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ABSTRACT 

 

Animal coloration often serves as a signal to others that may communicate traits about 

the individual such as toxicity, status, or quality.  Colorful ornaments in many animals 

are often honest signals of quality assessed by mates, and different colors may be 

produced by different biochemical pigments.  Investigations of the mechanisms 

responsible for variation in color expression among birds are best when including a 

geographically and temporally broad sample.  In order to obtain such a sample, studies 

such as this often use museum specimens; however, in order for museum specimens to 

serve as an accurate replacement, they must accurately represent living birds, or we must 

understand the ways in which they differ.  In this thesis, I investigated the link between 

feather corticosterone, a hormone secreted in response to stress, and carotenoid-based 

coloration in the Red-winged Blackbird (Agelaius phoeniceus) in order to explore a 

mechanistic link between physiological state and color expression.  Male Red-winged 

Blackbirds with lower feather corticosterone had significantly brighter red epaulets than 

birds with higher feather corticosterone, while I found no significant changes in red 

chroma.  I also performed a methodological comparison of color change in museum 

specimens among different pigment types (carotenoid and psittacofulvin) and pigments in 

different locations in the body (feather and bill carotenoids) in order to quantify color 

change over time.  Carotenoids and psittacofulvins showed significant reductions in red 

brightness and chroma over time in the collection, and carotenoid color changed 

significantly faster than psittacofulvin color.  Both bill and feather carotenoids showed 



vii 

 

significant reductions in red brightness and red chroma over time, but change of both red 

chroma and red brightness occurred at a similar rate in feathers and bills.  In order to use 

museum specimens of ecological research on bird coloration specimen age must be 

accounted for before the data can be used; however, once this is accomplished, museum-

based color data may be used to draw conclusions about wild populations.
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CHAPTER 1 

 

Feather corticosterone predicts color of carotenoid-based feather ornamentation in 

male Red-winged Blackbirds (Agelaius phoeniceus) 

 

 

ABSTRACT 

 

Colorful ornaments are often honest signals of quality assessed by mates, and variation in 

ornament expression may impact reproductive success.  Carotenoid-based plumage 

ornaments in birds can be honest signals that may reflect the foraging capabilities or 

health status of the bearer, and the degree of color expression may be mediated by 

physiological stress.  In Red-winged Blackbirds, Agelaius phoeniceus, carotenoid-based 

epaulets play a role in male-male social interactions, territory maintenance, and female 

choice.  Here I assess whether physiological stress measured via feather corticosterone 

predicts color expression of male epaulets using museum specimens.  Using reflectance 

spectrophotometry, I obtained reflectance spectra of adult male epaulets and plucked 

adjacent feathers for corticosterone analysis via radioimmunoassay.  I controlled for 

differences in social influences, specimen age, and geography by selecting only males 

with one mate (as indicated by the specimen tag) and only birds collected in Florida 

during a three-year window of time.  Feather corticosterone measured as a function of 

feather length was a predictor of red brightness but not red chroma of the epaulet.  Males 
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with epaulets receiving a high red brightness score had significantly lower corticosterone 

than males with epaulets receiving a low red brightness score; however, a high brightness 

score represents a color that is lighter and contains more white, so males with low feather 

corticosterone had lighter epaulets.  This is the first study to show a link between 

corticosterone and carotenoid-based plumage coloration.  These results are inconsistent 

with experimental studies on the role of corticosterone in skin-based color expression; 

however, other mechanisms, which are discussed here, may be affecting color expression 

and corticosterone levels in this species. 
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INTRODUCTION 

 

Colorful ornaments have the potential to reveal information about the physiological status 

of individuals.  Many animals exhibit red, orange, or yellow coloration that is created by 

carotenoids (Endler 1980, Kodric-Brown 1989, McGraw 2006).  The expression of 

carotenoids is often condition-dependent (Olsen & Owens 1998) and carotenoid-based 

ornaments may be honest signals of quality (Zahavi 1975) because of the trade-offs 

between the use of carotenoids as pigments, as antioxidants (Bendich & Olsen 1989, 

Lozano 1994, Krinsky 2001, McGraw 2005), and as an important component in the 

immune response (Bendich 1989, McGraw & Ardia 2003, Alonso-Alvarez et al. 2004).  

 Carotenoids cannot be synthesized de novo by any animal (Goodwin 1984) and 

thus may be a limiting resource for overall health and fitness.  Indeed, immune-

challenged animals show reduced coloration (Faivre et al. 2003, Mougeot et al. 2009, 

Toomey et al. 2010b).  Furthermore, carotenoid-restricted birds show reductions in 

coloration (Blount et al. 2003, McGraw et al. 2005, McGraw 2006) and circulating 

carotenoids (McGraw et al. 2005), while carotenoid supplementation is associated with 

increased coloration (Jouventin et al. 2007).  Because of carotenoids’ involvement in the 

immune system and their antioxidant properties, carotenoid-based coloration should be 

selected for because it might honestly signal an individual’s health (von Schantz et al. 

1999).  While carotenoid pigments in soft tissues (such as in skin, bills, or eyes) may be 

available for re-uptake during an immune or oxidative challenge, it is important to note 

that carotenoids deposited in subsequently inert tissue such as scales or feathers cannot be 
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mobilized for future use; thus only healthy individuals, or those with very high amounts 

of available carotenoids, can afford to deposit them in feathers as an investment in 

showiness. 

 Conditions involving the activation of the immune response, and thus the use of 

antioxidants such as carotenoids, are often also tied to the ‘stress’ response.  Under 

environmental or social challenges the hypothalamic-pituitary-adrenal (HPA) axis is 

stimulated, resulting in the production and release of glucocorticoid hormones from the 

adrenal cortex.  Glucocorticoids are metabolic hormones and act to adjust the way energy 

is used within the body, in order to cope with and recover from stressors.  In conjunction 

with focusing energy on tasks essential for survival, glucocorticoid hormones suppress 

the immune system, growth, reproduction, and digestion (for a complete review of the 

actions of glucocorticoids, see Sapolsky et al. 2000).  When secreted over short time 

frames, the actions of glucocorticoids are adaptive—focusing energy on tasks essential 

for immediate survival and restoring homeostasis (Romero 2002).  However, when the 

stress response is repeated or extended over long periods, the effects are costly and may 

be detrimental to survival.   

In the context of mate choice, females might benefit from choosing mates that are 

either good at coping with stressors or good at avoiding stressful situations.  Given two 

males under identical environmental conditions, it remains unclear as to whether a female 

should choose the male with high corticosterone because this individual is responding 

properly to stressors and thus likely to overcome them, or whether to choose the male 

with low corticosterone because this individual is avoiding the reallocation of energy 
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away from normal activities (Husak & Moore 2008).  It has generally been assumed that 

high baseline corticosterone levels indicate individuals in poorer condition with reduced 

fitness, and this theory is referred to as the Cort-Fitness Hypothesis; however, this 

hypothesis has not been well supported in the literature (reviewed by Bonier et al. 2009).  

For example, reproduction is an energetically demanding time for an individual and may 

increase corticosterone levels to reallocate energy use, which may result in an increase in 

fitness.  Under the Cort-Fitness Hypothesis females are predicted to prefer males with 

lower corticosterone in order to obtain the best mate, and there is some support for this in 

the literature.  For example, Roberts et al. (2007) found that female zebra finches 

(Taeniopygia guttata) preferred males bred from low corticosterone (the primary 

glucocorticoid hormone in birds) lines over those bred from high corticosterone lines.  

However, because of the benefits to corticosterone production, this result may not be 

applicable to other systems. 

 If females actually do benefit from choosing males based on corticosterone levels 

there must be a phenotypic male trait that honestly reflects allostatic load.  In birds, this 

signal could be conveyed by colorful plumage ornaments.  There is evidence that 

corticosterone secretion has negative effects on immune function (Buchanan 2000) and 

that immune activation negatively alters carotenoid availability and coloration (Toomey 

et al. 2010b), yet, to date, few studies have looked for a link between corticosterone and 

coloration.  A study in the common lizard, Lacerta vivipara, found that corticosterone 

mediated carotenoid-based skin coloration, but only when food was limited (Cote et al. 

2010), suggesting that the relationship between corticosterone and condition-based 
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coloration may be more complex than previously surmised (further supported by Fitze et 

al. 2009).  A recent study by Mougeot et al. (2009) showed that internal parasite infection 

among free-living red grouse (Lagopus lagopus scoticus) increased corticosterone levels, 

and reduced carotenoid-based skin pigmentation in the comb, but did not directly test the 

effects of corticosterone alone on carotenoid pigmentation.  This is an important first step 

in understanding how condition-dependent carotenoid-based signals may be regulated by 

corticosterone.  However, many more birds use plumage-based signals that might 

communicate quality.  Regarding melanin-based plumage signals, experimental work by 

Roulin et al. (2008) demonstrated that owls implanted with corticosterone grew feathers 

with less melanic coloration, a condition-dependent trait that is assessed by both males 

and females when making mating decisions (Roulin & Altwegg 2007).  While a link has 

been established in melanin coloration, to date, no studies have shown a correlation 

between corticosterone levels and plumage-based carotenoid color expression. 

Investigation of a link between corticosterone and ornamental coloration should 

use physiological measures that are matched in the time span that they sample, but this is 

a difficult task.  Corticosterone is most often measured in blood samples, but these only 

provide a narrow snapshot of the endocrine status of the animal, which can change on a 

minute-by-minute basis (Romero & Reed 2005).  Because feathers are grown over 

several days or weeks, comparing such a temporally narrow measure of corticosterone 

levels to plumage traits that may reflect condition over a period of weeks is not an ideal 

approach.  Recent work by Bortolotti et al. (2008) has found measurable amounts of 

corticosterone deposited in feathers, providing a longer-term, integrated measure of 
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corticosterone that represents the amount of corticosterone produced in response to all the 

stressors experienced over the time the feather grew.  Corticosterone, as a steroid 

hormone, may be stable in the feather for decades (Bortolotti et al. 2009).  

Red-winged Blackbirds (Agelaius phoeniceus) are an abundant, sexually 

dichromatic passerine in North America whose mating system has been very well studied 

(Nero 1955, Searcy & Yasukawa 1983, Beletsky 1996).  The function of the carotenoid- 

and melanin-based (McGraw et al. 2004) red and yellow epaulets of the males is under 

some debate in the literature.  Epaulets have been shown to function both as an 

intersexual signal of male quality displayed during territorial disputes with other males 

(Hansen & Rohwer 1986, Roskaft & Rohwer 1987, Metz & Weatherhead 1992), and as 

an intrasexual signal assessed by females during precopulatory displays (Yasukawa et al. 

2009), although a recent meta-analysis revealed no significant effects of color on male-

male interactions, female preference, and various measures of reproductive success 

(Yasukawa et al. 2010).  Individuals of this species undergo delayed plumage maturation 

whereby second year (SY) males retain the first basic plumage through their first 

breeding season, and do not attain basic definitive plumage until late summer after 

breeding.  They are easily distinguished from after second year (ASY) males by their 

speckled appearance and by the epaulet, which is usually orange, rather than red, and 

mottled with black (Meanley & Bond 1970).  Molt occurs yearly thereafter in late-July 

through August and is also clearly evident in that newly molted black contour feathers 

have brown tips and the glossy black nuptial plumage is acquired by wear. 
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In this study, I compared feather corticosterone to carotenoid-based epaulet 

coloration of male ASY Red-winged Blackbirds to make a temporally relevant 

comparison of stress and ornamentation under the hypothesis that stress impacts the 

degree of carotenoid coloration.  I conducted this test with museum specimens which 

allowed me to explore whether these techniques can be used to ask behavioral 

endocrinology questions about animals that are no longer living.  Because glucocorticoid 

hormones, such as corticosterone, affect energy use throughout the body and carotenoid-

based signals are costly to produce, I predicted that individuals with higher levels of 

feather corticosterone would express reduced coloration compared to those individuals 

with lower corticosterone levels.  

 

 

METHODS 

 

Museum Specimens 

I collected feather samples, reflectance spectra measurements (described below), and 

other data (body mass (g), testis length and width (mm), number of mates) from adult 

male Red-winged Blackbird specimens at the Smithsonian Institution’s National Museum 

of Natural History (USNM), Washington, DC, USA.  To control for possible geographic 

variation in corticosterone levels and differences in color due to specimen age (Doucet & 

Hill 2009), only specimens collected in Florida during May and June 1964-1966 were 

used.  Because the USNM would not allow removal of the red epaulet feathers for 



9 

 

sampling, I plucked black contour feathers from the upper dorsal side of the specimen.  

This species undergoes a complete annual molt, and thus feathers from these two areas 

grew during the same approximately 8-week period from late July to late September 

(Yasukawa & Searcy 1995).  Feathers were stored in individual paper envelopes at room 

temperature until extraction. 

 The feathers from whole, frozen Red-winged Blackbird specimens donated to 

Bucknell by North Dakota State University were used in the validation of the assay in 

order to determine if black and red feather samples contain the same amount of 

corticosterone, and to gauge repeatability across samples from the same specimen.   

 

Reflectance Spectrometry 

I collected reflectance spectra from 300-700nm of the epaulet region of the wing (upper 

marginal coverts) using an Ocean Optics USB4000 spectrophotometer and a PX-2 pulsed 

xenon light source (Ocean Optics, Dunedin, FL, USA), relative to a white standard (WS-

2), using Spectrasuite software.  I took four measurements of one point on the leading 

edge of the epaulet region where the red color was most intense.  The probe was held at a 

45-degree angle, 1cm from the plumage surface, and I lifted and replaced the probe 

between measurements. 

 Under the Munsell color system, I calculated red brightness (sum of reflectance 

600-700nm divided by number of data points in this range), and red chroma (sum of the 

reflectance 600-700nm divided by the sum of the total reflectance 300-700nm) for each 

spectrum obtained (Montgomerie 2006).  Both measures of coloration were repeatable 
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within measures of the same individual (red brightness: r=0.869, F65, 198=27.540, 

p<0.001; red chroma r=0.784, F65, 198=15.488, p<0.001) (Lessells & Boag 1987), thus 

average red brightness and red chroma for each individual were used in statistical 

analyses. 

 

Corticosterone Extraction and Analysis 

 Feathers were brought to Bucknell University, Lewisburg, PA, USA for 

extraction.  Extraction followed the methods of Lattin et al. (in review), which follows 

those of Bortolotti et al. (2008) with some modifications, described here.  The calamus 

was removed from the feather prior to measuring vane length.  The remaining feather was 

then minced into pieces <5mm long and weighed.  Three to five feathers from a single 

bird were combined in order to reach a sample mass of approximately 11.6mg.  Because 

corticosterone can be affected by sample mass when the sample is very small (Lattin et 

al. in review), the mass of all samples was standardized to within 0.2mg (1-2% of sample 

mass). 

Following mincing, 7ml of methanol was added to each extraction tube and tubes 

were placed in a sonicating water bath for 30min at room temperature.  After sonication, 

samples were placed in a shaking 50°C water bath overnight.  Following shaking, feather 

pieces were removed from the methanol solution using vacuum filtration and a glass filter 

funnel.  The sample tube, feather pieces, and filter apparatus were washed twice with 

2.5ml methanol, with washes added to the methanol extract.  The methanol extract was 
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dried under air in a 50°C water bath, and stored dry at -20°C until shipment to Tufts 

University, Medford, MA, USA for analysis. 

 At Tufts, extracts were reconstituted in a PBS buffer (pH 5.7) and run in duplicate 

through a standard radioimmunoassay (RIA) as described by Wingfield et al. (1992), 

using an anti-CORT antibody (Sigma-Aldrich C8784, Saint Louis, MO, USA, lot 

57K4791). 

 

Assay Validation 

In order to determine variability in corticosterone measurements due to extraction and 

due to the assay itself, I created a homogenous mixture of pooled feathers ground to dust 

using a Ball mill (Kleco model 4200, Visalia, CA, USA) following Lattin et al. (in 

review).  These pooled feather samples were used as standards in the RIA.   

To assess the variation in corticosterone across different feather samples from the 

same bird, I extracted and measured corticosterone from two different black contour 

feather samples (each 3-5 feathers) from the same bird (n=12 birds).  These black feather 

sample extracts were then compared to a sample of red epaulet feathers (8-12 feathers) 

from the same specimen to test whether corticosterone levels are consistent across feather 

types and colors.  Red-winged Blackbirds undergo a complete yearly molt so the red 

epaulet feathers and the black epaulet feathers were likely grown within the same 6-8 

week period from late July to late September (Nero 1984).   
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Statistical Analyses 

 

To control for effects of social hierarchy, only birds with one mate (n=38) were used in 

the analyses, after outliers with discontinuously high corticosterone (n=4) were removed.  

I calculated corticosterone (CORT) measurements as both a function of feather length (pg 

CORT/mm feather) and sample mass (pg CORT/mg feather), and found that the two 

measures were highly correlated (Pearson r=0.984, p<0.001).  Bortolotti (2008) suggests 

that measuring corticosterone as a function of feather length is more relevant due to the 

way a feather grows, thus only corticosterone as a function of feather length is reported 

here.  Corticosterone measurements were natural log transformed to obtain a normal 

distribution.   

Red brightness and red chroma were fitted in separate stepwise regression models 

with corticosterone (ln(pg CORT/mm feather)), individual body mass (g), specimen age 

(years), and testis volume (estimated using the formula for a regular ellipsoid, vol= 

4/3πab2, where a and b are the testis length and width) (Bercovitch 1996), using Minitab 

statistical software, v. 16.1.0 (State College, Pennsylvania, USA).  Means ±SE are 

reported here. 
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RESULTS 

 

Assay Validation 

Based on repeated analysis of the pooled feather standard, intra-assay variation was 4.1% 

and the inter-assay variation was 6.5%.  No significant differences in corticosterone were 

found between samples of black contour feathers taken from the same birds (paired t-test, 

p=0.717), yet samples were only moderately correlated (r=0.330, F11, 12=1.984, p=0.127).   

Likewise, black feathers and red feathers from the same birds did not differ in their 

corticosterone content (paired t-test, p=0.717), yet measures from the same individual 

were only moderately correlated (r=0.297, F11, 12=1.845, p=0.154).  Note that the 

variation between these feather samples is driven partly by the intrinsic variation within 

and between assays (reported above) and perhaps partly by real differences in 

corticosterone between different feather samples from the same bird. 

 

Corticosterone and Color 

 

Red-winged Blackbird feathers contained a mean of 0.1509±0.0106pg CORT/mm feather 

(CV=43.39).  Epaulets had a mean red brightness score of 70.01± 1.75  (CV=15.38), and 

a mean red chroma score of 0.77505± 0.00975 (CV=7.75).  Red brightness and red 

chroma were negatively correlated among individuals (Pearson r=-0.219, p=0.187), and 

testis volume and body mass were highly correlated (Pearson r=0.484, p=0.002). 
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Corticosterone level (ln(pg CORT/mm)) was a significantly negative predictor of 

epaulet red brightness (r2=0.2102, Regression coefficient= -11.4597, SE= 3.70271, 

p=0.0045) (Figure 1).  Testis volume (mm3), body mass (g), and specimen age did not 

predict red brightness in male Red-winged Blackbird epaulets (p= 0.972, 0.559, and 

0.815, respectively).  Red chroma was not predicted by corticosterone, testis volume, 

body mass, or specimen age (all p-values > 0.2). 

 

 

DISCUSSION 

 

The red epaulet coloration of male Red-winged Blackbirds varied with feather 

corticosterone levels.  Specifically, males with lower corticosterone levels had feathers 

that were brighter red than individuals with higher corticosterone levels, whereas there 

was no relationship between corticosterone and red chroma. 

Under the Munsell color system, color characteristics are described in a three 

dimensional space, using three parameters.  The first, hue, represents the principle color 

such as ‘red’ or ‘blue. The five hues (Red, Yellow, Green, Blue, and Purple) are 

subdivided into steps and given a numerical value.  The second parameter, brightness, 

defines a color based on the amount of black and white present.  Very light colors that 

contain high amounts of white receive high brightness scores while dark colors 

containing high amounts of black receive low brightness scores.  The final parameter, 

chroma, defines colors based on the amount of gray they contain, assigning high chroma 
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scores to pure colors, and low scores to colors with a closer resemblance to grey.  Based 

on this system, keeping hue and chroma constant, a bird receiving a high brightness score 

may not appear more colorful that a bird receiving a low brightness score because the 

brighter bird will appear more white (Montgomerie 2006).  Given this idea, Red-winged 

Blackbirds with higher corticosterone levels, that received low brightness scores, have, 

by definition, darker epaulets.  

Interpretation of a link between epaulet color and feather corticosterone depends 

on an understanding of what exactly is being measured by the assay.  Previous work with 

feather corticosterone has shown that feathers contain large amounts of metabolized 

corticosterone, in addition to unmodified corticosterone (Bortolotti et al. 2008).  Despite 

the presence of corticosterone metabolites in the feather, Bortolotti et al. (2008) found 

identical amounts of corticosterone in the total fraction and the secreted fraction of their 

assay, suggesting that the antibody used (C8784 Sigma-Aldrich, Saint Louis, Missouri, 

USA) is only reacting with unmodified corticosterone.  However, further investigation by 

Lattin et al. (in review) using an antibody purchased Endocrine Sciences/Esoterix (B3-

163, Calabasas Hills, California, USA) did not detect any corticosterone in feather 

extracts, suggesting differences in antibody sensitivity, or perhaps the Sigma antibody is 

binding not just to unmodified corticosterone, but potentially to metabolites as well.  

Until analysis of feather extracts via high performance liquid chromatography and/or gas 

chromatography has been performed to determine which forms of corticosterone are 

present in feathers, caution should be exercised when interpreting results from feather 

corticosterone assays.  Nonetheless, all work to date indicates that corticosterone is in 



16 

 

fact being measured in these assays and may be used as an indicator of physiological 

stress during feather development. 

Judging the importance of a correlation between feather corticosterone and 

epaulet color requires an understanding of sexual selection in this system.  Across a range 

of studies, there is mixed support for the role that epaulets play in determining male 

reproductive success in male Red-winged Blackbirds.  Experiments altering male epaulet 

color demonstrate that males with experimentally blackened epaulets (those with a very 

low brightness score) may be less successful at obtaining and maintaining a territory than 

normal males (Peek 1972, Smith 1972).  However further experiments by Morris (1975) 

showed that blackened males reproduced successfully after initial delays in the courtship 

sequence; it is unknown whether this delay meant that they attracted mates of lower 

quality than did blackened males.  Female choice experiments by Yasukawa et al. (2009) 

found that females are more likely to associate with and perform precopulatory displays 

to redder-than-normal males whose epaulets were altered with red ink such that they were 

redder (a change in hue), more saturated (larger chroma score), and darker (lower 

brightness score) than unaltered birds.  They also found that epaulet dulling (resulting in 

epaulets that were more orange (hue), less saturated (lower chroma score), and slightly 

darker (lower brightness score) resulted in no differences in male aggression as compared 

to males with normal epaulets.  Color alterations by Westneat (2006) resulting in a 

visibly darker and duller epaulet revealed no disadvantages in territorial behavior, 

paternal care, pairing success, and reproductive success.  Indeed, a meta-analysis by 

Yasukawa et al. (2010) revealed that color had no effect on male-male competition, 
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female choice, or male reproductive success, despite the fact that some individual studies 

had shown such effects.  There is some evidence that epaulet size rather than color may 

be a more reliable predictor of dominance and reproductive success (Hansen & Rohwer 

1986, Eckert & Weatherhead 1987, Yasukawa et al. 2010); however, measuring size in 

the present study was not possible due to the folded nature of the specimens’ wings.  

While the exact signaling function of the epaulet remains unclear, this prominent male 

feature is still likely to be used in communication between and within sexes, and thus 

alterations of its color due to changes in corticosterone levels may still be of importance 

in male reproductive success.  

Corticosterone and plumage color expression could be connected by perhaps four 

different causal pathways.  The first possibility is the hypothesis that motivated the 

present study—that corticosterone, through alterations in energy use, affects color 

expression.  A second possibility, however, is that color expression may influence 

corticosterone secretion through the social challenges of being more or less colorful (i.e. 

how many mates obtained, or how many intruding males to defend the territory against).  

Under this alternative scenario, the color expressed by a male during one breeding season 

may affect corticosterone levels at the time of molt (after chick-rearing has concluded), 

and thus affect color expression of the subsequent breeding season’s plumage.  There is 

experimental evidence in male House Finches, Carpodacus mexicanus, that subordinate 

individuals have significantly higher circulating corticosterone levels than dominant 

males (Belthoff et al. 1994).  In the House Finch system, where color expression and 

aggression are significantly related (Hill 2002), the effects of social environment on color 
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and corticosterone are likely considerable.  The present study on Red-winged Blackbirds 

controlled for one aspect of social challenges by sampling only birds with one mate, but 

perhaps there are other social mechanisms by which color affects corticosterone.   

Directly testing whether social environment influences corticosterone and color in Red-

winged Blackbirds would require a multi-year approach with live animals. 

A third explanation for a link between corticosterone and feather color is that 

other factors related to energy intake and use within the body, such as food intake, could 

affect both color and corticosterone simultaneously.  Because carotenoid expression is 

ultimately limited by dietary intake of carotenoids, diet restrictions are expected to reduce 

coloration (McGraw et al. 2005).  At the same time, diet restriction in itself may be a 

stressful event triggering the activation of the HPA axis (Kitaysky et al. 2001).  Thus, diet 

may have direct or indirect effects on both corticosterone levels and ornament coloration. 

Further studies should control for this link by ensuring equal diets among treatment 

groups, perhaps in a captive study. 

A fourth possible explanation for a link between corticosterone and color of these 

Red-winged Blackbird specimens is driven by the effect that corticosterone may have on 

feather integrity.  Among birds, corticosterone levels are generally elevated during the 

breeding season, and are usually at their lowest during the post-breeding molt when 

feathers are replaced (Romero & Wingfield 1999, Romero 2002).  Because one of the 

effects of glucocorticoids is to stimulate gluconeogenesis through protein catabolism 

(Sapolsky et al. 2000), down-regulation of corticosterone release during molt may act to 

protect the structural integrity of the growing feather.  Indeed, experimental 
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manipulations of corticosterone indicate that corticosterone inhibits feather growth 

(Romero et al. 2005), and that some flight feathers grown while corticosterone levels are 

high show reduced mass, reduced barbicel hooking strength, and decreased inter-barb 

distance, which can potentially weaken the feather (DesRochers et al. 2009).  It is 

unknown how these changes in feather microstructure affect coloration; however, if 

changes such as these were related to feather degradation over time in a museum 

collection, this feather degradation could cause changes in color reflectance as museum 

specimens age.  In this way corticosterone may impact coloration in museum specimens 

in ways that would not occur in live birds.  Specifically, variation among birds in 

corticosterone levels during molt could affect the durability of the feather, which might in 

turn affect color.  If this type of degradation occurred during decades of museum storage, 

a corticosterone-color connection may be found in museum specimens that did not exist 

when the birds were alive. 

A final area of consideration is the validation data from the feather corticosterone 

assay.  I found that samples from the same bird (each sample consisting of 3-5 pooled 

feathers) were not statistically different from each other, and yet were not significantly 

correlated.  The conflicting lack of statistical significance is likely an artifact of using a 

small number of birds, but the weak correlation is still troubling.  Previous work with the 

feather corticosterone assay has tested whether corticosterone varies along the length of a 

feather, but not whether corticosterone content varies between feathers.  Because the 

likelihood of sampling two feathers that were grown at the exact same time is very small, 

it is expected that there are differences in the corticosterone signature between feathers.  
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Previous work with this assay has been performed using a single feather per sample, 

which cannot account for variation in corticosterone between feathers (Lattin et al. in 

review, Harms et al. 2010, Mougeot et al. 2009, Bortolotti et al. 2008, 2009).  The use of 

3 -12 feathers in each of my samples could have served to reduce variation in 

corticosterone levels due to differences in the timing of feather growth, but still samples 

were not highly correlated, indicating that even samples containing several feathers may 

not be a consistent reflection of corticosterone levels.  Given this finding, studies using 

only one feather per sample should be regarded with caution.  Nonetheless, the detection 

of significant relationships between feather corticosterone and other variables both in the 

present study and other, suggests that such relationships might be very strong—i.e., large 

enough statistical effects to be detected despite between-feather variation in 

corticosterone levels.  Further research is required to understand how much 

corticosterone varies between feathers, and how to control for this variability when 

sampling feathers. 

While previous research supports the link between physiological stress and 

melanin plumage coloration, as well as carotenoid-based skin coloration, this is the first 

to find a link between corticosterone and carotenoid-based plumage coloration. Further 

studies should seek experimental evidence for the effects of corticosterone on carotenoid-

based plumage coloration. 
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CHAPTER 2 

 

Color fading in museum specimens: effects of pigment type and pigment location 

 

 

ABSTRACT 

 

Museum specimens are becoming commonly used for ecological research, particularly 

concerning avian morphology and plumage characteristics.  However, plumage and skin-

based colors have been observed to change over time in museum collections.  Because of 

differences in their chemical properties, different pigments may change at different rates.  

To date, fading of structural, melanin- and carotenoid-based plumage colors have been 

assessed.  This study aims to expand on these studies by evaluating and comparing color 

change of carotenoid- and psittacofulvin-based red plumage and by comparing change of 

carotenoid-based plumage and bill coloration.  Using reflectance spectrophotometry, I 

collected spectral data on five species expressing carotenoid-based red color, seven 

species expressing psittacofulvin-based red color, and three species expressing both 

feather- and bill-based carotenoid color.  Red brightness and red chroma of both 

carotenoid- and psittacofulvin-based plumage colors decreased over time, and carotenoid-

based red brightness and red chroma decreased at a significantly faster rate than that of 

psittacofulvins.  Both plumage- and bill-based red brightness and red chroma underwent 

significant changes over time; however, there were no significant differences in the rate 
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of change of plumage- and bill-based carotenoid color.  While bill-based color has been 

observed to change very rapidly in both living birds and museum specimens, I found no 

such rapid change here, likely due to the fact that the newest specimen included in the 

bill-fading analysis was collected nine years ago, and significant fading may have already 

occurred in that time.  While I found significant changes in the coloration of museum 

specimens, some of the slopes associated with these changes were small, such that in 

some cases very little change in red brightness or red chroma was actually occurring.  

Possible mechanisms underlying the differences in color change based on pigment type 

and location are discussed. 
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INTRODUCTION 

 

The use of museum specimens for research on ecological questions is becoming 

increasingly common (Pyke & Erlich 2009).  Museum collections are particularly useful 

resources for studies of comparative avian anatomy or morphology (Desrochers 

2010,Francis & Guralnick 2010) , and plumage characteristics (Dyck 1992, Schmitz-

Ornes 2006, Toomey et al. 2010a).  While the temporal range of specimens in a 

collection is beneficial to studies of historical population changes, feather color has been 

observed to change over time (Gabrielson & Lincoln 1951), so research on coloration 

using museum specimens should proceed with caution (McNett & Marchetti 2005). 

 Changes in plumage coloration across the duration of storage have received recent 

attention.  An analysis of living and museum specimens of wood warblers (Parulidae) 

revealed significant differences in brightness, chroma, and hue of carotenoid-based 

plumage patches (McNett & Marchetti 2005), suggesting that museum specimen 

coloration may not accurately represent that of wild birds.  Expanding on these findings 

using a variety of passerine species, Armenta et al. (2008) found no effects of age on rust, 

black, or blue colors (derived from either melanin pigments or nanostructures), yet 

significant decreases in brightness of blue-grey, white, and red colors with age.  Armenta 

et al. (2008) also report that changes in the brightness of a color do not necessarily result 

in changes in the other axes of Munsell color space, chroma, and hue.  Analysis by 

Doucet and Hill (2009) found an increase in brightness in the carotenoid-based red 

mantle of Long-tailed Manakins, Chiroxiphia linearis; however, they found no effect of 
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age on blue, black and grey colors (which are typically made by either melanin pigments 

or structural mechanisms), suggesting that color change may be related to the mechanism 

that produced the color.   

Because colors produced by different mechanisms or expressed in different tissue 

types may change differently over time (Doucet & Hill 2009), it is important to analyze 

and report these differences on a pigment-by-pigment or tissue-by-tissue basis.  To date, 

there is some fading information regarding carotenoid- and melanin-based plumage 

coloration from individual species as described above (McNett & Marchetti 2005, Doucet 

& Hill 2009).  Less is known, however, about post-mortem changes in pigments that have 

a narrower taxonomic distribution among birds (such as porphyrins, pterins, and 

psittacofulvins), and in pigments that are not localized in feathers.  Dramatic changes in 

bill coloration over short periods of time have long been observed to take place post-

mortem in museum specimens (McGraw, 2006, pers. observation), but quantitative 

analysis of this change is currently lacking.  

With these issues in mind, the first aim of this study is to assess fading of 

carotenoid- and psittacofulvin-derived plumage coloration in order to expand our 

knowledge of pigment fading in museum specimens.  The second goal of this study is to 

quantify and compare fading of carotenoid pigments in feathers and in the soft tissue of 

bills.   
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Carotenoid and Psittacofulvin Color Change 

 The red, orange, and yellow coloration due to carotenoid pigmentation is the 

focus of much research because expression of this coloration is widespread across taxa, is 

often condition dependent, and is often assessed by mates during reproduction (reviewed 

by McGraw 2006).  These pigments cannot be synthesized de novo by animals and must 

be obtained through diet (Goodwin 1984).  An alternative source of red coloration, the 

psittacofulvin family of pigments, is found only in parrots (Psittaciformes).  In contrast to 

the diet-derived carotenoids, psittacofulvins are synthesized by the animal at the site of 

feather growth (McGraw & Nogare 2004, 2005).  Because of the taxonomic limitations 

of the occurrence of psittacofulvin pigmentation, this pigment group has received far less 

attention from researchers than carotenoid pigments.  Predictions about post-mortem 

color changes are difficult to make because little is known about the synthesis, 

deposition, and degradation of psittacofulvins in feathers.  Nonetheless, studies of the 

effect of light on psittacovulvin-based plumage suggest that colors derived from these 

pigments may be some of the most vulnerable to fading (Horie 1990, Solajic et al. 2002, 

Hudon 2005), and characteristics of their chemical structure (described by Stradi et al. 

2001) may provide support for this idea.  Because of the potential vulnerability of 

psittacofulvins to the effects of light, I predicted that specimen age should have a greater 

effect on color change in psittacofulvins than in carotenoids. 
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Bill and Feather Color Change 

Carotenoid-pigmented bare parts (i.e. skin, bills, feet and areas of the face) often 

serve as signals of quality (Burley & Coopersmith 1987, Perez-Rodriguez & Vinuela 

2008, Baird et al. 2010).  Unlike feather-based signals, which only change to update the 

status of the individual upon annual or semi-annual molt, skin-based ornamental color 

may change much more rapidly.  For example, bill coloration of male goldfinches 

(Carduelis tristis) faded from orange to yellow within 24h of being brought into captivity 

(Rosen & Tarvin 2006), and carotenoid-based foot color in male blue-footed boobies 

(Sula nebouxii) became duller within 48h of food deprivation, while brightness returned 

upon feeding (Velando et al. 2006).  Thus individual signals of status may be updated 

quickly to accurately reflect current conditions. 

 While the mechanisms behind the dynamic changes in bare-part coloration remain 

in question, rapid color changes post mortem have still been observed and I predicted that 

color change will occur more rapidly in bare parts than in feathers. 

 

 

METHODS 

 

I collected reflectance spectral measurements (described below) from adult specimens of 

14 species at the Smithsonian Institution’s National Museum of Natural History, 

Washington, DC, USA. 
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I collected reflectance spectra from 300-700nm using an Ocean Optics USB4000 

spectrophotometer and a PX-2 pulsed xenon light source (Ocean Optics, Dunedin, FL, 

USA), relative to a white standard (WS-2), using Spectrasuite software.  I took four 

measurements of one point on the plumage (see Table 1) or bill (Table 2), with the probe 

at a 45-degree angle and at a distance of 1 cm from the plumage or bill surface.  Plumage 

areas were chosen based on the presence of red coloration, and bill measurements were 

taken from an area of the bill that was known to have been red while the bird was alive 

(based on photographs of live birds).  Both areas measured were kept the same for all 

members of a given species. 

Using the Munsell color system, I calculated red brightness (sum of reflectance 

600-700nm divided by number of data points in this range), and red chroma (sum of the 

reflectance 600-700nm divided by the sum of the total reflectance 300-700nm) for each 

spectrum obtained (Montgomerie 2006). 

 

Psittacofulvins and Carotenoids 

To compare fading of carotenoids and psittacofulvins I collected samples from a 

taxonomically broad group of carotenoid-pigmented birds, and a necessarily narrower 

group of psittacofulvin-pigmented birds (given that the taxonomic distribution of this 

pigment is limited to Psittaciformes only (McGraw & Nogare 2005)), focusing on red 

plumage only (Table 1).  Carotenoid-pigmented birds were collected mainly from the 

eastern United States from Maine to Florida and as far west as Texas, and Wisconsin, and 

ranged in collection date from 2009 to 1843.  Carotenoid-pigmented birds were all male 
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(or were unlabeled but suspected to be male), as the carotenoid-based color in these 

species is much more strongly expressed in males.  Psittacofulvin-pigmented birds were 

collected from areas of Australia, Central and South America and Africa, as well as some 

obtained from the National Zoo or other captive setting, and ranged in collection date 

from 1997 to 1859.  Both male and female psittacofulvin-pigmented specimens were 

sampled, as red coloration in Psittaciformes is often expressed by both sexes (Table 1). 

Both measures of carotenoid and psittacofulvin feather coloration were repeatable 

within samples (carotenoid red brightness: r=0.997, F198, 597=1290.366, p<0.001; 

carotenoid red chroma: r=0.991, F198, 597=418.603, p<0.001; psittacofulvin red brightness: 

r=0.982, F89, 270=219.260, p<0.001; psittacofulvin red chroma: r=0.953, F89, 270=82.602, 

p<0.001) (Lessells and Boag 1987). 

 

Bill and Feather Carotenoids 

To compare fading of carotenoid pigments of the bill and feather, I selected species that 

expressed carotenoid-based red coloration both in the plumage and on the bill.  I 

measured both plumage and bill coloration from the same individuals of Northern 

Cardinals, Cardinalis cardinalis, White-throated Toucans, Ramphastos tucanus, and 

Keel-billed Toucans, Ramphastos sulfuratus (Table 2).  Sampling was limited to these 

three species by their abundance in the museum collection.  C. cardinalis specimens were 

all male, collected from the eastern United States from Florida to New York, and west to 

Wisconsin and Illinois, and were collected from 1843 to 2001 to.  R. tucanus specimens 

were both male and female, were collected throughout northern South America from 
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1891 to 1999.  R. sulfuratus specimens were all male, collected from Central and South 

America and Gambia in West Africa, and were collected from 1911 to 1990. 

Both measures of coloration were repeatable within both bill and feather samples 

(bill red brightness: r=0.999, F71, 216=2769.386, p<0.001; bill red chroma: r=0.995, 

F71,216=846.416, p<0.001; feather red brightness: r=0.995, F70, 213=219.260, p<0.001; 

feather red chroma: r=0.995, F70, 213=730.302, p<0.001). 

 

Statistical Analyses  

Because there was a large amount of variability in the mean age of the specimens across a 

species, I centered age within species (group mean centering; centered age=specimen 

age-species mean age, hereafter referred to as ‘age’) for use in the analyses, as described 

by Enders and Tofighi (2007).  Statistical analyses were performed using SAS statistical 

software (v. 9.2, Cary, North Carolina, USA).  Means ±SE are reported throughout. 

 

Carotenoids and Psittacofulvins 

To compare the effects of age on carotenoid- and psittacofulvin-based red brightness of 

feathers, I performed a hierarchical linear mixed model which models the effect of age on 

pigment types, and models the variability within a species nested within a pigment group, 

using ‘species’ within each pigment as a random effect to control for variability in the 

effects of age on the individual species, and using ‘age’ as a covariate.  There was no 

significant variability in the linear effect of age across species (p=0.3780), so this effect 

was removed from the final model. 
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A hierarchical linear mixed model was similarly used to compare the effects of 

age on red chroma, again using ‘species’ as a random effect, and ‘age’ as a covariate.  

There was so little variability in the linear effect of age across species that it was 

estimated to be approximately zero, and this effect was removed from subsequent 

models; however, the variability in mean red chroma (e.g. intercept) for each species was 

controlled and accounted for. 

 

Bill and Feather Carotenoids 

To compare the effects of age on bill- and feather-based carotenoid red brightness, I 

performed a hierarchical linear mixed model using ‘species’ as the random effect to 

control for variability in the effects of age on color between the individuals of a single 

species.  ‘Age’ was used as a covariate.  This model also accounted for the paired nature 

of the data—that bill and feather measurements were taken from the same individual.   

 I used a similar hierarchical mixed model to test for the effects of specimen age 

on red chroma in bill- and feather- based pigmentation using ‘species’ as a random effect, 

and ‘age’ as a covariate.  The model accounting for variation in the effect of age on 

different species could not converge, and the random effect of age could not be estimated, 

suggesting that the variance in the effects of age of the three species is very small. 
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RESULTS 

 

Carotenoids and Psittacofulvins  

Plumage red brightness and red chroma varied within and between species (Table 3). 

 

Red Brightness 

The first model compared the effect of age on red brightness for each of the pigment 

types.  The slopes representing the effect of age on red brightness for both pigments were 

significantly different from zero (F2, 10=18.81, p=0.0004) and negative, indicating that red 

brightness decreased significantly with age. 

 The second model tested for differences in the slopes representing the effect of 

age on red brightness for carotenoids and psittacofulvins.  The slopes representing the 

effect of age on red brightness for carotenoids and psittacofulvins were significantly 

different from each other (F1, 1142=10.33, p=0.0013, Figure 2), indicating that age is 

affecting carotenoid and psittacofulvin-based coloration differently, with the slope for 

carotenoids (-0.071± 0.01724) being more negative than the slope for psittacofulvins (-

0.0159±0.01589).  Thus there is strong evidence suggesting that carotenoid-based 

plumage coloration changes at a faster rate than psittacofulvin-based coloration. 

 

Red Chroma 

The first model compared the effects of age on red chroma using only the intercepts 

(species mean red chroma) as the random effect, fitting one slope for each pigment type.  
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The slopes representing the effect of age on carotenoid and psittacofulvin pigments were 

significantly different from zero (F2, 1142=25.66, p<0.0001), thus red chroma of both 

pigments types are decreasing significantly with age. 

The second model tested for differences in the slopes of the lines representing the 

effect of age on red chroma for the two pigments.  The slopes for these lines were 

significantly different from each other (F1142=4.31, p=0.0382), and the slope for 

carotenoids (-0.00036±0.000131) was more negative than that for psittacofulvins (-

0.00009±0.000121) (Figure 3).  This suggests that carotenoid-based pigment red chroma 

changes at a faster rate than that of psittacofulvin-based pigments. 

 

Bill and Feather Carotenoids 

In a simple correlation analysis that pooled all specimens (n=144) regardless of species, 

bill red brightness and red chroma were strongly correlated (Pearson r=0.694, p<0.001); 

however, plumage red brightness and red chroma were not (Pearson r=0.089, p=0.457).  

Bill red brightness and plumage red brightness were strongly correlated (Pearson 

r=0.416, p<0.001) in addition to bill red chroma and plumage red chroma (Pearson r=-

0.245, p=0.038).  In addition, red brightness and red chroma varied within and between 

body parts, individuals, and species (Table 4). 

 

Red Brightness 

The first model tested for the random effect of age on red brightness of the individuals 

within a species.  The effect of age on red brightness among the individuals of a species 
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did not vary significantly (p=0.237), thus age affected the individuals within a species 

similarly.  This model also tested for the variability in the effect of age on the mean red 

brightness for individuals within a species, and found little variability (p=0.1808). 

 The next model tested whether the slopes of the lines representing the effects of 

age on red brightness for each body part are different from zero.  The slopes for bill and 

for plumage were both significantly different from zero (F2, 146=7.37, p<0.0009), thus 

there were significant negative effects of age on red brightness of both bills (slope= -

0.04539±0.03414) and plumage (slope= -0.15799±0.03126).  

 A final model tested for differences in the slopes of the effect of age on red 

brightness for bills and plumage.  There were no significant differences in the two slopes 

(F1, 146=2.11, p=0.1488) (Figure 4), thus there are no significant differences in the effect 

of age on bill and plumage brightness, and we can conclude that they are changing at the 

same rate. 

 

Red Chroma 

The first model fit a line for each species in the two body part groups.  Because this 

model tested for variability in the slopes and intercepts of the lines for each species, 

slopes and intercepts were used as random effects.  There was no evidence of significant 

variability in the effect of age on red chroma across the species within each pigment 

group.  The slopes were so small and so similar that a test statistic could not be 

calculated. 
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Next, I fit a model using only the intercepts as the random effect, fitting one slope 

for each pigment type to test whether the slopes were different from zero.  There was 

strong evidence that the slopes of the lines representing the change in red chroma across 

age are different from zero (F2, 146=6.41, p<0.0021), thus age is having a significant effect 

on red chroma in both bill and feather coloration.  There were no significant differences 

between the slope for bill (-0.00091±0.00031) and the slope for feather (-

0.00058±0.00028) (F1, 146=0.19, p=0.6627) (Figure 5), suggesting that bill and feather 

coloration are fading at the same rate.  

 

 

DISCUSSION 

 

Carotenoids and psittacofulvins 

The goals of this study were to test for patterns in color change of carotenoids and 

psittacofulvins as individual pigment groups.  Because previous studies suggest that the 

chemical structure of psittacofulvin pigments may make them more prone to degradation 

over time, I predicted that psittacofulvin-based plumage would undergo color change at a 

faster rate than carotenoid-based plumage.  While I found significant changes in red 

brightness and red chroma of both carotenoid and psittacofulvin-based plumage areas, 

carotenoid-based plumage was found to undergo color change at a significantly faster rate 

than psittacovulvin-based plumage.  Despite these statistically significant changes, the 

total change in brightness and chroma was fairly small.  For example, red brightness of 
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carotenoid-based plumage as a group decreased by 1.62% over 10 years while red 

chroma decreased by 0.25% over ten years.  In 100 years, red brightness decreased 

15.19% and red chroma decreased by 2.31% for the carotenoid group.  Red brightness 

psittacofulvin-based plumage as a group decreased 0.33% over 10 years, while red 

chroma decreased 0.34%. In 100 years red brightness decreased 3.27% and red chroma 

decreased 3.41% for the psittacofulvin group. These somewhat small changes in 

coloration, while statistically different from zero, may suggest that little relevant change 

in coloration is likely occurring in either carotenoid- or psittacofulvin-based coloration; 

however, the degree to which these changes affect future research will depend on the 

range in the age of specimens used.  If the specimens to be sampled were all collected 

within a reasonably small number of years, the effect of storage on coloration may be 

minimal, however these effects are likely to me much larger if the range in specimen age 

is larger.A similar study by Armenta et al. (2008) found significant differences in 

plumage coloration between living and museum specimens of a single species. They 

found significant effects of age on some plumage colors (red) but not others (green, 

brown, yellow), indicating that different pigments may age differently.  Similarly, Doucet 

and Hill (2009) found significant changes in brightness among carotenoid-based 

plumage, but only changes in hue and chroma among blue and black feather regions 

colored by either melanin or nanostructures.  Neither of these studies reported color 

change rates (slopes) or percent changes over time, making a comparison to their findings 

somewhat difficult. 
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Observational studies of parrot feathers used in ancient cultural pieces suggest 

that psittacofulvin pigments may be one of the most susceptible to fading (Solajic et al. 

2002, Hudon 2005); however, no biochemical tests of this prediction have been cited, and 

no support for this prediction was generated from my study. 

 

Bill and Feather Carotenoids 

 Bare tissue coloration in birds has long been observed to change rapidly post 

mortem (McGraw 2006, pers. observation); however, this is the first study to my 

knowledge to quantify this change.  Because of these observations, I predicted that bill 

red brightness and red chroma would change at a much faster rate than feather red 

brightness and red chroma.  While I found that significant color change occurs over time 

in both of these body parts, I found no differences in the rate of color change over time in 

bills and feathers.  For example, carotenoid-based bill coloration as a group showed a 

reduction in red brightness of -0.94%% in 10 years, while bill red chroma decreased 

1.24%.  In 100 years bill red brightness decreased 9.39%, and bill red chroma decreased 

12.44%.  Likewise, carotenoid-based bill coloration as a group showed a reduction in red 

brightness of 2.18% and red chroma decreased 0.91% over a 10-year period.  In 100 

years feather red brightness decreased 21.79%, and feather red chroma decreased 9.03%.  

These changes in red brightness and red chroma of both bill and feather suggest a 

noticeable change is occurring over long periods of time.  The importance of this color 

change to future research will depend on the variability of specimen age with the sample.  

If the range in specimen age is kept fairly small, the variability in coloration due to 
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storage is likely to be minimal, however if the range in specimen age is large, duration of 

storage is likely to have important effects on color. 

Using these same specimens and the slopes generated from the model for 

carotenoid pigment fading (described above), I found that plumage brightness of C. 

cardinalis decreased by only 1.03% in a 10-year period, while chroma decreased only 

0.24%. Thus, the exact rate of change of carotenoid-based plumage coloration varied 

between models.  For C. cardinalis red brightness may decrease between 1.03-7.12% 

every 10 years, while red chroma may decrease between 0.24 and 2.92% every 10 years. 

This variability in color change is due to differences in the statistical model, and thus 

color change estimates are best given as a range. 

It is important to note that the most recent specimen included in my sample was 

collected in 2001, meaning it has been dead for at least 9 years.  Given the many 

observations of rapid post-mortem color change in bare tissue, it is likely that much of the 

color change in the bills that I sampled had already occurred during the 9+ years of 

storage in the collection, and my sample was not able to capture this rapid color change.  

The mean bill red brightness and red chroma of all the specimens included in this study 

was much lower than that for plumage (see Figures 4 & 5).  It is not currently known 

whether this pattern is similar for live birds, but this large difference between bills and 

plumage in red brightness and red chroma may suggest that significant bill fading 

occurred in the first decade of storage.  If much of the color change occurred in the first 

decade of storage, there may be little overall color change left to occur beyond a decade. 

Visual comparison of the bill coloration of the newest R. tucanus specimen in my sample 
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and the oldest (collected in 1891) (Figure 6) reveal striking similarities, suggesting that 

little noticeable color change occurs after a decade of storage. 

Interpreting the color change of bills and feathers is made difficult by how little is 

known about the deposition of carotenoids into the integument and what qualities of the 

bill make it different than a feather.  Both structures are keratinized (Frenkel & Gillespie 

1976, Stettenheim 2000), making them strong yet lightweight; however, carotenoids are 

usually deposited in feathers in the trans form, while pigments deposited in bare parts are 

often esterified (Czeczuga 1979).  Carotenoids bind to keratins, a group of inert and 

insoluble proteins, in such a way that extraction is difficult (Britton et al. 2008).  Such 

binding may suggest that carotenoid deposition in either feather or bill should be 

irreversible, yet rapid bill color change has been shown to occur in live birds (Rosen & 

Tarvin 2006) suggesting re-uptake may be occurring.  Another notable difference likely 

leading to the rapid color change of bills on live birds (Rosen & Tarvin 2006) is the 

presence of a blood supply to the bill, whereas a feather is vascularized only during 

growth. 

 Future research should study bill fading in the initial decade post-mortem. Studies 

of the mechanisms of pigment deposition in the bill, and the processes involved in color 

expression are also an important step toward better a understanding of the mechanisms 

responsible for rapid color change seen in live birds (Rosen & Tarvin 2006), and 

potential post-mortem color change. 
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Summary and Conclusions 

Doucet and Hill (2009) describe three general factors that may influence color change 

among specimens.  The first, soiling, can occur through dust accumulation or deposition 

of oils from handing by researchers.  Dust and oils have the capability to reduce light 

reflection—including doing so differently across wavelengths—and, therefore, care 

should be used in handing and storing collections.  The second factor involves physical 

damage of the feather barbules, including that by bacteria, lice, and again from handling; 

therefore, investment in pest management may be a crucial component of color 

maintenance.  The third mechanism for fading is through biochemical breakdown of the 

pigment molecules via oxidation or isomerization, which would result in increases in 

feather brightness, as more of the white microstructure of the feather shows through.  

Isomerization is the change in stereochemistry of the pigments (Britton 1995) and can be 

the result of exposure to light, heat, oxygen, humidity, or acidity (Shi &Le Maguer 2000), 

thus care should be taken to ensure that the museum environment is not extreme in any of 

these cases.  Because I found significant reductions in brightness, this may indicate that 

pigment breakdown (which would cause an increase in brightness) is not occurring, and 

feather soiling, and feather breakdown may be the factors contributing the most to color 

change over time. 

 While I report that color change is significant both in carotenoid- and 

psittacofulvin-pigment plumage as well as in carotenoid-pigmented bills, application of 

these results to future studies using museum specimens will depend on the types of 

questions under consideration.  Whether or not the color change described here is 
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important to a particular line of future research is up to the researcher, but the 

quantification of color change in different pigments and tissues is a critical first step.  The 

findings from this study support the use of museum specimens for ecological or 

environmental research, but interpretation of color spectra obtained from specimens 

should proceed with caution, as significant color change may be occurring in both 

plumage and bare parts.  An important next step in the quantification of color change 

over time in museum specimens is to include living and very recently dead birds into the 

sample to quantify color change during the first years of storage.  Because of the potential 

for very large changes in color due to degradation of tissue or pigments, continued 

investment in quality museum care should be sought.   
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Table 1: The species used to compare fading of carotenoid and psittacofulvin pigments. 

Pigment Common Name Species Order Family 
Plumage 
Region n Sex 

Carotenoid Red-winged Blackbird Agelaius phoeniceus Passeriformes Icteridae epaulet 31 m 

 
Red-bellied 
Woodpecker Melanerpes carolinus Piciformes Picidae nape 36 m 

 Scarlet Tanager Piranga olivacea Passeriformes Cardinalidae back 49 m 
 Northern Cardinal Cardinalis cardinalis Passeriformes Cardinalidae breast 46 m 

 
Rose-breasted 
Grosbeak 

Pheucticus 
ludovicianus Passeriformes Cardinalidae breast 37 m 

Psittacofulvin Crimson Rosella Platycercus elegans Psittaciformes Psittacidae crown 9 7f, 1m, 1u 

 Eastern Rosella Platycercus eximius Psittaciformes Psittacidae 
under tail 
coverts 9 6m, 3f 

 Eclectus Parrot Eclectus roratus Psittaciformes Psittacidae nape 13 f 
 Red-and-Green Macaw Ara chloroptera Psittaciformes Psittacidae nape 12 6m, 6f 
 Scarlet Macaw Ara macao Psittaciformes Psittacidae crown 13 8m, 4f, 1u 
 African Grey Parrot Psittacus erithacus Psittaciformes Psittacidae tail 17 13m, 2f, 2u 
  Mealy Amazon Amazona farinosa Psittaciformes Psittacidae speculum 17 3m, 13f, 1u 



 

 

Table 2: The species used to compare feather and bill carotenoid pigment fading. 
Common Name Species Order Family Plumage Region n Sex 
Northern Cardinal Cardinalis cardinalis Passeriformes Cardinalidae breast 46 m 
White-throated Toucan Ramphastos tucanus Piciformes Ramphastidae under tail 17 11m, 6f 

Keel-billed Toucan 
Ramphastos 
sulfuratus Piciformes Ramphastidae under tail 9 m 

 



 

 

Table 3: Descriptive statistics of the species used to compare fading of carotenoid and psittacofulvin pigments. 
       Red Brightness    Red Chroma 

Pigment Species n mean  STDEV min max   mean  STDEV min max 
Carotenoid Agelaius phoeniceus 31 62.20 5.23 33.90 85.21  0.8067 0.0550 0.7006 0.9393 

 Melanerpes carolinus 36 20.88 6.03 9.50 36.81  0.8452 0.0591 0.6961 0.9248 
 Piranga olivacea 49 56.68 7.00 38.74 69.49  0.8275 0.0552 0.6788 0.9259 
 Cardinalis cardinalis 46 48.64 8.54 29.61 70.27  0.7002 0.0587 0.5667 0.8116 
 Pheucticus ludovicianus 37 47.24 8.82 29.26 67.26  0.7179 0.0629 0.5751 0.8356 

Psittacofulvin Platycercus elegans 9 36.45 5.88 29.68 46.85  0.7995 0.0608 0.6849 0.8920 
 Platycercus eximius 9 46.64 5.10 41.05 54.34  0.7717 0.0577 0.6488 0.8362 
 Eclectus roratus 13 36.68 5.23 28.54 42.78  0.7836 0.0370 0.7072 0.8395 
 Ara chloroptera 12 44.01 5.23 36.21 52.52  0.8176 0.0477 0.7504 0.8719 
 Ara macao 13 47.89 13.82 17.45 68.68  0.7907 0.0499 0.6782 0.8685 
 Psittacus erithacus 17 49.33 9.53 34.74 67.52  0.7486 0.0508 0.6373 0.8330 
  Amazona farinosa 17 55.08 3.91 47.83 62.32   0.7187 0.0423 0.6355 0.7801 



 

 

Table 4: Descriptive statistics of the species used to compare bill and plumage fading. 
      Red Brightness   Red Chroma 

species n body part mean STDEV CV   mean STDEV CV 
Cardinalis cardinalis 46 Bill 25.46 7.43 29.20  0.5601 0.0564 10.08 
  Plumage 48.64 8.54 17.56  0.7002 0.0587 8.38 
Ramphastos tucanus 17 Bill 5.29 6.57 124.33  0.3963 0.1326 33.45 
  Plumage 37.58 12.62 33.58  0.7986 0.2140 26.80 
Ramphastos sulfuratus 9 Bill 19.21 7.26 37.77  0.6151 0.0627 10.20 
    Plumage 33.66 11.42 33.92   0.8287 0.0446 5.38 



 

 
 
 

 
 
Figure 1. Scatter plots of the relationship between feather corticosterone (ln 
(pgCORT/mm)), and (a) red brightness and (b) red chroma of male epaulets. 
Circles represent the average red brightness or red chroma of four measurements of a 
single individual (n=38).  Corticosterone levels predict red brightness but not red chroma 
of male Red-winged Blackbird epaulets. 

a) 

b) 



 

 

 
 

Figure 2. The relationships between red brightness and centered age of carotenoid- 
(closed circles, solid line) and psittacofulvin-based (open circles, dashed line) plumage 
coloration.  Both carotenoid- and psittacofulvin-based plumage red brightness 
significantly decreased with age, and carotenoid-based plumage did so at a significantly 
faster rate than psittacofulvin-based plumage. 
 



 

 

 
Figure 3. Closed circle, yellow line=carotenoid;  open circle, blue line=psittacofulvin 
 
Figure 3. The relationships between red chroma and centered age of carotenoid- (closed 
circles, solid line) and psittacofulvin-based (open circles, dashed line) plumage 
coloration.  Both carotenoid- and psittacofulvin-based plumage red chroma significantly 
decreased with age, and carotenoid-based plumage did so at a significantly faster rate 
than psittacofulvin-based plumage. 
 



 

 

 
 
Figure 4. The relationships between red brightness and centered age of bill- (closed 
circles, solid line) and feather-based (open circles, dashed line) carotenoid coloration.  
Both bill- and feather-based red brightness significantly decreased with age, and there 
were no significant differences in their rates.



 

 

 
 
Figure 5.  The relationships between red chroma and centered age of bill- (closed circles, 
solid line) and feather-based (open circles, dashed line) carotenoid coloration.  Both bill- 
and feather-based red chroma significantly decreased with age, and there were no 
significant differences in their rates. 



 

 

 
Figure 6. Bill color comparison of the newest R. tucanus specimen sampled (lower), 
collected in 2001, to that of the oldest specimen sampled (upper), collected in 1891.  
Visual inspection reveals many color similarities, supporting the idea that rapid color 
change occurs in bills that could not be captured with the sample obtained here.  See 
Hilty (2003), plate 35 for an illustration of a live R. tucanus. 
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