View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Bucknell University

Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

2010

FPGA Based Design for Accelerated Fault-testing
of Integrated Circuits

Joe Dunbar
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

Recommended Citation

Dunbear, Joe, "FPGA Based Design for Accelerated Fault-testing of Integrated Circuits" (2010). Master’s Theses. 28.
https://digitalcommons.bucknell.edu/masters_theses/28

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in

Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

https://core.ac.uk/display/216949164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/28?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

FPGA BASED DESIGN FOR ACCELERATED FAULT-TESTING OF
INTEGRATED CIRCUITS

by
Carson Dunbar

A Thesis

Presented to the Faculty of
Bucknell University
In Partial Fulfillment of the Requirements for thegree of
Master of Science in Electrical Engineering

f| }W‘*
Approved: \b

. F
el — -
.""u._}r'l."r'ml'v{/f

Department Chairperson

04/2010
(Date: Month and Year)

I, Carson Dunbar, do grant permission for my thasise copied.

Dedication:

This work is dedicated to Carson and Carol Dunbatifeir constant support in my

studies and their constant encouragement with &myendeavors.

| would also like to thank Professor Kundan NejpalHis advice and large contribution

to this work with both experience and revisions.

Contents:

[D7=To [[or= i o] o PP P PP URTPPUPPPPPPPPPP Ii
Table Of CONTENTS. ii
LISt Of TADIES.)Y
LISt Of FIQUIES.....eiiieeeee e e e ee e e e e e e e e eeeeeaeeees %
ADSIIACT. ...ttt ——————— e IX
(@4 gF=T o] (=3 b I |1 Yo [[£ [o 1S 1
Chapter 2: BaCKQrOUNG.............cooiuiuittmmmmmmec et e e e e e e e e e e eeeeeeeeaeeeeeennnnnaeennes 6
Chapter 3: Xilinx Virtex Il ArChiteCtUre. ... oo 18
Chapter 4: Error INSErtioN...........coviviiiceccee et e e e e e e e e e e e e eeeeeeeeees 30
Chapter 5: Algorithm FOr TESHING............. e eeeeeeeeieiiiiiiere e eeeeas 41
Chapter 6: RESUILS......c.oviieiiiiiiiie s s e s e e e e e e e e e e e aeeeeeeeaeseessnnnnnsennnnnes 59
Chapter 7: Conclusions and Future WOrK.......eeeeioiviiiivieiiiiciiiiee e, 77
BIDlOGIraPNY ... e —————— 80
Y o] o L= T [o = SR 84

Appendix 1: C++ Code for fault induction.........c.c.ceeeeeeeiiiiieeiieeiiiinnnnns 84

Appendix 2: C++ code for creating all other vagifies......................... 92

Appendix 3: Variable Instantiation Data......cece.ooovvvviiiiiiiiiiniieeeeeeen, 108

Appendix 4: Variable Input Test Vector Data.cc......vevvevevviieeeeeeenn. 118

List of Tables:

Table 2-1. Typical defects in a standard PCB..ccc......cooooiiiiiiiiiiiiiiieeeeee, 7...
Table 4-1: Example Directed Graph Table3.............uuviiiiiiiiiiieeeiiiiees 36
Table 4-2: C17 Directed Graph OULPUL........commmmmeeeeeeeeeeeieeeeeeeeiiiiinnae e 8.3
Table 5-1: Example Output for Step 3-f-lil....cuueeiiiiieiiiiiiiiiiiiiie e 54.

Table 6-1: Results from behavioral simulation aaddiware emulation for C432
PENCNMAIK CIFCUIL.......eeiiiiiii it e 60
Table 6-2: Area and timing results for C432 ciraimulated with 10000 vectors
and variable instantiations running at clock freggyeof 25MHz. 537 faults were
detected With 36 INPUL VECLOIS.........uuuuiim e e 62

Table 6-3: Results from C432, static number ofangations, variable vector

Table 6-4. Description of Benchmark CIrCUItS...........c.ueeiiiiiiiiiiiiiieeiiiee e, 72
Table 6-5: Best fault detection based on faultsthwectors used, and time (done
WIth 32 ITEratioNS).......cooiiiieieiiie e e 74
Table 6-6: Comparison of ISCAS and MCNC circuituhpest pattern counts

USING VAIIOUS TESTS....ciiiiiiiiiiiiiiies s s s e e e e e e e st e eeeeeetaaasa s s s e e e e e e e anaaaaaaaaaeaees 76

List of Figures:

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

Figure 3-9.

Vi

Single Stuck-At Fault at an internadla of a circuit..................... 8

Initialization FauUlt... e e e e e e e e e 9

Multiple Stuck-At-Faults.............cooooiiiii e e 10

Bridging Fault...........coii i 1D

Stuck Open Fault...........ooi i 12

Stuck short Fault... ..o 021

FPGA General ArchiteCturec.coe e e e e, 18

Virtex Il Pro slice configuration.............coccciiiiiincin e 19

Physical Layout of FPGA (XC2VP30)c.vicumerecie e e 20

Layout of C432 design on the XC2VP30... e evvvvvvennnnn 21

Block diagram of the Xilinx Developmd@oard...................... 22

Functional blocks of the PowerPC 4Q&essor........................24

Interconnects in the VirtexX 1 Pro.......oo oo, 25

RS232 implementation.............ocoov v ii i 26

FIFO layout using BRAM........c.oiiiiiii i e 27

Vii

Figure 3-10. Clock Generator block diagram................cooeiiveeiinnnn.. 29
Figure 4-1. Fault Equivalence in series of logitegawires, and fan outs......... 31
Figure 4-2. Collapsed fault set using domINANCE..cc.cceeveiiiiiiiiiiiiiiiieeeeeeeeee, 32

Figure 4-3: a. Standard fault locations. B. A cireuth the checkpoints marked

(X)- ettt ettt ettt ettt et rn ettt et eren e 34
Figure 4-4: Fault insertion multipleXer....... oo 35
Figure 4-5: Output CoOMPAIISON.....ccceeeeieeiiceeceeeiea e 35
Figure 4-6. Example Directed Graph CirCUuit..........ccccceeeevviiiiieiiiiiiiiicieeee e 36

Figure 5-1. A block diagram of the FPGA emulatigatem supported through

software running on a hOSt COMPULE........u e 41

Figure 5-2: Fault detection algorithm.........ccccceeeii i 43

Figure 5-3: A block diagram of the FPGA emulatigstem and Power PC

supported through software running on a host coarTpuL.............ccceevvvvvvvnnnnnns 46
Figure 5-4: State diagram of the fault detectiggoathm.............cccccceeiiinineenn. 49
Figure 5-5. Flowchart of emulation algorithm... ..o, 50
Figure 5-6: A 4-bit LFSR with taps at bits 3 and 4u.e....ceeeeiviiiiiie, 52

Figure 5-7: Fault changing ProCesS. ..o ieiiieeiiiii e 55

viii

Figure 5-8: Combining new test vector data witlorded data. All test vectors

are displayed here in Hexadecimal notation....cccccc..oooevvvviiiiiiiiiiieeeeeeeeeeee, 56

Figure 6-1. Total time taken for test pattern gatien using random vectors for

C432 as a function of the number of INnStantiatioNS........c.covvenieeiieeieeeeeeeennes 63

Figure 6-2: Total FPGA hardware resources usetkgirpattern generation using

random vectors for C432 as a function of the nunotb@rstantiations................ 064

Figure 6-3. Plot of number of vectors tested vefaulis found for 32

INSTANTIALIONS OF CAB 2. .. i ettt e e e e aerens 66

Figure 6-4. Plot of total time taken versus numidferectors tested for 32

INSTANTIALIONS OF CAB 2. .o e e en e 67

Figure 6-5. Graph of number of vectors tested \&emaumber of vectors

[aLST=T0 (=T o PO RRTRTPPPPPPRPP 69
Figure 6-6. Graph of vectors tested vs vectors egéor zZOsym........................ 71
Figure 6-7. Graph of Instantiations Vs Time for@as.............ccccevvviiiiiiinnnnnnn. 72
Figure 6-8. Fault coverage percentage in the beadhpircuits........................ 75
Figure 7-1. Bit counter in the current algorithm.c..........viiiiiiiiieie, 78

Figure 7-2. Improved Dit COUNET........cooiii e 79

Abstract:

In the past few decades, integrated circuits ha@eeime a major part of everyday life.
Every circuit that is created needs to be testethidts so faulty circuits are not sent to
end-users. The creation of these tests is timswuoimg, costly and difficult to perform
on larger circuits. This research presents a novthod for fault detection and test
pattern reduction in integrated circuitry undet.t8y leveraging the FPGA'’s
reconfigurability and parallel processing capaiesif a speed up in fault detection can be
achieved over previous computer simulation techesqirhis work presents the

following contributions to the field of Stuck-At-bH detection:

* We present a new method for inserting faults intireuit net list. Given any circuit
netlist, our tool can insert multiplexers into ecait at correct internal nodes to aid in
fault emulation on reconfigurable hardware.

» We present a parallel method of fault emulatiohe Benefit of the FPGA is not only
its ability to implement any circuit, but its albylito process data in parallel. This
research utilizes this to create a more efficiemlation method that implements
numerous copies of the same circuit in the FPGA.

* A new method to organize the most efficient faultdost methods for determining
the minimum number of inputs to cover the mosttiaréquire sophisticated software
programs that use heuristics. By utilizing hardeydinis research is able to process

data faster and use a simpler method for an efiiei@y of minimizing inputs.

Chapter 1: Introduction

Since the invention of the transistor circuit iR59computing has been changed
drastically. Every year circuits become smallethestechnology to build them becomes
more sophisticated. Researchers and circuit dpeedcstrive to accommodate Moore’s
Law and increase the number transistors on a tioguiwo times every eighteen months.
This trend has continued for almost four decadestlams current processing units have a

transistor count on the order of°10

This large number of transistors and the increas®mplexity of modern integrated
circuits (ICs) make it almost impossible for engireeto manually check for errors in
every part of their circuitry. Faults can manifdsgmselves as permanent defects in
wires and transistors during the complex manufaggusteps. Transient errors can also
arise during circuit runtime due to delay mismatetgess leakage current and other
parameter variations. Some of these faults aratsecan be checked for during
production and the IC can be discarded beforeuses errors for the end-user. One such
error, the stuck-at-fault deals with wires withimetcircuit being stuck at either a high

voltage, a stuck-at-one fault (SA1), or stuck bivavoltage, a stuck-at-zero fault (SA0).

A general way to test for stuck-at faults after ofasturing is to run a set of input
stimulus and compare the output of the integraieit with a set of expected outputs.
Any deviation from the expected output set resuali functional error. Since the number
of input stimulus grows exponentially with the nugniof inputs to the circuit, finding a

representative subset of the circuit is of utmogiartance. Automatic Test Pattern

Generation (ATPG) is a technique that aims at figdi compact and optimal test-set to
detect all possible faults in the system. For pastern generation, there have been two

main methods of generating input vectors —ciranigation and emulation.

Simulation uses a computer program to determied#ést possible vectors. As with any
process there are a number of strengths and wesdsassociated with simulation.
Simulation allows engineers to reproduce any defaal circuit. Engineers may also
decide to simulate higher level behavior before tthecide to simulate a net list. This is
done primarily to see that the higher levels ofdwedr fall within the acceptable
performance boundaries. The major downfall toidlea of simulation is that to
comprehensively simulate a complex circuit forpalssible faults, a standard desktop
computer will not be enough. This logically leadghe fact that it is not possible to test
all possible inputs for circuits with larger inptdctors. On the other hand emulation, a
recent development due to improvements in the @fr€&eld Programmable Gate Arrays

(FPGA), allows for a hardware based solution ts issue.

With the advent of the FPGA and its proliferatiorrésearch laboratories, creating
hardware implementation of simulation techniqueslteecome a viable alternative. Until
1985, when the FPGA was first commercially avagdil], it was not logical to use
hardware to perform tasks where software was nekdeéts$ ability to modify routines
with ease. Each change in software would corredpom@ new hardware design and a
new IC to being created in hardware. This wouldd&ly, both in design and

production. The true advantage of the FPGA oveauktion techniques and producing

application specific integrated circuits (ASICs)determine test patterns comes from its
ability to be continually reprogrammed. FPGAs parform any task that an ASIC can,
but can be programmed with a new circuit after loag already been implemented. This
also means that a circuit can be implemented idvirare without cost. FPGAS can also
be tested thoroughly in hardware, not just simdlaéebig advantage over its ASIC
counterpart. FPGAs also have the advantage ofjladile to perform software-like
processes more efficiently than a computer cans mieans there is usually a significant
speed up for a specific task that an FPGA perfawes the same task performed on a

central processing unit (CPU).

An FPGA uses a hardware description language (HBé&jilog or VHDL, that allows

for circuits to be programmed as either net ligtgroup of predefined ICs such as AND
and OR gates, or using a syntax similar to moseotiprogramming languages, such as
C++ and JAVA. HDL facilitates the transfer of silation techniques to an FPGA and
allows for programmers to develop ICs easier usorcepts that software developers

use.

Main Contributions

This thesis presents a novel method for fault diste@nd test pattern reduction in
integrated circuitry under test. By leveraging BRGA'’s reconfigurability and parallel
processing capabilities, a speed up in fault detectan be achieved over previous
computer simulation techniques. This thesis prestet following contributions to the

field of Stuck-At-Fault detection:

1. We present a new method for inserting faults inéreuit net list. Given any circuit
netlist, our tool can insert multiplexers into ecait at correct internal nodes to aid in
fault emulation on reconfigurable hardware.

2. We present a parallel method of fault emulatiohe Benefit of the FPGA is not only
its ability to implement any circuit, but its alylito process data in parallel. This
research utilizes this to create a more efficiemlation method that implements
numerous copies of the same circuit in the FPGA.

3. A new method to organize the most efficient faultdost methods for determining
the minimum number of inputs to cover the mosttiargdquire sophisticated software
programs that use heuristics. By utilizing hardeydinis research is able to process

data faster and use a simpler method for an efiisi@y of minimizing inputs.

Organization of the Thesis

Chapter 2 of this thesis provides a brief backgdoom fault-detection and ATPG in
integrated circuits. It also provides a discussinrmanufacturing tests; its importance in
circuit production as well as an exploration of hibwifferent testing techniques are

implemented. Lastly this chapter discusses exjstiark directly related to this thesis.

Chapter 3 provides an introduction to the architecof the Xilinx Virtex Il Pro FPGA -
the main implementation platform for this researd@ime chapter will also go over the

process of using the Xilinx for this research amal limitations that had to be dealt with.

Chapter 4 discusses stuck-at-fault models and pteser approach of accurately
modeling them using multiplexers. Then the chaplss describes the physical process
of mapping the faults to the FPGA and how each fzan be emulated with a simple

command.

Chapter 5 introduces our algorithm for testing ktatfaults in an FPGA. It also
discusses our technique of using test results geatem the FPGA to create a compact
set of patterns that can be used to test all faulise original circuit. Chapter 6 presents
and analyzes the results obtained from our appesadéscribed in chapters 4 and 5.
Finally chapter 7 offers some conclusions and prtsssome relevant future research

ideas.

Chapter 2: Background

Manufacturing Defects

During the manufacturing process of any circuity anmber of defects may occur and
thus faults are generated. Wafer testing is implaed at the end of the manufacturing
process for integrated circuits (ICs) to make shae the IC is working correctly. During
this process, a series of inputs drive the ICsthadutputs are observed and compared to
expected results. Any ICs that do not pass thminest are tested again to see if on chip
resources can help to repair faults that are fouhthis cannot be done then redundancy
that is built into the chip will be tested andhfd fails the chip is marked faulty. The only
time that this process can be avoided is whendthehcost of producing the ICs is lower

than that of testing them individually.

For every circuit that is produced there can bergd number of sources for permanent
faults. Table 1 shows how these faults are disteith in standard printed circuit boards
(PCBs). All possible faults are caused by foufedént types of defects: process defects,

material defects, age defects, and package dg¢fcts

Process defects andmaterial defects come from an imperfection in the materials used
during the creating of a circuit. This is causeedominantly by dust on either the mask
or wafer surface or in the chemicals during thetpltbography process. The presence
of dust and other foreign objects causesxposed photoresist areas ounresist pinholes.
This leads to excess unetched material in an ingoragea or excess etching in an

incorrect area. These issues can lead to incorgleiced or absent contact windows,

parasitic transistors, oxide breakdown, and mdtenperfections. Errors of this kind

account for about 60% of the defects in manufadteneuits [3].

Age defects are problems that occur over time and with repeasedof a device. These
defects include and are not limited to time-dependeelectric breakdown, charge
breakdown, hot carrier injection, negative biasgemature instability, and
electromigration While these defects were largely ignored beforejiticreased scaling
of transistors and the increased variability inrenufacturing process has forced the IC
industry to run efficient tests to measure relipagainst aging. For testing, the wafer
or device is subjected to variety of stress-meas(ihermal, high current etc.) and a
reliability curve is generated that extrapolatesrieasured data to predict the operating

lifetime of a devicd4].

Finally, package defects are issues that are related to the actual phylsazading of any
circuit. If there is an opening or leads are bro&different set of faults is created.

Usually these errors will be detected during tgstia an open [5].

Defect Type Frequency of Occurrence (%)
Shorts 51
Opens
Missing components
Wrong components
Reversed components
Bent leads
Wrong analog specifications
Defective digital logic
Performance defects
Table 2-1. Typical defects in a standard PCB [2]

oo oRr

Fault Models

Before we talk about integrated circuit testings itmportant to propose a model for how
and why faults occur and how their existence imp#ut rest of the circuitry. For

efficient manufacturing test, the following faulbatels are generally used.

Stuck-At-Fault — This fault occurs when a signal line within ecait is permanently set
to either logic high, 1, or a logic low, 0. Theult model does not have a specific cause;
rather, it is an abstract fault model with numercasses, some of which are faults that
are described below. Figure 2-1 shows a porticen @fcuit where an internal circuit line
has been permanently stuck-at-0. This incorreatevat this node propagates to the rest
of the circuit and causes an incorrect outcombebutput. The incorrect output due to
the fault is shown in parenthesis at each affegtete. The stuck-at fault model is one of

the most popular fault models and is the subjeceséarch in this thesis.

) L]
0 10)) 1(0)
SAO0

Figure 2-1. Single Stuck-At Fault at an internatl@@f a circuit.

As stated above, the category of stuck-at-faultdains a number of different

classifications that current simulators use.

Potentially Detectable Fault — This fault is chéegized as an unknown state (X)
at a primary output (PO). There is a probabilitgletection associated with it
mostly around 50%

Initialization Fault — An initialization fault is arror in a circuit that interferes
with the initialization of any kind of memory dewici.e. flip flops. One such
example of this is a flip-flop’s clock which hastck-at-fault and is left in an
inactive state. Figure 2-2 below shows how arnaiation fault can affect a
circuit. Due to the SAO at the input, A, it becammpossible to determine what

the output of Q will be at any moment in time.

Swokato X 1)
. ©
: O(X) S SET Q

4>CLD7 Ck
5 o) f R ar Q

Figure 2-2. Initialization Fault

Hyperactive Fault — Hyperactive faults are defiasda signal that causes a large
number of signals in a circuit to differ from thewrrect value.

Redundant Fault — This fault has no test becaud®es not affect the input-output
function of a device in any detectable way. Theyaiten removed simply for
circuit optimization. This definition applies tormdinational circuitry but it can
also apply to sequential circuitry. In sequentiatuits the definition is vague and

so these faults more fall into the undetectablé faategory.

10

Undetectable Fault — Faults that fall under thiegary simply are impossible for

test generators to detect.

In addition to single stuck at faults, there ataaions where numerous stuck-at-
faults may be in a circuit. This is callednaultiple stuck-at-fault model and it
can cause single stuck-at-fault tests to failmwst situations where there are
multiple stuck at faults, the faults will not mas#ch other and not affect the
effectiveness of a single stuck-at-fault testthé faults do manage to mask each
other the single stuck-at-fault test becomes iméiffe although this is statistically

unlikely to occur [2].

1 SAO

. 1(0) 00)
0(1) %(

1 SA1

0

Figure 2-3. Multiple Stuck-At-Faults

Bridging Fault — This fault is defined as a short between grafsgnals. This may
cause an OR bridge or an AND bridge which are dloesinant or zeros dominant

respectively. These faults can be found with tesel for finding stuck-at-faults.

11

| J
X
1

Figure 2-4. Bridging Fault
These faults can fall under the category of poadigtdetectable stuck-at-faults because it
is not know whether a line will be pulled up orledldown with a short at any point at
time, this is why it is assigned an X value atghe of the short and from the output

onwards. Because of this, the bridging fault wdt always be detectable.

Delay Fault— This fault is active when the combinational todelay exceeds the
specified clock period. The variation in the maatfiring process can cause certain
portions of a circuit to be slower than other paftthe circuits causing internal signals to
arrive at different times and cause functionalial The fault is usually modeled as
either a gate delay fault model where a single gadssumed responsible for producing
the slow response or a path delay fault model wber&in interconnects and paths are
responsible for slow propagation of a signal. Taidt is outside the scope of this

research and will not be dealt with.

Stuck-Open and Stuck-Short Faults- This fault is defined as a single transistot tha
has either been stuck open, no current will eves plarough, or stuck short, lacking the
ability to stop current. As with bridge faultsethtuck-open faults can be detected by

running a sequence of stuck-at fault detectionorsct

12

VdéAI
A
Line :]
Break
B X
AAAAAAAAAAE}RAAAAAAAAQ E
[S
Gnd -I-

Figure 2-5. Stuck Open Fault

Vdd

Short

=T

\ P

Gnd -I-

Figure 2-6. Stuck short Fault

These two faults are specific ways that stuck-alt$acan occur. From Figures 2-5 and
2-6, it can be seen that the outputs of spec#icdistors can take on a permanent low or

high signal thus causing a SA1 or an SAO.

This thesis will primarily deal with the stuck-atuit model. Due to the nature of the
stuck-open, stuck-close, and bridging faults, télalso be covered as stuck at faults in

this thesis.

13

Related Work on fault simulation and detection

For the past few decades, fault checking has beee by a variety of different types of
simulators. There are a variety of approacheshtiae been developed to simulate
stuck-at faults in different ways [2Berial fault simulation enumerates all possible
correct outcomes of a circuit, saves them to adihel compares them with a circuit that
has a certain input vector. This method takes)ast, N-times (where N is the number
of faults) the computer time that a true-value satar' does, although it can be shorter if
numerous faults are found with one vector. Thishoe is used primarily for
combinational logic circuits as it cannot compeadat transitional signals without

significant modification.

Building upon serial fault simulatioparallel fault simulation was developed [2]. This
method can only be used with combinational logicwstry. By using the word length of
a machine it tests up to the word length minusramaber of vectors i.e. a 32-bit word
could test 31 vectors at a time. The remainingshiised as the signal value of the fault
free circuit as a comparison. This process caomwipensate for the fall and rise of

signals, but it does allow for the ability to cantwhich fault is being tested in a circuit.

Another simulation method @eductive fault simulation[6]. This method tests one
vector at a time and creates lists of possiblegabht can be detected on every wire. At
every gate, logic is used to determine which off¢hdts in the lists will be propagated.

For example, if an OR gate is present and an iispatrue, no faults will propagate. |If

! True-value simulator — A simulation and detection of one fault through comparison with a clean circuit.

14

the input is false, a fault will propagate. A fatllat propagates to a primary output is
considered a fault that is found by the vectorve@icertain specifications, this method
can be incredibly fast, but factors such as mudtgnal states and variable delays can

require major changes in the implementation ofntie¢hod.

Concurrent fault simulation is a simulation technique that uses numerous sagie
every gate in the circuit to determine if the citdas faults). Similar to deductive and
serial fault simulation, this method iterates tiglbweach possible input vector. Then, by
creating a number of gates that could possibly Iawky inputs it propagates all the
possible outputs forward. If there are any inccirk@lues at the output, that vector is
determined to be able to detect faults. This satorh technique is the most general of
all of the previously listed techniques becauseoitks with different circuit models,

faults, signals states, and timing models.

Roth’s TEST DETECT algorithm was developed in 1966 by J. P. Roth at I@jito
reduce the total computational complexity of paldtult simulation by exploiting the
relationship between faults. This algorithm stény testing the true value of the circuit
with a vector, then injects a fault at a certainevand designates either a D (representing
an error) or a D-not at the fault site. This taghe is unique because it propagates the D
throughout the circuit with a technique call@eCalculus and if the D reaches a primary

output then the fault is designated as found wviightested vector.

The TEST DETECT technique was improved upon wifferential fault simulation

[9]. This technique eliminated the need for the dals and the need to constantly

15

restore the true-value of the circuit every timeesv stuck-at fault was tested. This
makes the algorithm simple to implement and redtloesiumber of simulation runs by

approximately half.

Recent research is moving toward improving fautediéon speeds by hybridizing these
simulation techniques and improving the technologgn which they run. In [10] the
authors use Graphics Processing Units (GPUs) asseppio general purpose processors
(GPPs) to simulate faults. GPUs are designed tdtithreaded processes which makes
testing multiple faults more efficient. The findmof this research are that it is orders of
magnitude faster to use a GPU rather than a GPRtess the gates in parallel. Results

have also shown that systems with more GPUs, thdtsewould be even faster.

Instead of just using simulation, researchers lads@ focused their efforts into fault
emulation [11]. The use of FPGAs has shown to beerefficient at fault checking for
sequential circuits which have large numbers ofiirygctors and long input sequences.
Other improvements in the future are also discusset as better hardware, an
automated synthesis flow to the testing environmemd better partitioning methods for
emulation of fault list partitioning in an acadeneiocvironment where industrial grade

hardware is not accessible.

The same authors use an FPGA to emulate faultsaf@yus circuits in a serial manner
[12]. The authors created a process by which tinegte a circuit on an FPGA and use
injected multiplexers to control test vectors angtk-at faults. They also use a series of

decoders to decide which vectors indicate faulthéncircuit. The results showed that

16

the use of FPGA emulation was faster than simulatibhe drawback to this was that
there is a synthesis time required, where the itircunapped onto the FPGA, and this
requires a much larger amount of time than simutatiSynthesis time in a larger circuit
is longer than simulation, but it becomes lessiBgant as the number of inputs and
possible test vectors increases. The authors thateif this technique is used in testing
larger circuits as well as sequential circuitstéhnique can be a useful fault finding

method.

In [13-14], the approach is to emulate circuit faulsing the D-algorithm on FPGAs.

The D-Algorithm has been proven to be able to b@emented in hardware. It allows
for the speed of hardware without needing specifituit-testing hardware. The authors
were able to implement fine-grain parallel procegssuch as forward/backward
implications and conflict checking. Forward/backevanplications are the process of
checking for errors by first counting upwards ie thputs and then counting down.

Error checking in both directions is necessarygiemerating the smallest number of test
vectors. Conflict checking is a process that kee@eactions within a circuit in response
to a change in the inputs. These inputs are thgpagated to the primary outputs in both

correct and faulty circuits.

Other researchers have built upon the use of FRBAgproposed their own techniques
for speeding up the process. The researcher$]mpfbposed two techniques to increase
the speed of the fault simulation process by impgchumerous independent faults into

the same circuit and injecting multiple dependenttt at the same time. Synthesis time

17

is the bottleneck of the FPGA'’s usage. By redutimgnumber of reconfigurations the

overall time for emulation is dramatically reduced.

The authors of [16] introduce a technique that sagvantage of the internal look-up
tables (LUTs) of FPGAs and is distinct from oth@&GA-based fault emulation
techniques. They use a technique of reducing sttitkults called fault dominance,
which states that certain faults “dominate” otrearlfs in a circuit and allows for some
faults to be ignored. This can help to both redheenumber of faults checked for and
reduce the checking logic. If a set of gates wittominant fault at the output can be
grouped together and emulated by a single LUT iloaiic size will reduce and the

emulation time will drop significantly.

Emulation has also become a topic of researcherfigfd of fault location. The
researchers of [17] attempt to use fault emulatidh FPGAs to figure out where a
specific hardware fault is located within both sewfual and combinational circuits. By
using a ranking system they were able to removadeel for any software, including
large software-based fault dictionaries. They tbthmat the increase in performance was,

on average, around 300 times faster than traditginaulation techniques.

18

Chapter 3: Xilinx Virtex Il Architecture

Generic Xilinx FPGA Architecture

All Xilinx FPGAs follow a specific architecture seme that starts with a number of input
and output blocks (IOBs) that surround the coréclobhe core logic is made up of
configurable logic blocks (CLBs) which have a numbfkresources that help connect
them to each other and the I0Bs. These CLBs ae ishiesponsible for producing the

desired result of the programmer.

Interconnection
Logic Block Resources

170 Cell

CArAEAET
Edbdhdid
CACARAR
LdLJLJL]

FARAEIri
hdhdkd
FARAEAr-
hdhdhJdild

Figure 3-1. FPGA General Architecture [18]

To program the device, there is an internal stagmory that determines how the CLBs
will behave and how they will connect to one anathEhe data that goes here is loaded
into the FPGA at power up or reconfigured by therud=igure 3-2 shows what makes up

a CLB. Each one contains sets of what are bagiBa#lM devices with 16 addresses.

19

These act as LUTs and shift register loop up taf8&4.s). These are then connected to
multiplexers and arithmetic logic which determinkatdata to pass into the

register/latch for the final output.

N a cy Register/
L{l‘:le\\ Latch
RAM16 |
™
.. MUXF5
~, B
SRL16"
~ N cY Register/
\‘\ LET\\ Latch
) Arithmetic Logic

Figure 3-2. Virtex Il Pro slice configuration [19]

The CLBs are where all of the data is stored affdrént logical processes are
performed. The LUTSs store data that is know befioit@lization while the

register/latches are the places where processadsistiored.

Virtex Il Pro FPGA Architecture

The primary processor in this research was thee¥iitPro FPGA - the Xilinx Virtex-II
Pro Development System. The board houses a XX{DVP30 FPGA with 30,816

Logic Cells, 136 18-bit multipliers, 2,448Kb of kloRAM, and two PowerPC Processor

20

cores [19]. In Figure 3-3, the physical layoutofFPGA similar to the chip used in this
design is shown. The only appreciable differesahe lack of two PowerPC CPUs in

this, but because this design only uses one oétiiés an acceptable example of the

hardware being used.

RocketlO or RocketlO X
DCM Multi-Gigabit Transceiver
s

=
(]
ie]
[uil]
E _ e
o @
@ CC @
23 3
O —= el
=0
8w ‘ o
=
=)
= 9
(i
CLB
Configurable
Logic
SelectlO-Ultra DS083-1_01_050804

Figure 3-3. Physical Layout of FPGA (XC2VP30) [19]

21

Figure 3-4. Layout of C432 design on the XC2VP30

It can be seen that there are several columns BECBRAM columns and the Digital
Clock Managers throughout the device. In a dicechparison, Figure 3-4 shows the
actual layout of the Virtex Il Pro FPGA that we a@ng for this research. The major
difference between the two is that there are twwd?BC CPUs in the FPGA used in this
research. In addition to these difference, thaadmplementation of the C432 fault
detection algorithm (described in Chapters 5 and 6hown in the highlighted blocks of
the layout. Figure 3-5 below is the block diagmafnthe Xilinx Development Board with
the C432 fault detection core implemented. Themaments of both Figure 3-3 and

Figure 3-5 will be explained thoroughly in this pher.

22

EDK VERSION
ARCH

PART
GENERATED

SPECS
10.1.03
virtex2p
XcVp30TEI6T
Wed Fely 24 14:20:52 2010

JEgops_cnilr

jmgepe_Entr 0

SLAVES OF plb0

= uartite

RSZIZ_Uart 1
A

X

B

clock_gonerator
cioch w0

| xp=_bram_if cnir

ps_bram_if_cntir_{

bram biock
l_bram_if_cntlr_{_bram

KEY
SYMBOLS
Extemal Ports
] P
Al ouput
B0 inour

Bus connections

|| master or nitiator

sl’an or target

masterslave

monior
COLORS
Bus Standards

terru;
% fmterru;
con;

interrupted
processor

DGR .FSL .M .socM .GEanP,wER,ec
.Fw ..L.W .n_a .ﬂ.buﬁ)P&‘P

Figure 3-5.

Block diagram of the Xilinx Developmdoard

23

Power PC

The PowerPC is built with a 64-bit architecturettben run in a 32-bit mode. It is meant
to work as a processor for system-on-a-chip desigimss CPU was designed with 5
pipeline stages, 16 KB of instruction and data eachnd can run at clock rates of up to
and above 400 MHz[20]. There are three differeméls of architecture that the
PowerPC provides and are described in [21]. Thedede the User Instruction-Set
Architecture (UISA), Virtual Environment Architeal(VEA), and Operating

Environment Architecture (OEA) .

The UISA level is the base level for the PowerPéhiaecture. This level defines the
architecture that the user’s software should bepatdiinle with. All of the instruction set,
user-level registers, data types, floating-pointmagy conventions, memory model,

programming model, and exception model as seehdoyger are defined by the UISA.

After the UISA is the VEA which defines the featsita the architecture that allow
applications to create and change code, make mestangge discernable, and optimize
the performance of the memory-access.[Xilinx ug0IBjis environment also defines
the cache and memory models, the timekeeping resedirom a user perspective, user
mode resources that are primarily used by systbrarly routines. The storage model of
this architecture level, defines the storage-cdmigiructions that are defined in the
PowerPC VEA. Storage-control instructions are usadanage the interactions of
instruction and data caches. The storage attsbutete-through, cacheability, memory

coherence, guardian, and endian, are defined bstthheage model as well. Finally the

24

storage model controls the operands, their req@nesnand how they affect the

performance.

The OEA defines the parts of the architecture @flatvs the CPU to work as an
operating system. This includes input and outpigractions and memory control.

Privileged access and exception handling is alsdt @ath in this architecture.

Figure 3-6 below is a diagram of the PowerPC wititks representing it capabilities as
a CPU and the interconnections between the diffgmatessing elements. The PLB
interface is described as being directly connetddtie cache units. From here the data

is sent to either the instruction or data processor

PLE Master Instruction

Read Intertace OCM
MMLU CPU
T T
I-Cacha | ICache Fatch
.AF&'!.' 1 Controller Instnuciion Bng : 3-Element
--------- [Snadow-TLE Dacode | Fatch Qusue Timars
Instruction-Cache {4-Entry] Loge
Uit :
Timers
Cache Units \Eeerery and
! Dabug
D e Data Ewscuts Unit et
......... i S1g:lgwt-'LEr S IR Lonic
D-Cache | D-Cache (B-Entry) e -
Amay | Confroller GeR | AU | MAC
FLE Masier PLE Master Data Extemal-intarrupt Instruction
Read Interface Write Intarface OCM Controller Intartace JTAG Trace

Figure 3-6. Functional blocks of the PowerPC 4G%pssor [21]

25

Processor Local Bus (PLB)

To connect the different parts of this design,Rib® is implemented. In Figure 3-4, this
is represented by the beige lines that connearéifit parts of the design. Every device
connected to this bus is regulated by the devikedescribed in [19] the PLB can run at
either 32 or 64 bits, but for this design only 8#bit operation is needed. Below in

Figure 3-7, it can be seen how the PLB connectiseanajor blocks.

e OyStem d System Ll System LLSEL Peripheral L] Peripheral |
ore ore are Bl Core Core

I I I
l l |

@
E 3 p Bus P 3
3 E rocessor Local Bus Erldge On-Chip Peripharal Bus :E:
I CoreConnect Bus Architecturs
Instruction ' Data
Processor
Block DCR Bus CE083-2_02a_H 0202

Figure 3-7. Interconnects in the Virtex Il Pro [19]

RS232 UART

Because output speed was not a major concern, 28R®rial communications port

was used to connect the output of the Xilinx Depelent Board to a hyperterminal
application on the user’s computer. This is adat 9-pin UART device that
handshakes with a computer’'s COM port. Dependmthe design, this device was used
at speeds ranging from 9600-115200bits/sec. Tipéemmentation of this device is

described in [22].

26

This RS232 serial port uses voltages ranging betwé&eand +15V for a logical high and
-5 and -15V for a logical low. These voltages eaghat the signal will be able to be
read even at the maximum cable length of 50 féae RS232 port has five signals that
are communicated between itself and the FPGA. dhetude the RS232_TX_DATA,
RS232_DSR_OUT, RS232_CTS_OUT, RS232_RX_DATA, and@3SRTS_IN. The
RS232_TX_DATA, or transfer signal, carries the amitgignal and the
RS232_RX_DATA, or receive signal, carries the ingatta (not used in this design).
The other three signals, RS232_DSR_OUT, RS232 _CUS,@nd RS232_RTS_IN, are
the data set receive, clear to send, and requeshtbsignals. These are the hardware
control signals that allow both ends of the conioecto know whether or not data is
being sent, ready to be sent, or it needs pernmigsibe sent respectively. Figure 3-8
below shows how the connections for each of thegels are connected to the RS232

transceiver on the Xilinx Board.

WCCIVE

uzs = cass
SHOW Woo WL cadr [RIE
.

DALF G . i

REZ2 DSALOUT H—————————— TIN TICuT |
8 20 R [
FEIEE TH _DATR ——————————— TN T2oLT 1
[iU L= 1] [L
FEIIE_CTS OUT H————————————————— T3 TICLT
13 12 ™D]
AE232 FX_DATA {———————————— RicuT RN
1z ATS
RE23Z FTE_M {———————————— R30UT L I]
12 15 —

— Lo LN RE-Z32 DCE

— awouT swn
&

&

F=
MACIIBSECUG

Figure 3-8. RS232 implementation [22]

27

First In First Out Memory/Block RAM

Between the Power PC and the FPGA core that waemgmted was a first in, first out
(FIFO) memory cell that exchanged input and outfaia between the two processors.
These FIFOs act as data buffers that can be actasaay time. There is both a write
and receive FIFO with respect to the FPGA coranfihe PowerPC a user may input
data into the receive FIFO, and this data may beeted from the FPGA. The write
FIFO works in reverse, taking data in from the FP¢#e and having it read in the
PowerPC. In addition to the data inputs and ostghere are other signals that can be
tapped from these FIFO regarding how much dattored in either, whether or not they
are full, or if they are close to being full. ligkre 3-9, the block diagram of a FIFO
interconnect is shown. It is seen where the sgydascribed above are placed and how

they are connected to the BRAM.

clock_in I————— -———= full_out
i WRITE | I emply_aut
fogsrin || counter I SFt? s i
{Bireany) ag
wiits_snabla_in i | Genemtion | |
} Logic | Block RAM
write_data_in | |
L I I B 38 read_data_out
read_snable_in READ : Fifocaunt I
Counter (2-bit binary | |
{Binany) I counter) I
I |
b ffo_pount_cut

Figure 3-9. FIFO layout using BRAM [23]

28

Clock Generator

The block of this design that was used to contreldlocks, was aptly name the clock
generator. Described in [24] and made up of séEgital Clock Managers (DCMs), a
Phase Locked Loop (PLL), and several buffers amdriers, this device takes in an
external clock and allows the user to create séw#hnar clocks that run at different

frequencies and with different phase shifts.

In Figure 3-10 below, the block diagram for thec&lgenerator is shown. The first half
of the device is where the user defined clocksrapgemented. The input clock is put
through a PLL so that the clocks may be synchraharel then through the DCM where
different clocks can be created with specific freigey and phase shift requirements.
Using the DCM it is also possible to create fasteck speeds than original input signal.
From here these clocks are buffered to improveasiginength and then sent out to the

cores that use them.

The bottom half of the Figure 3-10 block diagramsaties the clock signal sent
throughout the FPGA. This clock signal is senbtigh a DCM for tuning and then sent
out to a clock distribution network that is presgmbughout the entirety of the FPGA.
This allows for clocks to be accessed from almagtvdoere on the FPGA without losing
significant signal strength or losing time due &ays. The clock is also sent back in so

that it may be compared to the original input clozknake sure they are synchronized.

29

1
1
CLKIN _5 PLL Module T
1
[

| =i BUFG —= INV | = cLKOUTO
[}
[}
1
1

DCM Module |~ =zzZzz2 mmwooeC
+— BUFG ———————= CLKOUT1

—= CLKOUT15
g | pmoeems] CLKFBOUT | Clock 1
CLKFBIN 1 DCM Module — BUFG | = Distribution !
" i 1 Network |
RST | T LOCKED 777 -‘ ______

Figure 3-10. Clock Generator block diagram [24]

JTAG, System Reset, and Additional Buses

In addition to the devices mentioned above, thezesaveral peripheral devices used for
controlling interconnections within the developmbaoard shown in Figure 3-4. These
include the JTAG PPC controller and the systemt r&se their respective busses which
are described in [23-24]. Both of these devicesrasponsible for controlling the

PowerPC CPUs in the Xilinx FPGA.

The JTAG PPC block is responsible for controllihg tonnection between two different
PowerPC CPUs when they are implemented in the FPG#y one PowerPC is
instantiated in this design so this device is mgigle. The system reset block on the
other hand is responsible for initializing both #@wverPC and the FPGA. All
initializations determined in the Verilog code argplemented in this block as well as the

PowerPC CPU.

30

Chapter 4: Error Insertion

With any method of fault testing and test vectanegation, faults need to be simulated in
a working version of a circuit. This can be a dmgtask because of all of the possible
fault sites. There are faults on every input,miediate output, and fan out. To reduce

this number, the concepts of fault dominance ant &guivalence are used.

Fault Equivalence

Fault equivalence is defined as two faults thattaggered by the same signals. If two
faults x and y are equivalent; and if fault x iggeered by a specific input signal, then
fault y will as well. The test for this is showerlbw in Equation 4-1.

fNSf(V) =0

Equation 4-1. Théndistinguishability Condition, determines if two faults are identical or
equivalent [2]

By using Equation 4-1 a large number of faults lbareliminated from consideration
immediately. In [2] it is stated that arline circuit this is an inefficient process and
requires2(n®-n) pairs of faults to be compared. To improve thiguction algorithm, a
comparison of faults that surround different Boalgates can be used to find equivalent
faults. These equivalences can be seen in FigareRbr example, consider the two-
input AND gate shown in Figure 4-1. It has two itgpand one output. Each input and
output node can be either stuck at 1 or 0. Thiegihe total fault count for the AND as
3. However, consider the case input A stuck-af-0.test this fault, we would excite A

by exciting a 1 at the input and propagate theti@aof node A to the output by making

31

the second input B a logic 1. So input vector <A:8%1,1> propagates the fault A
stuck-at-0 to the output, the expected value abthput is a 1 but we see a 0. Hence,
<1,1> detects A stuck-at-0. Similarly, <1,1> alstettts fault B-stuck-at-0 and C-stuck-
at-0. Hence, faults A-stuck-at-0, B-stuck-at-O &hxdtuck-at-0 are considered equivalent.
A vector that detects one will detect all the thieadts. Similar analysis can be used for
the Stuck-at-1 problem for the AND gate and caeXjgnded to find equivalence in the

other logic gates.

i SAQ M=zmmmmmmomooos » SA0
SA0 SA1 Oy 4 [y P S—— » SAT
‘A SA0 SA1 [} SA0 SA1
v ¥
SAQ SAT1 A
™ .
;;;;; SAO SA1
SA0 SAt

SA0 SA1

_SA0 sA1 | S A0 SA1 "\ . .
‘A SA0 SA1] S:O SA1 gﬁ? gﬁa
N A / A v
SA0 SA1 < SA0 SM‘ e~

Figure 4-1. Fault Equivalence in series of logitegawires, and fan outs

Fan-out trees are special cases. Figure 4-1 siwggesquivalence between the faults in
the fan out stem and the branchHse reason there appears to be no equivalent faults
the fan-out is because the two branches may haepéndent stuck-at-faults that differ

from the stem. This means that fan outs cannas kizeir faults reduced through

equivalence.

32

Fault Dominance

In addition to the concept of fault equivalencéhis idea of fault dominance described in
[2]. In fault equivalence two faults have the edxsame tests and thus can be eliminated.
Fault dominance states that if all the tests faltfal are a subset of the tests for fet®,
thenF2 dominates-1. Figure 4-2 shows the idea of fault dominanca regular
combinational circuit. Consider two faults, input &utput F2, both stuck-at-1 faults. For
the F1 stuck-at-1, the only vector that would ex€&ifl and propagate the result to the
output is <0,1,1>. For the F2 stuck-at-1 we neeeixite fault F2 (i.e. output F2 needs to
be made a 0). This can be done by setting one o& nfdhe inputs to be a 0. Figure 4-2
shows the 7 possible input vectors that couldR2sdtuck-at-1. The test of F1 is a subset
of the F2 test and hence can be eliminated. Usinly dominance relationship, it can be
found that for a three input AND gate, the onlylfathat need to be tested are stuck-at-0

on all of the inputs and a stuck-at-1 on only ang mput.

F2 Tests
F1

SA1 F2 000 SAO
—X SA1 001
010 «— Only F1 test SA0

011
100
101
110

SA0 SA1

Figure 4-2. Collapsed fault set using dominance

Fault Dominance can be stated with three basis flald out in [2]:

1. Any Boolean gate with inputs will requiren+1 stuck-at-faults to be considered.
2. To collapse faults on any gate the first step iglitminate the faults on the output as

long as one type of fault (SA1 for AND and NANDASfor OR and NOR) is

33

modeled on all of the inputs. The other type oftf&SAO for AND and NAND; SAO
for OR and NOR) can be reduced to only one input.
3. For NOT gats and non-inverting buffers, the oufautts may remain as long as both

fault types are modeled on the inputs. Fan ouis ha collapsing methods.

Checkpoint Theorem

With the use of the concepts of fault equivalenog fault dominance, a more efficient
method of fault modeling can be hybridized. Thehuod used for determining fault
locations in this research is the checkpoint th@orén [2] a checkpoint is defined as all
of the primary inputs to a circuit as well as alhfout branches that occur within the
circuit. The checkpoint theorem then states tlgaebting all checkpoints for stuck-at-
faults, all possible stuck-at-faults are testeda®mvell. Looking at Figure 4-3, the
difference between standard fault locations andlqh@nt fault locations can be seen.
The out puts of the first level of AND gates do netd to be checked due to fault
dominance. This also applies to the outputs osdwnd level of AND gates assuming
they are not primary outputs. In a circuit thas haore levels, the number of faults drops
drastically. This would mean more fan outs anddiand the same number of primary

inputs.

X
N
u
s
>

X

X

B
B D,
By m

a L

Figure 4-3: a. Standard fault locations. B. A dteuth the checkpoints marked (X).

Although the checkpoint theorem does not redudaraas using a complete combination
of fault equivalence and dominance, it is easyrtplement in code and does provide a
significant reduction in fault sites. For examipleéhe benchmark C499 there are 499
lines which would imply 998 potential fault siteg/ith the checkpoint theorem, this is

immediately reduced to 594 fault sites, a reduatibapproximately 59.5%.

Physical Description of Error Insertion

For this research the method of simulating erraas the use of a two to one multiplexer.
At every check point a multiplexer was insertedwmabnnections as specified in Figure
4-4. The first input is the original line from te&cuit that would carry the correct data.
When the select bit is on it specifies that thiscsfic fault is being activated and

depending on the input to S1, either a SA1 or SADb& inserted into the circuit.

35

Original Line)
o Output
Fault(SAO or SA1) ——g1 s
Select fault
on/off

Figure 4-4: Fault insertion multiplexer

To simplify the outputs for the user, the outputhad circuit with the fault is compared to
that of a fault-free circuit with the use of a serof XOR gates as shown in Figure 4-5.
Each output from the faulty circuit is comparedtsofault-free equivalent and if there is a
high output, the fault has been detected. Alhefdutputs are then put through an OR
gate and this gives a simple high or low answeo aghether or not any of the outputs
detected the fault.

Fault Free Output 1

)) Fault Found Output 1
Fault Output 1

Fault Free Output 2

)) Fault Found Output 2
Fault Output 2

Fault Free Output 3

)) Fault Found Output 3
Fault Output 3 Fault Found At All

Fault Free Output 4)) Fault Found Output 4
Fault Output 4

Fault Free Output 5)) Fault Found Output 5
Fault Output 5

Figure 4-5: Output Comparison

36

Multiplexer Installation Algorithm

For this research it is assumed that circuitswhihbe produced will be in a structural
netlist format. That is, all circuitry will be de#bed in gate format and all lines between
gates will be specified directly. Under this asption a program in C++ was developed
to determine where and how to implement a multipteXt uses a directed graph similar
to Table 4-1 to log all gates and their inputs aatputs. Figure 4-6 represents the circuit
that is described in Table 4-1. This helps to mheilee the number of fan outs and inputs

as needed by checkpoint faults.

Name Type Parents
N1 Primary Input Null
N2 Primary Input Null
N3 NAND N1, N2
N4 NOR N1,N2
N5 AND N3,N4
N6 OR N2,N3
N7 AND N5,N6
N8 XOR N7,N4

Table 4-1: Example Directed Graph Table

N5

NS B
N6

N8
g — 7) >
) >4

Figure 4-6. Example Directed Graph Circuit

Because this research uses checkpoint faults éordigte all stuck-at-faults, the first

locations to check are the inputs. Standard Vigniletlist files, such as Example 1 the

37

C17 benchmark circuit, begin with an instantiatiamere a “module” is declared with a
listing of all of the input and output ports. Tinext line is usually an input declaration.
This line is detected by the code and all of thmutrwires are logged. They are flagged
as primary inputs of the circuit and will be usatel. After this, the program goes

through all of the gates and logs their inputs anigputs.

module c17 (N1,N2,N3,N6,N7,N22,N23);
input N1,N2,N3,N6,N7;

output N22,N23;

wire N10,N11,N16,N19;

nand NAND2_1 (N10, N1, N3);

nand NAND2_2 (N11, N3, N6);

nand NAND2_3 (N16, N2, N11);

nand NAND2_4 (N19, N11, N7);

nand NAND2_5 (N22, N10, N16);

nand NAND2_6 (N23, N16, N19);

endmodule

Example 4-1: Code for benchmark circuit c17

After all of the gates have been successfully ldggea format similar to Table 4-1, the
output wires from other gates that lead into theenadl stored into a vector. This vector
is cycled through numerous times, and if the wppears more than once it is stored in
another vector along with the number of times & haen detected. For example in Table
4-1 N1 is used two times, N2 is used three timesid\used two times and so on. By
doing this, all possible fan outs are detectedth\&ll fan outs and primary inputs

detected, it is now possible to install multiplexerto the circuit accurately.

38

Name Type Parents
N1 Pl Null
N2 Pl Null
N3 Pl Null
N6 Pl Null
N7 Pl Null
N10 NAND N1, N3
N11 NAND N3, N6
N16 NAND N2, N11
N19 NAND N11, N7
N22 NAND N10, N16
N23 NAND N16, N19

Parents used more than once: Null,N3,N11,N16

Table 4-2: C17 Directed Graph Output

In the next step of this process, a new file isnggkfor writing. The module, input, and
output lines are copied directly from the originatlist into the new file. The declaration
of wires is also copied over but it has an addendtiadl the extra wires needed by the
multiplexers. After this is finished, the input hiplexers are installed in a manner
similar to Figure 4-2. With primary inputs, theginal wire goes into the multiplexer
and a wire named the same with a “_0” is the dedeghoutput wire. This is done with
the fan outs except that the number isn't alwaye.z&hey are enumerated based on the
number of fan out wires there are i.e.(*_0",“ 172", ...) Atthe end of the file, a
module is instantiated for the multiplexer. Thenpdeted product can be seen below in
Example 4-2. The multiplexers are number in theeothey are created and all

additional inputs can also be seen.

39

module c17test(N1,N2,N3,N6,N7,N22,N23,5SS0,S51,552,5S3,554,555,556,5S7,558,559,5510, errsig);
input N1,N2,N3,N6,N7,SS0,5S1,5S2,SS3,554,555,556,5S7,558,559,5SS10, errsig;

output N22,N23;

wire N10,N11,N16,N19, N1_0, N2_0, N3_0, N6_0, N7_0, N3_1, N3_2, N11_1, N11_2, N16_1, N16_2;

mux MuxO(N1_0, SSO, errsig, N1);
mux Mux1(N2_0, SS1, errsig, N2);
mux Mux2(N3_0, SS2, errsig, N3);
mux Mux3(N6_0, SS3, errsig, N6);
mux Mux4(N7_0, SS4, errsig, N7);
mux Mux5(N3_2, SS5, errsig, N3_0);
nand NAND2_1 (N10,N1_0, N3_2);
mux Mux6(N3_1, SS6, errsig, N3_0);
nand NAND2_2 (N11,N3_1,N6_0);
mux Mux7(N11_2, SS7, errsig, N11);
nand NAND2_3 (N16,N2_0, N11_2);
mux Mux8(N11_1, SS8, errsig, N11);
nand NAND2_4 (N19,N11_1,N7_0);
mux Mux9(N16_2, SS9, errsig, N16);
nand NAND2_5 (N22, N10, N16_2);
mux Mux10(N16_1, SS10, errsig, N16);
nand NAND2_6 (N23,N16_1,N19);

endmodule

module mux(y,sel,b,a);

input a,b,sel;

output y;

wire sel,a_sel,b_sel;

not U_inv (inv_sel,sel);

and U_anda (a_sel,a,inv_sel),
U_andb (b_sel,b,sel);

or U_or (y,a_sel,b_sel);

endmodule

Example 4-2: C17 Benchmark Circuit with Multiplezexdded into the design

40

Instantiation of the Multiplexers

To implement any one of these errors at a timeaitation signal must be sent from the
main algorithm to an instantiated copy of a circué. the circuit in Example 4-2. This is
done through a series of bits with the width equgathe number of potential fault sites.

Example 4-3 shows how this is done. When a spefitilt needs to be excited, the main
algorithm will store a value of all Os and one tbia vector, that shares its width with the
number of fault sites. This vector is passed ftbenmain algorithm to an instantiation of

a circuit and the values are each sent to thetdaikeaf the multiplexer it corresponds to.

Mux10 | Mux9 | Mux8| Mux7| Mux6| Mux5/ Mux4 Mux3 Mux2 Muxl MuxO
Ci17-1 0 0 0 0 0 0 0 0 0 0 1
C17-2 0 0 0 0 0 0 0 0 0 1 0
C17-3 0 0 0 0 0 0 0 0 1 0 0

Example 4-3: Excitation table for three instantias of C17.

In this way, all faults can be simulated individyair if need be in different
combinations. As stated in previous chapters, tat efficient to test numerous faults at
once because of masking. If there are not encgghntiations to detect all faults at

once, this process is cycled until all faults aetedted.

41

Chapter 5: Algorithm For Testing

While performing this research there were a nunob@hases of implementation,
assessment, and redesign. Essentially, theretiver® main phases where the algorithm
concept was sound but the programming and implestientneeded to be changed due
to a bottleneck that plagued the speed of the idhgr While the FPGA core itself was
able to perform the fault detection algorithm qlyckve noticed a severe bottleneck in
the transmission of the results for further procesdn this Chapter, we detail the
different approaches taken, and describe the dhgosi used for fault detection and test-

set compression.

Approach 1: Hardware emulation with support sofevan host computer

For the first part of this research, the test patggeneration algorithm was in its most
basic form. The FPGA was connected to a host coanploat supplied the input stimulus
to the circuit under test, and acted as a suppachime to receive output data from the
FPGA and do post-processing on the data. The basiftguration is shown below in

Figure 5-1.

FPGA

=5 o—

Host Computer

Figure 5-2. A block diagram of the FPGA emulatigatem supported through software running
on a host computer.

42

The key steps of this approach are outlined below:

1. Implement as many instantiations of a benchmadution the FPGA as the
FPGA fabric will permit.

2. Insert a unique fault in each instantiation.

3. Generate random input vector on the host compuigrtarough a RS232 serial
cable, send them to the FPGA board.

4. Apply the same random input vectors to the origoogdy and the fault inserted
copies of the benchmark circuit

5. Send the outputs out from the FPGA to a hyperteshdannection on the host
computer through the RS232 serial port.

6. Repeat steps 2-5 until all possible faults arealetewith given number of
random input vectors.

7. Save data to a text file

8. Using the computer, analyze the data for the bessiple input vectors based on

output data

After all of the benchmark circuit input vectorsdaiault detection output data was
displayed on the hyperterminal display, a way d@édwrining the most efficient input
vectors was needed. To do this a program wasenritt Matlab that would determine
which input could detect the most faults, and tekeminate those faults from further

consideration.

This vector compression algorithmproceeds in the following steps:

43

1. Detect the vectors with the most faults
2. Log the vector
3. Eliminate faults found by vector from future coresigtion

4. Repeat steps 1-3 until all detected faults have laeeounted for

11011000100101001 00000000000000001
11000111110000101 00000001000000001 €<Most faults detected
11111110111101100 €Most faults detected ~ 00000000000000000
11010100000011010 00000000000010010
(a) (b)
00000000000000000 00000000000000000
00000000000000000 00000000000000000
00000000000000000 00000000000000000

00000000000010010 <Most faults detected ~ 00000000000000000
(© (d)

Figure 5-2: Fault detection algorithm (Rows aretwex; Columns are detected faults)

(a)Original fault detection with first vector fourfild) Second vector chose to cover most faults
left (c)Third vector chosen to cover the rest @ thults (d) All faults have been detected

Consider the example shown in Figure 5-2(a). Treargte shows a circuit’s fault and
vector pair. The circuit had a total of 17 faultelavas simulated with four random
vectors. Figure 5-2(a) is the original list receiv@rectly through the RS232 port from
the FPGA. Our goal is to find the minimum set oftees that will detect all 17 faults.
Vector #3 detects 13 out of the 17 faults - thgdat number of faults in this example.
Our algorithm compares the four vectors, deteasathility of Vector #3 to detect 13
faults and retains this vector in tbempressed test-setVe then create a binary mask
equal to the width of the faults. This mask isialized with Os in the location of the
faults detected already by the vectors saved icongpressed test-set and 1s in other

locations. After retaining Vector #3, the binaryskd00000001000010011) is put

44

through an AND gate with the fault-vector pair ¢neg the pair shown in Figure 5-2(b).

In Figure 5-2(b), Vectors #2 and #4 both detectangest number of faults, and the first
vector of the two is chosen automatically. A newskiig created and the process repeats
until all detected faults are accounted for as showFigures 5-2(c) and (d). In this very
trivial example, we started with four random vesttivat were used to simulate the faults

and our compressed test-set retained only thrd®esg four vectors.

The main benefit of this approach that involvedtfaimulation in the FPGA and vector
compression on the computer was mostly in the efigse. Xilinx ISE was a familiar
program and provided the infrastructure to simusaté implement the designs with ease.
It also allowed for designs to be implemented imescatic form, an alternative to

Verilog. This allowed for easy visualization oetmodules and made the RS232
interface between the FPGA and computer easienderstand and implement. Matlab
provided another simpler interface yet a powerfatmematical tool to perform the

compression algorithm described earlier.

There were several issues with this approach t@tdtern generation and compression.
The first issue was that of the serial interfacevieen the FPGA and the computer. This
first implementation was designed and implemengdguXilinx ISE and thus did not
have native RS232 serial port compatibility. Torkvaround this, an existing sample
Xilinx design was found that implemented an RS282at port. This design was then
stripped down to just its serial port utility. Gnthis was determined to be working, data

had to be formatted in groups of eight bits and s@a relatively small buffer provided

45

by the original design. In addition to this, timaihg of the entire circuit had to be

monitored and controlled diligently so that dataldde sent out correctly.

The second major issue with this design was thd tetake data from the hyperterminal
and in turn put it in a text file and then run Matlab code with the text file of all the
collected data. The constant saving and openingrgé text files took extra time.
Although the compression algorithm was easy toenntMATLAB, the runtime was
relatively slow because Matlab is an interpretegjleage and runs usually slower than

compiled languages.

The next design would address these two issueBrbynating the need for a basic serial

port design and the need to run external codeterm@ne the best test vectors.

Approach 2: Hardware emulation with support sofevain PowerPC core within the

FPGA

The second approach to an improved ATPG emulaticanoFPGA was to use the
embedded PowerPC CPU on the FPGA circuit. The FRWEPU is able to run code
written in C and input and output data to the FR&@®#£es through the use of a dedicated
data bus (described in Chapter 3). The data tresssom over serial lines between the
FPGA core and the host computer was no longer de@aheoving the serial
communication bottleneck. At the same time, the m@ssion algorithm could be written
directly in C and run in the PowerPC so constavihggand opening of large text files in

MATLAB was not needed eliminating the slow runtiewerienced in Approach 1.

46

The use of the PowerPC core required the use dfitimx Platform Studio, a
significantly more powerful utility for running dérent circuits on the Virtex Il Pro
board. This design suite came with preconfigur&2¥2 serial port which was

significantly more versatile and user friendly.

Power
FPGA H PC

Host Computer

Figure 5-3: A block diagram of the FPGA emulatigatem and Power PC supported through
software running on a host computer.

This new setup is shown in Figure 5-3. The hostmaer is primarily used to compile
and download the code to the PowerPC and the FRBA the new approach can be

summarized using the following steps:

1. Implement as many instantiations of a benchmadution the FPGA as the FPGA
fabric will permit

2. Insert a unique fault in each instantiation.

3. Randomly generate an input in the PowerPC and stae-board RAM.

4. Send the input vector to the FPGA through the imakbus.

5. Run the original circuit and all instantiated fgutircuits using this random vector.

6. Send the outputs from the FPGA core back to theei®@ to be stored in RAM

7. Repeat steps 1-6 for the number of vectors thatoaoe tested

47

8. Perform test-vector compression algorithm describe®pproach 1, on the PowerPC
and store the compressed result in RAM.
9. Send only the compressed test-set to the host dempsing RS232 interface of the

PowerPC and display the result using a hypertedimina

With this new setup, the C code on the PowerPCrs@atomly generated input vectors
to the circuits created in the FPGA. The FPGA auith the fault detection algorithm
then processed the input vectors and sent badetieeted faults. All of the inputs and
faults were stored in a DDR RAM module presentim EPGA board. The DDR RAM
module was utilized because local BRAM was too iodhold all the data that the
Power PC needed to store. Finally, the PowerPGhealgorithm for deciding the most
efficient inputs and then using the RS232 serial, pooutputted in an easier to read

format which inputs would cover the most faults.

There were significant issues with this design al.wDespite the speed of the FPGA
fault detection algorithm, there was a significaattleneck with the Power PC’s speed
when determining the best input vectors. With kange circuit, the algorithm for
determining the best inputs took minutes to ruecdise this circuit needed to access
external RAM and was burdened with overhead pracgst could not process the sheer
amount of data needed to in a timely manner. Agratbvision was made to eliminate

these issues.

48

Approach 3: Hardware emulation with built-in randwattor generator

The culmination of previous experiences led tofih& incarnation of this emulation
algorithm and implementation technique. In thalfiendition of the algorithm, most
functionality is transferred to the implemented PP¢are so that hardware speeds can be
effectively utilized. This required a re-thinkinfihow the core would work and how

data would be processed. The inputs and outputs abeo drastically changed and the
need for DDR RAM was eliminated. The core itsalis as a finite state machine which

is shown in Figure 5-4. As seen in flowchart igufe 5-5, the algorithm goes through a
number of decisions and processes that are repsatedal times. Each of these will be

described in detail in the following paragraphs.

49

All Vectors Tested

\J

Main testi .
ain tesfing Output and Logging Complete logging
Main State 1 Main State 2
3

CF, .
on, Co, From Main State 1
Of, g, Q'I’
'e‘»‘e/ N
(7

So

Make sure new
faults were
detected

! Move to main Compile faults
state 2 detected

INITIALIZE
GLOBAL 4
PARAMETERS e S
Q
g
g Finish o
§ e Program @
s S1.Initialize
4. intermediate
i Gobackto
Compare vector vectors and i mains state 1
results with increment
previous vectors, vectors tested)
; S e
B Q 3
2 L S I
5 From Main State 2 a 2
8 e 3
2 2]
= 0w
g 2 5 v
E: 3
Check user
All faults tested constraints for
S3 S2. faults detected |- Display fault
Count Faults Retrieve fault and vectors data
Detected outputs

used

Main State 1 Main State 2

Figure 5-4: State diagram of the fault detectiggoathm.

No

Wait until test
vector size has
been recieved

Generate new
random vector

Acquire a set of
fault data for new
vector

Have all faults
been accounted
for?

Compare vector to
previously tested
vectors

More faults
covered?

Replace previous
best data with new
data on faults

Have the full
number of vectors
een tested yet?

Increment
intermittent

vectors count.

No

covered and which
input

Condense found
faults into one
memory array

Count total faults
found thus far

Reset intermittent
vector count to 0

Total Faults >
Previous test?

ON

or tested enough
vectors?

Figure 5-5. Flowchart of emulation algorithm

50

Add 1 to final
vector count

A

Output faults
counted, total
vectors found thus
far and newest

vector.
y
End emulation
as the program
checked enough faults
‘+—

51

The core of this program is run on the FPGA. Th&RARore contains the good version
of the circuit and several faulty instantiationgteh the circuits have been instantiated in
the core, the core waits for the user to specié&yrthmber of randomly generated test
vectors to examine. This user generated numbecewed from the PowerPC core. Until
this number is received, the FPGA core containmggfault emulation hardware simply

remains in the idle state.

Once this user generated number is received, thgrgmn starts with its initializations in
Main State 1of Figure 5-4. This is shown as the first degidbox in the flowchart of
Figure 5-5. If the user specified number has menbreached, a new test vector is
generated with the use of a linear feedback shigfister (LFSR). A number of
intermediate variables (e.g. total faults coung) i@set to zero, and the threshold counter

is incremented by one. Once this is complete tde $s changed from S1 to S2.

An LFSR is a circuit that is used for the generatb pseudo-random vectors. The width
of the LFSR is the width of the number of inputghe circuit. Figure 5-6 shows an
example of a 4-bit LFSR. The four-bit shift regrstéth feedbacks from Q1 and Q2 as
shown below produces a four-bit sequence (seeminggndom fashion) as long as the
register is initialized in a sequence other tha®O@An XNOR gate can be used instead
of the XOR gate, but the initialization has to bengthing other than 1111). Since this is
a four-bit register, the sequences will repeatrdfte 15th clock cycle. The initialization
sequence is called the seed, and as can be seemwest state of the register is a linear

function of its previous state. Depending on theds the values will follow a seemingly

52

random pattern until all possible values are exfisiged and the original value is the

current state again.

Q0 Q1 Q2 Q3

ok L]] |

Figure 5-6: A 4-bit LFSR with taps at bits 3 and 4

The algorithm is summarized in the following steps:

1. Define constants for running the algorithm
2. Instantiate as many possible copies of fault ig@dienchmark circuits and one
clean circuit into the FPGA
3. Run the algorithm which has several steps and gpss
a. Initialize all intermediary values and generate meput test vectors with
the use of an LFSR.
b. WHILE all fault locations have NOT been tested:
i. Insert SAO faults into the circuit.
ii. Compare outputs of fault injected circuits and clegcuit. Record
any discrepancy into memory locationfaslt data.
lii. Change fault signal from an SAO to an SA1 by tyimg ERROR
line from Logic O to Logic 1.

iv. Repeat Step ii for SA1 fault.

53

v. Change fault locations by increasing specific regssand go back
to step i.
c. Count all NEW faults detected with the new inputtee.
d. If the faults detected thdar number larger than previous data:
i. Overwrite stored previous best input vector withrent input
vector.
ii. Overwrite previous best fault data with currentfaata.
lii. Overwrite previous best detected faults total withrent detected
faults total.
e. Repeat steps a-d until the user defined numbeeabys has been tested.
f. When this is done, the program moves into maire aif Figure 3 with
the following sub-steps
i. Add the newly detected faults to currently savadttadetected
list.
ii. Detect if any new faults were actually generated.
iii. If new faults were found, output new data as se€frable 1.
iv. Re-initialize data and move back to main state Eigfire 3 (i.e.
Step 3 (a)).
4. Repeat step 3 until all possible faults found aected or another user-defined

trigger is flagged.

54

Input Vector | Total Faults Detected Total vectorsdus Time(1/100 sec
F12BCD 123 1 20
A3DAF8 205 2 40
B98321C 267 3 61
C18EB24 301 4 81

Table 5-1: Example Output for Step 3-f-iii. The inwector is in Hexadecimal notation.

Table 5-1 gives a typical display of how the outfpaim the FPGA after being processed
and sent to the computer would look like. Eachk hepresents step 3f being run one
time. First you have the newest useful input vert@ hexadecimal format. Next is the
cumulative total of faults that have been detestethr. After that is the cumulative
number of input vectors that detect the fault rdedrthus far. Finally the time is

cumulative so in Figure 5-4 each step takes ab@unis2

Part b of step 3 is where all of the fault detectakes place. This state runs through four
different sub-states. The first sub-state is whieecfault data from the instantiated
circuits is recorded in a predefined memory arsagg 3-b-i). Because this array may
change in size dependant on a user, the numbenes tdata must be recorded is

variable.

The second state is where the faults that are ls@nglated are switched from an SAO to
an SAL (step 3-b-ii). This transition can be seethe change from Figure 5-7a to 5-7b
or Figure 5-7c to 5-7d. Here simulated fault bibeing changed from an logic low to a
logic high. Technically this fault signal is s¢atevery fault site, but only one fault site

is active at a time.

55

After this is completed the data is recorded ag@step 3-b-ii). The positions of the faults
that are being tested are then changed along wehratialization of the fault type back
to SAO (step 3-b-iv). The difference between ainvadault and an inactive fault is the
select signal. To change the fault site, the salgaial to fault 1 changed from logic high
to logic low, and the fault 2 site has its seleghal changed from logic low to logic high.
Also the simulated fault line goes back to a Idgw from logic high. This can also be
seen in the transition from Figure 5-7b to 5-7hisTprocess is repeated until all possible

fault locations have been accounted for.

| T

0—1
) 1
Simulated

faulf0)

00—

0 7{L>_<
_ 1
Simulated

faulf)
07

0

§
Fault 1 Mux

(@

=D
)
1 st
Simulated

faulft)

00—

0—
«—

1
Simulated

faulf0)

00—

Figure 5-7: Fault changing process

(a) fault one activated with SAO (b) fault one eated with SA1
(c) fault two activated with SAO (d) fault two agited with SA1

56

The third state of main state 1, or part ¢ of &eig this process involved with counting
all of the faults that were detected with a testee This is done in a series of loops.
Each loop starts with putting the first memory aé#lthe new data and the first memory
cell of the stored data through a bit-wise OR @gai@ storing it in a temporary vector.
This temporary vector holds the potential faultst ttould be detected for certain fault

locations with the currently tested input vectod @an be seen in Figure 5-8.

New Data FA56812B]
Recorded Data 01CBo479 |)~ FBDFA57B Result

Figure 5-8: Combining new test vector data wittorded data. All test vectors are displayed here
in Hexadecimal notation.

In Figure 5-8, the new data is the series of hiét tas taken from comparison of the
clean benchmark circuit and the fault insertedutircThe recorded data is the series of
bits that accounts for all faults that have beavimusly detected. As stated above the
result represents potential data to be recordedarer state. Every memory cell goes
through this until all data is accounted for. €duce the number of clock cycles needed

to run this, the fault testing data is reset atethe of this state as well.

For the fourth state, or part d of step 3, a comsparof previously recorded data is used
to determine which the best vector is. When tiger&thm runs the first time, the first
vector is recorded and then subsequent vectorsoanpared and replace previously
stored vectors if they can cover more faults. Wiiennew vector is stored, the faults it

can cover are stored as well for a comparison agairbsequent test vectors.

57

Main state 2 is the second main state of this dlgor represented as part f of step 3.
When the user-defined number of vectors has bestedemain state 2 is initialized.
Within this state are a number of sub-states. fifeeof these sub-states combines the
fault coverage of the best vector recorded thugfarmanner similar to Figure 7, but this
time it is permanent. After this is complete tlextstate determines how many faults
have been covered by the recorded vectors ungilpihint using data calculated in the
third main state. If this number is not greatamtiprevious iterations, then the algorithm
finishes and outputs a finished signal. If the bems greater, the data regarding this
vector is outputted to the hyperterminal. Thisadatludes the vector, how many faults
have been detected so far, and how many vectoeslieen recorded. The final sub-
state checks the number of faults detected an@retdsted. If either of these numbers
is greater than the user-defined limits the progvalinterminate at this point, otherwise

the entire process begins again to find anothetovec

With this new incarnation of the fault detectioga@ithm there are several improvements
over the previous two approaches. First thereniagr increase in speed because all
processing is done in hardware and not on the HR@eiT here is also an increase in
simplicity for the interaction between the FPGA d&wlverPC. The algorithm that
controls the FIFO data transfers only needs to yalout one vector of data being sent
to the FPGA. Every other data transfer is fromRR&A to the PowerPC. Because of
this, after the FIFO control sends the vector adadeom the PowerPC to the FPGA, it

can be put in an infinite loop of waiting for ddtam the FPGA to be sent to the

58

PowerPC. Because of the primary use of the FPGARAM is needed and simplifies

the design on the PowerPC end by a significant awnou

Although there are several benefits to this dediggre were several drawbacks that were
unavoidable. Because this design is more centareéde FPGA, synthesis time had to
be dealt with when testing. There was also anddtel of complexity that is

associated with transferring code designed for @ @®d HDL code designed for an
FPGA. Due to the size of the design, simulatios waarly impossible because it took

longer to process data than actually synthesis.

59

Chapter 6: Results

In order to verify the validity of our test-set geation algorithm, we used some circuits
from the ISCAS and the MCNC benchmark suites. Afleximents were run on the
Xilinx Virtex-1l Pro Development System. The bodrduses a Xilinx XC2VP30 FPGA
with 30,816 Logic Cells, 136 18-bit multipliers428Kb of block RAM, and two
PowerPC Processor cores. The design was synthesieglthe Xilinx ISE Design Suite

10.1.

The verilog code generated from our C++ script, teated in a behavioral simulator to
verify its correctness and to get a general idd@oaf long the test would take when
implemented in hardware. Once this was completexlalgorithm was implemented in
an actual FPGA. This chapter will discuss the tesfuboth the simulation and

implementation.

Simulation Results:

For this research, simulation was used as a stggebr design and implementation.
Simulation was used to verify the output of the FP.GWhile simulation of the Verilog
code was able to display all internal signals,vaithg for better debugging, the time taken
to complete was orders of magnitude larger thalampntation. This bottleneck limited

the circuit size being simulated to smaller benatksaircuits with a few hundred gates.

60

C432 Emulation C432 Simulation
Input Input

Faults Vector Time(ns) — Faults Vector Time(ns)
Input Vector | Detected | Number | 100 MHz Input Vector | Detected | Number | —1 GHz
9784DC851 84 1 7673140 9784DC851 84 1 116150
DC62AA93B | 147 2 12381300 DC62AA93B 147 2 23219(
AO8F52AEE | 187 3 17250780| AO8F52AEE 187 3 348230
97227207C 220 4 22120740 97227207¢ 220 4 464270
7041256E3 253 5 26987740 7041256E3 253 5 580310
2BEF86068 286 6 31855220 2BEF86068 286 6 6963%0
53326F5A2 314 7 36722700 53326F5AZ 314 7 812390
146C583D1 341 8 41590180 146C583D1 341 8 928430
7207C84B2 367 9 46455180 7207C84B2 367 9 1044470
8B2E44E40 389 10 51330020 8B2E44E40 389 10 1160510
585C10495 406 11 56204860 585C1049% 406 11 1276p50
BCF94BESE | 421 12 61079700 BCF94BESE 421 12 1392590
62AA93BCY9 | 435 13 65954540 62AA93BCY 435 13 1508630
55047A957 448 14 70829380 55047A957 448 14 1624670
7CBCED4CC| 459 15 75704220 7CBCED4CC 459 15 1740710
F55CF7708 468 16 80579060 F55CF7708 468 16 1856[750
ED9784DC8 | 475 17 85451420 ED9784DC8 475 17 1972790
5916D060C 481 18 90323780 5916D060C 481 18 2088830
4ED9784DC | 487 19 95196140, 4ED9784DLC 487 19 2204870
9BCF94BE5 | 493 20 100068500 9BCF94BHE5 493 20 2320910
2F979DA99 498 21 104950700 2F979DA99 498 21 2436950
BBB93C46C | 503 22 109832900 BBB93C46C 503 22 2552990
94C145EAB | 507 23 114715100 94C145EAB 507 23 2669030
92F16F482 510 24 119597300 92F16F482 510 24 2785070
CB913903E 513 25 124479500 CB913903E 513 25 2901110
3E52F979D 516 26 12936170p 3E52F979D 516 26 3017{50
AC978B7A4 | 518 27 134243900 AC978B7A4 518 27 3133190
90964988B 520 28 139125620 90964988B 520 28 3249p30
5C10495B8 522 29 14400782p 5C10495B8 522 29 3365270
7EC8B5AA9 | 524 30 148890020 7EC8B5AAPD 524 30 3481310
97CBCED4C | 526 31 153772220 97CBCED4C 526 31 3597350
4580917C7 528 32 158654420 4580917CY 528 32 3713390
592F16F48 529 33 163536620 592F16F48 529 33 3829430
E44E40F90 530 34 168416340 E44E40F90 530 34 3945470
F212C9311 531 35 173297860 F212C9311 531 35 4061510
45916D060 532 36 178179380 45916D060 532 36 4177550
C8B683067 533 37 183060900 C8B68306Y 533 37 4293590

61

95D617041 534 38 187942420 95D617041 534 38 4409630
54D282BCC 535 39 192823940 54D282BCIC 535 39 4525670
D282BCCCO | 536 40 197705460 D282BCCCO0 536 40 4641710
Table 6-1: Results from behavioral simulation aaddware emulation for C432 benchmark
circuit.

As an example, the results of the hardware emulaia functional simulation of the
circuit C432 are presented in Table 6-1. The cinsua 27-channel interrupt controller
consisting of 160 logic gates, 36 inputs and 7 aistpBoth simulation and emulation are
done with the exact same Verilog netlist gener&t@a the C++ code. The C++ netlist
generation code took 0.734 seconds to run. Thergeme time varies based on the size
of the circuit netlist and is presented in Tabl® & every benchmark circuit tested.
Table 6-1 shows that the best input vectors (shiovhe table in hexadecimal format),
number of faults detected and the number of usefuit vectors are exactly the same in
both the emulation and simulation. This agreemerntfies the functional correctness of
the hardware implementation of the fault detectitgorithm. There is however a
difference in the times reported for the simulatmd hardware emulation. During
simulation, the Verilog simulation software inteisawith a test bench file differently
than how the PowerPC and the data bus interactglbardware emulation. The
simulation hence underestimates the time takehdatware emulation by an order of

magnitude.

62

Implementation Results:

Although simulation can help determine whetheratranset of Verilog coded algorithms
could work, they do not necessarily translate taWare correctly. The final goal of this
research was to implement a series of benchmaruitsrin a Xilinx Virtex 1l Pro FPGA

and record the final outputs given a number ofedéht stimuli.

In this section, we present the results for cir@482 in detail and summarize the results
we obtained for the other benchmark circuits. Detafi each circuit and extended results

can be found in Appendices 3-5.

Results for Benchmark Circuit C432

Slices | Slice FF | Slice LUTs

Instantiations| Time(sea)% % %

1 23.56 27 9 23
2 11.81 24 8 23
4 5.93 23 8 22
8 3 23 8 22
16 1.53 24 8 23
32 0.84 29 8 28
64 0.49 38 9 36

Table 6-2: Area and timing results for C432 ciraiihulated with 10000 vectors and variable
instantiations running at clock frequency of 25MHB7 faults were detected with 36 input
vectors

For the first set of data, Table 6-2 shows howeasmg the number of instantiated faulty
circuits can affect the time it takes for the aitfon to run. For every™humber of
instantiations, where n is increasing, the numlbeeotors needed and faults found
remained static. This was somewhat expected becagseasing the instantiation allows

different faults to be detected in parallel withoelly changing which input vectors are

63

needed for the detection of the faults. From col@hofi Table 6-2, we see that as the
number of C432 instances are increased, the timersal to find all detectable faults
decreased inversely to the number of faulty C432amtiationg1/x). This logarithmic

relationship is clear in Figure 6-1.

25

20

15

Nt

Time(s)

\’\‘*—r

0 10 20 30 40 50 60 70

of Faulty C432 Instantiations

Figure 6-1. Total time taken for test pattern gatien using random vectors for C432 as a
function of the number of instantiations.

By observing the data in Table 6-1 and Figure #-dan be seen that time decreases
logarithmically with the number of instantiationsor every increase in the number of
instantiations by two times the previous test,tilme halves as well. This shows how the
scalability of this can be very beneficial to largécuits where the fault testing with one

fault at a time would have an extremely long rumstim

64

40
35
30

=¢==Instantiations Vs Slice FF%

S
g
5 25
2 ——Instantiations Vs Slices %
g 20
§ 15 Instantiations Vs Slice LUTs %
-E 10
T So—o0—o o —— ¢
5
0
0 8 16 24 32 40 48 56 64

of Faulty C432 Instantiations

Figure 6-2: Total FPGA hardware resources usetefirpattern generation using random vectors
for C432 as a function of the number of instartiasi

In Figure 6-2, we also compare the hardware resousage on the FPGA as a function
of the number of instantiations. The primary harndwv@sources on the FPGA fabric are
the Look-up-tables (LUTS), the slices and the sleggisters. It can be seen that the Look-
up-table hardware and the slices go up as mores@biC432 are instantiated in the
fabric. We see that the slice registers are almmsstant at around 8-9%. However, when
only one module was instantiated, we found thantimaber of slices and the LUTs are
higher than that when four modules are instantiaklds is probably because of the

synthesis tool’s resource sharing optimizationiras.

Using 32 instantiations of the C432 circuit andaaying number of random input
vectors, we next ran experiments to determine hawynfiaults were found, the number

of vectors needed to find these faults, and the itrtook to process them. C432 has

65

687194767362 possible input vectors. Given the rate at whightime increases for
different amounts of tested vectors, seen belo@alumn 4 of Table 6-3, to test every
input vector of C432 would take approximately 60d@@s. This is an unacceptable
amount of time. Thus the goal of this experimens ¥eafind exactly how many random

input vectors needed to be tested to obtain abteli@sult.

Vectors | Faults | Number of

Tested | Found | Vectors Needed | Time (S)
10 258 10 0.04
20 374 19 0.09
40 405 23 0.11
80 460 33 0.16
160 496 40 0.19
320 526 46 0.22
640 536 47 0.23
1280 536 43 0.21
2560 537 39 0.23
5120 537 36 0.43
10240 537 36 0.86
20480 537 35 1.66
40960 537 35 3.33
81920 537 33 6.27
163840 | 537 32 12.16
327680 | 537 33 25.09

Table 6-3: Results from C432, static number ofansations, variable vector tests

The number of vectors to be tested for each itamatf the test was entered manually.
The initial number was chosen so that a significange of vectors could be tested given
the maximum number of possible input vectors. Fhame the next iteration the number
of vectors was doubled and the experiment was gama From Table 6-3, it is clear that
for very small input test set (from 10-160 vectpesignificant number of faults are left

undetected. However, once 2560 vectors are tesles37 detectable faults in the circuit

66

are captured. There is no increase in detection eden 327680 vectors are tested as
can be seen in Figure 6-3. Figure 3 clearly shibwstability point around 2560 input
vectors. This stability point is based aroundrtbenber of faults found and the number
of vectors that are needed to detect them. Thiframhthat only a subset of input

vectors must be tested to represent all possipla wectors.

600

500

400

300
4

200

Faults Found

100

1 4 16 64 256 1024 4096 16384 65536 262144

Number of Vectors Tested

Figure 6-3. Plot of number of vectors tested vsltéafound for 32 instantiations of C432.

The circuit C432 has 277 checkpoint locations &mlrheans there are 544 possible faults.
Table 6-3 shows that 537 total faults were fouhdt teaves 7 faults unaccounted for. Thisis a
98.7% fault detection rate which is generally cdased an acceptable detection rate. Upon
further investigation, we found that these 7 migdaults were actuallyedundant faults. A
redundant fault is defined as an untestable fawdt¢ombinational circuit that does not cause any
change in the input/output logic function of thecait [2]. It is common for circuit designer to

add redundancy in the design to counteract glitcliesto logic hazards. These redundant logic

67

structures do not change the overall function efdincuit — they merely allow the circuit output

to remain stable and glitch free when differentuiir paths switch with different delay.

Table 6-3 also shows that these 537 faults aredfauf.23 seconds which leads to another
observation. Consider Figure 6-4, which shows agdithe total time taken as a function of the
Number of Vectors tested. There is very little apam the time due to the number of vectors,
until approximately 4096 vectors are tested. Towd?PC directive that outputs data takes
significant amount of time to run and masks theetwhthe fault detection algorithm. It is not
until a significant number of vectors are testédf the algorithm’s speed begins to slow down
into a detectable range. Once the number of vetteing tested fall into this range, the increase

in time follows the number of vectors being tested linear fashion.

30
25 r
20

15 /

10 /

Time(s)

1 4 16 64 256 1024 4096 16384 65536 262144

Number of Vectors Tested

Figure 6-4. Plot of total time taken vs. numbeveftors tested for 32 instantiations of C432.

The other fault detection stability point is thenther of vectors that are needed to test a

circuit. Figure 6-5 shows how when the numberaaftors tested increases, so does the

68

final test set size until a certain point. Thisrpas where the maximum number of faults
was found in Figure 6-3 and Table 6-3. After {snt no new faults are to be detected,
but by testing more vectors, it is possible to dase the number of input vectors needed
obtain the maximum fault coverage. Although tleisttcan be run for all possible inputs,
this is not an efficient testing method and shdaddavoided. From Figure 6-5 it can be
seen that at around 4096 tested vectors the nuohlbseful vectors begins to stabilize in

range of 32-34.

In this graph there is an interesting change imtimaber of useful vectors at 163840
tested vectors. At this point there is a localimum of 32 useful vectors and it is
surrounded by 33 useful vectors on both sidess Gén be explained by maximum fault-
minimum vector algorithm that is described in cleaf Without the use of advanced
heuristic techniques, which would slow down thigoasithm, it is possible that one useful
vector may mask another vector that would help ecedhe final number of useful
vectors. This is one trade-off this algorithm wker the advantage of increased

processing speed.

69

50

45

40

35

30 /
25

20 ~

15

10 VA

5

1 4 16 64 256 1024 4096 16384 65536 262144

Test Set Size

Number of Vectors Tested

Figure 6-5. Graph of number of vectors testeded&. set size

Outlying Data

In a number of other circuits we found some vasiafrom the trend we saw for C432.
We found variations usually in circuits that werler significantly smaller (eg. Z9sym
from MCNC benchmark) or significantly larger (edl¥55 and C880 from ISACS) than
C432. In both C1355 and C808, due to their large,svhen 64 instantiations were
implemented, the standard 25MHz clock speed cooidea met. To fix this, the speed
was dropped to 12.5MHz, and both circuits were enp@nted without error. We found
that certain area constraints are due to timingirements. The FPGA uses more LUTs
to overcome certain timing issues and as a reselltlésign becomes too large to fit on

the device. By dropping the speed the number ofd lthplemented drops.

The issue with dropping the speed is that the tm@ovement due to the number of

instantiations was negated by the drop in cloclkedpédn a larger FPGA such as the

70

Virtex V, this would not be an issue because tlageemore resources, including the
timing dependent LUTs. For simplicity the speedweopped by one half, which does

not need to be done for professional use.

Another issue that varies from circuit to circaitthe stability point. Certain circuits such
as C1355 have a stability point that is much memagent, without fluctuations (similar
to the plot for C432 shown in Figure 6-3). On titleer hand there are circuits that seem
to never reach a stability point. This is due ® $mall size of the circuit and the smaller
number of inputs. Circuits like Z5xp1 and z9symrdn& and 9 inputs respectively
restricting the total number of input vectors tbah be tested to 128 and 512. For both
these circuits, we found some faults that wereddiff to observe at the output and
required the full input set to be tested. This lbarseen in Figure 6-6 which shows the
plot of the vectors tested versus the vectors faredrcuit zZ9sym. As can be seen in

Figure 6-6, we were able to find faults up untilgdssible vectors are tested.

71

80
70

p -
50

40 /

. e

20

10 /

1 2 4 8 16 32 64 128 256 512

Faults Found

Vectors Tested

Figure 6-6. Graph of vectors tested vs. vectorsiegéor z9sym

The last piece of interesting data to be foundheappendices is that some times do not
decrease logarithmically with the number of vectmrgstantiations tested. As was
stated in the explanation of the data for C432,méme algorithm’s time is below a
certain threshold the output directive in the Pd¥&takes longer and masks the
algorithm’s timing. For the smaller circuits lik&EL7, z9sym, and Z5xp1l this is apparent
through all or most of their instantiation or vadiests. In the graph Figure 6-7 below,
the line at the bottom is where the speed of thedP®C output directive started to mask
the speed of the FPGA fault detection algorithnesjdte increases in the number of
instantiations, the time remained at 0.39 secoedause the number of useful input

vectors remained the same.

72

Time(s)

2.5

15

0.5

—

10

20

30 40 50 60 70

Instantiations

Figure 6-7. Graph of Instantiations vs. Time fosy®

Summary of Results for the ISCAS and MCNC benchneaduits

In this section, we summarize the result of ouoathm applied to circuits from the

ISCAS and MCNC benchmark suites. The benchmarkitstave the following

characteristics:
Circuit Inputs Outputs | # of | Circuit | Function Benchmark
Gates | Depth Suite
c1355 41 32 546 23 32-bit Error Correcting circuit ISCAS
cl7 5 2 6 3 Simple NAND chain ISCAS
c432 36 7 160 29 27-channel interrupt controller ISCAS
c499 41 32 202 23 32-bit Error Correcting circuit ISCAS
c880 60 26 383 23 8-bit Arithmetic Logic Unit ISCAS
Clip 9 5 144 11 Unknown MCNC
rd73 7 3 148 13 Unknown MCNC
481 16 1 74 14 Unknown MCNC
Z5xpl 7 10 166 10 Unknown MCNC
z9sym | 9 1 147 12 Unknown MCNC

Table 6-4. Description of Benchmark circuits

73

As a summary of the results that were found, Tébedescribes the best possible

outcomes dependent on three factors.

1. Largest number of faults detected
2. Smallest number of vectors to detect 1.
3. Shortest time to detect previous two factors

The first criterion for deciding the best data e fault detection percentage. This is
the most important factor because missing potestislk-at-faults can cost a
manufacturer money, especially if an error systezally occurs in an undetected region.
The next criterion was the size of the test sehalir test sets mean faster chip
verification and saves money for manufacturergh@lgh the time for running this test
may be longer, as is the case for C880, reduciagett set will be beneficial during
manufacturing where the same circuit verificationié be run numerous times. Once
these criteria are met, the best data was orgabased on the time it took to perform the

fault detection.

74

Maximum Time Verilog Code | Maximum

Vectors| Vectors| number of | Faults | Fault Taken | Generation | Number of
Circuit | Tested | Needed| faults Found | Coverage| (s) Time vectors
c1355 | 5120 84 1618 1610 0.995 2.75 5.031 2.19902E+1
cl7 8 6 22 22 1 0.0329| 0.14 32
c432 163840 32 544 537 0.987 12.16 0.734 6871947673
c499 1280 52 594 586 0.986 0.34 0.938 2.19902E#+12
c880 327680 25 994 994 1 32.77 2.563 1.15292E+18
Clip 512 48 428 415 0.969 0.24 0.453 512
rd73 128 72 404 404 1 0.367 0.438 128
t481 2048 33 194 194 1 0.17 0.188 65536
Z5xpl | 128 46 476 470 0.987 0.23 0.578 128
z9sym | 512 75 462 410 0.887 0.39 0.531 512

Table 6-5: Best fault detection based on faultsithwectors used, and time (done with 32
instantiations)

Table 6-5 shows the results for the total numbeanfilom vectors generated, total

number of vectors in the compressed set, the marimumber of faults in the circuit and

the number detected. It also reports the total taken for vector generation and the total

time taken by our C++ code to recognize the cheickpoinsert faults and generate a

new Verilog netlist. Some benchmark circuits (€432 and C880) were run longer even

though all possible detectable faults were founith fss vectors. Having more vectors

enabled us to do the final compression more efftbfe As seen in Figure 6-8, the fault

coverage of our approach is excellent with mosiugis showing a coverage well over

97%. In all circuits, we are able to detect all medundant faults. The lowest coverage

was forZ9sym at a rate of 88.7%. No additional faults can bected for Z9sym because

all possible vectors were tested. We found thattwerage of the collapsed fault-set for

this circuit using Mentor’s FastScan also provideky a 87.5% coverage. The less than

75

100% coverage can be attributed to redundant fanldlsnasking of some faults due to

the use of dominance relationships as stated ipt€hd.

1.2
1 _
x
o 0.8 -
[T
o
2 06 -
Q
=
E 0.4 -
0.2 -
O |
c1355 cl c432 c499 c880 clip rd73 t481 Z5xpl z9sym
Benchmark Circuit

Figure 6-8. Fault coverage percentage in the beadhaircuits

To measure the effectiveness of our approach, wgace our results to existing results
from [27], [28], [29] and to Mentor Graphic’s Fasth ATPG tool. All circuits were run
with 32 instantiations on the FPGA with a systeocklfrequency of 25MHz. Table 6-6
compares and summarizes the results for the diffédrenchmark circuits. Results for the
MCNC benchmark circuits were not available in poesly published work of [27], [28]

and [29] so the comparison is made only with FastSor these circuits.

Circuit | [27] | [28] | [29] | FastScan Our
C432 47 32 57 50 32
C499 59 52 54 54 52
C880 30 17 62 43 25

C1355| 86 84 86 87 84

Clip N/A | N/A | N/A 59 48
Rd73 | N/A| N/A| N/A 71 72
T481 | N/A | N/A | N/A 35 33

Z5xpl | N/A | N/A | N/A 47 46

Z9sym | N/A| N/A| N/A 77 75

76

Table 6-6: Comparison of ISCAS and MCNC circuituhfest pattern counts using various tests

Table 6-6 suggests that in several cases, outsguulduce the smallest test set and

match the pattern count of the best test set stzewn in [2]. For MCNC circuits where

previously published data was not available, oyregach produces a smaller test set than

Mentor Graphic’s FastScan for all circuits excefr3.

77

Chapter 7: Conclusions and Future Work

Conclusions:

As circuitry becomes larger and more complicatedhguters and other computational
devices will be utilized more for design checkimgldault modeling. Without this, it
would take years to do what is now done in secordso, with FPGA’s becoming more
widespread, it is logical that they be utilizeduvays that would replace software analogs.
Hardware will almost always be faster than softwaard with improved synthesis
techniques, using an FPGA can be a good replaceoreaiarge number of software

algorithms.

As stated in previous chapters, the top priorityhid fault detection algorithm was to
determine how increasing the number of parallgbmsations of a fault injected circuit
could improve the run time. It has been proven ttea speed increases inversely, (1/x),
to the number of faulty circuit instantiations iraplented, especially in the larger
circuits. The use in smaller circuit will not bévantageous, but at the same time,
circuits that cannot utilize this concept efficigrare small enough to be simulated in
software quickly anyway. It is only in the largarcuits that have millions of possible

inputs that would need hardware speed increasedradgitional simulation.

In addition to this, the algorithm has been showhave an excellent fault coverage rate.
Some run times may be seen as much longer tharspthé this is because there was a

trade-off in terms of the number of useful vectmspping or the number of faults

78

detected increasing. In the appendices it careée thathis can algorithm can run

significantly quicker if certain trade-offs are aptable.

Future Work

The work presented in this research can be impraped in a number of ways:

Due to time constraints certain aspects of therdkgo were not able to be completed or
optimized. The first issue was that of timing. eféare a number of places where combinational
logic delay forced the FPGA core to run at slowsrezls. This included the section of code
where the faults were counted. This was done avihction of code that counted bits
individually in a sequential order. To improve thasiding groups of bits would have been more

efficient and would have improved the speed.

Bit0 Bit 1 Bit 2 Bit 3

Figure 7-1. Bit counter in the current algorithm

Figure 7-1 is an example of how the adding was dotige current fault detection algorithm.
The program simply lines up a large number of asider row. One input is a bit from a vector
whose logic high bits are being counted and therdtiput is the total number of logic high bits

counted thus far.

79

Bit0

Bit 1

Total

JT

Bit2

+7

Bit3

Figure 7-2. Improved bit counter

Figure 7-2 represents the improved bit counterthis design there are only log
(rounded up to the next integer) levels of logignsicantly reducing the logic delay
associated with the Figure 7-1. In this desigerggroup of two bits is added together,

these totals are then added together until alclogih bits are counted.

In addition to this, more efficient fault detectialgorithms could be used with this
research to further decrease runtime. Becausebjeetive of this research was to
determine if the parallel nature of FPGAs couldibkzed to increase the speed of fault
detection, the actual fault detection algorithm wasmade as efficiently as possible.
Research such as [12] and [13] have shown signif&@ides in serial emulation, and

combined with this research could potentially slemgn faster speeds.

80

Bibliography:

[1] P. Clarke. (2010, March 29) Xilinx, ASIC Vendoralk Licensing. [Online].

Available: http://www.eetimes.com/story/OEG2001062291

[2] M.L. Bushnell, V.D. AgrawalEssentials of electronic testing for digital, memory and

mixed-signal VLS circuits. Boston: Springer, pp.57-120, 2005.

[3] D. Moore and H. Walkeryield Smulation for Integrated Circuits.

Boston/Dordrect/Lancaster: Kluwer Academic Publishpp.22-55, 1987.

[4] S. Foley, J. Molyneaux, A. Mathewson, An evaioia of fast wafer level test methods
for interconnect reliability control, Microelectrims Reliability, Volume 39, Issue 11,

November 1999, Pages 1707-1714

[5] C. Cohn and C. A. Harpefailure-free Integrated Circuit Packages: Systematic

Elimination of Failures. New York: McGraw Hill, p. 151, 2005.

[6] H. Y Chang and J. G. Chappel, "Deductive teghes for simulating logic circuits",

Computers, pp. 52-59, March 1975

[7] E. G. Ulrich and T. Baker,"The concurrent siation of nearly identical digital

networks," In ACM IEEE Design Automation Conferenpp 145-150.

[8] J. P. Roth, “Diagnosis of automata failuresc#culus and a method”, IBM Journal

of Research & Development, vol. 10, pp. 278-291y 1066

81

[91 W. T. Cheng and M. L. Yu, "Differential faultraulation for sequential circuits”,

Journal of Electronic Testing, vol. 1, pp. 7-13yJL090

[10] K. Gulati, and S. Khatri, “Towards acceleratiof fault simulation using graphics
processing units,” iProceedings of the 45th Annual Conference on Design Automation,

pp. 822-827, 2008,

[11] P. Ellervee, J. Raik, and V. Tihhomirov, “Faemulation on FPGA: a feasibility

study,” In Proceedings of the 21% NORCHIP Conference, Riga, Latvia, pp.92-95, 2003.

[12] P. Ellervee, J. Raik, and V. Tihhomirov, “Ensiment for fault simulation
acceleration on FPGAJh Proceedings of the 9" Biennial Baltic Electronics

Converence, pp.217-220, 2004.

[13] D. Saab, F. Kocan, and J. Abraham, “Massiyelsallel/reconfigurable emulation
model for the d-algorithm,I'n Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable Logic and

Applications, pp. 1172-1176, 2002.

[14] F. Kocan, and D. Saab, “Concurrent d-algoritmreconfigurable hardware,”
Proceedings of the 1999 IEEE/ACM international conference on Computer-aided design,

pp.152-156, 1999.

[15] K. Cheng, S. Huang, and W. Dai, “Fault emwatia new methodology for fault
grading,”In |EEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol 18, Issue 10, pp.1487-1495, 1999.

82

[16] J. S. Augusto, C. B. Almeida, and H. C. Neté. modular reconfigurable
architecture for efficient fault simulation in digi circuits,” InLecture Notesin

Computer Science: Field-Programmable Logic and Applications, pp.818-827, 2003.

[17] F. Kocan, and D. Saab, “Dynamic fault diagsasi combinational and sequential
circuits on reconfigurable hardwardgurnal of Electronic Testing: Theory and

Applications, Vol. 23, Issue 5 pp.405-420, 2007.

[18] B. Zeidman. (2010, March 29) The Death of 8tauctured ASIC. [Online].

Available: http://chipdesignmag.com/display.php?

[19] Virtex-Il Pro and Virtex-1l Pro X Platform FP&s: Complete Data Sheet, [Online]

Available at:_http://www.xilinx.com/support/docuntation/data_sheets/ds083.pdf

[20] PowerPC 405-S Embedded Processor Core Usexrrsill Version 1.1, [Online]

Available at:_http://www-03.ibm.com/technology/paWlieensing/cores/ppc405.html

[21] PowerPC 405 Processor Block Reference Gud@slife] Available at:

http://www.xilinx.com/support/documentation/usericgs/ug018.pdf

[22] Xilinx University Program Virtex-ll Pro Devefament System, [Online] Available

at: http://lwww.xilinx.com/univ/IXUPV2P/DocumentatibfiUPV2P User Guide.pdf

[23] FIFOs Using Virtex-11 Block RAM, [Online] Avdable at:

http://www.xilinx.com/support/documentation/applios notes/xapp258.pdf

83

[24] Clock Generator (v3.02a), [Online] Available a

http://www.xilinx.com/support/documentation/ip docentation/clock generator.pdf

[25] JTAGPPC Controller, [Online] Available at:

http://www.xilinx.com/support/documentation/ip docentation/jtagppc cntlr.pdf

[26] Processor System Reset Module, [Online] Avddaat:

http://www.xilinx.com/support/documentation/ip docentation/proc sys reset.pdf

[27] I. Pomeranz, L. N. Reddy, and S. M. Reddy, MIPACTEST: a method to generate
compact test sets for combinational circuits,nternational Test Conference, 1991,

pp. 194-203.

[28] M. C. Hansen and J. P. Hayes, “High-level tgsteration using physically-induced

faults,” inIEEE VLS Test Symposium, 1995, p. 20.

[29] E. Bareisa, V. Jusas, K. Motiejunas, and Rn&eskas, “Test generation at the
algorithm-level for gate-level fault coveragd/icroelectronics Reliability, vol. 48, no. 7,

pp.1093 — 1101, 2008.

Appendix 1: C++ Code for fault induction

/I ErrorAnalysisAndMuxInsertion.cpp : Defines the e
application.
1

#include "stdafx.h"
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <stdio.h>
#include <conio.h>
#include <ctime>
using namespace std;

class cirGraph{
public
string Name;
string Type;
int Level;
vector<string> Parents;
vector<string> Children;
void clrGraph(); /
I
void cirGraph::clrGraph(){
this ->Name= "' ;
this ->Type= ™ ;
this ->Level=0;
this ->Parents.clear();
this ->Children.clear();

string deleteSpaces(string);
void GraphEntries(string, vector<cirGraph> &nodeFill);
void ParentCheck(vector<cirGraph> &checkParents, vector
&inputs, vector< int > &usedMoreNum);
void textlnsert(string,string,vector<string> &usedMulti
vector< int > &usedMoreNum);
int main(void)
{

std::clock_t start = std::clock();

int i=0;

vector<cirGraph> nodes;

vector<string> usedNumerous, inputs;

string benchmarkname = "t481"

vector< int > usedNumerousNum;

string fileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\Verilog_files\\"
+ "WV /linput file

string outFile = "E:\\Users\\Joe
Dunban\Documents\\Verilog_files\\Verilog_files\\"
+ "testv" /loutput file

cout << outFile;

GraphEntries(fileName, nodes);

int size = nodes.size();

cout << "Name, Type, Parents" << endl;

for (i=0; i< size; i++){

current data from the clrgraph vector

cout << nodes.at(i).Name << "
int childrenSize = nodes.at(i).Children.size();
int parentSize = nodes.at(i).Parents.size();

for (int k=0; k < parentSize; k++)
cout << .
cout << endl,

/IName of node
/INode Type

84

ntry point for the console

/INodes above
/INodes below
/Clears all data in class

<string> &usedMore, vector<string>

ple, vector<string> &inputs,

+ benchmarkname + “\" + benchmarkname

+ benchmarkname + "\" + benchmarkname

//Outputs the

<< nodes.at(i). Type;

<< nodes.at(i).Parents.at(k);

ParentCheck(nodes,usedNumerous,inputs, usedNumerou sNum);
size = usedNumerous.size();
cout << "Parents used more than once: " << usedNumerous.at(0);
for (i=1;i<size;i++) //Outputs to terminal the nodes that are used numer ous times
cout << "" <<usedNumerous.at(i); / /in the file
cout << endl;
textinsert(fileName, outFile, usedNumerous, inputs , usedNumerousNum);
std::cout<< ((std::clock() - start) / (double)CLOCKS_PER_SEC) <<'\n'
geteh();
return 0;
[* Searches the input file given, and sets up the c irGraph class with data from
it. */
void GraphEntries(string file, vector<cirGraph> &nodeFi 1)
{
size_t commapos, semicolpos;
ifstream inFile;
inFile.open(file.c_str());
string templine, line;
cirGraph x;
int pos=0;
int input =0;
if (linFile){ /IMakes sure that the file is usable
cerr << "Unable to open file datafile.txt"
lexit(1);
/ISearch File For Graph Entries
while (linFile.eof(){
getline(inFile,line);
/IFind Primary Inputs
string input = "input"
if (line.rfind(input) != string::npos){
semicolpos = line.find_first_of(),
line.replace(line.rfind(input),input.length(), ")
commapos = line.find_first_of(")
while (semicolpos != string::npos){
commapos = line.find_first_of(")
if (commapos != string::npos){
templine = line.substr(0, line.find_first_of(
templine = deleteSpaces(templine);
line =
line.substr(line.find_first_of(""")+1line.size()-line.find_first_of("r)-1);
else if (commapos == string::npos){
templine = line.substr(0, line.find_first_of(
templine = deleteSpaces(templine);
line =
line.substr(line.find_first_of(")+1,line.size()-line.find_first_of(")-1);
x.Name = templine;
x.Level = 1,
x.Parents.push_back("Null");
x.Type = "PI"
nodeFill.push_back(x);
x.clrGraph();
input = 1;
semicolpos = line.find_first_of()
commapos = line.find_first_of(")
if ((semicolpos == string::npos) && (commapos != strin g::npos)){
templine = line.substr(0, line.find_first_of(")
templine = deleteSpaces(templine);
line = line.substr(line.find_first_of(")+1line.size()-
line.find_first_of("t)-1);

x.Name = templine;
x.Level = 1,

)

)}

85

(line.rfind(

x.Parents.push_back(

x.Type = "PI"
nodeFill.push_back(x);
x.clrGraph();

}
}
else if ((line.find_first_of(
"module”)==string::npos)){
if (line.find_first_of(

"Null*);

"(") !=string::npos) &&

)<1)

line.replace(0,line.find_first_not_of()y, M)
templine = line.substr(0, line.find_first_of() S

x.Type = templine;

line = line.substr(line.find_first_of(

line.find_first_of((")-1);

commapos = line.find_first_of(

templine = line.substr(0,line.find_first_of(
templine = deleteSpaces(templine);

x.Name = templine;

line = line.substr(line.find_first_of(

line.find_first_of(")-1);

commapos = line.find_first_of(

while (commapos != string::npos){
templine = line.substr(0,line.find_first_of(

“(")+1,line.size()-

")+, line.size()-

“’“)!

templine = deleteSpaces(templine);
x.Parents.push_back(templine);

line = line.substr(line.find_first_of(

line.find_first_of("r)-1);

}

commapos = line.find_first_of(

")+, line.size()-

templine = line.substr(0,line.find_first_of(0O

templine = deleteSpaces(templine);

x.Parents.push_back(templine);
line.clear();
templine.clear();
nodeFill.push_back(x);
x.clrGraph();

}

inFile.close();

/*Given a specific string, this function deletes al
the string*/
string deleteSpaces(string phrase)

size_t space = phrase.find_first_of(

while (space != string::npos){
phrase.replace(space,1, "y,
space = phrase.find_first_of(

}

return phrase;

/IChecks all the nodes found in cirGraph vector and
//One contains strings with all the node names used
/[The other contains the number of times each of th
void ParentCheck(vector<cirGraph> &checkParents, vector

&inputs, vector<

int > &usedMoreNum){
vector<string> all;

int i,], pSize, count, allSize,aSize;

int written =0;

int checkParentsize = checkParents.size();
string check;

for (i=0;i<checkParentsize;i++){

/ICycles through all parents and assigns them to a
pSize = checkParents.at(i).Parents.size();

IIvector of strings called "all"

| white spaces in front of and behind

creates two vectors.
more than once.
ese nodes are called.
<string> &usedMore, vector<string>

86

for (j=0;j<pSize;j++)
all.push_back(checkParents.at(i).Parents.at(j));

if (strcmp(checkParents.at(i).Parents.at(0).c_str(), "Null") == 0){
inputs.push_back(checkParents.at(i).Name);

}

allSize = all.size();
for (i=0;i<allSize;i++){

/ICycles through vector "all"
check = all.at(i);
count = 0;

for (j = 0; j<allSize;j++)X{

/ICounts the number of times a string shows up in " all"
if (strcmp(check.c_str(),all.at(j).c_str()) == 0)
count++;

aSize = usedMore.size();
for (j = O0;j<aSize;j++){

//If a parent is used more than once it is placed i n the
if (strcmp(usedMore.at(j).c_str(),check.c_str()) == 0)
[Istring
vector usedMore and the number of times it is used
written = 1;

Ilis placed in int vector usedMoreNum. If a Parent is already

}

/laccounted for it is skipped here.
if ((count > 1) && (written == 0)}{
usedMore.push_back(check);
usedMoreNum.push_back(count);

written = 0O;

}

/llInserts all the text into the output file
/[Creates a file with updated module, inputs, outpu ts, wires, and gates
/IAlso inserts Muxs where needed
/IAt the end it inserts a mux function to every fil e
void textlnsert(string file,string ofile, vector<string > &usedMultiple, vector<string>
&inputs, vector< int > &usedMoreNum){
/ldeclarations
ifstream inFile(file.c_str());
ofstream outFile(ofile.c_str());

if (linFile)}{
/IMake sure the file is accessible
cerr << "Unable to open file datafile.txt" ;
exit(1);
b .
if (loutFile)}{
cerr << "Unable to open file datafile.txt" ;
exit(1);
bool inputMux = false ;
bool inputUsed = false
int i,j;
int count=0;
int size = usedMultiple.size();
int done =0;

int inputNum = inputs.size();
int muxNum = 0;

87

88

int erased =0;
int used=0;
int condition = 1;
char buffer[100] ;
vector< int > num;
vector< int >:iterator it;
string line, templine, templine2, fullLine;
string module = "module "
size_t commapos;
for (i=0;i<size;i++)
count += usedMoreNum.at(i);
while (linFile.eof(){
erased = 0;
used = 0;
getline(inFile,line);
fullLine = line;

if ((line.rfind("module") != string::npos) && (line.rfind("end") ==

string::npos)){ /IAdds all the inputs that
are needed to the module line

templine = line.substr(line.find_first_of("e")+1,
line.find_first_of("(")-line.find_first_of("e")-1);

templine = deleteSpaces(templine);

templine = templine.append("test");

templine = module.append(templine);

line = line.substr(line.find_first_of("("), line.size()-
line.find_first_off(""));

line = templine.append(line);

templine = line.substr(0,line.find_first_of(");

for (i = Oji<count;i++){
itoa(i,buffer,10);
templine.append("SS"),
templine.append(buffer);
}
templine.append(" errsig);");
fullLine = templine;

templine.clear();
if ((line.rfind(“input") !=string::npos) && (line.rfind(o)==
string::npos)){ /IAdds all the inputs that
are needed to the input line
templine = line.substr(0,line.find_first_of(SO
for (i = O;i<count;i++)Y{
itoa(i,buffer,10);
templine.append("SS")
templine.append(buffer);
}
templine.append(", errsig;");
fullLine = templine;

templine.clear();

if ((line.rfind("wire") !=string::npos) && (line.rfind(o)==
string::npos)){ /[Puts all wires that
are needed at nodes on the wire line
templine = line.substr(0, line.find_first_of(SO
for (i = 0; i<inputNum;i++)Y{

templine.append()

templine.append(inputs. at(l))

templine.append("0");

for (i =0; i<size; i++{
for (j = 0; j<usedMoreNum.at(i); j++){
if (usedMultiple.at(i).rfind("Null*) ==
string::npos){

itoa(j+1,buffer,10);

templine.append();

templine. append(usedMuItlpIe at(i));
templine.append(")

89

templine.append(buffer);

}
}

}

templine.append()

fullLine = templine;

if ((line.find_first_of("(") !=string::npos) &&
(line.rfind("module")==string::npos)}{ /[Finds first
line with a (" that doesn't have a "module”
if (done == 0}

/IAll new inputs muxes are put here if done =1
for (i = O;i<inputNum;i++){

outFile << "mux Mux" <<muxNum<< "(" <<
inputs.at(i) << " 0,SS" <<muxNum << " errsig," << inputs.at(i) << ");" << endl
muxNum-++;
}
done = 1;
templine2 = line.substr(0, line.find_first_of("O)+L);

//On the first
line it checks all of the inputs and outputs

line = line.substr(line.find_first_of(")+, line.size()-
line.find_first_of()AL,
commapos = line.find_first_of(")

while (commapos != string::npos){

//If there is a comma the while loop starts checkin g inputs
inputMux = false ;
templine = line.substr(0,line.find_first_of("N

templine = deleteSpaces(templine);
for (j = O;j<inputNum;j++){
if (templine.compare(inputs.at(j)) == O){
inputMux = true ;

}

for (i = O;i<size;i++){
if ((templine.compare(usedMultiple.at(i)) == 0) &&
(templine.compare("Null") 1= 0)){ //If an input matches a usedMultiple
entry a mux is added to the file
if (erased == 0){

/land the inputs to the original line are changed t 0 match the input
fullLine = templine2;
erased = 1,

for (j = 0; j < inputNum; j++){
if (templine.compare(inputs.at(j)) ==

0¥
outFile << "mux Mux" <<
muxNum << "(" << usedMultiple.at(i) << " << usedMoreNum.at(i) << ", SS" <<muxNum << "
errsig, " << usedMultiple.at(i) << " 0);" <<endl
inputUsed = true ;
}
if (linputUsed)
outFile << "mux Mux" << muxNum << *“("
<< usedMultiple.at(i) << " " << usedMoreNum.at(i) << ", SS" <<muxNum<< " errsig," <<
usedMultiple.at(i) << ");" << endl;
inputUsed = false ;
fullLine.append(usedMultiple.at(i));
fullLine.append()

itoa(usedMoreNum.at(i), buffer, 10);
fullLine.append(buffer);

inputs

90

fullLine.append()

muxNum-++;

usedMoreNum.at(i) = usedMoreNum.at(i) -1;
used =1,

}
for (j = O;j<inputNum;j++){
/If a line contains one of the original

if ((inputMux) && (templine.compare("Null") !=0) &&

(used == 0) && (templine.compare(inputs.at(j))==0)) { /[The input must be changed

to what the input mux has

if (erased == 0){
fullLine = templine2;
erased = 1,

}
fullLine.append(inputs.at(j));

fullLine.append("0");
fullLine.append(")
used =1,
}
if ((used ==0) && (erased == 1)){
fullLine.append(line.substr(0,line.find_first_of(")+L));
templine2.append(line.substr(0,line.find_first_ of(",")+1));
line = line.substr(line.find_first_of(")+, line.size()-
line.find_first_of(S)-1);
commapos = line.find_first_of(")
used = 0;
templine = line.substr(0,line.find_first_of("O);
templine = deleteSpaces(templine);
inputMux = false

<< usedMultiple.at(i) <<
usedMultiple.at(i) <<

usedMultiple.at(i) <<
usedMultiple.at(i) <<

for (j = O;j<inputNum;j++){
if (templine.compare(inputs.at(j)) == 0)
inputMux = true ;
}
for (i = O;i<size;i++){
if (templine.compare(usedMultiple.at(i)) == 0)}{
if (erased == 0){
fullLine = templine2;
erased = 1;

for (j=0;j <inputNum; j++){
if (templine.compare(inputs.at(j)) == 0){

outFile << "mux Mux" << muxNum<< "("
" << usedMoreNum.at(i) << ", SS" << muxNum << ", errsig, " <<
" 0);" <<endl
inputUsed = true ;
}
if (linputUsed)
outFile << "mux Mux" << muxNum<< "(" <<
" << usedMoreNum.at(i) << ", SS" << muxNum << ", errsig, " <<
")t <<endl
inputUsed = false ;

fullLine.append();
fullLine. append(usedMuItlpIe at(l))
fullLine.append(
itoa(usedMoreNum.at(i), buffer 10);
fullLine.append(buffer);
fullLine.append()
muxNum-++;

91

used = 1;
usedMoreNum.at(i) = usedMoreNum.at(i) -1;

}

for (j=0;j < inputNum; j++){
if ((templine.compare(inputs.at(j)) == 0) &&
(templine.compare("Null") I=0) && (fullLine.find(inputs.at(j)) == string:: npos)){
if (erased == 0){
fullLine = templine2;

erased = 1;
}
fullLine.append(inputs.at(j));
fullLine.append("0);
fullLine.append()
used = 1;

}
for (j = O;j<inputNum;j++){

//If a line contains one of the original inputs
if ((inputMux) && (templine.compare("Null") !'=0) && (used
== 0) && (templine.compare(inputs.at(j))==0)}{ /IThe input must be changed
to what the input mux has
if (erased == 0){
fullLine = templine2;
erased = 1;

}
fullLine.append(inputs.at(j));

fullLine.append("0);

fullLine.append()

used =1,

}
}
if ((used == 0) && (erased == 0)){

templine2.append(line.substr(0,line.find_first_ of(")
templine2.append()

fullLine = templine2;
else if (used == 0}
fullLine. append(templme)
fullLine.append()
line.clear();
templine.clear();

outFile << fullLine << endl;

/IAdd line to file

}

| INext two lines are adding the mux information

outFile << "module mux(y,sel,b,a); \ninput a,b,sel; \noutput y ;\n \nwire
sel,a_sel,b_sel; \n \nnot U_inv (inv_sel,sel); \nan d U_anda (a_sel,a,inv_sel), \nU_andb
(b_sel,b,sel); \nor U_or (y,a_sel,b_sel); \n \nendm odule \n \n" ;

inFile.close();

outFile.close();

92

Appendix 2: C++ code for creating all other verifigs

/I InstantiationCreator.cpp : Defines the entry poi
I

#include "stdafx.h"
#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <stdio.h>
#include <conio.h>
#include <math.h>
using namespace std;

string readFile(string);

int numin(string);

int ssin(string);

int numOut(string);

void writeSimulate(string, string, string,

void writeBlock(string, string, string,

void write_user_logic(string, string, string,

void writeTest(string, string, int , string);
void writePPCcode(string, string);

string deleteSpaces(string);

int
int

int

{

main(void)

int instantiations = 32;

string benchmarkname = "t481"

string fileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\Verilog_files\\"
+ "V /linput file

string testFileName = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\"
+ "testv" /linput file

string outSim =
+ benchmarkname + "\\" + benchmarkname +

string outBlock = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\\Verilog_files\\"
+ "block.v" /loutput

string user_logic = "E:\\Users\\Joe
Dunbar\\Documents\\Verilog_files\Verilog_files\\"
benchmarkname + ".vhd" /loutput

string simtest = "E:\\Users\\Joe
Dunban\Documents\\Verilog_files\\Verilog_files\\"
+ "simtest.v" ;

string cCode =
+ benchmarkname + "\TestApp_Peripheral.c"

string testName = readFile(fleName);

int testinputs = numin(testFileName);

int SSIn = ssiIn(testFileName);

int testOuts = numOut(testFileName);

string Name = readFile(fileName);

cout << testName << """ <<testlnputs <<

cout << Name << << testlnputs << endl;

writeSimulate(testName, Name, outSim, testinputs,

writeBlock(testName, Name, outBlock, testlnputs, S

write_user_logic(testName, Name, user_logic, testl
testOuts);

writeTest(testName, Name, testinputs, simtest);

writePPCcode(cCode, Name);

getch();

return

"simu

0;

string readFile(string fileName)

"E:\\Users\\Joe Dunbar\\Documents\\Verilog_files\\V

"E:\\Users\\Joe Dunbar\\Documents\\Verilog_files\\V

nt for the console application.

int int , int);
int);

int

int
int

int
int

, int);

+ benchmarkname + “\" + benchmarkname
+ benchmarkname + “\" + benchmarkname
erilog_files\\"
late.v" ; /loutput file
+ benchmarkname + “\" + benchmarkname
+ benchmarkname + “\\user_logic_" +
+ benchmarkname + "\" + benchmarkname

erilog_files\\"

<< SSIn << << testOuts << endl;
SSIn, instantiations, testOuts);
SIn, instantiations, testOuts);
nputs, SSin, instantiations,

ifstream inFile;
inFile.open(fileName.c_str());

if (linFile){
sure that the file is usable
cerr << "Unable to open file 2.txt"
exit(1);
bool stored = false ;
string line;

while (linFile.eof() && !stored){
getline(inFile,line);

if ((line.rfind("module") != string::npos)){
line =
line.substr(line.find_first_of("e")+1,line.find_first_of("(")-line.find_first_of(
line = deleteSpaces(line);
stored = true ;
}
}
return line;

int numin(string fileName)

ifstream inFile;
inFile.open(fileName.c_str());
if (linFile)}{

sure that the file is usable
cerr << "Unable to open file 3.txt" ;
exit(1);

string line;
string lineChar;
string comma = "

int lineSize;
int count=0;
bool stored = false ;

while (linFile.eof() && !stored){
getline(inFile,line);
if ((line.rfind("input") !=string::npos) && (line.rfind(
string::npos)){
if (line.rfind("SS") I= string::npos)y{
line = line.substr(line.find_first_of("tO)+1,
line.find_first_of("SS")-line.find_first_of("t)-1);
lineSize = line.size();
for (int i=0;i<lineSize; i++){
lineChar = linei];
if (comma.compare(lineChar) == 0)
count++;
}
stored = true ;
return count;

else {
line = line.substr(line.find_first_of(")+,
line.find_first_off(")-line.find_first_of("t)-1);

lineSize = line.size();

for (int i=0;i<lineSize; i++){

lineChar = line[i];
if (comma.compare(lineChar) == 0)
count++;

}
count++;

return count;

93

/IMakes

e)-1);

/IMakes

)=

94

}
}
return 0;

int numOut(string fileName)

ifstream inFile;
inFile.open(fileName.c_str());

if (linFile)}{
/IMakes
sure that the file is usable
cerr << "Unable to open file 4.txt"
exit(1);
}
string line;
string lineChar;
string comma = "
int lineSize;
int count=0;
bool stored = false ;
while (linFile.eof() && !stored){
getline(inFile,line);
if ((line.rfind("output") = string::npos) && (line.rfind(mt) 1=
string::npos){
line = line.substr(line.find_first_of("t)+,
line.find_first_off(")-line.find_first_of("t)-1);
lineSize = line.size();
for (int i=0; i<lineSize; i++){
lineChar = linefi];
if (comma.compare(lineChar) == 0)
count++;
}
count++;
return count;
}
}
return 0;
int ssin(string fileName)
{
ifstream inFile;
inFile.open(fileName.c_str());
if (linFile)}{
/IMakes
sure that the file is usable
cerr << "Unable to open file 5.txt" ;
exit(1);
string line;
string lineChar;
string comma = "
int lineSize;
int count=0;
bool stored = false ;
while (linFile.eof() && !stored){
getline(inFile,line);
if ((line.rfind("input") = string::npos) && (line.rfind("SS") 1=
string::npos){
line = line.substr(line.find_first_of("SS"), line.rfind(
errsig")-1-line.find_first_of("SS"));
lineSize = line.size();
for (int i=0; i<lineSize; i++){

lineChar = line[i];
if (comma.compare(lineChar) == 0)
count++;

}

count++;

stored = true ;
return count;

}

inFile.close();
return 0O;

void writeSimulate(string testName, string Name, string ofile, int testinputs, int SSin,

int instantiations, int testOuts)
{
ofstream outFile(ofile.c_str());
if (loutFile){
cerr << "Unable to open file 6.txt"
exit(1);

char buffer [10];

char buf2 [10];

int i, j;

outFile << "module " << Name << "simulate (Ins, errsig, SS, Fouts);\n\n"

outFile << "input errsig; \n\ninput [" << itoa(testinputs-1,buffer,10) << ":0]

Ins;\n\ninput [* << itoa(SSIn-1,buf2,10) << ":0] SS;\n\n"
outFile << "output Fouts;\n\n" ;

outFile << "wire [" << itoa(testOuts-1,buffer,10) << ":0] Outs, Outsfault,
louts;\n\n"

outFile << Name << "" << Name << "original("
for (i =0; i< testinputs; i++)
outFile << "Ins[" << itoa(i,buffer,10) << ", "
for (i=0;i<testOuts; i++){
outFile << "Outs[" <<itoa(i,buf2,10) << """ ; /Ouputs
if (i <testOuts-1)
outFile <<

1

outFile<< ");\n"
outFile << testName << "test " << testName << "testfault("
for (j = 0; j< testinputs; j++)

outFile << "Ins[" << itoa(j,buffer,10) << ", "
for (j =0;j <testOuts; j++)

outFile << "Outsfault[" << itoa(j,buf2,10) << ", "
for (j=0;j<SSIn; j++){

outFile << "SS[" << itoa(j,buf2,10) << ", "

;. //Ouputs

outFile << "errsig);\n"
for (j = 0; j<testOuts; j++)
outFile << "xor (louts[" << itoa(j,buf2,10) << "], Outs[" <<
itoa(j,buf2,10) << "], Outsfault[" << itoa(j,buf2,10) << "N;\n" ;
outFile << "or" << "(Fouts"
for (j = 0; j<testOuts; j++)
outFile << ", louts[" << itoa(j,buf2,10) << "
outFile << ");\n\n"

outFile << "endmodule” << endl;
outFile.close();

void writeBlock(string testName, string Name, string of ile, int testlnputs, int SSin,
instantiations, int testOuts)
{ -

int ij;

double loopnum;

double num = (double)SSin/instantiations;

int outloop = ceil((double)testinputs/instantiations);
double bitstemp = (double)(SSIn*2);
bitstemp = log(bitstemp)/ log((double)2);

double bits = ceil(bitstemp);
loopnum = ceil(num) * 2;
ofstream outFile(ofile.c_str());
if (loutFile){
cout << "Unable to open file 7.txt"

int

95

exit(1);

}

char buffer [10];
char buf2 [10];
char buf3 [10];

outFile << "module " << testName << "block(WrAck, clk, RdAck, outinput, WrBurst,
threshnum, trigout);\n\n" ;

outFile << " [//Parameters\n"

outFile << " parameter faultsfound =" << itoa(SSIn*2, buffer, 10) <<

outFile << " parameter vecsused = 100;\n" ;

outFile << " parameter loopnum =" << itoa(loopnum, buffer, 10) << "\n"

outFile << " parameter bitstransfer =" << jtoa(instantiations, buffer, 10) <<

Anto

outFile << " parameter interthresh = 1000;\n" ;

outFile << "/ Inputs\n"

outFile << " input WrAck, clk, RdAck \n" ;

outFile << " input [31:0] threshnum;\n\n" ;

outFile << " /[Outputs\n" ;

outFile << " output [31:0] outinput;\n"

outFile << " output WrBurst, trigout'\n\n"

outFile << " /IRegisters\n"

outFile << " oreg[" << |toa(SSIn -1, buffer, 10) << ":0] SS|bitstransfer-
1:0;\n"

outFile << " oreg[" << itoa(testinputs-1, buffer, 10) << ":0] Input ="
itoa(testinputs,buf2, 10) << "'d2895612794, usefulinput=0;\n"

outFile << " reg [31:0] count = 0, burstcount = 3, burstcount3 =0,
burstcount2=0, temp3=0, threshhold = 0, outinput = o;\n"

outFile << " reg [bitstransfer-1:0] mem[loopnum-1:0], mem2[lo opnum-1:0],
mem3[loopnum-1:0], temp2 = 0;\n" ;

outFile << " oreg[" << itoa(bits-l buffer, 10) << ":0] total=0, oldtotalfaults
=0,totalfaults = 0, totalvecs = 0;\n"

outFile << " regerrsig =0, WrBurst =0, done =0, trigout = 0, trig =0,
tempbit;\n\n"

outFile << " //Wires\n" ;

outFile << " wire [bitstransfer-1:0] Fouts;\n\n" ;

outFile << " [llintegers\n”

outFile << " integer i;\n" ;

outFile << " genvar j;\n\n" ;

outFile << "//Circuit Declarations\n\n" ;

outFile << " generate\n"

outFile << " for(j = 0; j < bitstransfer; j =] +
1)begin:INSTANTIATIONS\n" ;

outFile << " " <<testName << "simulate " << testName <<
"simulateX(Input, errsig, SS[]] Fouts[j]);\n" ;

outFile << end\n"

outFile << " endgenerate\n" ;

outFile << "\n//Fault Detection Program\n" ;

outFile << "always @(posedge clk) begin\n" ;

outFile << " if(WrAck == 1)begin\n" ;

outFile << " for(i = 0; i < loopnum; i =i + 1)begin\n"

outFile << " mem[i] = 0;\n" ;

outFile << " mem2[i] = 0;\n" ;

outFile << " mem3[i] = 0;\n"

outFile << " end\n"

outFile << " trig = 1;\n" ;

outFile << " end\n\n" ;

outFile << " if(WrAck == 0 && trig == 1)begin\n"

outFile << " count = count + 1;\n"

outFile << " WrBurst = 0;\n\n" ;

outFile <<
N Mt
s . ;

outFile << //Error Counting\n"

outFile << |f(burstcount = 3)begin\n”

outFile << " if(threshhold < threshnum) begln\n ;

outFile << " tempbit = Input[" << jtoa(testinputs-1,

buffer, 10) << "|"Input[change];\n" ;

"\

<<

96

outFile << " Input[" << itoa(testlnputs-1, buffer, 10) <<
":1] = Input[" << itoa(testinputs-2, buf2, 10) << ":0];\n" ;

outFile << " Input[0] = tempbit;\n" ;

outFile << " temp3 = count+1;\n" ;

outFile << " total = 0;\n" ;

outFile << " burstcount = 0;\n" ;

outFile << " threshhold = threshhold + 1; \n" ;

outFile << " SS[0] = L;\n" ;

outFile << " end\n" ;

outFile << " else if(threshhold == threshnum)begin\n" ;

outFile << " if(burstcount2 == 0)begin\n" ;

outFile << " if(burstcount3 == 0)begin\n" ;

outFile << " for(i = 0; i< loopnum;
i=i+1)begin\n" ;

outFile << " mem3[i] = mem2][i] |
mem3[ij;\n" ;

outFile << " end\n” ;

outFile << " burstcount3 = 0;\n"

outFile << " burstcount2 = burstcount2 + 1; \n

/loutFile << " totalfaults = 0;\n";

outFile << " /loutinput = mem[burstcount3] \n"

outFile << " //WrBurst = 1;\n" ;

outFile << " end\n"

outFile << I* else |f(RdAck =1 && burstcount3 <
loopnum)begin\n” ;

outFile << " outinput = mem[burstcount3] \n"

outFile << " WrBurst = 1;\n"

outFile << " burstcount3 = burstcountS +1;\n"

outFile << " end\n" ;

outFile << " else |f(burstcount3 ==1 [*&& RdAck =
1)begin\n" ;

/loutFile << " totalfaults = \n";

outFile << " burstcount3 0;\n"

outFile << " burstcount2 = burstcount2 +1; \n

outFile << " end*/\n" ;

outFile << " end\n\n" ;

outFile << " else if(burstcount2 == 1)begin\n" ;

outFile << " for(i = 0; i <loopnum; i =
i+1)begin\n" ;

outFile << " mem[i] = 0;\n" ;

outFile << " mem2[i] = 0;\n" ;

outFile << " end\n" ;

outFile << " burstcount2 = burstcount2 + 1;\n"

outFile << " /lend\n" ;

outFile << " end\n\n" ;

outFile << " else if(burstcount2 == 2)begin\n"

outFile << " if(totalfaults <= oldtotalfaults)begln\n

outFile << " trlgout 1;\n" ;

outFile << " end\n” ;

outFile << " else begin\n"

outFile << " burstcountz burstcount2 +1;\n"

outFile << " end\n" ;

outFile << " end \n\n" ;

outFile << " else if(burstcount2 > 2)begin\n" ;

outFile << " if(burstcount2 == 3)begin\n" ;

outFile << " outinput = usefulinput[" <<
itoa(testinputs-1,buffer, 10) << "" << itoa((outloop-1)*32,buf2,10) << Tan"

outFile << totalvecs = totalvecs+1,; \n ;

outFile << " WrBurst = 1;\n"

outFile << " oldtotalfaults = totalfaults \n"

outFile << " burstcount2 = burstcount2+1;\n"

outFile << " end\n" ;

for (i = outloop-1;i> 0; i--){

97

outFile <<
" << itoa(outloop+3-i,buffer, 10) <<
outFile <<
itoa(i*32-1,buffer,10) <<
outFile <<
outFile <<
1;\n"
outFile <<

outFile <<
itoa(3+outloop, buffer, 10) <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<
itoa(4+outloop, buffer, 10) <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<
itoa(5+outloop, buffer, 10) <<

outFile <<
(totalfaults >=faultsfound))begin\n"

outFile << "

outFile <<

outFile <<

outFile <<
itoa(testinputs,buffer, 10) <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<
//
A"

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<
0)begin\n"

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<
bitstransfer;\n"

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

outFile <<

end\n\n"

else if(RdAck == 1 && burstcount2 ==
"begin\n"
outinput = usefulinput["

<< itoa((i-1)*32,buf2, 10) << "\n"

"Ybegin\n"

WrBurst = 1;\n"
burstcount2 = burstcount2+

end\n"
else if(RdAck == 1 && burstcount2 == "

outinput = totalfaults;\n"
WrBurst = 1;\n"
burstcount2 = burstcount2 + 1;\n"
end\n" ;
else if(RdAck == 1 && burstcount2 =="

"begin\n"

") begin\n"

outinput = totalvecs;\n" ;
WrBurst = 1;\n" ;
burstcount2 = burstcount2 +1\n"
end\n” :
else |f(RdAck == 1 && burstcount2 ==

if((totalvecs >= vecsused) ||

trigout = 1;\n" ;
end\n" ;
else begin\n” ;

Input =" <<

"d2895612794:;\n" ;

end\n"

totalfaults = 0;\n"
threshhold = 0;\n"
burstcount2 = 0;\n"
end \n" ;
end\n" ;
end \n"

[T

//Get errors from C1355simulate\n\n" ;
else if(burstcount =

= 0)begin\n" ;

if(burstcount2 < loopnum) begin\n"

if(temp3 == count) begin\n" ;
mem([burstcount2] = Fouts;\n"
done = 0;\n" ;

end\n"

else if(temp3 != count && done ==

if(burstcount2%?2 == 0)begin\n"
errsig = 1;\n" ;

end\n"

else |f(burstcount2%2 == 1)beg|n\n
errsig = 0;\n" ;
SS[0] = SS[0] <<

end\n" ;

done = 1;\n" ;

temp3 = count+1;\n"
burstcount2 = burstcount2 + 1; \n
end\n"
end\n"
else |f(burstcount2 == Ioopnum)begm\n ;
burstcount2 = 0;\n"
burstcount = burstcount + 1; \n
end\n" ;

<<

<<

<<

<<

98

outFile <<
outFile <<

end\n\n" ;

// [T

A"
outFile <<
outFile <<
outFile <<
outFile <<

mem|[burstcount2];\n"
outFile <<

i+1)begin\n"
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<

// Count total errors in individual \n\n" ;
else if(burstcount == 1)begin \n" ;
if(burstcount2 < loopnum)begin\n”
temp2 = mem3[burstcount?] |

for(i = 0; i < bitstransfer; i=

total = total+temp2[i];\n"
end\n” ;
burstcount2 = burstcount2 + 1;\n"
end\n”
else if(burstcount2 == loopnum) begln\n
burstcount2 = 0;\n" ;
burstcount = burstcount + 1;\n"
end\n”
end\n\n"
else if(burstcount == 2)begin\n" ;
if(total > totalfaults) begin\n" ;
for(i = 0; i < loopnum; i= i+1)begin\n"
memz2[i] = mem[i];\n"
end\n" ;
totalfaults = total;\n" ;
usefulinput = Input;\n" ;
burstcount2 = 0;\n" ;
burstcount = burstcount +1; \n
end \n" ;
else begin\n"
burstcount2 o\n" ;
burstcount = burstcount+1;\n"
end\n" ;
end\n" ;
end\n"

"end\n\n" ;
"always@(SS[0])begin\n" ;

for(i = 1; i < bitstransfer; i = i+1)begin\n" ;
SS[i] = SS[0] << i\n" ;
end\n"

"end\n\n" ;
"endmodule\n\n" ;

void writeTest(string testName, string name, int testinputs, string simtest)

{

int i

int outloop = ceil((double)testinputs/32);
ofstream outFile(simtest.c_str());

if (loutFile){

cout << "Unable to open file 7.txt" ;

exit(1);

}
char buffer [10];

outFile <<
outFile <<

‘timescale 1ns/ 1ns\n" ;

N i .

outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
totalfaults, totalvecs;\n"
outFile <<

"“\n"
"module test;\n" ;
"“\n"

/I Inputs\n”

reg WrAck;\n"

reg clk;\n" ;

reg RdAck, trig = 0;\n" ;

reg [31:0] threshnum, Ins[" << itoa(outloop-1, buffer, 10) <<

reg [1:‘0] count = 0;\n" ;

99

outFile << " // Outputs\n" ;
outFile << " wire [31:0] outinput, threshhold;\n" ;
outFile << " wire WrBurst;\n" ;
outFile << " wire trigout;\n" ;
outFile << " \n"
outFile << " integer file;\n\n\n" :
outFile << " [l Instantiate the Unit Under Test (UUT)\n" ;
outFile << " " <<testName << "block uut (\n" ;
outFile << " \WrAck(WrAck), \n" ;
outFile << " .clk(clk), \n" ;
outFile << " .RdAck(RdAck), \n" ;
outFile << " .outinput(outinput), \n" ;
outFile << " \WrBurst(WrBurst), \n" ;
outFile << " .threshnum(threshnum), \n" ;
outFile << " .trigout(trigout),\n" ;
outFile << " .threshhold(threshhold)\n" ;
outFile << ")\n\n” ;
outFile << " initial begin\n" ;
outFile << " /I Initialize Inputs\n" ;
outFile << " WrAck = 0;\n" ;
outFile << " clk = 0;\n" ;
outFile << " RdAck = 0;\n" ;
outFile << " threshnum = 0;\n" ;
outFile << " file = $fopen(\"output.txt\");\n" ;
outFile << " /I Wait 100 ns for global reset to finish\n"
outFile << " #100;\n" ;
outFile << " threshnum = 1000;\n" ;
outFile << " WrAck = 1;\n" ;
outFile << " #20;\n" ;
outFile << " WrAck = 0;\n" ;
outFile << " /I Add stimulus here\n" ;
outFile << " end\n\n"
outFile << " initial begin\n" ;
outFile << " while(1) begin\n" ;
outFile << " clk = ~clk;\n" ;
outFile << " #1;\n" ;
outFile << " end\n"
outFile << " end\n\n" ;
outFile << " always@(posedge WrBurst)begin\n" ;
outFile << " if(count == 0)begin\n" ;
outFile << " Ins[0] = outinput;\n" ;
outFile << " count = count + 1;\n" ;
outFile << " end\n" ;
for (i=1;i< outloop;i++)
{
outFile << " else if(count ==" << itoa(i, buffer, 10) <<
"Ybegin\n"
outFile << " Ins[" << itoa(i, buffer, 10) <<
outinput;\n" ;
outFile << " count = count + 1;\n" ;
outFile << " end\n" ;
outFile << " else if(count ==" << itoa(outloop, buffer, 10) <<
"begin\n" ;
outFile << " totalfaults = outinput;\n" ;
outFile << " count = count + 1;\n" ;
outFile << " end\n"
outFile << " else if(count ==" << itoa(outloop+1, buffer, 10) <<
"Ybegin\n"
outFile << " totalvecs = outinput;\n" ;
outFile << " $fdisplay(file, \"" ;
for (i=0; i< outloop; i++)
outFile << "%8h" ;
outFile << " %d %d %d\", " ;
for (i=0; i< outloop; i++)
outFile << "Ins[" << itoa(i, buffer, 10) << B
outFile << " totalfaults, totalvecs, $time);\n" ;

]

100

101

outFile << " count = 0;\n" ;

outFile << " end\n"

outFile << " end\n\n"

outFile << " always@(negedge WrBurst)begin\n" ;

outFile << " #6;\n" ;

outFile << " RdAck = 1;\n" ;

outFile << " #1;\n" ;

outFile << " RdAck = 0;\n" ;

outFile << " end\n\n"

outFile << " always@(trigout)begin\n” ;

outFile << " $stop;\n" ;

outFile << " end\n\n"

outFile << "endmodule\n"
}
void write_user_logic(string testName, string Name, str ing ofile, int testlnputs, int
SSIn, int instantiations, int testOuts)
{

int testiter;

testiter = testinputs/32;

ofstream outFile(ofile.c_str());

if (‘outFile){

cout << "Unable to open file 8.txt" ;
exit(1);

}

char buf2 [10];

outFile << B
-------- \n ;

outFile << "-- user_logic.vhd - entity/architecture pair\n" ;

outFile << TS e
-------- \n" ;

outFile << "'

outFile <<

\n" ;

outFile << "-- ** Copyright (c) 1995-2008 Xilinx, Inc. All ri ghts reserved.
\n"

outFile << Mook
\n"

outFile << "-- ** Xilinx, Inc.
\n"

outFile << "-- ** XILINX IS PROVIDING THIS DESIGN, CODE, OR IN FORMATION \"AS IS\"
\n"

outFile << "--** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVE LOPING PROGRAMS AND
\n"

outFile << "--** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
\n"

outFile << "--** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATIO N OF THIS FEATURE,
\n"

outFile << "-- ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
**\n" :

AIMS OF

outFile << "-- * THAT THIS IMPLEMENTATION IS FREE FROM ANY CL

INFRINGEMENT, **\n"

*E\"

**\n"

*\n"

**\n"

*\n"

**\n"

*\n"

**\n"

outFile << V- R A’\ND YOU ARE RESPONSIBLE FOR OBTAINING ANY RI

GHTS YOU MAY REQUIRE
outFile << "--** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY D ISCLAIMS ANY
outFile << "-- * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQ UACY OF THE
outFile << "-- ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
outFile << "-- * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
outFile << "-- ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS
outFile << "--** FOR A PARTICULAR PURPOSE.
outFile << Mook

outFile << "
outFile << "-\n"
outFile << "
-------- \n" ;
outFile << "-- Filename: user_logic.vhd\n"
outFile << "-- Version: 1.00.a\n" ;
outFile << "-- Description: User logic.\n" ;
outFile << "-- Date: Sat Jul 25 20:34:42 2009 (by
Peripheral Wizard)\n" ;
outFile << "-- VHDL Standard: VHDL'93\n" ;
outFile << "
-------- \n" ;
outFile << "-- Naming Conventions:\n" ;
outFile << "-- active low signals: \"*_n\
outFile << "-- clock signals: \"clk\
\"clk_#x\"\n" ;
outFile << "-- reset signals: \"rst\
outFile << "-- generics: \"C_*\
outFile << "--user defined types: \"* TY
outFile << "-- state machine next state: \"* ns
outFile << "-- state machine current state: \"*_cs
outFile << "-- combinatorial signals: \"*_co
outFile << "-- pipelined or register delay signals: \"*_d#
outFile << "-- counter signals: \"*cnt
outFile << "-- clock enable signals: \"*_ce
outFile << "--internal version of output port: \"*_i\
outFile << "-- device pins: \"*_pi
outFile << "-- ports: \"- Na
Uppercase\"\n" ;
outFile << "-- processes: \"*_ PR
outFile << "--component instantiations:
\"<ENTITY_>I| <#|FUNC>\"\n" ;
outFile << "
-------- \n\n" ;
outFile << -- DO NOT EDIT BELOW THIS LINE -------------------
outFile << Ilbrary ieee;\n" ;
outFile << "use ieee.std_logic_1164.all;\n" ;
outFile << "use ieee.std_logic_arith.all;\n" ;
outFile << "use ieee.std_logic_unsigned.all;\n\n"
outFile << "library proc_common_v2_00_a;\n"
outFile << “use proc_common_v2_00_a.proc_ common _pkg.all;\n\n"
outFile << -- DO NOT EDIT ABOVE THIS LINE -------------------
outFile << "--USER libraries added here\n\n" ;
outFile << "
-------- \n" ;
outFile << "-- Entity section\n" ;
outFile << "
———————— \n" ;
outFile << "-- Definition of Generics:\n" ;
outFile << "-- C_SLV_DWIDTH -- Slave interfa
width\n"
outFile << "-- C_NUM_REG -- Number of sof
registers\n” ;
outFile << "-- C_RDFIFO_DEPTH -- Read FIFO dep
outFile << "-- C_WRFIFO_DEPTH -- Write FIFO de
outFile << "-\n"
outFile << "-- Definition of Ports:\n" ;
outFile << "-- Bus2IP_CIlk --Busto IP clo
outFile << "-- Bus2IP_Reset --Busto IP res
outFile << "-- Bus2IP_Data -- Bus to IP dat
outFile << "-- Bus2IP_BE -- Bus to IP byt
outFile << "-- Bus2IP_RdCE -- Bus to IP rea
outFile << "-- Bus2IP_WrCE -- Bus to IP wri
outFile << "-- IP2Bus_Data -- IP to Bus dat
outFile << "-- IP2Bus_RdAck -- IP to Bus rea

acknowledgement\n”

\n

"\n" ;
" \"clk_div#\",

" \"rst_n\"\n"
"\n" ;
PE\"\n" ;
\"\n"

\"\n"
m\"\n" ;
\"\n"
A"\n"
\"\n"

“\n"

n\"\n" ;
mes begin with

OCESS\"\n" ;

ce data bus
tware accessible

th\n"
pth\n" ;

ck\n" ;

et\n" ;

abus\n"

e enables\n" ;
d chip enable\n"
te chip enable\n"
abus\n"

d transfer

102

outFile << "-- IP2Bus_WrAck -- IP to Bus wri
acknowledgement\n"

outFile << "-- IP2Bus_Error --IP to Bus err

outFile << "-- IP2RFIFO_WrReq -- 1P to RFIFO :
request\n" ;

outFile << "-- IP2RFIFO_Data -- IP to RFIFO :
bus\n" ;

outFile << "-- IP2RFIFO_WrMark --IP to RFIFO :
packet being written\n" ;

outFile << "-- IP2RFIFO_WrRelease -- 1P to RFIFO :
normal FIFO operation\n" ;

outFile << "-- IP2RFIFO_WrRestore -- 1P to RFIFO :
to the last packet mark\n" ;

outFile << "-- RFIFO2IP_WrAck - RFIFOto IP:
acknowledge\n" ;

outFile << "-- RFIFO2IP_AlImostFull --RFIFOto IP :
fullin"

outFile << "-- RFIFO2IP_Full - RFIFOto IP :

outFile << "-- RFIFO2IP_Vacancy --RFIFOto IP :

outFile << "-- IP2WFIFO_RdReq - IP to WFIFO :

outFile << "-- IP2WFIFO_RdMark -- IP to WFIFO :
packet being read\n" ;

outFile << "-- IP2WFIFO_RdRelease -- IP to WFIFO :
normal FIFO operation\n" ;

outFile << "-- IP2WFIFO_RdRestore -- 1P to WFIFO :
to the last packet mark\n" ;

outFile << '-- WFIFO2IP_Data - WFIFOto IP :

outFile << "-- WFIFO2IP_RdAck - WFIFOto IP :
acknowledge\n" ;

outFile << "-- WFIFO2IP_AlmostEmpty --WFIFO to IP :
empty\n" ;

outFile << "-- WFIFO2IP_Empty --WFIFOto IP :

outFile << "-- WFIFO2IP_Occupancy --WFIFO to IP :

outFile << "
-------- \n\n" ;

outFile << "entity user_logic is\n" ;

outFile << " generic\n" ;

outFile << " (\n" ;

outFile << " -- ADD USER GENERICS BELOW THIS LINE

outFile << --USER generics added here\n"

outFile << -- ADD USER GENERICS ABOVE THIS LINE

outFile << " --DO NOT EDIT BELOW THIS LINE ------------

outFile << " -- Bus protocol parameters, do not add to or d

outFile << C_SLV_DWIDTH : integer

outFile << C_NUM_REG : integer

outFile << " C_RDFIFO_DEPTH : integer

outFile << " C_WRFIFO_DEPTH :integer

outFile << -- DO NOT EDIT ABOVE THIS LINE ---------------

outFile << ")\t ;

outFile << " port\n" ;

outFile << " (\n" ;

outFile << " -- ADD USER PORTS BELOW THIS LINE -----

outFile << " --USER ports added here\n"

outFile << -- ADD USER PORTS ABOVE THIS LINE —————

outFile << " --DO NOT EDIT BELOW THIS LINE ------------

outFile << " -- Bus protocol ports, do not add to or delete

outFile << " Bus2IP_Clk in std_logic

outFile << Bus2IP_Reset in std_logic

outFile << " Bus2IP_Data :in std_logic
C_SLV_DWIDTH-1);\n"

outFile << Bus2IP_BE in std_logic
C_SLV_DWIDTH/8-1)\n" ;

outFile << " Bus2IP_RdCE :in std_logic
C_NUM_REG-1);)\n" ;

outFile << Bus2IP_WrCE in std_logic

C_NUM_REG-1)\n" ;

103

te transfer

or response\n” ;
IP write

IP write data

mark beginning of
return RFIFO to
restore the RFIFO
RFIFO write

RFIFO almost

RFIFO ful\n" ;
RFIFO vacancy\n" ;
IP read request\n” ;
mark beginning of
return WFIFO to
restore the WFIFO

WFIFO read data\n" ;
WFIFO read

WFIFO almost

WFIFO empty\n" ;
WFIFO occupancy\n" ;

------ \n" ;

—————— \n\n" ;

------ \n" ;

elete\n" ;
= 32;\n" ;
=1\n" ;
:=8192;\n" ;
:=512\n" ;

—————— \n" ;

------ \n" ;

—————— \n\n" ;

------ \n" ;

\n" ;

Ant o

n"

_vector(0 to
_vector(0 to
_vector(0 to

_vector(0 to

outFile << " IP2Bus_Data : out std_logic
C_SLV_DWIDTH-1);\n" ;
outFile << " IP2Bus_RdAck :out std_logic
outFile << IP2Bus_WrAck :out std_logic
outFile << " IP2Bus_Error : out std_logic
outFile << " IP2RFIFO_WrReq : out std_logic
outFile << " IP2RFIFO_Data : out std_logic
C_SLV_DWIDTH-1);\n" ;
outFile << " IP2RFIFO_WrMark : out std_logic
outFile << " IP2RFIFO_WrRelease : out std_logic
outFile << " IP2RFIFO_WrRestore :out std_logic
outFile << " RFIFO2IP_WrAck :in std_logic
outFile << " RFIFO2IP_AlmostFull :in std_logic
outFile << " RFIFO2IP_Full :in std_logic
outFile << RFIFO2IP_Vacancy :in std_logic
log2(C_RDFIFO DEPTH)) \n"
outFile << " IP2WFIFO_RdReq :out std_logic
outFile << " IP2WFIFO_RdMark : out std_logic
outFile << " IP2WFIFO_RdRelease : out std_logic
outFile << " IP2WFIFO_RdRestore : out std_logic
outFile << " WFIFO2IP_Data :in std_logic
C_SLV_DWIDTH-1);\n" ;
outFile << WFIFO2IP_RdAck 1in std_logic
outFile << WFIFO2IP_AlmostEmpty :in std_logic
outFile << WFIFO2IP_Empty in std_logic
outFile << " WFIFO2IP_Occupancy :in std_logic
log2(C_WRFIFO_DEPTH))\n" ;
outFile << " --DO NOT EDIT ABOVE THIS LINE ---------------
outFile << ");\n\n" ;
outFile << " attribute SIGIS string;\n" ;
outFile << " attribute SIGIS of Bus2IP_CIlk : signal is \"C
outFile << " attribute SIGIS of Bus2IP_Reset : signal is \"R
outFile << "end entity user_logic;\n\n" ;
outFile << "
-------- \n" ;
outFile << "-- Architecture section\n" ;
outFile << "
-------- \n\n" ;
outFile << “arch|tecture IMP of user_logic is\n\n"
outFile << ' --USER signal declarations added here, as needed
logic\n\n" ;
outFile << " component " << Name << "block\n" ;
outFile << " port (\n" ;
outFile << clk: in std_logic;\n" ;
outFile << threshnum: in std_logic_ VECTOR(31 downto 0);\n
outFile << " outinput: out std_logic_VECTOR(31 downto 0);\n
outFile << " WrBurst: out std_logic;\n" ;
outFile << " RdAck: in std_logic;\n" ;
outFile << trigout: out std_logic;\n" ;
outFile << WrAck: in std_logic);\n" ;
outFile << " end component;\n\n\n" ;
outFile << " \n"
outFile << " -- Signals for read/write fifo loopback example\
outFile << " \n"
outFile << " type FIFO_CNTL_SM_TYPE is (IDLE, RD_REQ, WR_REQ,
outFile << " signal fifo_cntl_ns : FIFO_CNT
outFile << " signal fifo_cntl_cs :FIFO_CNT
outFile << " signal fifo_rdreq_cmb : std_logi
outFile << " signal fifo_wrreq_cmb : std_logi
outFile << " signal user_write
. std_logic;\n" ;
outFile << " signal user_write_long
std_logic;\n" ;
outFile << " signal writeclock
. std_logic;\n\n\n" ;
outFile << "begin\n\n" ;
outFile << " --USER logic implementation added here\n" ;

104

_vector(0 to

\n"

_vector(0 to

LK\"\n"
ST\";\n\n" ;

for user

n":

RD_REQ_0))\n" ;
L_SM_TYPE;\n" ;
L SM_TYPE;\n" ;
c\n"
c\n"

outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
operating on\n"
outFile <<
ports\n" ;
outFile <<
IP2RFIFO_*\n" ;
outFile <<
when\n" ;
outFile <<
etc\n"
outFile <<
the\n" ;
outFile <<
simply\n"
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<

outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
the read fifo,\n"
outFile <<
read fifo\n" ;
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<
outFile <<

\n"

" <<Name<< ‘"block 0:" << Name <<

" port map (\n"

clk => Bus2IP_ CIk\n ;

threshnum => WFIFOZIP Data, \n" ;

outinput => IP2RFIFO_Data,\n" ;
WrBurst => user_write,\n" ;
RdAck => RFIFO2IP_WrAck,\n" ;
trigout => user_write_long,\n" ;
WrAck => WFIFO2IP_RdAck);\n" ;

N
' -- Example code to transfer data between read/wr
-\n" ;
-- Note:\n"

" -- The example code presented here is to show yo

-- the read/write FIFOs provided for you. There'

" -- dedicated to the FIFO operations, beginning w

-- or WFIFO2IP_* or IP2WFIFO_*. Some FIFO ports

" -- certain FIFO services are present, s.t. vacan

" -- Typically you will need to have a state machi

-- write FIFO or write data to the read FIFO. Th

" -- transfer the data from the write FIFO to the

\n"
IP2RFIFO_WrMark <='0"\n" ;

" IP2RFIFO_WrRelease <='0";\n" ;
" IP2RFIFO_WrRestore <="0";\n\n" ;

IP2WFIFO_RdMark <="'0"\n" ;
IP2WFIFO_RdRelease <="'0";\n" ;

" IP2WFIFO_RdRestore <='0";\n\n" ;
" FIFO_CNTL_SM_COMB : process(WFIFOZIP _empty, WFI
RFIFO2IP_full, RFIFO2IP,

WrAck fifo cntl_cs user_w
begm\n\n" ;

-- set defaults\n" ;
fifo_rdreq_cmb <="'0"\n" ;
fifo_wrreq_cmb <="0"\n" ;
fifo_cntl_ns <=fifo_cntl_cs; \n\n\n“ ;
case flfo cntl_cs is\n" ;

when IDLE =>\n"

-- data is available in the write fifo and

-- S0 we can start transfering the data fr

if (WFIFO2IP_empty = '0' and RFIFO2IP_ful
fifo_rdreg_cmb <="1";\n"
fifo_cntl_ns <= RD_REQ;\n"

end if\n" ;

when RD_REQ >\n ;
-- data has been read from the write fifo,
-- SO we can write it to the read fifo\n"
if (user_write = '1') then\n"

"block\n"

105

ite fifo\n" ;

u one way of
sasetof IPIC

ith RFIFO2IP_* or
are only available
cy calculation,

ne to read data from
is code snippet

read FIFO.\n" ;

FO2IP_| RdAck

rite_long, Bus2IP_CIk) is\n" ;

there's space in
om write fifo to

1="0") then\n" ;

\n" ;

if(luser_write_long = l)then\n ;
fifo_wrreq_cmb <="1";\n" ;
fifo_cntl_ns <= WR_REQ;\n" ;

else\n” ;
fifo_wrreq_cmb <="1"\n" ;
fifo_cntl_ns <= RD_REQ;\n" ;
end if; \n" ;

end if;\n" ;
when WR_REQ >\n ;

-- data has been written to the read fifo, \n" ;

106

outFile << " -- 50 data transfer is done\n" ;

outFile << " if (RFIFO2IP_WrAck ='1") then\n" ;
outFile << " fifo_cntl_ns <= IDLE;\n" ;

outFile << " end if;\n" ;

outFile << " when others =>\n" ;

outFile << " fifo_cntl_ns <= IDLE; \n" ;

outFile << " end case;\n\n\n" ;

outFile << " end process FIFO_CNTL_SM_COMB;\n\n"

outFile << " FIFO_CNTL_SM SEQ process(Bus2IP_CIk) |s\n" ;
outFile << " begin\n\n" ;

outFile << " if (Bus2IP_ Clk event and Bus2IP_Clk ="1") t hen\n" ;
outFile << "if (BusZIP_Reset ='1") then\n" ;

outFile << " IP2WFIFO_RdReq <='0";\n" ;

outFile << " IP2RFIFO_WrReq <='0";\n" ;

outFile << " fifo_cntl_cs <=IDLE;\n" ;

outFile << " else\n" ;

outFile << " IP2WFIFO RdReq <= fifo_rdreq_cmb;\n" ;
outFile << " IP2RFIFO_WrReq <= fifo_wrreq_cmb;\n" ;
outFile << " fifo_cntl_cs <= flfo cntl_ns;\n" ;
outFile << " endif\n" ;

outFile << " endif\n" ;

outFile << “\n"

outFile << " end process FIFO_CNTL_SM_SEQ;\n" ;

outFile << “\n"

outFile << " --IP2RFIFO_Data <= WFIFO2IP_Data;\n" ;

outFile << “\n"

outFile << " \n" ;
outFile << " -- Example code to drive IP to Bus signals\n” ;
outFile << " \n" ;
outFile << " IP2Bus_Data <= (others =>"'0"); \n\n" ;

outFile << " IP2Bus_WrAck <='0";\n" ;

outFile << " IP2Bus_RdAck <="0"\n" ;

outFile << " IP2Bus_Error <='0";\n\n" ;

outFile << "end IMP;\n"

void writePPCcode(string cCode, string Name)

{
ofstream outFile(cCode.c_str());
int len = strlen(Name.c_str());
for (int i=0;i<len;i++)
Namel[i] = toupper((unsigned char) Name[i]);
if (loutFile){
cout << "Unable to open file 8.txt" ;
exit(1);
cout << Name << endl;
outFile << "#include \"xparameters.h\"\n" ;
outFile << "#include \"xbasic_types.h\"\n" ;
outFile << "#include \"xstatus.h\"\n" ;
outFile << "#include \"MY_" << Name <« ".h\"\n" ;
outFile << "#include \"stdlib.h\"\n" ;
outFile << "#include \"stdio.h\"\n" ;
outFile << "#include \"xtime_l.h\"\n" ;
outFile << "#include \"xpseudo_asm.h\"\n\n\n" ;
outFile << "Xuint32 *baseaddr_p = (Xuint32 *)XPAR_| MY << Name <<
"_0_BASEADDR;\n" ;;
outFile << "Xuint8 dec2bin(Xuint32, Xuint32);\n" ;
outFile << "int maxrow(Xuint8 *Binary, Xumt32 *rowsums); \n\n ;
outFile << "int main (void) {\n"
outFile << " Xuint64 starttime, endtlme elapsedtime;\n" ;
outFile << " XTime_SetTime(0);\n" ;
outFile << " endtime.Upper = mfspr(XREG_SPR_TBU_READ);\n" ;
outFile << " endtime.Lower = mfspr(XREG_SPR_TBL_READ);\n" ;

outFile << " xil_printf(\"Time: %8x\", XUINT64_MSW(endtime));\ n";

outFile << " xil_printf(\"%08x\\n\\r\", XUINT64_LSW(endtime)); \n" ;

outFile << " Xuint32 baseaddr, temp;\n" ;

outFile << " Xuint16 totalvecs, totalfaults;\n\n" ;

outFile << " [/ Clear the screen\n" ;

outFile << " xil_printf(\"%c[2J\",27);\n\n" ;

outFile << " /I Check that the peripheral exists\n" ;

outFile << " XASSERT_NONVOID(baseaddr_p != XNULL);\n" ;

outFile << " baseaddr = (Xuint32) baseaddr_p;\n\n" ;

outFile << " /I Reset read and write packet FIFOs to initial s tate\n"

outFile << " MY_" << Name << " mResetWriteFIFO(baseaddr);\n" ;

outFile << " MY_" <<Name<< " mResetReadFIFO(baseaddr) \n\n" ;

outFile << " J/ Push data to write packet FIFO\n"

outFile << " MY_" <<Name<< " mWnteToFIFO(baseaddr 0, 10000);\n" ;

outFile << " xil_printf(\"%d\n\r\", MY _" << Name <<
"_mReadFIFOOccupancy(baseaddr));\n" ;

outFile << while(1){\n" ;

outFile << " while(MY_" << Name << " _mReadFIFOOccupancy(baseaddr) >
0)f\n"

outFile << xil_printf(\"%x\", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;

outFile << " usleep(1000);\n" ;

outFile << " xil_printf(\"%08x \", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;

outFile << " usleep(1000);\n" ;

outFile << xil_printf(\"%d \", MY_" << Name <<
" _mReadFromFIFO(baseaddr,0));\n" ;

outFile << " usleep(1000);\n" ;

outFile << xil_printf(\"%d \", MY_" << Name <<
"_mReadFromFIFO(baseaddr,0));\n" ;

outFile << " usleep(1000);\n"

outFile << " endtime.Upper = mfspr(XREG SPR_TBU_READ);\n" ;

outFile << endtime.Lower = mfspr(XREG_SPR_TBL_READ);\n" ;

outFile << int regtime =

XUINT64 MSW(endume)*?l 58278826666666667+XUINT64_L SW(endtime)/(1000000);\n"

outFile << /lelapsedtime = endtime-starttime;\n" ;
outFile << xil_printf(\"%x\", XUINT64_MSW(endtime));\n" ;
outFile << " in_printf(\"%OBx\", XUINT64_LSW(endtime));\n"
outFile << " xil_printf(\" %d/6000 \\n\\r\", regtime);\n" ;
outFile << " An"
outFile << " RAn"
outFile << "An"
string deleteSpaces(string phrase)
size_t space = phrase.find_first_of()
while (space != string::npos){
phrase.replace(space,1, "),
space = phrase.find_first_of()

}

return phrase;

107

Appendix 3: Variable Instantiation Data

108

C17
Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 0.0329 4 2 3 25
2 0.0329 4 2 4 25
4 0.0329 4 2 4 25
8 0.0329 4 2 4 25
16 0.0329 4 2 4 25
32 0.0329 4 2 3 25
0.035
== & & O
0.03
0.025
@ 0.02
£
i 0.015
0.01
0.005
0
0 5 10 15 20 25 30 35
of Faulty C17 Instantiations
4.5
__ 4 |
& 35
(7]
S 3
=]
§ 2.5
'f, 2 | -0—$ & & L g
8 1 5 === |nstantiations Vs Slice FF %
; .
?, 1 == nstantiations Vs Slices %
T
0.5 == |nstantiations Vs Slice LUTs %
0
0 5 10 15 20 25 30 35

of Faulty C17 Instantiations

109

C432
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 23.56 27 9 23 25
2 11.81 24 8 23 25
4 5.93 23 8 22 25
8 3 23 8 22 25
16 1.53 24 8 23 25
32 0.84 29 8 28 25
64 0.49 38 9 36 25
25
20 T
- 15
T
£
= 10 \
5 \\'_
0 — ="
0 10 20 30 40 50 60 70
of Faulty C432 Instantiations
40
. 35
X
= 30
3
§ 25 —4— Instantiations Vs Slice FF%
3 20 L .
'f, == Instantiations Vs Slices %
s 15
% 10 === Instantiations Vs Slice LUTs %
s So0—o- o — —
5
0
0 10 20 30 40 50 60 70

of Faulty C432 Instantiations

110

€499
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 37.15 29 9 27 25
2 18.68 26 9 24 25
4 9.44 25 9 23 25
8 4.83 25 9 24 25
16 2.46 27 9 26 25
32 1.33 32 9 30 25
64 0.71 38 9 34 25
40
35
30
- 25
g 20
1
10
5
0 —— —
0 10 20 30 40 50 60 70
of Faulty C499 Instantiations
40
. 35
%\E 30
]
§ 25 == [nstantiations Vs Slice FF %
% 20 == Instantiations Vs Slices %
g 1(5) ==f==Instantiations Vs Slice LUTs %
é 40— ¢ g ¢
5
0
0 10 20 30 40 50 60 70

of Faulty C499 Instantiations

111

C880
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 40.31 45 15 38 25
2 21.57 41 14 38 25
4 10.86 41 13 38 25
8 5.5 40 13 38 25
16 2.82 42 13 40 25
32 1.44 45 13 40 25
64 1.5 49 13 47 125
45
40
35
30
é— 25
= 20 \
15
10
— . d
0 10 20 30 40 50 60 70
of Faulty C880 Instantiations
60
—~ 50
X
i o | Bt —a—
3 =@==|nstantiations Vs Slice FF %
g 30 . .
P == Instantiations Vs Slice %
@
% 20 == Instantiations Vs Slice LUTs %
5 |e— & & ¢
0
0 10 20 30 40 50 60 70

of Faulty C880 Instantiations

112

C1355
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 163.23 76 23 65 25
2 81.79 64 21 60 25
4 41.06 59 21 55 25
8 20.7 57 20 54 25
16 10.42 58 20 55 25
32 5.38 63 20 60 25
64 5.51 83 20 79 125
180
160
140
120
% 100
E &0
60
40
20
0 —— . 4
0 10 20 30 40 50 60 70
of Faulty C1355 Instantiations
90
80
X 70
S 60
§ 50 == |nstantiations Vs Slice FF %
% 40 == Instantiations Vs Slices %
% 30 ==Instantiations Vs Slice LUTs %
§ 20 ‘0-0-—¢ & & 7
10
0
0 10 20 30 40 50 60 70

of Faulty C1355 Instantiations

113

Clip
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 1.27 21 7 20 25
2 0.64 19 7 18 25
4 0.32 19 6 18 25
8 0.25 19 6 18 25
16 0.24 21 6 20 25
32 0.24 22 6 21 25
64 0.24 25 7 24 25
1.4
1.2
1
= 08
£
0.4
0.2 —— = < , 2
0
0 10 20 30 40 50 60 70
of Faulty Clip Instantiations
30
g% —N
o Gy g
3 === |nstantiations Vs Slice FF %
ﬁ 15 . ,
p == Instantiations Vs Slices %
T
-E 10 === Instantiations Vs Slice LUTs
E . [e—e o~ — —*
0
0 10 20 30 40 50 60 70

of Faulty Clip Instantiations

114

rd73
Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 0.7 20 7 19 25
2 0.23 12 4 11 25
4 0.36 18 6 17 25
8 0.36 18 6 17 25
16 0.36 19 6 18 25
32 0.36 21 6 20 25
64 0.36 24 7 23 25
0.8
0.7 T
0.6
_ 05
T 04
b P‘ C C . g
0.3
0.2
0.1
0
0 10 20 30 40 50 60 70
of Faulty rd73 Instatiations
30
g 25 l
g 2
3 == |nstantiations Vs Slice FF %
% 5 == Instantiations Vs Slices %
';“ 10 ==fe=Instantiations Vs Slice LUTs %
el
g . V—o = —— —
0
10 20 30 40 50 60 70

of Faulty rd73 Instantiations

115
T481
Instantiations Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 50.69 13 4 12 25
2 25.78 10 4 10 25
4 13.32 10 4 9 25
8 7.09 11 4 10 25
16 3.98 11 4 11 25
32 2.42 14 4 13 25
64 1.38 15 4 14 25
60
50 T
40
.“g’ 30
[
20 \
10 N
0 —e —
0 10 20 30 40 50 60 70
of Faulty T481 Instantiations
16
=]
= —A
xX
= 12
S
5 10 == |nstantiations Vs Slice FF%
)
ﬁ 8 == Instantiations Vs Slices %
% 6 === Insantiations Vs Slice LUTs %
3
'g 4 |60-0—S < ®
T
2
0

0 10 20 30 40 50 60 70

of Faulty T481 Instantiations

116

Z5xpl
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 0.34 23 8 22 25
2 0.23 21 7 19 25
4 0.23 21 7 20 25
8 0.23 21 7 20 25
16 0.23 22 7 21 25
32 0.23 23 7 22 25
64 0.23 25 7 24 25
0.4
0.35
0.3
— 0.25
L 4 4 ®
£ 0.2
F 0.5
0.1
0.05
0
0 10 20 30 40 50 60 70
of Faulty Z5xp1 Instantiations
30
T 25 —N
X
= ——
S 20
F —&—Instantiations Vs Slice FF %
(7]
[}
% 5 == nstantiations Vs Slices %
g 10 ~#—Instantiations Vs Slice LUTs %
s %o—o o o *
I 5
0
0 10 20 30 40 50 60 70
of Faulty Z5xp1 Instantiations

117

Z9sym
Instantiations | Time(sec) Slices % Slice FF % Slice LUTs % Speed MHz
1 2.14 23 7 21 25
2 1.08 21 7 19 25
4 0.54 21 7 19 25
8 0.39 21 7 20 25
16 0.39 23 7 22 25
32 0.39 26 7 25 25
64 0.39 27 7 26 25
2.5
2
- 15
T
e
= 1
0.5
— 4 g
0
0 10 20 30 40 50 60 70
of Faulty z9sym Instantiations
30
g 25
g 20 —&—Instantiations Vs Slice FF %
g 15 == Instantiations Vs Slices %
v === |nstantiations Vs Slice LUTs %
g 10
£ GOm0 > < o
T 5
0
0 10 20 30 40 50 60 70

of Faulty z9symdata Instantiations

Appendix 4: Variable Input Test Vector Data

118

C17
Vectors Tested Faults Found Number of Vectors Needed | Time
1 6 1 0.00728
2 10 2 0.0123
4 14 4 0.0226
8 22 6 0.0329
16 22 6 0.0329
32 22 6 0.0329

25

20

15

10

Faults Found

4

Vectors Tested

16

119

Test Set Size

2 4 8 16

Vectors Tested

Time(s)

0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

1 2 4 8 16

Vectors Tested

120

C432
Vectors Tested Faults Found Number of Vectors Needed | Time
10 258 10 0.04
20 374 19 0.09
40 405 23 0.11
80 460 33 0.16
160 496 40 0.19
320 526 46 0.22
640 536 47 0.23
1280 536 43 0.21
2560 537 39 0.23
5120 537 36 0.43
10240 537 36 0.86
20480 537 35 1.66
40960 537 35 3.33
81920 537 33 6.27
163840 537 32 12.16
327680 537 33 25.09
600
500
- 400
c
=]
2 300
(%]
g d
w200
100
0
1 16 64 256 1024 4096 16384 65536 262144
Vectors Tested

121

Test Set Size

50
45
40
35
30
25
20
15
10

7~

VA

1 4 16 64

256 1024

Vectors Tested

4096 16384 65536 262144

Time(s)

30

25

20

15

10

/

s

e

1 4 16 64

256 1024

Vectors Tested

4096 16384 65536 262144

122

C499
Vectors Tested Faults Found Number of Vectors Needed | Time
10 355 6 0.03
20 424 13 0.08
40 469 19 0.12
80 517 29 0.18
160 547 39 0.25
320 568 43 0.28
640 584 51 0.33
1280 586 52 0.34
2560 586 52 0.35
5120 586 52 0.68
10240 586 52 1.36
20480 586 52 2.73
40960 586 52 5.45
81920 586 52 10.91
163840 586 52 21.81
327680 586 52 43.61
700
600 W
500
©
5 400 /
(=]
v
£ 300
£
200
100
0
1 16 64 256 1024 4096 16384 65536 262144
Vectors Tested

123

Test Set Size

60

50

40

30

20

10

64

256 1024

Vectors Tested

4096

16384 65536 262144

Time(s)

50
45
40
35
30
25
20
15
10

64

256 1024

Vectors Tested

4096

16384 65536 262144

124

€880
Vectors Tested Faults Found Number of Vectors Needed | Time
10 243 9 0.05
20 419 15 0.09
40 718 28 0.19
80 784 32 0.22
160 843 43 0.31
320 887 53 0.38
640 922 50 0.36
1280 960 45 0.33
2560 974 38 0.39
5120 990 37 0.76
10240 992 36 1.48
20480 994 34 2.79
40960 994 30 4.92
81920 994 30 9.83
163840 994 26 17.04
327680 994 25 32.77
1200
1000
T 800
>
f—; 600
B
w400
200
0
1 16 64 256 1024 4096 16384 65536 262144
Vectors Tested

125

Test Set Size

60

50

40

30

20

10

/

64

256 1024

Vectors Tested

4096

16384 65536 262144

Time(s)

35

30

25

20

15

10

64

256 1024

Vectors Tested

4096

16384 65536 262144

126

C1355
Vectors Tested Faults Found Number of Vectors Needed | Time
10 802 6 0.03
20 1095 15 0.09
40 1264 22 0.14
80 1372 33 0.22
160 1419 42 0.28
320 1468 49 0.33
640 1526 61 0.41
1280 1581 76 0.62
2560 1606 83 1.36
5120 1610 84 2.75
10240 1610 84 5.51
20480 1610 84 11.01
40960 1610 84 22.02
81920 1610 84 44.06
163840 1610 84 88.09
327680 1610 84 176.17
1800
1600
1400
-g 1200 /
S 1000 /
% 800
w 600
400
200
0
1 16 64 256 1024 4096 16384 65536 262144
Vectors Tested

127

Test Set Size

90
80
70
60
50
40
30
20
10

//

4

16

64

256 1024 4096

Vectors Tested

16384 65536 262144

Time(s)

200
180
160
140
120
100
80
60
40
20

16

64

256 1024 4096

Vectors Tested

16384 65536 262144

128

Clip
Vectors Tested Faults Found Number of Vectors Needed | Time

1 33 1 0.0062

2 59 2 0.011

4 118 4 0.02

8 180 8 0.04

16 235 15 0.07

32 308 25 0.12

64 340 34 0.17

128 375 40 0.2

256 403 48 0.24

512 415 48 0.24

450

400
350

300

250

200

Faults Found

150

100
” ?’/
0

16 32

Vectors Tested

64

128 256

512

129

60

o o o
< o o~

9215 195 1531

32 64 128 256 512

16

Vectors Tested

0.3

0.25
0.2

(s)owiL

0.1

0.05

32 64 128 256 512

16

Vectors Tested

130

Rd73
Vectors Tested Faults Found Number of Vectors Needed | Time
1 34 1 0.00628
2 63 2 0.0109
4 103 4 0.0203
8 170 8 0.0394
16 210 15 0.074
32 279 29 0.146
64 343 50 0.254
128 404 72 0.367
250
200 —
- /
S 150
e /
M
E 100 /
0
1 2 4 8 16
Vectors Tested

131

Test Set Size

16

14
12

10

o N B OO

4 8 16

Vectors Tested

Time(s)

0.08

0.07
0.06

0.05

0.04
0.03

0.02

0.01

4 8 16

Vectors Tested

132

T481
Vectors Tested Faults Found Number of Vectors Needed | Time
4 41 3 0.01
8 62 6 0.03
16 91 10 0.05
32 98 13 0.06
64 139 21 0.11
128 153 24 0.12
256 164 27 0.14
512 180 31 0.16
1024 187 32 0.17
2048 194 33 0.17
4096 194 33 0.18
8192 194 33 0.3
16384 194 33 0.61
32768 194 33 1.21
65536 194 33 2.42
250
200
-c
S 150 A
A
E 100
50 r
0
1 4 16 64 256 1024 4096 16384 65536
Vectors Tested

133

Test Set Size

35

30

25

20

15

10

s

4 16 64 256 1024 4096 16384 65536

Vectors Tested

Time(s)

2.5

1.5

0.5

/

/

M‘—‘/

1 4 16 64 256 1024 4096 16384 65536

Vectors Tested

134

Z5xpl
Vectors Tested Faults Found Number of Vectors Needed | Time
1 41 1 0.00576
2 69 2 0.0107
4 120 4 0.0197
8 232 8 0.0389
16 291 15 0.07
32 390 31 0.15
64 446 43 0.21
128 470 46 0.23

500
450

400

350
300

250

Faults Found

200
150

100

8 16 32

Vectors Tested

64 128

135

Test Set Size

50

45

40

35

30
25

20

15

10

4 8 16 32 64 128

Vectors Tested

Time(s)

0.25

0.2

0.15

0.1

0.05

e

/

4 8 16 32 64 128

Vectors Tested

136

Z9sym
Vectors Tested Faults Found Number of Vectors Needed | Time
1 9 1 0.00626
2 26 2 0.0111
4 41 4 0.0208
8 77 7 0.035
16 117 15 0.0749
32 180 22 0.111
64 276 35 0.18
128 330 46 0.237
256 381 64 0.332
512 410 75 0.39

500
450

400

350
300

250

200
150

Faults Found

100

8 16

Vectors Tested

32

64 128

137

Test Set Size

50

45

40

35

30
25

20

15

10

4 8 16 32 64 128

Vectors Tested

Time(s)

0.25

0.2

0.15

0.1

0.05

e

/

4 8 16 32 64 128

Vectors Tested

	Bucknell University
	Bucknell Digital Commons
	2010

	FPGA Based Design for Accelerated Fault-testing of Integrated Circuits
	Joe Dunbar
	Recommended Citation

	Untitled

