBlock = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ "block.v" ; //output
 string user_logic = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\user_logic_" +
benchmarkname + ".vhd" ; //output
 string simtest = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\" + benchmarkname + "\\" + benchmarkname
+ "simtest.v" ;
 string cCode = "E:\\Users\\Joe Dunbar\\Documents\\Verilog_files\\V erilog_files\\"
+ benchmarkname + "\\TestApp_Peripheral.c" ;
 string testName = readFile(fileName);
 int testInputs = numIn(testFileName);
 int SSIn = ssIn(testFileName);
 int testOuts = numOut(testFileName);
 string Name = readFile(fileName);
 cout << testName << " " << testInputs << " " << SSIn << " " << testOuts << endl;
 cout << Name << " " << testInputs << endl;
 writeSimulate(testName, Name, outSim, testInputs, SSIn, instantiations, testOuts);
 writeBlock(testName, Name, outBlock, testInputs, S SIn, instantiations, testOuts);
 write_user_logic(testName, Name, user_logic, testI nputs, SSIn, instantiations,
testOuts);
 writeTest(testName, Name, testInputs, simtest);
 writePPCcode(cCode, Name);
 getch();
 return 0;
}
string readFile(string fileName)

93

{
 ifstream inFile;
 inFile.open(fileName.c_str());
 if (!inFile){
 //Makes
sure that the file is usable
 cerr << "Unable to open file 2.txt" ;
 exit(1);
 }
 bool stored = false ;
 string line;
 while (!inFile.eof() && !stored){
 getline(inFile,line);
 if ((line.rfind("module") != string::npos)){
 line =
line.substr(line.find_first_of("e")+1,line.find_first_of("(")-line.find_first_of("e")-1);
 line = deleteSpaces(line);
 stored = true ;
 }
 }
 return line;
}
int numIn(string fileName)
{
 ifstream inFile;
 inFile.open(fileName.c_str());
 if (!inFile){
 //Makes
sure that the file is usable
 cerr << "Unable to open file 3.txt" ;
 exit(1);
 }
 string line;
 string lineChar;
 string comma = "," ;
 int lineSize;
 int count = 0;
 bool stored = false ;
 while (!inFile.eof() && !stored){
 getline(inFile,line);
 if ((line.rfind("input") != string::npos) && (line.rfind(";") !=
string::npos)){
 if (line.rfind("SS") != string::npos){
 line = line.substr(line.find_first_of("t")+1,
line.find_first_of("SS")-line.find_first_of("t")-1);
 lineSize = line.size();
 for (int i = 0; i<lineSize; i++){
 lineChar = line[i];
 if (comma.compare(lineChar) == 0)
 count++;
 }
 stored = true ;
 return count;
 }
 else {
 line = line.substr(line.find_first_of("t")+1,
line.find_first_of(";")-line.find_first_of("t")-1);
 lineSize = line.size();
 for (int i = 0; i<lineSize; i++){
 lineChar = line[i];
 if (comma.compare(lineChar) == 0)
 count++;
 }
 count++;
 return count;
 }

94

 }
 }
 return 0;
}
int numOut(string fileName)
{
 ifstream inFile;
 inFile.open(fileName.c_str());
 if (!inFile){
 //Makes
sure that the file is usable
 cerr << "Unable to open file 4.txt" ;
 exit(1);
 }
 string line;
 string lineChar;
 string comma = "," ;
 int lineSize;
 int count = 0;
 bool stored = false ;
 while (!inFile.eof() && !stored){
 getline(inFile,line);
 if ((line.rfind("output") != string::npos) && (line.rfind(";") !=
string::npos)){
 line = line.substr(line.find_first_of("t")+1,
line.find_first_of(";")-line.find_first_of("t")-1);
 lineSize = line.size();
 for (int i = 0; i<lineSize; i++){
 lineChar = line[i];
 if (comma.compare(lineChar) == 0)
 count++;
 }
 count++;
 return count;
 }
 }
 return 0;
}
int ssIn(string fileName)
{
 ifstream inFile;
 inFile.open(fileName.c_str());
 if (!inFile){
 //Makes
sure that the file is usable
 cerr << "Unable to open file 5.txt" ;
 exit(1);
 }
 string line;
 string lineChar;
 string comma = "," ;
 int lineSize;
 int count = 0;
 bool stored = false ;
 while (!inFile.eof() && !stored){
 getline(inFile,line);
 if ((line.rfind("input") != string::npos) && (line.rfind("SS") !=
string::npos)){
 line = line.substr(line.find_first_of("SS"), line.rfind(",
errsig")-1-line.find_first_of("SS"));
 lineSize = line.size();
 for (int i = 0; i<lineSize; i++){
 lineChar = line[i];
 if (comma.compare(lineChar) == 0)
 count++;
 }
 count++;

95

 stored = true ;
 return count;
 }
 }
 inFile.close();
 return 0;
}
void writeSimulate(string testName, string Name, string ofile, int testInputs, int SSIn,
int instantiations, int testOuts)
{
 ofstream outFile(ofile.c_str());
 if (!outFile){
 cerr << "Unable to open file 6.txt" ;
 exit(1);
 }
 char buffer [10];
 char buf2 [10];
 int i, j;
 outFile << "module " << Name << "simulate (Ins, errsig, SS, Fouts);\n\n" ;
 outFile << "input errsig; \n\ninput [" << itoa(testInputs-1,buffer,10) << ":0]
Ins;\n\ninput [" << itoa(SSIn-1,buf2,10) << ":0] SS;\n\n" ;
 outFile << "output Fouts;\n\n" ;
 outFile << "wire [" << itoa(testOuts-1,buffer,10) << ":0] Outs, Outsfault,
Iouts;\n\n" ;
 outFile << Name << " " << Name << "original(" ;
 for (i = 0; i < testInputs; i++)
 outFile << "Ins[" << itoa(i,buffer,10) << "], " ;
 for (i = 0; i < testOuts; i++){
 outFile << "Outs[" << itoa(i,buf2,10) << "] " ; //Ouputs
 if (i < testOuts-1)
 outFile << "," ;
 }
 outFile<< ");\n" ;
 outFile << testName << "test " << testName << "testfault(" ;
 for (j = 0; j< testInputs; j++)
 outFile << "Ins[" << itoa(j,buffer,10) << "], " ;
 for (j = 0; j < testOuts; j++)
 outFile << "Outsfault[" << itoa(j,buf2,10) << "], " ; //Ouputs
 for (j = 0; j < SSIn; j++){
 outFile << "SS[" << itoa(j,buf2,10) << "], " ;
 }
 outFile << "errsig);\n" ;
 for (j = 0; j<testOuts; j++)
 outFile << "xor (Iouts[" << itoa(j,buf2,10) << "], Outs[" <<
itoa(j,buf2,10) << "], Outsfault[" << itoa(j,buf2,10) << "]);\n" ;
 outFile << "or " << "(Fouts" ;
 for (j = 0; j<testOuts; j++)
 outFile << ", Iouts[" << itoa(j,buf2,10) << "]" ;
 outFile << ");\n\n" ;

 outFile << "endmodule" << endl;
 outFile.close();
}
void writeBlock(string testName, string Name, string of ile, int testInputs, int SSIn, int
instantiations, int testOuts)
{
 int i,j;
 double loopnum;
 double num = (double)SSIn/instantiations;
 int outloop = ceil((double)testInputs/instantiations);
 double bitstemp = (double)(SSIn*2);
 bitstemp = log(bitstemp)/ log((double)2);
 double bits = ceil(bitstemp);
 loopnum = ceil(num) * 2;
 ofstream outFile(ofile.c_str());
 if (!outFile){
 cout << "Unable to open file 7.txt" ;

96

 exit(1);
 }
 char buffer [10];
 char buf2 [10];
 char buf3 [10];
 outFile << "module " << testName << "block(WrAck, clk, RdAck, outinput, WrBurst,
threshnum, trigout);\n\n" ;
 outFile << " //Parameters\n" ;
 outFile << " parameter faultsfound = " << itoa(SSIn*2, buffer, 10) << ";\n" ;
 outFile << " parameter vecsused = 100;\n" ;
 outFile << " parameter loopnum = " << itoa(loopnum, buffer, 10) << ";\n" ;
 outFile << " parameter bitstransfer = " << itoa(instantiations, buffer, 10) <<
";\n" ;
 outFile << " parameter interthresh = 1000;\n" ;
 outFile << " // Inputs\n" ;
 outFile << " input WrAck, clk, RdAck;\n" ;
 outFile << " input [31:0] threshnum;\n\n" ;
 outFile << " //Outputs\n" ;
 outFile << " output [31:0] outinput;\n" ;
 outFile << " output WrBurst, trigout;\n\n" ;
 outFile << " //Registers\n" ;
 outFile << " reg [" << itoa(SSIn-1, buffer, 10) << ":0] SS[bitstransfer-
1:0];\n" ;
 outFile << " reg [" << itoa(testInputs-1, buffer, 10) << ":0] Input = " <<
itoa(testInputs,buf2, 10) << "'d2895612794, usefulinput=0;\n" ;
 outFile << " reg [31:0] count = 0, burstcount = 3, burstcount3 = 0,
burstcount2=0, temp3=0, threshhold = 0, outinput = 0;\n" ;
 outFile << " reg [bitstransfer-1:0] mem[loopnum-1:0], mem2[lo opnum-1:0],
mem3[loopnum-1:0], temp2 = 0;\n" ;
 outFile << " reg [" << itoa(bits-1, buffer, 10) << ":0] total=0, oldtotalfaults
=0,totalfaults = 0, totalvecs = 0;\n" ;
 outFile << " reg errsig = 0, WrBurst = 0, done = 0, trigout = 0, trig = 0,
tempbit;\n\n" ;
 outFile << " //Wires\n" ;
 outFile << " wire [bitstransfer-1:0] Fouts;\n\n" ;
 outFile << " //Integers\n" ;
 outFile << " integer i;\n" ;
 outFile << " genvar j;\n\n" ;
 outFile << "//Circuit Declarations\n\n" ;
 outFile << " generate\n" ;
 outFile << " for(j = 0; j < bitstransfer; j = j +
1)begin:INSTANTIATIONS\n" ;
 outFile << " " << testName << "simulate " << testName <<
"simulateX(Input, errsig, SS[j], Fouts[j]);\n" ;
 outFile << " end\n" ;
 outFile << " endgenerate\n" ;
 outFile << "\n//Fault Detection Program\n" ;
 outFile << "always @(posedge clk) begin\n" ;
 outFile << " if(WrAck == 1)begin\n" ;
 outFile << " for(i = 0; i < loopnum; i = i + 1)begin\n" ;
 outFile << " mem[i] = 0;\n" ;
 outFile << " mem2[i] = 0;\n" ;
 outFile << " mem3[i] = 0;\n" ;
 outFile << " end\n" ;
 outFile << " trig = 1;\n" ;
 outFile << " end\n\n" ;
 outFile << " if(WrAck == 0 && trig == 1)begin\n" ;
 outFile << " count = count + 1;\n" ;
 outFile << " WrBurst = 0;\n\n" ;
 outFile <<
"// //////////////////////////////////////
////////////////////////////////\n\n" ;
 outFile << "//Error Counting\n" ;
 outFile << " if(burstcount == 3)begin\n" ;
 outFile << " if(threshhold < threshnum) begin\n" ;
 outFile << " tempbit = Input[" << itoa(testInputs-1,
buffer, 10) << "]^Input[change];\n" ;

97

 outFile << " Input[" << itoa(testInputs-1, buffer, 10) <<
":1] = Input[" << itoa(testInputs-2, buf2, 10) << ":0];\n" ;
 outFile << " Input[0] = tempbit;\n" ;
 outFile << " temp3 = count+1;\n" ;
 outFile << " total = 0;\n" ;
 outFile << " burstcount = 0;\n" ;
 outFile << " threshhold = threshhold + 1;\n" ;
 outFile << " SS[0] = 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(threshhold == threshnum)begin\n" ;
 outFile << " if(burstcount2 == 0)begin\n" ;
 outFile << " if(burstcount3 == 0)begin\n" ;
 outFile << " for(i = 0; i< loopnum;
i=i+1)begin\n" ;
 outFile << " mem3[i] = mem2[i] |
mem3[i];\n" ;
 outFile << " end\n" ;
 outFile << " burstcount3 = 0;\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 //outFile << " totalfaults = 0;\n";
 outFile << " //outinput = mem[burstcount3];\n" ;
 outFile << " //WrBurst = 1;\n" ;
 outFile << " end\n" ;
 outFile << "/* else if(RdAck == 1 && burstcount3 <
loopnum)begin\n" ;
 outFile << " outinput = mem[burstcount3];\n" ;
 outFile << " WrBurst = 1;\n" ;
 outFile << " burstcount3 = burstcount3 +1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(burstcount3 == 1 /*&& RdAck ==
1)begin\n" ;
 //outFile << " totalfaults = 0; \n";
 outFile << " burstcount3 = 0;\n" ;
 outFile << " burstcount2 = burstcount2 +1;\n" ;
 outFile << " end*/\n" ;
 outFile << " end\n\n" ;

 outFile << " else if(burstcount2 == 1)begin\n" ;
 outFile << " for(i = 0; i <loopnum; i =
i+1)begin\n" ;
 outFile << " mem[i] = 0;\n" ;
 outFile << " mem2[i] = 0;\n" ;
 outFile << " end\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 outFile << " //end\n" ;
 outFile << " end\n\n" ;

 outFile << " else if(burstcount2 == 2)begin\n" ;
 outFile << " if(totalfaults <= oldtotalfaults)begin\n" ;
 outFile << " trigout = 1;\n" ;
 outFile << " end\n" ;
 outFile << " else begin\n" ;
 outFile << " burstcount2 = burstcount2 +1;\n" ;
 outFile << " end\n" ;
 outFile << " end \n\n" ;

 outFile << " else if(burstcount2 > 2)begin\n" ;
 outFile << " if(burstcount2 == 3)begin\n" ;
 outFile << " outinput = usefulinput[" <<
itoa(testInputs-1,buffer, 10) << ":" << itoa((outloop-1)*32,buf2,10) << "];\n" ;
 outFile << " totalvecs = totalvecs+1;\n" ;
 outFile << " WrBurst = 1;\n" ;
 outFile << " oldtotalfaults = totalfaults;\n" ;
 outFile << " burstcount2 = burstcount2+1;\n" ;
 outFile << " end\n" ;
 for (i = outloop-1; i > 0; i--){

98

 outFile << " else if(RdAck == 1 && burstcount2 ==
" << itoa(outloop+3-i,buffer, 10) << ")begin\n" ;
 outFile << " outinput = usefulinput[" <<
itoa(i*32-1,buffer,10) << ":" << itoa((i-1)*32,buf2, 10) << "];\n" ;
 outFile << " WrBurst = 1;\n" ;
 outFile << " burstcount2 = burstcount2 +
1;\n" ;
 outFile << " end\n" ;
 }
 outFile << " else if(RdAck == 1 && burstcount2 == " <<
itoa(3+outloop, buffer, 10) << ")begin\n" ;
 outFile << " outinput = totalfaults;\n" ;
 outFile << " WrBurst = 1;\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(RdAck == 1 && burstcount2 == " <<
itoa(4+outloop, buffer, 10) << ")begin\n" ;
 outFile << " outinput = totalvecs;\n" ;
 outFile << " WrBurst = 1;\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(RdAck == 1 && burstcount2 == " <<
itoa(5+outloop, buffer, 10) << ") begin\n" ;
 outFile << " if((totalvecs >= vecsused) ||
(totalfaults >=faultsfound))begin\n" ;
 outFile << " trigout = 1;\n" ;
 outFile << " end\n" ;
 outFile << " else begin\n" ;
 outFile << " Input = " <<
itoa(testInputs,buffer, 10) << "'d2895612794;\n" ;
 outFile << " totalfaults = 0;\n" ;
 outFile << " threshhold = 0;\n" ;
 outFile << " burstcount2 = 0;\n" ;
 outFile << " end \n" ;
 outFile << " end\n" ;
 outFile << " end \n" ;
 outFile << " end\n" ;
 outFile << " end\n\n" ;
 outFile <<
"// //////////////////////////////////////
/////////////////////\n" ;
 outFile << "//Get errors from C1355simulate\n\n" ;
 outFile << " else if(burstcount == 0)begin\n" ;
 outFile << " if(burstcount2 < loopnum) begin\n" ;
 outFile << " if(temp3 == count) begin\n" ;
 outFile << " mem[burstcount2] = Fouts;\n" ;
 outFile << " done = 0;\n" ;
 outFile << " end\n" ;
 outFile << " else if(temp3 != count && done ==
0)begin\n" ;
 outFile << " if(burstcount2%2 == 0)begin\n" ;
 outFile << " errsig = 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(burstcount2%2 == 1)begin\n" ;
 outFile << " errsig = 0;\n" ;
 outFile << " SS[0] = SS[0] <<
bitstransfer;\n" ;
 outFile << " end\n" ;
 outFile << " done = 1;\n" ;
 outFile << " temp3 = count+1;\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 outFile << " end\n" ;
 outFile << " end\n" ;
 outFile << " else if(burstcount2 == loopnum)begin\n" ;
 outFile << " burstcount2 = 0;\n" ;
 outFile << " burstcount = burstcount + 1;\n" ;
 outFile << " end\n" ;

99

 outFile << " end\n\n" ;
 outFile <<
"// //////////////////////////////////////
////////////////////\n" ;
 outFile << "// Count total errors in individual \n\n" ;
 outFile << " else if(burstcount == 1)begin \n" ;
 outFile << " if(burstcount2 < loopnum)begin\n" ;
 outFile << " temp2 = mem3[burstcount2] |
mem[burstcount2];\n" ;
 outFile << " for(i = 0; i < bitstransfer; i=
i+1)begin\n" ;
 outFile << " total = total+temp2[i];\n" ;
 outFile << " end\n" ;
 outFile << " burstcount2 = burstcount2 + 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(burstcount2 == loopnum) begin\n" ;
 outFile << " burstcount2 = 0;\n" ;
 outFile << " burstcount = burstcount + 1;\n" ;
 outFile << " end\n" ;
 outFile << " end\n\n" ;
 outFile << " else if(burstcount == 2)begin\n" ;
 outFile << " if(total > totalfaults) begin\n" ;
 outFile << " for(i = 0; i < loopnum; i= i+1)begin\n" ;
 outFile << " mem2[i] = mem[i];\n" ;
 outFile << " end\n" ;
 outFile << " totalfaults = total;\n" ;
 outFile << " usefulinput = Input;\n" ;
 outFile << " burstcount2 = 0;\n" ;
 outFile << " burstcount = burstcount +1;\n" ;
 outFile << " end \n" ;
 outFile << " else begin\n" ;
 outFile << " burstcount2 = 0;\n" ;
 outFile << " burstcount = burstcount+1;\n" ;
 outFile << " end\n" ;
 outFile << " end\n" ;
 outFile << " end\n" ;
 outFile << "end\n\n" ;
 outFile << "always@(SS[0])begin\n" ;
 outFile << " for(i = 1; i < bitstransfer; i = i+1)begin\n" ;
 outFile << " SS[i] = SS[0] << i;\n" ;
 outFile << " end\n" ;
 outFile << "end\n\n" ;
 outFile << "endmodule\n\n" ;
}
void writeTest(string testName, string name, int testInputs, string simtest)
{
 int i;
 int outloop = ceil((double)testInputs/32);
 ofstream outFile(simtest.c_str());
 if (!outFile){
 cout << "Unable to open file 7.txt" ;
 exit(1);
 }
 char buffer [10];
 outFile << " `timescale 1ns / 1ns\n" ;
 outFile <<
"// //////////////////////////////\n" ;
 outFile << "\n" ;
 outFile << "module test;\n" ;
 outFile << "\n" ;
 outFile << " // Inputs\n" ;
 outFile << " reg WrAck;\n" ;
 outFile << " reg clk;\n" ;
 outFile << " reg RdAck, trig = 0;\n" ;
 outFile << " reg [31:0] threshnum, Ins[" << itoa(outloop-1, buffer, 10) << ":0],
totalfaults, totalvecs;\n" ;
 outFile << " reg [1:0] count = 0;\n" ;

100

 outFile << " // Outputs\n" ;
 outFile << " wire [31:0] outinput, threshhold;\n" ;
 outFile << " wire WrBurst;\n" ;
 outFile << " wire trigout;\n" ;
 outFile << " \n" ;
 outFile << " integer file;\n\n\n" ;
 outFile << " // Instantiate the Unit Under Test (UUT)\n" ;
 outFile << " " << testName << "block uut (\n" ;
 outFile << " .WrAck(WrAck), \n" ;
 outFile << " .clk(clk), \n" ;
 outFile << " .RdAck(RdAck), \n" ;
 outFile << " .outinput(outinput), \n" ;
 outFile << " .WrBurst(WrBurst), \n" ;
 outFile << " .threshnum(threshnum), \n" ;
 outFile << " .trigout(trigout),\n" ;
 outFile << " .threshhold(threshhold)\n" ;
 outFile << ");\n\n" ;
 outFile << " initial begin\n" ;
 outFile << " // Initialize Inputs\n" ;
 outFile << " WrAck = 0;\n" ;
 outFile << " clk = 0;\n" ;
 outFile << " RdAck = 0;\n" ;
 outFile << " threshnum = 0;\n" ;
 outFile << " file = $fopen(\"output.txt\");\n" ;
 outFile << " // Wait 100 ns for global reset to finish\n" ;
 outFile << " #100;\n" ;
 outFile << " threshnum = 1000;\n" ;
 outFile << " WrAck = 1;\n" ;
 outFile << " #20;\n" ;
 outFile << " WrAck = 0;\n" ;
 outFile << " // Add stimulus here\n" ;
 outFile << " end\n\n" ;
 outFile << " initial begin\n" ;
 outFile << " while(1) begin\n" ;
 outFile << " clk = ~clk;\n" ;
 outFile << " #1;\n" ;
 outFile << " end\n" ;
 outFile << " end\n\n" ;
 outFile << " always@(posedge WrBurst)begin\n" ;
 outFile << " if(count == 0)begin\n" ;
 outFile << " Ins[0] = outinput;\n" ;
 outFile << " count = count + 1;\n" ;
 outFile << " end\n" ;
 for (i = 1; i < outloop; i++)
 {
 outFile << " else if(count == " << itoa(i, buffer, 10) <<
")begin\n" ;
 outFile << " Ins[" << itoa(i, buffer, 10) << "] =
outinput;\n" ;
 outFile << " count = count + 1;\n" ;
 outFile << " end\n" ;
 }
 outFile << " else if(count == " << itoa(outloop, buffer, 10) <<
")begin\n" ;
 outFile << " totalfaults = outinput;\n" ;
 outFile << " count = count + 1;\n" ;
 outFile << " end\n" ;
 outFile << " else if(count == " << itoa(outloop+1, buffer, 10) <<
")begin\n" ;
 outFile << " totalvecs = outinput;\n" ;
 outFile << " $fdisplay(file, \"" ;
 for (i = 0; i < outloop; i++)
 outFile << "%8h" ;
 outFile << " %d %d %d\", " ;
 for (i = 0; i < outloop; i++)
 outFile << "Ins[" << itoa(i, buffer, 10) << "]," ;
 outFile << " totalfaults, totalvecs, $time);\n" ;

101

 outFile << " count = 0;\n" ;
 outFile << " end\n" ;
 outFile << " end\n\n" ;
 outFile << " always@(negedge WrBurst)begin\n" ;
 outFile << " #6;\n" ;
 outFile << " RdAck = 1;\n" ;
 outFile << " #1;\n" ;
 outFile << " RdAck = 0;\n" ;
 outFile << " end\n\n" ;
 outFile << " always@(trigout)begin\n" ;
 outFile << " $stop;\n" ;
 outFile << " end\n\n" ;
 outFile << "endmodule\n" ;
}
void write_user_logic(string testName, string Name, str ing ofile, int testInputs, int
SSIn, int instantiations, int testOuts)
{
 int testiter;
 testiter = testInputs/32;
 ofstream outFile(ofile.c_str());
 if (!outFile){
 cout << "Unable to open file 8.txt" ;
 exit(1);
 }
 char buf2 [10];
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- user_logic.vhd - entity/architecture pair\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "--\n" ;
 outFile << "--
*** ************************\n" ;
 outFile << "-- ** Copyright (c) 1995-2008 Xilinx, Inc. All ri ghts reserved.
**\n" ;
 outFile << "-- **
**\n" ;
 outFile << "-- ** Xilinx, Inc.
**\n" ;
 outFile << "-- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR IN FORMATION \"AS IS\"
**\n" ;
 outFile << "-- ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVE LOPING PROGRAMS AND
**\n" ;
 outFile << "-- ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
**\n" ;
 outFile << "-- ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATIO N OF THIS FEATURE,
**\n" ;
 outFile << "-- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
**\n" ;
 outFile << "-- ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CL AIMS OF
INFRINGEMENT, **\n" ;
 outFile << "-- ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RI GHTS YOU MAY REQUIRE
**\n" ;
 outFile << "-- ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY D ISCLAIMS ANY
**\n" ;
 outFile << "-- ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQ UACY OF THE
**\n" ;
 outFile << "-- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
**\n" ;
 outFile << "-- ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
**\n" ;
 outFile << "-- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS
**\n" ;
 outFile << "-- ** FOR A PARTICULAR PURPOSE.
**\n" ;
 outFile << "-- **
**\n" ;

102

 outFile << "--
*** ************************\n" ;
 outFile << "--\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- Filename: user_logic.vhd\n" ;
 outFile << "-- Version: 1.00.a\n" ;
 outFile << "-- Description: User logic.\n" ;
 outFile << "-- Date: Sat Jul 25 20:34:42 2009 (by Create and Import
Peripheral Wizard)\n" ;
 outFile << "-- VHDL Standard: VHDL'93\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- Naming Conventions:\n" ;
 outFile << "-- active low signals: \"*_n\ "\n" ;
 outFile << "-- clock signals: \"clk\ ", \"clk_div#\",
\"clk_#x\"\n" ;
 outFile << "-- reset signals: \"rst\ ", \"rst_n\"\n" ;
 outFile << "-- generics: \"C_*\ "\n" ;
 outFile << "-- user defined types: \"*_TY PE\"\n" ;
 outFile << "-- state machine next state: \"*_ns \"\n" ;
 outFile << "-- state machine current state: \"*_cs \"\n" ;
 outFile << "-- combinatorial signals: \"*_co m\"\n" ;
 outFile << "-- pipelined or register delay signals: \"*_d# \"\n" ;
 outFile << "-- counter signals: \"*cnt *\"\n" ;
 outFile << "-- clock enable signals: \"*_ce \"\n" ;
 outFile << "-- internal version of output port: \"*_i\ "\n" ;
 outFile << "-- device pins: \"*_pi n\"\n" ;
 outFile << "-- ports: \"- Na mes begin with
Uppercase\"\n" ;
 outFile << "-- processes: \"*_PR OCESS\"\n" ;
 outFile << "-- component instantiations:
\"<ENTITY_>I_<#|FUNC>\"\n" ;
 outFile << "-- --------------------
--------\n\n" ;
 outFile << "-- DO NOT EDIT BELOW THIS LINE ------------------- -\n" ;
 outFile << "library ieee;\n" ;
 outFile << "use ieee.std_logic_1164.all;\n" ;
 outFile << "use ieee.std_logic_arith.all;\n" ;
 outFile << "use ieee.std_logic_unsigned.all;\n\n" ;
 outFile << "library proc_common_v2_00_a;\n" ;
 outFile << "use proc_common_v2_00_a.proc_common_pkg.all;\n\n" ;
 outFile << "-- DO NOT EDIT ABOVE THIS LINE ------------------- -\n\n" ;
 outFile << "--USER libraries added here\n\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- Entity section\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- Definition of Generics:\n" ;
 outFile << "-- C_SLV_DWIDTH -- Slave interfa ce data bus
width\n" ;
 outFile << "-- C_NUM_REG -- Number of sof tware accessible
registers\n" ;
 outFile << "-- C_RDFIFO_DEPTH -- Read FIFO dep th\n" ;
 outFile << "-- C_WRFIFO_DEPTH -- Write FIFO de pth\n" ;
 outFile << "--\n" ;
 outFile << "-- Definition of Ports:\n" ;
 outFile << "-- Bus2IP_Clk -- Bus to IP clo ck\n" ;
 outFile << "-- Bus2IP_Reset -- Bus to IP res et\n" ;
 outFile << "-- Bus2IP_Data -- Bus to IP dat a bus\n" ;
 outFile << "-- Bus2IP_BE -- Bus to IP byt e enables\n" ;
 outFile << "-- Bus2IP_RdCE -- Bus to IP rea d chip enable\n" ;
 outFile << "-- Bus2IP_WrCE -- Bus to IP wri te chip enable\n" ;
 outFile << "-- IP2Bus_Data -- IP to Bus dat a bus\n" ;
 outFile << "-- IP2Bus_RdAck -- IP to Bus rea d transfer
acknowledgement\n" ;

103

 outFile << "-- IP2Bus_WrAck -- IP to Bus wri te transfer
acknowledgement\n" ;
 outFile << "-- IP2Bus_Error -- IP to Bus err or response\n" ;
 outFile << "-- IP2RFIFO_WrReq -- IP to RFIFO : IP write
request\n" ;
 outFile << "-- IP2RFIFO_Data -- IP to RFIFO : IP write data
bus\n" ;
 outFile << "-- IP2RFIFO_WrMark -- IP to RFIFO : mark beginning of
packet being written\n" ;
 outFile << "-- IP2RFIFO_WrRelease -- IP to RFIFO : return RFIFO to
normal FIFO operation\n" ;
 outFile << "-- IP2RFIFO_WrRestore -- IP to RFIFO : restore the RFIFO
to the last packet mark\n" ;
 outFile << "-- RFIFO2IP_WrAck -- RFIFO to IP : RFIFO write
acknowledge\n" ;
 outFile << "-- RFIFO2IP_AlmostFull -- RFIFO to IP : RFIFO almost
full\n" ;
 outFile << "-- RFIFO2IP_Full -- RFIFO to IP : RFIFO full\n" ;
 outFile << "-- RFIFO2IP_Vacancy -- RFIFO to IP : RFIFO vacancy\n" ;
 outFile << "-- IP2WFIFO_RdReq -- IP to WFIFO : IP read request\n" ;
 outFile << "-- IP2WFIFO_RdMark -- IP to WFIFO : mark beginning of
packet being read\n" ;
 outFile << "-- IP2WFIFO_RdRelease -- IP to WFIFO : return WFIFO to
normal FIFO operation\n" ;
 outFile << "-- IP2WFIFO_RdRestore -- IP to WFIFO : restore the WFIFO
to the last packet mark\n" ;
 outFile << "-- WFIFO2IP_Data -- WFIFO to IP : WFIFO read data\n" ;
 outFile << "-- WFIFO2IP_RdAck -- WFIFO to IP : WFIFO read
acknowledge\n" ;
 outFile << "-- WFIFO2IP_AlmostEmpty -- WFIFO to IP : WFIFO almost
empty\n" ;
 outFile << "-- WFIFO2IP_Empty -- WFIFO to IP : WFIFO empty\n" ;
 outFile << "-- WFIFO2IP_Occupancy -- WFIFO to IP : WFIFO occupancy\n" ;
 outFile << "-- --------------------
--------\n\n" ;
 outFile << "entity user_logic is\n" ;
 outFile << " generic\n" ;
 outFile << " (\n" ;
 outFile << " -- ADD USER GENERICS BELOW THIS LINE --------- ------\n" ;
 outFile << " --USER generics added here\n" ;
 outFile << " -- ADD USER GENERICS ABOVE THIS LINE --------- ------\n\n" ;
 outFile << " -- DO NOT EDIT BELOW THIS LINE --------------- ------\n" ;
 outFile << " -- Bus protocol parameters, do not add to or d elete\n" ;
 outFile << " C_SLV_DWIDTH : integer := 32;\n" ;
 outFile << " C_NUM_REG : integer := 1;\n" ;
 outFile << " C_RDFIFO_DEPTH : integer := 8192;\n" ;
 outFile << " C_WRFIFO_DEPTH : integer := 512\n" ;
 outFile << " -- DO NOT EDIT ABOVE THIS LINE --------------- ------\n" ;
 outFile << ");\n" ;
 outFile << " port\n" ;
 outFile << " (\n" ;
 outFile << " -- ADD USER PORTS BELOW THIS LINE ------------ ------\n" ;
 outFile << " --USER ports added here\n" ;
 outFile << " -- ADD USER PORTS ABOVE THIS LINE ------------ ------\n\n" ;
 outFile << " -- DO NOT EDIT BELOW THIS LINE --------------- ------\n" ;
 outFile << " -- Bus protocol ports, do not add to or delete \n" ;
 outFile << " Bus2IP_Clk : in std_logic ;\n" ;
 outFile << " Bus2IP_Reset : in std_logic ;\n" ;
 outFile << " Bus2IP_Data : in std_logic _vector(0 to
C_SLV_DWIDTH-1);\n" ;
 outFile << " Bus2IP_BE : in std_logic _vector(0 to
C_SLV_DWIDTH/8-1);\n" ;
 outFile << " Bus2IP_RdCE : in std_logic _vector(0 to
C_NUM_REG-1);\n" ;
 outFile << " Bus2IP_WrCE : in std_logic _vector(0 to
C_NUM_REG-1);\n" ;

104

 outFile << " IP2Bus_Data : out std_logic _vector(0 to
C_SLV_DWIDTH-1);\n" ;
 outFile << " IP2Bus_RdAck : out std_logic ;\n" ;
 outFile << " IP2Bus_WrAck : out std_logic ;\n" ;
 outFile << " IP2Bus_Error : out std_logic ;\n" ;
 outFile << " IP2RFIFO_WrReq : out std_logic ;\n" ;
 outFile << " IP2RFIFO_Data : out std_logic _vector(0 to
C_SLV_DWIDTH-1);\n" ;
 outFile << " IP2RFIFO_WrMark : out std_logic ;\n" ;
 outFile << " IP2RFIFO_WrRelease : out std_logic ;\n" ;
 outFile << " IP2RFIFO_WrRestore : out std_logic ;\n" ;
 outFile << " RFIFO2IP_WrAck : in std_logic ;\n" ;
 outFile << " RFIFO2IP_AlmostFull : in std_logic ;\n" ;
 outFile << " RFIFO2IP_Full : in std_logic ;\n" ;
 outFile << " RFIFO2IP_Vacancy : in std_logic _vector(0 to
log2(C_RDFIFO_DEPTH));\n" ;
 outFile << " IP2WFIFO_RdReq : out std_logic ;\n" ;
 outFile << " IP2WFIFO_RdMark : out std_logic ;\n" ;
 outFile << " IP2WFIFO_RdRelease : out std_logic ;\n" ;
 outFile << " IP2WFIFO_RdRestore : out std_logic ;\n" ;
 outFile << " WFIFO2IP_Data : in std_logic _vector(0 to
C_SLV_DWIDTH-1);\n" ;
 outFile << " WFIFO2IP_RdAck : in std_logic ;\n" ;
 outFile << " WFIFO2IP_AlmostEmpty : in std_logic ;\n" ;
 outFile << " WFIFO2IP_Empty : in std_logic ;\n" ;
 outFile << " WFIFO2IP_Occupancy : in std_logic _vector(0 to
log2(C_WRFIFO_DEPTH))\n" ;
 outFile << " -- DO NOT EDIT ABOVE THIS LINE --------------- ------\n" ;
 outFile << ");\n\n" ;
 outFile << " attribute SIGIS : string;\n" ;
 outFile << " attribute SIGIS of Bus2IP_Clk : signal is \"C LK\";\n" ;
 outFile << " attribute SIGIS of Bus2IP_Reset : signal is \"R ST\";\n\n" ;
 outFile << "end entity user_logic;\n\n" ;
 outFile << "-- --------------------
--------\n" ;
 outFile << "-- Architecture section\n" ;
 outFile << "-- --------------------
--------\n\n" ;
 outFile << "architecture IMP of user_logic is\n\n" ;
 outFile << " --USER signal declarations added here, as needed for user
logic\n\n" ;
 outFile << " component " << Name << "block\n" ;
 outFile << " port (\n" ;
 outFile << " clk: in std_logic;\n" ;
 outFile << " threshnum: in std_logic_VECTOR(31 downto 0);\n " ;
 outFile << " outinput: out std_logic_VECTOR(31 downto 0);\n " ;
 outFile << " WrBurst: out std_logic;\n" ;
 outFile << " RdAck: in std_logic;\n" ;
 outFile << " trigout: out std_logic;\n" ;
 outFile << " WrAck: in std_logic);\n" ;
 outFile << " end component;\n\n\n" ;
 outFile << " --\n" ;
 outFile << " -- Signals for read/write fifo loopback example\ n" ;
 outFile << " --\n" ;
 outFile << " type FIFO_CNTL_SM_TYPE is (IDLE, RD_REQ, WR_REQ, RD_REQ_0);\n" ;
 outFile << " signal fifo_cntl_ns : FIFO_CNT L_SM_TYPE;\n" ;
 outFile << " signal fifo_cntl_cs : FIFO_CNT L_SM_TYPE;\n" ;
 outFile << " signal fifo_rdreq_cmb : std_logi c;\n" ;
 outFile << " signal fifo_wrreq_cmb : std_logi c;\n" ;
 outFile << " signal user_write
: std_logic;\n" ;
 outFile << " signal user_write_long :
std_logic;\n" ;
 outFile << " signal writeclock
: std_logic;\n\n\n" ;
 outFile << "begin\n\n" ;
 outFile << " --USER logic implementation added here\n" ;

105

 outFile << " \n" ;
 outFile << " " << Name << "block_0 : " << Name << "block\n" ;
 outFile << " port map (\n" ;
 outFile << " clk => Bus2IP_Clk,\n" ;
 outFile << " threshnum => WFIFO2IP_Data,\n" ;
 outFile << " outinput => IP2RFIFO_Data,\n" ;
 outFile << " WrBurst => user_write,\n" ;
 outFile << " RdAck => RFIFO2IP_WrAck,\n" ;
 outFile << " trigout => user_write_long,\n" ;
 outFile << " WrAck => WFIFO2IP_RdAck);\n" ;
 outFile << " --\n" ;
 outFile << " -- Example code to transfer data between read/wr ite fifo\n" ;
 outFile << " -- \n" ;
 outFile << " -- Note:\n" ;
 outFile << " -- The example code presented here is to show yo u one way of
operating on\n" ;
 outFile << " -- the read/write FIFOs provided for you. There' s a set of IPIC
ports\n" ;
 outFile << " -- dedicated to the FIFO operations, beginning w ith RFIFO2IP_* or
IP2RFIFO_*\n" ;
 outFile << " -- or WFIFO2IP_* or IP2WFIFO_*. Some FIFO ports are only available
when\n" ;
 outFile << " -- certain FIFO services are present, s.t. vacan cy calculation,
etc.\n" ;
 outFile << " -- Typically you will need to have a state machi ne to read data from
the\n" ;
 outFile << " -- write FIFO or write data to the read FIFO. Th is code snippet
simply\n" ;
 outFile << " -- transfer the data from the write FIFO to the read FIFO.\n" ;
 outFile << " --\n" ;
 outFile << " IP2RFIFO_WrMark <= '0';\n" ;
 outFile << " IP2RFIFO_WrRelease <= '0';\n" ;
 outFile << " IP2RFIFO_WrRestore <= '0';\n\n" ;
 outFile << " IP2WFIFO_RdMark <= '0';\n" ;
 outFile << " IP2WFIFO_RdRelease <= '0';\n" ;
 outFile << " IP2WFIFO_RdRestore <= '0';\n\n" ;
 outFile << " FIFO_CNTL_SM_COMB : process(WFIFO2IP_empty, WFI FO2IP_RdAck,
RFIFO2IP_full, RFIFO2IP_WrAck, fifo_cntl_cs, user_w rite_long, Bus2IP_Clk) is\n" ;
 outFile << " begin\n\n" ;
 outFile << " -- set defaults\n" ;
 outFile << " fifo_rdreq_cmb <= '0';\n" ;
 outFile << " fifo_wrreq_cmb <= '0';\n" ;
 outFile << " fifo_cntl_ns <= fifo_cntl_cs;\n\n\n" ;
 outFile << " case fifo_cntl_cs is\n" ;
 outFile << " when IDLE =>\n" ;
 outFile << " -- data is available in the write fifo and there's space in
the read fifo,\n" ;
 outFile << " -- so we can start transfering the data fr om write fifo to
read fifo\n" ;
 outFile << " if (WFIFO2IP_empty = '0' and RFIFO2IP_ful l = '0') then\n" ;
 outFile << " fifo_rdreq_cmb <= '1';\n" ;
 outFile << " fifo_cntl_ns <= RD_REQ;\n" ;
 outFile << " end if;\n" ;
 outFile << " when RD_REQ =>\n" ;
 outFile << " -- data has been read from the write fifo, \n" ;
 outFile << " -- so we can write it to the read fifo\n" ;
 outFile << " if (user_write = '1') then\n" ;
 outFile << " if(user_write_long = '1') then\n" ;
 outFile << " fifo_wrreq_cmb <= '1';\n" ;
 outFile << " fifo_cntl_ns <= WR_REQ;\n" ;
 outFile << " else\n" ;
 outFile << " fifo_wrreq_cmb <= '1';\n" ;
 outFile << " fifo_cntl_ns <= RD_REQ;\n" ;
 outFile << " end if; \n" ;
 outFile << " end if;\n" ;
 outFile << " when WR_REQ =>\n" ;
 outFile << " -- data has been written to the read fifo, \n" ;

106

 outFile << " -- so data transfer is done\n" ;
 outFile << " if (RFIFO2IP_WrAck = '1') then\n" ;
 outFile << " fifo_cntl_ns <= IDLE;\n" ;
 outFile << " end if;\n" ;
 outFile << " when others =>\n" ;
 outFile << " fifo_cntl_ns <= IDLE;\n" ;
 outFile << " end case;\n\n\n" ;
 outFile << " end process FIFO_CNTL_SM_COMB;\n\n" ;
 outFile << " FIFO_CNTL_SM_SEQ : process(Bus2IP_Clk) is\n" ;
 outFile << " begin\n\n" ;
 outFile << " if (Bus2IP_Clk'event and Bus2IP_Clk = '1') t hen\n" ;
 outFile << " if (Bus2IP_Reset = '1') then\n" ;
 outFile << " IP2WFIFO_RdReq <= '0';\n" ;
 outFile << " IP2RFIFO_WrReq <= '0';\n" ;
 outFile << " fifo_cntl_cs <= IDLE;\n" ;
 outFile << " else\n" ;
 outFile << " IP2WFIFO_RdReq <= fifo_rdreq_cmb;\n" ;
 outFile << " IP2RFIFO_WrReq <= fifo_wrreq_cmb;\n" ;
 outFile << " fifo_cntl_cs <= fifo_cntl_ns;\n" ;
 outFile << " end if;\n" ;
 outFile << " end if;\n" ;
 outFile << "\n" ;
 outFile << " end process FIFO_CNTL_SM_SEQ;\n" ;
 outFile << "\n" ;
 outFile << " --IP2RFIFO_Data <= WFIFO2IP_Data;\n" ;
 outFile << "\n" ;
 outFile << " --\n" ;
 outFile << " -- Example code to drive IP to Bus signals\n" ;
 outFile << " --\n" ;
 outFile << " IP2Bus_Data <= (others => '0');\n\n" ;
 outFile << " IP2Bus_WrAck <= '0';\n" ;
 outFile << " IP2Bus_RdAck <= '0';\n" ;
 outFile << " IP2Bus_Error <= '0';\n\n" ;
 outFile << "end IMP;\n" ;
}
void writePPCcode(string cCode, string Name)
{
 ofstream outFile(cCode.c_str());
 int len = strlen(Name.c_str());
 for (int i = 0; i < len; i++)
 {
 Name[i] = toupper((unsigned char) Name[i]);
 }

 if (!outFile){
 cout << "Unable to open file 8.txt" ;
 exit(1);
 }
 cout << Name << endl;
 outFile << "#include \"xparameters.h\"\n" ;
 outFile << "#include \"xbasic_types.h\"\n" ;
 outFile << "#include \"xstatus.h\"\n" ;
 outFile << "#include \"MY_" << Name << ".h\"\n" ;
 outFile << "#include \"stdlib.h\"\n" ;
 outFile << "#include \"stdio.h\"\n" ;
 outFile << "#include \"xtime_l.h\"\n" ;
 outFile << "#include \"xpseudo_asm.h\"\n\n\n" ;
 outFile << "Xuint32 *baseaddr_p = (Xuint32 *)XPAR_MY_" << Name <<
"_0_BASEADDR;\n" ;;
 outFile << "Xuint8 dec2bin(Xuint32, Xuint32);\n" ;
 outFile << "int maxrow(Xuint8 *Binary, Xuint32 *rowsums);\n\n" ;
 outFile << "int main (void) {\n" ;
 outFile << " Xuint64 starttime, endtime, elapsedtime;\n" ;
 outFile << " XTime_SetTime(0);\n" ;
 outFile << " endtime.Upper = mfspr(XREG_SPR_TBU_READ);\n" ;
 outFile << " endtime.Lower = mfspr(XREG_SPR_TBL_READ);\n" ;
 outFile << " xil_printf(\"Time: %8x\", XUINT64_MSW(endtime));\ n" ;

107

 outFile << " xil_printf(\"%08x\\n\\r\", XUINT64_LSW(endtime)); \n" ;
 outFile << " Xuint32 baseaddr, temp;\n" ;
 outFile << " Xuint16 totalvecs, totalfaults;\n\n" ;
 outFile << " // Clear the screen\n" ;
 outFile << " xil_printf(\"%c[2J\",27);\n\n" ;
 outFile << " // Check that the peripheral exists\n" ;
 outFile << " XASSERT_NONVOID(baseaddr_p != XNULL);\n" ;
 outFile << " baseaddr = (Xuint32) baseaddr_p;\n\n" ;
 outFile << " // Reset read and write packet FIFOs to initial s tate\n" ;
 outFile << " MY_" << Name << "_mResetWriteFIFO(baseaddr);\n" ;
 outFile << " MY_" << Name << "_mResetReadFIFO(baseaddr);\n\n" ;
 outFile << " // Push data to write packet FIFO\n" ;
 outFile << " MY_" << Name << "_mWriteToFIFO(baseaddr,0, 10000);\n" ;
 outFile << " xil_printf(\"%d\\n\\r\", MY_" << Name <<
"_mReadFIFOOccupancy(baseaddr));\n" ;
 outFile << " while(1){\n" ;
 outFile << " while(MY_" << Name << "_mReadFIFOOccupancy(baseaddr) >
0){\n" ;
 outFile << " xil_printf(\"%x\", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;
 outFile << " usleep(1000);\n" ;
 outFile << " xil_printf(\"%08x \", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;
 outFile << " usleep(1000);\n" ;
 outFile << " xil_printf(\"%d \", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;
 outFile << " usleep(1000);\n" ;
 outFile << " xil_printf(\"%d \", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;
 outFile << " usleep(1000);\n" ;
 outFile << " endtime.Upper = mfspr(XREG_SPR_TBU_READ);\n" ;
 outFile << " endtime.Lower = mfspr(XREG_SPR_TBL_READ);\n" ;
 outFile << " int regtime =
XUINT64_MSW(endtime)*71.58278826666666667+XUINT64_L SW(endtime)/(1000000);\n" ;
 outFile << " //elapsedtime = endtime-starttime;\n" ;
 outFile << " xil_printf(\"%x\", XUINT64_MSW(endtime));\n" ;
 outFile << " xil_printf(\"%08x\", XUINT64_LSW(endtime));\n" ;
 outFile << " xil_printf(\" %d/6000 \\n\\r\", regtime);\n" ;
 outFile << " }\n" ;
 outFile << " }\n" ;
 outFile << "}\n" ;
}
string deleteSpaces(string phrase)
{
 size_t space = phrase.find_first_of(" ");
 while (space != string::npos){
 phrase.replace(space,1, "");
 space = phrase.find_first_of(" ");
 }
 return phrase;
}

108

Appendix 3: Variable Instantiation Data

C17

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 0.0329 4 2 3 25

2 0.0329 4 2 4 25

4 0.0329 4 2 4 25

8 0.0329 4 2 4 25

16 0.0329 4 2 4 25

32 0.0329 4 2 3 25

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25 30 35

T
im

e
(S

)

of Faulty C17 Instantiations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty C17 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

109

C432

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 23.56 27 9 23 25

2 11.81 24 8 23 25

4 5.93 23 8 22 25

8 3 23 8 22 25

16 1.53 24 8 23 25

32 0.84 29 8 28 25

64 0.49 38 9 36 25

0

5

10

15

20

25

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty C432 Instantiations

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty C432 Instantiations

Instantiations Vs Slice FF%

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

110

C499

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 37.15 29 9 27 25

2 18.68 26 9 24 25

4 9.44 25 9 23 25

8 4.83 25 9 24 25

16 2.46 27 9 26 25

32 1.33 32 9 30 25

64 0.71 38 9 34 25

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty C499 Instantiations

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty C499 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

111

C880

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 40.31 45 15 38 25

2 21.57 41 14 38 25

4 10.86 41 13 38 25

8 5.5 40 13 38 25

16 2.82 42 13 40 25

32 1.44 45 13 40 25

64 1.5 49 13 47 12.5

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty C880 Instantiations

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty C880 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slice %

Instantiations Vs Slice LUTs %

112

C1355

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 163.23 76 23 65 25

2 81.79 64 21 60 25

4 41.06 59 21 55 25

8 20.7 57 20 54 25

16 10.42 58 20 55 25

32 5.38 63 20 60 25

64 5.51 83 20 79 12.5

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty C1355 Instantiations

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

 (
%

)

of Faulty C1355 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

113

Clip

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 1.27 21 7 20 25

2 0.64 19 7 18 25

4 0.32 19 6 18 25

8 0.25 19 6 18 25

16 0.24 21 6 20 25

32 0.24 22 6 21 25

64 0.24 25 7 24 25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty Clip Instantiations

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty Clip Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs

114

rd73

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 0.7 20 7 19 25

2 0.23 12 4 11 25

4 0.36 18 6 17 25

8 0.36 18 6 17 25

16 0.36 19 6 18 25

32 0.36 21 6 20 25

64 0.36 24 7 23 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty rd73 Instatiations

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty rd73 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

115

T481

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 50.69 13 4 12 25

2 25.78 10 4 10 25

4 13.32 10 4 9 25

8 7.09 11 4 10 25

16 3.98 11 4 11 25

32 2.42 14 4 13 25

64 1.38 15 4 14 25

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty T481 Instantiations

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty T481 Instantiations

Instantiations Vs Slice FF%

Instantiations Vs Slices %

Insantiations Vs Slice LUTs %

116

Z5xp1

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 0.34 23 8 22 25

2 0.23 21 7 19 25

4 0.23 21 7 20 25

8 0.23 21 7 20 25

16 0.23 22 7 21 25

32 0.23 23 7 22 25

64 0.23 25 7 24 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty Z5xp1 Instantiations

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty Z5xp1 Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

117

Z9sym

Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz

1 2.14 23 7 21 25

2 1.08 21 7 19 25

4 0.54 21 7 19 25

8 0.39 21 7 20 25

16 0.39 23 7 22 25

32 0.39 26 7 25 25

64 0.39 27 7 26 25

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

T
im

e
(s

)

of Faulty z9sym Instantiations

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

H
a

rd
w

a
re

 R
e

so
u

rc
e

s
(%

)

of Faulty z9symdata Instantiations

Instantiations Vs Slice FF %

Instantiations Vs Slices %

Instantiations Vs Slice LUTs %

118

Appendix 4: Variable Input Test Vector Data

C17

Vectors Tested Faults Found Number of Vectors Needed Time

1 6 1 0.00728

2 10 2 0.0123

4 14 4 0.0226

8 22 6 0.0329

16 22 6 0.0329

32 22 6 0.0329

0

5

10

15

20

25

1 2 4 8 16

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

119

0

1

2

3

4

5

6

7

1 2 4 8 16

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 4 8 16

T
im

e
(s

)

Vectors Tested

120

C432

Vectors Tested Faults Found Number of Vectors Needed Time

10 258 10 0.04

20 374 19 0.09

40 405 23 0.11

80 460 33 0.16

160 496 40 0.19

320 526 46 0.22

640 536 47 0.23

1280 536 43 0.21

2560 537 39 0.23

5120 537 36 0.43

10240 537 36 0.86

20480 537 35 1.66

40960 537 35 3.33

81920 537 33 6.27

163840 537 32 12.16

327680 537 33 25.09

0

100

200

300

400

500

600

1 4 16 64 256 1024 4096 16384 65536 262144

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

121

0

5

10

15

20

25

30

35

40

45

50

1 4 16 64 256 1024 4096 16384 65536 262144

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

5

10

15

20

25

30

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
(s

)

Vectors Tested

122

C499

Vectors Tested Faults Found Number of Vectors Needed Time

10 355 6 0.03

20 424 13 0.08

40 469 19 0.12

80 517 29 0.18

160 547 39 0.25

320 568 43 0.28

640 584 51 0.33

1280 586 52 0.34

2560 586 52 0.35

5120 586 52 0.68

10240 586 52 1.36

20480 586 52 2.73

40960 586 52 5.45

81920 586 52 10.91

163840 586 52 21.81

327680 586 52 43.61

0

100

200

300

400

500

600

700

1 4 16 64 256 1024 4096 16384 65536 262144

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

123

0

10

20

30

40

50

60

1 4 16 64 256 1024 4096 16384 65536 262144

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

5

10

15

20

25

30

35

40

45

50

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
(s

)

Vectors Tested

124

C880

Vectors Tested Faults Found Number of Vectors Needed Time

10 243 9 0.05

20 419 15 0.09

40 718 28 0.19

80 784 32 0.22

160 843 43 0.31

320 887 53 0.38

640 922 50 0.36

1280 960 45 0.33

2560 974 38 0.39

5120 990 37 0.76

10240 992 36 1.48

20480 994 34 2.79

40960 994 30 4.92

81920 994 30 9.83

163840 994 26 17.04

327680 994 25 32.77

0

200

400

600

800

1000

1200

1 4 16 64 256 1024 4096 16384 65536 262144

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

125

0

10

20

30

40

50

60

1 4 16 64 256 1024 4096 16384 65536 262144

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

5

10

15

20

25

30

35

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
(s

)

Vectors Tested

126

C1355

Vectors Tested Faults Found Number of Vectors Needed Time

10 802 6 0.03

20 1095 15 0.09

40 1264 22 0.14

80 1372 33 0.22

160 1419 42 0.28

320 1468 49 0.33

640 1526 61 0.41

1280 1581 76 0.62

2560 1606 83 1.36

5120 1610 84 2.75

10240 1610 84 5.51

20480 1610 84 11.01

40960 1610 84 22.02

81920 1610 84 44.06

163840 1610 84 88.09

327680 1610 84 176.17

0

200

400

600

800

1000

1200

1400

1600

1800

1 4 16 64 256 1024 4096 16384 65536 262144

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

127

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1024 4096 16384 65536 262144

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

20

40

60

80

100

120

140

160

180

200

1 4 16 64 256 1024 4096 16384 65536 262144

T
im

e
(s

)

Vectors Tested

128

Clip

Vectors Tested Faults Found Number of Vectors Needed Time

1 33 1 0.0062

2 59 2 0.011

4 118 4 0.02

8 180 8 0.04

16 235 15 0.07

32 308 25 0.12

64 340 34 0.17

128 375 40 0.2

256 403 48 0.24

512 415 48 0.24

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 128 256 512

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

129

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16 32 64 128 256 512

T
im

e
(s

)

Vectors Tested

130

Rd73

Vectors Tested Faults Found Number of Vectors Needed Time

1 34 1 0.00628

2 63 2 0.0109

4 103 4 0.0203

8 170 8 0.0394

16 210 15 0.074

32 279 29 0.146

64 343 50 0.254

128 404 72 0.367

0

50

100

150

200

250

1 2 4 8 16

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

131

0

2

4

6

8

10

12

14

16

1 2 4 8 16

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 4 8 16

T
im

e
(s

)

Vectors Tested

132

T481

Vectors Tested Faults Found Number of Vectors Needed Time

4 41 3 0.01

8 62 6 0.03

16 91 10 0.05

32 98 13 0.06

64 139 21 0.11

128 153 24 0.12

256 164 27 0.14

512 180 31 0.16

1024 187 32 0.17

2048 194 33 0.17

4096 194 33 0.18

8192 194 33 0.3

16384 194 33 0.61

32768 194 33 1.21

65536 194 33 2.42

0

50

100

150

200

250

1 4 16 64 256 1024 4096 16384 65536

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

133

0

5

10

15

20

25

30

35

1 4 16 64 256 1024 4096 16384 65536

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.5

1

1.5

2

2.5

3

1 4 16 64 256 1024 4096 16384 65536

T
im

e
(s

)

Vectors Tested

134

Z5xp1

Vectors Tested Faults Found Number of Vectors Needed Time

1 41 1 0.00576

2 69 2 0.0107

4 120 4 0.0197

8 232 8 0.0389

16 291 15 0.07

32 390 31 0.15

64 446 43 0.21

128 470 46 0.23

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64 128

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

135

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

T
im

e
(s

)

Vectors Tested

136

Z9sym

Vectors Tested Faults Found Number of Vectors Needed Time

1 9 1 0.00626

2 26 2 0.0111

4 41 4 0.0208

8 77 7 0.035

16 117 15 0.0749

32 180 22 0.111

64 276 35 0.18

128 330 46 0.237

256 381 64 0.332

512 410 75 0.39

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64 128

F
a

u
lt

s
F
o

u
n

d

Vectors Tested

137

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

T
e

st
 S

e
t

S
iz

e

Vectors Tested

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

T
im

e
(s

)

Vectors Tested

	Bucknell University
	Bucknell Digital Commons
	2010

	FPGA Based Design for Accelerated Fault-testing of Integrated Circuits
	Joe Dunbar
	Recommended Citation

	Untitled

