
Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

2010

The Resonate-and-fire Neuron: Time Dependent
and Frequency Selective Neurons in Neural
Networks
Himadri Mukhopadhyay
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Mukhopadhyay, Himadri, "The Resonate-and-fire Neuron: Time Dependent and Frequency Selective Neurons in Neural Networks"
(2010). Master’s Theses. 23.
https://digitalcommons.bucknell.edu/masters_theses/23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bucknell University

https://core.ac.uk/display/216949154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/23?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

ii

Acknowledgments

This thesis is an exploration of how the insights gained from neuronal modeling
may be implemented within neural networks, and how such networks could be trained
to learn to perform certain desired tasks. The thesis represents a culmination of our
endeavors over the past two years to understand nervous system function, and to
reflect on the principles that govern engineered as well as living systems. I am grateful
to Bucknell University and the Department of Electrical Engineering for giving me
the opportunity to be involved in research, and to undertake this project. I express
my heartfelt gratitude to the department faculty for teaching us the principles of
engineering and the methods of engineering analysis. Also, a special thank you to Dr.
Richard Kozick and Dr. Robert Nickel, for being our professors in Signal Processing
and Control Theory, as well as for serving on my thesis committee.

Through my graduate studies, I have strived to understand the interplay between
theoretical neural modeling and the biological principles that govern neural science.
Thus I wholeheartedly thank Dr. Elizabeth Marin, our professor in Molecular Biology,
and Dr. Owen Floody, who taught us Neural Plasticity. I am truly grateful that
they gave me the opportunity to study graduate level biology in their classes, and I
sincerely thank them for the knowledge that they imparted me with.

I first encountered neuronal signaling as a senior year undergraduate student of
electrical engineering, in Dr. Joseph Tranquillo’s class on Neural Signals and Systems.
Since then I have had the immense privilege of studying neural signaling and neural
networks under Dr. Tranquillo’s supervision. The range of questions and ideas that
Dr. Tranquillo inspired me to ponder have provided the motivation for this thesis, and
for my graduate studies at Bucknell in general. Thus my heartfelt gratitude to Dr.
Tranquillo for introducing me to neuronal signaling and neural networks, for guiding
me in my endeavors to understand nonlinear dynamics, for initiating my curiosity

iii

regarding the relationship between structure and function in biology, and of course,
for being my thesis advisor.

iv

Contents

Abstract x

1 Introduction 1

1.1 Neurophysiological Considerations . 2

1.2 Neural Networks - An Overview . 5

1.2.1 Neuron models with static activation functions 6

1.2.2 The Integrate-and-Fire Neuron 8

1.2.3 The Learning Procedure . 14

1.3 Biophysical Neural Modeling . 15

1.4 Neuronal selectivity and the derivation of tuning curves 19

1.5 Frequency and Time Dependence in Neural Networks 22

1.6 Project Motivation . 23

2 The Resonate-and-Fire Neuron 24

2.1 System definition of the resonate-and-fire neuron 25

CONTENTS v

2.2 Dynamics of the Resonate-and-Fire Model 28

2.3 Application of a single stimulus to resonate-and-fire neuron 29

2.4 Application of a pair of input stimuli to the Resonate-and-Fire Neuron 33

2.5 Parameters and Possible Configurations of Resonate-and-Fire Neuron
Model . 35

3 The Classification of Logic Gates and The XOR Problem 41

3.1 The ”OR” and ”AND” problems . 42

3.1.1 Single Stimulus Solution to the ”OR” and ”AND” problems
with the Resonate-and-Fire Neuron 42

3.2 The XOR Problem . 48

3.3 Application of a train of stimuli to the Resonate-and-Fire neuron . . 51

4 The Temporal Backpropagation Algorithm 53

4.1 Segmenting the training procedure in resonator neural networks . . . 56

4.1.1 Adapting RAF neural networks 57

4.2 Discrete Time Implementation . 58

4.3 Computation of the local gradient . 60

4.3.1 Adapting the synaptic weights 64

4.3.2 Adapting the synaptic delays 65

4.3.3 Adapting the Damping and Natural Frequency of each neuron 65

4.3.4 Adapting the slope of the sigmoidal nonlinearity 66

CONTENTS vi

4.4 Practical Considerations and Implementation in MATLAB 68

5 Conclusions and Future Directions 70

5.1 Resonator Neural Networks and Engineering Design 71

5.2 The RAF Neuron and Neurobiology 72

A Derivation of the Resonate-and-Fire Neuron 75

A.1 The Hodgkin-Huxley model . 76

A.2 The FitzHugh-Nagumo Model . 78

B Derivation of The Static Backpropagation Algorithm 82

B.1 The computation of the local gradient for hidden neurons 85

B.2 Summary of the static backpropagation algorithm 87

B.3 Example: A neural network implementation of a square-root finding
algorithm . 87

C Introduction to Phase Space Analysis 89

D Computer Simulations Program Code 95

vii

List of Figures

1.1 Neuron, corresponding model, and neural networks 3

1.2 The realm of neuronal modeling . 4

1.3 Three generations of neural networks 7

1.4 The integrate-and-fire neuron . 10

1.5 Phase space representation of the Integrate-and-Fire Neuron 12

1.6 The dynamics of the Integrate-and-Fire Neuron in response to depo-
larizing stimuli . 13

1.7 The Hodgkin-Huxley model . 16

1.8 The derivation of tuning curves . 21

2.1 The resonate-and-fire neuron . 25

2.2 The resonate-and-fire phase portrait and nullclines 29

2.3 Time and phase space representation of resonate-and-fire dynamics . 30

2.4 Response of the resonate-and-fire neuron to a pair of input stimuli . . 32

2.5 Postinhibitory faciliation in the resonate-and-fire model 34

LIST OF FIGURES viii

2.6 The integrate-and-fire neuron in response to an inhibitory stimulus . 36

2.7 Excitatory input train to resonate-and-fire neuron 37

2.8 Excitatory/Inhibitory inputs to resonate-and-fire neuron 39

2.9 Input configurations and parameter choices in the resonate-and-fire
model . 40

3.1 The ”OR” and ”AND” Problems . 43

3.2 The resonate-and-fire model for the solution of the ”OR” and ”AND”
problems . 45

3.3 The ”OR” Problem solution with the resonate-and-fire neuron 46

3.4 Solution to the ”AND” Problem with the resonate-and-fire neuron . . 47

3.5 The XOR Problem classification . 49

3.6 Solution to The XOR Problem with the Resonate-and-Fire Neuron -
Single Stimulus . 50

3.7 The Resonate-and-Fire Neuron’s dependence on the timing of input
stimuli . 52

4.1 Neuron model for temporal backpropagation algorithm 55

5.1 Neuronal Pathways, Network Motifs, and Information Representation 74

A.1 The FitzHugh-Nagumo model: Nullclines and Phase Portrait 79

A.2 Integrators and Resonators in the FitzHugh-Nagumo model 81

C.1 Phase line for one-dimensional system 90

LIST OF FIGURES ix

C.2 Time responses of one dimensional system 91

C.3 Phase portrait and state trajectory for two dimensional system 92

x

Abstract

The means through which the nervous system perceives its environment is one of the
most fascinating questions in contemporary science. Our endeavors to comprehend
the principles of neural science provide an instance of how biological processes may
inspire novel methods in mathematical modeling and engineering. The application of
mathematical models towards understanding neural signals and systems represents a
vibrant field of research that has spanned over half a century. During this period,
multiple approaches to neuronal modeling have been adopted, and each approach is
adept at elucidating a specific aspect of nervous system function. Thus while bio-
physical models have strived to comprehend the dynamics of actual physical processes
occurring within a nerve cell, the phenomenological approach has conceived models
that relate the ionic properties of nerve cells to transitions in neural activity. Further-
more, the field of neural networks has endeavored to explore how distributed parallel
processing systems may become capable of storing memory.

Through this project, we strive to explore how some of the insights gained from
biophysical neuronal modeling may be incorporated within the field of neural net-
works. We specifically study the capabilities of a simple neural model, the Resonate-
and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling.
While reflecting further biological plausibility, the RAF neuron is also analytically
tractable, and thus may be implemented within neural networks. In the following
thesis, we provide a brief overview of the different approaches that have been adopted
towards comprehending the properties of nerve cells, along with the framework under
which our specific neuron model relates to the field of neuronal modeling. Subse-
quently, we explore some of the time-dependent neurocomputational capabilities of
the RAF neuron, and we utilize the model to classify logic gates, and solve the classic
XOR problem. Finally we explore how the resonate-and-fire neuron may be imple-
mented within neural networks, and how such a network could be adapted through
the temporal backpropagation algorithm.

1

Chapter 1

Introduction

The inherent challenge of all mathematical modeling is to create an optimal balance
between realism, complexity, and the level of insight that the model provides. The
objective in conceiving theoretical biological models is to capture the essential aspects
of a living system, and thus to enhance our understanding of the mechanisms through
which the natural system functions. However, the inherent complexity of natural
phenomena entails that the state of a system at any given time is influenced by
multiple variables. Thus an extremely realistic model may also be tremendously
complex and intractable, and it is often difficult to comprehend the fundamental
properties of a system through an overly complicated model.

Through this chapter we explore the challenges that arise in conceiving neuronal
models, and the vastly different approaches to neural modeling adopted by neural
networks and biophysical neural models. The intersection of biophysical neural mod-
eling with the field of neural networks provides the foundation for this thesis, and
thus through this chapter we review each approach to neural modeling in turn. Our
objective in this chapter is to provide the historical framework of neuronal modeling
that has motivated this project, and to locate our particular neuron model within
the vast spectrum of neural modeling. We conclude this chapter with a discussion of
the phenomena that are currently lacking with regards to neural networks, and thus
form the motivation for this thesis.

CHAPTER 1. INTRODUCTION 2

1.1 Neurophysiological Considerations

Let us begin by considering the morphology of a typical nerve cell, along with the
general approach utilized to model the various electrophysiological aspects of neu-
rons. Panel (A) in figure 1.1 depicts the various specialized cellular processes that
characterizes nerve cells, and panel (B) represents a general model neuron. The cell
body corresponds to the metabollic center of a neuron, and it gives rise to two types
of processes - the dendrites and the axon. The dendrites, commonly referred to as
the dendritic tree, serve as the main apparatus through which a neuron receives in-
put signals arising from other nerve cells, or pre-synaptic neurons. The signals that
arrive at the dendritic tree usually constitute chemical neurotransmitters. At the
input terminals of the dendritic tree are individual synapses, which contain various
receptors that selectively bind a specific neurotransmitter secreted by the presynaptic
neuron. Upon binding neurotransmitters, the receptor protein initiates a unidirec-
tional current flow in the postsynaptic neuron [1]. Depicted in panel (B) of figure
1.1 is a neuron model, where the input signals are represented by an input vector,
~x. The signal received on each input is subsequently multiplied by synaptic weights,
that correspond to the strength of a specific synapse. The synaptic weights in the
model neuron conceptually model two different aspects of neuronal signaling, namely,
the efficacy of synaptic transmission, along with the amount of attenuation that an
input signal undergoes as it reaches the cell body.

Electrical signaling in nerve cells is mediated through two generic mechanisms:
i) the passive spread of attenuated signals through the dendritic tree, and ii) the
propagation of all-or-none action potentials, or nerve impulses, along the axon of the
neuron [2]. While the dendritic tree receives input signals from other neurons, the
axon represents the neuronal process that transmits output signals. The axon is the
main conducting unit of a neuron and it conveys information to other neurons (post-
synaptic neurons) by propagating action potentials. Unlike the attenuated signals
that traverse the dendritic tree, the action potential is not attenuated as it traverses
the axon.

Underlying the mechanism of action potential generation is the potential difference
across the nerve cell membrane, and the various voltage-sensitive ion channels that
traverse the neuronal membrane. A very basic explanation for the phenomenon of
action potential generation is that any time the potential difference across the neural
membrane exceeds some threshold value, thousands of sodium channels are activated,
which results in the rapid influx of sodium ions into the nerve cell. This rapid influx
of positive charge creates a large increase in the membrane potential (depolarization),

CHAPTER 1. INTRODUCTION 3

x1

x2

.

.

.

.

.

.xN

∑

w1

w2

.

.

.

.

.

.

wN

Vm = Φi - Φe

= Netj = xTW

Ψ
Outj

θ

Dendritic Tree (inputs to neuron) Cell body

Nucleus

Axon

Hillock

Signals

from pre-

synaptic

neurons

Axon (signal

transmission)

Signals to

post-

synaptic

neurons

Pre-synapse

(secretory

terminal)

(A)

(B)

Synapses Φi

Φe

Φi = intracellular potential

Φe = extracellular potential

Input Layer

Output of

Network

Hidden Layers of Neurons

(C)

Figure 1.1: The neural morphology and corresponding neuron model in neural networks. (A) A neuron typically
has four major processes: i) a dendritic tree that receives input signals from pre-synaptic neurons,
ii) the cell body, iii) the axon, which transmits signals to post-synaptic neurons; the axon hillock
is the region where action potentials are usually generated, and iv) the pre-synaptic junction which
secretes chemical transmitters, and thus enables the neuron to communicate with post-synaptic
neurons. (B) A model neuron, where weighted input signals are summed, and the result is passed
onto an activation function, Ψ. The activation function mimics the decision to generate an action
potential, which is usually made at the axon hillock in (A). If the output of the activation function
is greater than the threshold, θ, the output is transmitted to all post-synaptic neurons. (C) A
multilayer perceptron neural network where each of the neurons depicted in the hidden layer represent
a neuron model as in panel (B). The connections depicted between each neuron represents the
synaptic weights. See the text for further explanation.

CHAPTER 1. INTRODUCTION 4

Compartmental

neuron models

Hodgkin

Huxley

model

McCulloch-Pitts

Neuron

Sigmoidal

nonlinearity

Integrate-

and-Fire

Biophyiscal Realm

Phenomenological

Approach

Resonate

-and-Fire

Bursting

and

Spiking

models

“Activation-Function (ψ)” Based Models

Figure 1.2: The vast spectrum of approaches towards neuronal modeling. Neural models
range from the elaborate compartmental models to the simple perceptron-
based modeling of neural networks. A significant idea in neural networks
regards the form of the activation function, and thus depicted in the figure
are models that utilize some form of an activation function (enclosed in the
rectangle).

and this depolarization in turn triggers the generation of the action potential at the
axon hillock. The depolarization also activates potassium channels, and this leads to
potassium ions flowing out of the cell. Since in this instance, positive charge leaves the
nerve cell, the membrane potential decreases (repolarization), and thus the membrane
potential returns to its resting state.

There exist various approaches to neuronal modeling, and the various details of
neurophysiology that a model incorporates depend on the types of insights that we
wish to gain through the model. Depicted in figure 1.2 is a brief summary of the mul-
tiple levels of neuronal modeling that have been pursued over the last few decades -
from the elaborate contemporary compartmental biophysical models, to the simple
threshold gates that characterized the early history of neural networks. We refer the

CHAPTER 1. INTRODUCTION 5

reader to [3] for an overview of theoretical neuroscience, and to [4] for an introduc-
tion to quantitative neurophysiology. Furthermore, a review of common models in
neurobiology may be accessed in [5], while an introduction to the phase space ap-
proach to neuronal modeling and analysis is found in [6]. Moreover, reference texts
on the theory of neural networks may be accessed in [7] and [8]. Finally, a collection
of representative publications which exemplify the multiple approaches to neuronal
modeling is found in [9]. In the remainder of this chapter we strive to explore where
our specific neuron model - the Resonate-and-Fire (RAF) Neuron, is situated within
the greater context of neuronal modeling.

1.2 Neural Networks - An Overview

The study of neural networks was originally inspired by the structure and function
of biological nervous systems. A biological neuron receives thousands of signals from
pre-synaptic neurons, and in turn transmits signals to thousands of other neurons.
The sheer complexity underlying higher level phenomena in nervous systems, such
as learning, necessitates simpler models of neurons, and one such generic model is
depicted in panel (B) of figure 1.1.

In panel (B) of figure 1.1, a signal vector xi at the input of a synapse is connected
to neuron j through a synaptic weight wij . The signal vector may constitute input
data in the form of external stimuli applied to the network, or it may reflect the
signals that neuron j receives from other pre-synaptic neurons. The products of the
weight and signal are passed through a summation, i.e. a spatial integrator, which
models the cell body of the neuron. The resulting sum constitutes the net input to
neuron j, labelled as Netj in panel (B) of figure 1.1. The neuron model depicted
in figure 1.1 is an extremely simple representation of the myriad factors associated
with a single neuron. For instance, the pre-synaptic signal recieved by neuron j
(i.e. the output of the spatial integrator) is in reality a current, which mimics the
flow of neurotransmitters across a biological synaptic junction. The synaptic weights
depicted in figure 1.1 represent several physiological characteristics of neurons. The
first is that within nervous systems, neurons are coupled together through synaptic
junctions. Thus the significance of the synaptic weights is to approximate the coupling
strength between neurons, and thus reflect the strength of the connection between
neurons. Furthermore, a pre-synaptic signal is usually attenuated as it traverses
a neuron’s dendritic tree before it reaches the soma of a neuron. Therefore the
synaptic weights also reflect the attenuated effect that pre-synaptic signals have on

CHAPTER 1. INTRODUCTION 6

the membrane voltage of the post-synaptic neuron.

As shown in the neuron model of figure 1.1, the net input to neuron j is sub-
sequently passed through an activation function, Ψ, that maps the net input to a
corresponding activation pattern. The threshold, θ, has the effect of altering the net
input of the activation function. The model depicted in figure 1.1 can be summarized
by the following two equations:

Netj =
N

∑

i=1

wij ∗ xi (1.1)

Outj = Ψ(Netj) − θ (1.2)

where Netj refers to the sum of weighted inputs that are presented to perceptron
j, and it corresponds to the net internal activity level of the neuron. The output
of the neuron, Outj, is obtained by mapping the internal activity level through an
activation function, Ψ. The specific form of the activation function utilized, is where
the various approaches to neural modeling differ from each other. As is discussed
in the subsequent section, the biophysical approach models the activation function
through nonlinear dynamic differential equations. On the other hand, neural networks
have commonly attributed a static form to the activation function. A summary of
the various neural models utilized in neural networks is presented in figure 1.3.

1.2.1 Neuron models with static activation functions

The field of neural networks has been largely inspired by how we may create a the-
oretical model of nervous system structure and function. Through more than half
a century of research in connectionist neural networks, we may broadly categorize
the activation functions that neural network models utilize as belonging to one of
three general categories, namely, i) threshold gates, ii) sigmoidal nonlinearity, and
iii) time-dependent models. These categories reflect generations and paradigms of
neural network research, and thus in this section, we briefly review the forms of the
activation functions that epitomize each of these generations.

The first formal models of a neuron utilized activation functions (Ψ in panel (B)
of figure 1.1) that followed the generic idea underlying the McCulloch-Pitts model
[10], which treats a neuron as a threshold gate. Under such a scenario, the activation
function takes the form of a threshold function where:

CHAPTER 1. INTRODUCTION 7

Generation I: McCulloch-Pitts Threshold Neurons

Output of activation function

Vm = Internal Activity Level

1

Generation II: Sigmoidal non-linearity

0

1

0

Output of activation function

Vm = Internal Activity Level

Out(v) =
1 if Vm 0 (or threshold)

0 else

Out (v)= 1/(1+ exp(-a*v))

Generation III: Integrate-and-fire

Rm
Cm

IS mulus

IR IC
+

Vm

-

dVm = -Vm/(RM*CM) + IStimulus

dt

if Vm Threshold,

Neuron emits a spike

Activation Functions, Ψ

≥

≥

Figure 1.3: Three generations of neural networks. The first generation of neural net-
works comprised McCulloch-Pitts (MP) threshold gates, where the output of
the neuron is ONE if the membrane potential exceeds zero, and the ouput is
ZERO otherwise. Due to the discontinuous nature of the MP neurons, the
second generation of models utilized sigmoidal functions as activation func-
tions. Sigmoidal functions are universally differentiable, and neural networks
comprised of sigmoidal neurons may be trained with error backpropagation.
Finally, the integrate-and-fire model defines the membrane potential through
a first order linear differential equation.

CHAPTER 1. INTRODUCTION 8

Outj = 1 if Netj ≥ 0

Outj = 0 otherwise (1.3)

The classic perceptron was conceived based on the threshold activation function de-
fined above. The perceptron consists of a single neuron with adjustable synaptic
weights and threshold, and can be used for the classification of linearly separable
patterns. The algorithm used to adjust the free parameters of the perceptron first
appeared in a learning procedure developed in [11] and [12]. The method of steepest
descent and the least-mean-square algorithm [13] further formalized the procedure
used to train a perceptron.

The next generation of neural network models formulated the activation function
as a smooth continuous sigmoid function. A specific example of a sigmoid function is
the logistic function which has the general form

Outj =
1

1 + exp(−a ∗ Netj)
(1.4)

where Netj represents the internal activity level of a neuron. In contrast to the thresh-
old function defined in the McCulloch-Pitts model, sigmoid functions are smooth and
continuous, and thus differentiable. The smoothness property of the sigmoid function
ushered in a new era of neural networks with the development of multilayer per-
ceptrons and the back-propagation algorithm [14] and [15], which shall be discussed
further in section 1.2.3. We now turn to the third generation of neural network
modeling and the integrate-and-fire neuron.

1.2.2 The Integrate-and-Fire Neuron

The history of neural networks reveals that whenever neurons are modeled to reflect
greater biological relevance, the neural network itself becomes capable of performing
increasingly complicated tasks. The integrate-and-fire model was experimentally con-
ceived by Louis Lapicque in 1907 [16]. Through stimulating the sciatic nerve of frog
muscle, Lapicque found that the soma of a neuron acts much like a temporal integra-
tor. Over a century after Lapicque’s experiments, the integrate-and-fire model has
become a commonly utilized neural model within neural networks. It has been shown

CHAPTER 1. INTRODUCTION 9

that neural networks comprised of spiking neurons are more computationally effec-
tive than their non-spiking predecessors [17]. The generic integrate-and-fire neuron
is depicted in figure 1.4.

The integrate-and-fire model represents the third generation of neural network
modeling, in that it strives to model the neural membrane potential through a simple
one-dimensional differential equation. The integrate-and-fire neuron is comprised of a
parallel resistor-capacitor circuit; thus the application of an input current charges the
circuit, and when the membrane potential reaches some threshold value, the neuron
emits a spike. The amount of time it takes for the circuit to reach the threshold
voltage, is utilized to encode information.

In figure 1.4, a current Istim(t) is defined as the sum of the products obtained by
multiplying the input signal vector with the synaptic weights. Thus Istim in this
instance is equivalent to Netj in panel (B) of figure 1.1. The current Istim(t) charges
the parallel resistance-capacitance circuit. The voltage across the capacitor, v(t)
- which reflects the membrane voltage of the neuron, is compared to a threshold
ϕ. If the membrane voltage exceeds the threshold at some time, ti(f), an output
pulse δ(t − ti(f)) is generated. Subsequently, the voltage across the circuit is reset
to some value, Vreset, that is below the threshold. Thus integrate-and-fire neurons
are also known as spiking perceptrons. The leaky integrate-and-fire model can be
mathematically summarized by the following:

Istim(t) = IR + IC

⇒ Istim(t) =
v(t)

R
+ C ∗

dv

dt
dv

dt
= −

v(t)

R ∗ C
+

Istim(t)

C
⇒ v → Vpeak if v > ϕ

⇒ v(t + 1) < −− Vreset (1.5)

where C refers to the membrane capacitance, R refers to the resistance, and ϕ refers
to the threshold value of the neuron.

Let us first consider the natural response of the integrate-and-fire neuron, i.e. with
Istim(t) = 0. Thus we have:

CHAPTER 1. INTRODUCTION 10

Rm Cm

Is m

IR IC

φ
+

v(t)

-

A

B

C

Vpeak

Threshold, φ

time

(A)

(B)

v(t)

Figure 1.4: The integrate-and-fire neuron. (A) Equivalent circuit model of integrate-and-
fire (IAF) nuron. The stimulus current Istim is comprised of the products
of the synaptic weights and signal vector ~x, as depicted in figure 1.1. Since
the IAF model is a parallel combination of a resistance and capacitance, the
neuron is defined by a first order linear differential equation. The stimulus
current charges the circuit, and any time the membrane potential v(t) exceeds
the threshold ψ, the neuron emits a spike. (B) Representative evolution of IAF
membrane potential in time in response to excitatory stimuli. ’A’ represents
the charging phase, ’B’ depicts the spike emission, and ’C’ refers to the reset
phase of the IAF model.

CHAPTER 1. INTRODUCTION 11

v̇ =
dv

dt
= −

v(t)

R ∗ C
(1.6)

The natural response of the integrate-and-fire neuron is thus:

v(t) = Vo ∗ exp(
−t

R ∗ C
) (1.7)

where Vo refers to the initial voltage at time = 0.

A complementary approach to analyze the integrate-and-fire model is through
the phase space. An introduction to phase space analysis is attached in appendix C
and depicted in figure 1.5 is the phase-space representation of the integrate-and-fire
neuron.

Since the integrate-and-fire neuron is defined by a one-dimensional differential
equation, the evolution of the neuron’s membrane potential may be viewed as a flow
on a line. The steady state value of the membrane potential corresponds to the
instance when v̇ = 0, or where the v-nullcline in figure 1.5 intersects the x-axis.
A positive stimulus current has the effect of shifting the v-nullcline upwards, thus
shifting the steady-state potential to the right, and hence increasing the membrane
potential of the neuron. Once the potential crosses the threshold value, the neuron
emits a spike, thus causing the voltage to reach Vpeak, and the potential is immediately
reset to Vreset. Figure 1.6 displays the evolution of the membrane potential in the
time domain and in the phase space, in response to a series of depolarizing stimulus
current pulses.

In response to negative stimulus currents, the steady-state membrane potential
moves towards the left in the phase line, thus implying a decreasing membrane po-
tential. Under such a scenario, the membrane potential never exceeds threshold, and
thus the neuron never transmits action potentials in response to inhibitory synaptic
currents. However, we know that some biological neurons are capable of generating
action potentials even in response to inhibitory currents - a phenomenon known as
anode break excitation. Examples of such neurons include thalamocortical relay neu-
rons and mesencephalic V neurons in the rat brain stem [6]. Thus part of our goal
through this project is to derive a neuron model that is capable of being responsive
even to inhibitory synaptic currents.

CHAPTER 1. INTRODUCTION 12

Is m < 0

Is m > 0

dv/dt

v-nullcline

dv/dt = - v/(R*C)

Figure 1.5: A phase space representation of the integrate-and-fire neuron’s dynamics. A
depolarizing stimulus shifts the steady-state of the system, and the state of the
neuron decays back to the original resting potential. Since the integrate-and-
fire neuron is defined by a one-dimensional differential equation, the dynamics
of the membrane potential is constrained to be a flow on a line.

CHAPTER 1. INTRODUCTION 13

2

time

time

Istim(t)

φ

Istim = 0

Vpeak

Istim > 0

Vreset A

A

B

B

C

C

Vpeak

dv/dt

(A)

(B) (C)

Threshold, φ

Figure 1.6: (A) Depolarizing current stimuli is applied to the integrate-and-fire neuron,
which evokes a super-threshold response. (B) Representation of membrane
potential in time. (C) Phase space representation of the integrate-and-fire
neuron’s dynamics in response to depolarizing stimuli. Since the integrate-
and-fire neuron is defined by a one-dimensional differential equation, the dy-
namics of the membrane potential is constrained to be a flow on a line. Thus
the reset phase in panel (C) does not exist in the dynamics of the integrate-
and-fire model. Rather, the reset condition is imposed and ”hard-coded” into
the model

CHAPTER 1. INTRODUCTION 14

1.2.3 The Learning Procedure

Perhaps one of the most powerful aspects of neural networks is the learning procedure,
which is used to train a network to perform some desired task. In panel (C) of
figure 1.1, the strength of connections between neurons are referred to as the synaptic
weights. Thus the learning procedure entails adjusting the strength of the synaptic
weights to yield a certain network response.

Given a set of inputs, we may define a desired response that the network should
yield when presented with these inputs. The difference between the desired response
and the actual response of the network constitutes an error that we wish to minimize.
The error may be defined as follows:

ej = dj − oj (1.8)

where dj reflects the desired response that an output neuron j should yield, oj is the
actual response of the output neuron, and ej is the error. Subsequently, we may
derive an energy function which reflects the amount of error that the network yields.
A common form attributed to the energy function is:

E =
∑

jǫO

e2
j (1.9)

where E is the energy, and the set O reflects the total number of output perceptrons
in the network. The goal of the learning procedure is to minimize the error surface
with respect to the free parameters of the system, i.e. the weights and thresholds
applied to each neuron.

Various learning procedures have been developed throughout the history of neural
networks. Each procedure has been devised according to the specific neuron model
that is utilized to design a neural network. For instance, the classic McCulloch-Pitts
perceptron is often trained through the method of steepest descent and the least mean
square algorithm. The error backpropagation algorithm is usually employed to train
neural networks comprised of sigmoidal-type neurons.

The back-propagation process consists of two different phases. In the first phase,
known as the forward pass, an input vector is applied to the network, and its effect
is transmitted through the network, layer by layer. Finally, an output is produced as

CHAPTER 1. INTRODUCTION 15

the actual response of the network. The actual response is subtracted from a desired
response, and this result constitutes the error signal. In the second phase, also known
as the backward pass, the error signal is propagated through the network, against the
direction of synaptic connections. The synaptic weights are adjusted so as to make
the actual response of the network approach the desired response [?].

Error backpropagation has emerged as a powerful tool in neural networks. How-
ever, the backpropagation algorithm was originally developed for static input pat-
terns, and the derivation of the static backpropagation algorithm is attached in
appendix B. Part of our goal in this project is to consider how a temporal back-
propagation algorithm could be utilized to adapt a neural network comprised of time
dependent neurons. Moreover, traditionally the backpropagation algorithm is im-
plemented to adapt the synaptic structure of the network, i.e. the strength of the
synaptic weights. However, we know that the neurophysiological learning process
entails enhancements in synaptic transmission, as well as morphological changes in
individual nerve cells [1], [18], [19], [20]. Thus through this project we also explore
how the internal parameters that characterize individual neurons within a neural
network may be adapted alongside the synaptic structure of the network.

The utilization of error backpropagation requires that the activation function be
differentiable, and analytically tractable. A further goal of this project is to enhance
neural networks to reflect greater biological plausibility, while also retaining the ana-
lytical tractablity that is required to utlize the backpropagation algorithm. Thus we
subsequently explore how methods in biophysical neural modeling could provide the
framework for neuron models in neural networks.

1.3 Biophysical Neural Modeling

So far in our discussion we have focused on the neural network approach to neuronal
modeling, and thus we have concentrated on the simplest neural models that are
depicted in figure 1.2. Through this section we turn our attention towards the opposite
extreme of figure 1.2, and concern ourselves with the biophysical realm of neuronal
modeling.

The essence of biophysical neural models pertains to the characterization of actual
physical processes that occur within a nerve cell. Thus the most elaborate neuronal
models are those that segment a nerve cell into discrete compartments, and strive to

CHAPTER 1. INTRODUCTION 16

gNa Cm

IS mulus

INa
IC = C*dVm

dt
ILeak

Φ
e
= Extracellular poten al

Outside cell (Extracellular)

Φ
i
= intracellular poten al

Inside cell (Intracellular)

ENa
ELeak

gK

IK

EK

K = potassium

Na = sodium

E = Nernst Poten al

g = conductance

V
m
= Φ

i
– Φ

e

gLeak

Figure 1.7: The equivalent circuit representation of the Hodgkin-Huxley parallel conduc-
tance model. In the squid giant axon, a patch of neural membrane consists of
three major types of voltage gated ion channels, which selectively mediate the
flow of three types of ionic currents: a sodium current, a potassium current,
and a leak Ohmic current. The Hodgkin-Huxley model is a four-dimensional
system of coupled nonlinear dynamic differential equations which relate the
dynamics of the neural membrane potential to the dynamics of ion channel
gating parameters. See text for equations.

model the nature of the currents that flow through each compartment. The procedure
utilized to derive compartmental models can be traced back to the space clamped ap-
proach to quantitative neural modeling that was originally pioneered by Alan Hodgkin
and Andrew Huxley in the early 1950s. The Hodgkin-Huxley (HH) model [21] rep-
resents one of the most important and insightful models in theoretical neuroscience,
and it is also a relatively simple example of a biophysical model. Through performing
experimental studies on the squid giant axon, Hodgkin and Huxley proposed the par-
allel conductance model depicted in figure 1.7. Hodgkin and Huxley’s quantitative
description of the phenomenon of action potential generation was awarded the Nobel
Prize in physiology/medicine in 1963.

CHAPTER 1. INTRODUCTION 17

The core idea of the HH parallel conductance model is that within a small patch of
neural membrane, there exist three major currents that traverse the squid axon: i)
a voltage-gated transient sodium current with three activation gates and one inac-
tivation gate, ii) a voltage-gated persistent potassium current with four activation
gates, and iii) an Ohmic leak current. Through performing numerical and experi-
mental analyses, Hodgkin and Huxley characterized the dynamics of the sodium and
potassium ion channels that result in the generation of the action potential. Thus
the HH model strives to describe the dynamics of the activation function depicted in
figure 1.1, using the biophysical details that characterize the neural membrane. The
qualitative form of the ”activation function” in the HH model is defined by the rela-
tive time constants of sodium and potassium ion channels. Sodium channels operate
at a much faster time scale than potassium channels, and thus a slight depolarization
of the membrane potential initially activates thousands of sodium channels. The in-
flux of sodium ions into the nerve cell creates the upstroke of the action potential.
Potassium channels are also voltage-gated, however, they operate at a much slower
time scale than do sodium channels. Thus the repolarization of the neural membrane
is achieved through the efflux of potassium ions out of the nerve cell, along with
the inactivation of the sodium channels. The four dimensional system of coupled
differential equations that defines the Hodgkin-Huxley model are:

C ∗
dVm

dt
= −gNam

3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Istimulus (1.10)

τn(Vm) ∗
dn

dt
= n∞(Vm) − n (1.11)

τm(Vm) ∗
dm

dt
= m∞(Vm) − m (1.12)

τh(V) ∗
dh

dt
= h∞(Vm) − h (1.13)

where Vm refers to the potential difference across the neural membrane, and m, h,
and n refer to gating parameters. The formulation shown in equations 1.10 to 1.13
differs from the original Hodgkin-Huxley equations, however, the convention depicted
above has been adopted in contemporary theoretical neuroscience.

The m and h gates define the dynamics of sodium channels, while the n gate corre-
sponds to potassium channel dynamics. Furthermore, the term n∞(Vm) refers to the

CHAPTER 1. INTRODUCTION 18

steady-state value of the n gate at a particular membrane potential, while m∞(Vm)
and h∞(Vm) correspond to the steady-state levels of sodium channel gating param-
eters. Moreover, τ refers to the rate constant of each of the gating parameters, Cm

corresponds to the membrane capacitance, and g refers to the nonlinear conductance
of each of the ion channels as a function of the membrane potential. It is important
to note that the rate constants τ , the ion channel conductances, and the steady-state
ion channel gating parameters are all nonlinear functions of the membrane potential,
Vm.

The four dimensional Hodgkin-Huxely model is analytically intractable, however,
we may gain insights into the generic dynamics of the system by considering variables
that operate at similar time scales. Thus the membrane potential Vm along with the
sodium activation m gate operate at much faster time scales than the n and h vari-
ables. Therefore we may reduce the four variable HH model into a fast-slow system
comprised of two differential equations, whereby the resulting reduced system qualita-
tively reflects many of the characteristics of the original HH model [22]. Subsequently,
we may analyze the resulting system of differential equations on a two dimensional
phase plane. An instance of such a simplification is found in the FitzHugh-Nagumo
(FHN) model [23], [24], and we derive the resonate-and-fire neuron from the HH and
FHN models in appendix A. The notion of reducing a biophysical neural model, such
as the HH model, into a reduced system of equations underlies the phase space ap-
proach to nonlinear dynamic neuronal modeling. In figure 1.2 we refer to such models
as Bursting and Spiking Models. Neuronal models that are derived through the phase
space are conceived to exhibit the various different regimes of neural activity, such as
quiescence, spiking, and bursting, and these models relate the transitions in neural
activity to specific bifurcations that a neural system is capable of undergoing.

The ideas that underlie the HH parallel conductance model have been extended
over the years to yield compartmental biophysical models. While the HH parallel con-
ductance model strives to model a small patch of neural membrane, a compartmental
model segments a nerve cell into multiple compartments, each with an equivalent cir-
cuit representation. Consequently, a compartmental model is typically comprised of
several coupled circuits, and one of these circuits resemble the one depicted in figure
1.7. Thus a general method utilized to derive a compartmental model begins with an
estimation of the distribution of different ion channels across different segments of the
dendritic tree; each ion channel is subsequently represented by an equivalent conduc-
tance based model. A similar procedure is performed for the cell body and the axon
of a neuron. Subsequently, each compartment is coupled to adjacent compartments
by an equivalent conductance term. Due to the intricate nature of neuronal pro-
cesses, compartmental models are usually comprised of dozens, and even hundreds,

CHAPTER 1. INTRODUCTION 19

of coupled differential equations. Hence the fundamental objective of a compartmen-
tal model is to characterize the flow of ionic currents through the neural membrane,
across different modes of neural activity. Instances of compartmental neuron models
are found in [25] and [26].

Biophysical neural models prove to be insightful in studying the microscopic prop-
erties of nerve cell processes, such as the dynamics of ion channel gating, or the role
of genetic mutations in contributing to aberrant neural activity. Consequently bio-
physical models are of interest to investigators who seek to understand how we may
alter neural activity through the administering of drugs, or who strive to model the
relation between the molecular and electrophysiological properties of a nerve cell.
However, biophysical models are not well suited towards understanding the macro-
scopic aspects of nervous system function, such as the means through which the
nervous system learns, or stores memory.

The sheer complexity of biophysical neural models entail that they are not analyt-
ically tractable, and thus cannot be trained using the learning procedures utilized in
neural networks, such as error backpropagation. The implementation of the backprop-
agation algorithm requires that there exist a specific input-output activation function
that defines each neuron. Therefore, through our project we are striving to study a
neural model that incorporates some of the insights gained from biophysical neural
modeling, while also being analytically tractable, and thus implementable in a neural
network.

1.4 Neuronal selectivity and the derivation of tun-

ing curves

One of the most classic neurophysiological experiments pertains to the derivation of
tuning curves for individual nerve cells. In general, a tuning curve relates the activity
level of a nerve cell to an ”input parameter”. The activity level is usually quantified
as the average number of action potentials that an individual neuron generates per
second, and is therefore the average frequency of action potential generation. Thus as
the input parameter is varied, the activity levels of individual neurons are measured.
The input parameter may assume a number of different forms, such as the frequency
of sound or the orientation of visual stimuli. In an experiment where we wish to derive
a tuning curve, a neural pathway is exposed to the particular input stimuli, and the

CHAPTER 1. INTRODUCTION 20

activity levels of different nerve cells are measured. Thus when the input stimuli is
visual stimuli, the response of neurons in the visual cortex are usually monitored, and
when the organism is exposed to various frequencies of sound, the response of cells in
the auditory cortex are quantified. The general idea of a tuning curve is depicted in
panel (A) of figure 1.8.

The method of deriving tuning curves dates back to the late 1950s, when David
Hubel and Torsten Wiesel performed their seminal studies regarding information pro-
cessing in the visual system [27], [28], [29]. Hubel and Wiesel exposed anesthetized
cats to various orientations of a straight line, and they monitored the activity level
of individual neurons in response to different angular orientations. They found that
some cells were selectively responsive to particular orientations of the line, while these
same cells became silent for other orientations. Similarly, they also observed that some
neurons were most responsive when the line was displaced, while others were most
responsive for static lines. These studies suggested that specific neurons of the visual
system are responsive to input stimuli that assume specific forms. Moreover, Hubel’s
and Wiesel’s studies indicated that the process of vision formation is critically de-
pendent on the selective responsiveness of individual nerve cells to specific forms of
input stimuli. A key figure from Hubel’s and Wiesel’s experiments are depicted in
panel (B) of figure 1.8.

The idea of neuronal selectivity was explored by Hubel and Weisel in a spatial
context, i.e. the orientation of lines in space were utilized to derive tuning curves for
individual neurons in the cat visual cortex. One of the ideas that we wish to explore
through this thesis is how neuronal selectivity may manifest itself in a temporal
context in the nervous system. Under such a framework, the input stimuli would
constitute the timing of input stimuli relative to each other, and the output would
correspond to the activity level of individual neurons. Thus we wish to consider a
neuron model whose activity level is dependent upon the timing of individual input
stimuli, and how such a neural model could be utilized in neural networks.

Furthermore, as is evident from figure 1.8, an input stimulus results in receptive
neurons generating a pattern of action potentials, rather than a single impulse. One of
the implications of Hubel’s and Weisel’s findings is that the nervous system encodes
information in the frequency of action potential generation, over a period of time.
However, the notion of representing information through a neuron’s temporal activity
pattern is a novel idea in neural networks. Therefore, through this project we explore
how such a time-dependent framework of information encoding could be implemented
in neural networks.

CHAPTER 1. INTRODUCTION 21

Orientation of line Activity level of a nerve cell in visual cortex

(B)

Input Stimulus

Parameter

Activity

level of

neuron /

(Spikes per

second)

Stim*

(A)

Figure 1.8: (A) The general method of deriving tuning curves. An input stimulus param-
eter is varied, and for each value of stimulus, the activity level of an individual
nerve cell is quantified. The activity level is measured in the average number
of action potentials generated by the cell per unit time, and thus reflects the
average frequency of action potential generation. In this instance, the cell is
most responsive when the stimulus Stim* is applied. However, tuning curves
may come in a variety of shapes, where a given nerve cell may be maximally
responsive to more than one value of the input parameter. (B) The classic
Hubel and Weisel experiment: adopted from fig. 4 of [27]. Through a narrow
slit opening an anesthetized cat is shown various configurations of a line (left
panel). The right panel depicts the activity level of a representative nerve cell
in response to the specific orientation and position of the line.

CHAPTER 1. INTRODUCTION 22

1.5 Frequency and Time Dependence in Neural

Networks

The notion of encoding information in the frequency of action potentials is yet to be
explored in neural networks. The dynamics of the integrate-and-fire (IAF) model en-
tail that the neuron is most responsive to high frequency inputs. Thus the frequency
of an input stimulus is directly correlated to the frequency of action potential gen-
eration. Moreover, the dynamics of the IAF neuron is characterized by a monotonic
function, and thus the membrane potential cannot undergo subthreshold oscillations.

However, biophysical neural models suggest that there exist two major modes of
neuronal dynamics - that of i) integrators, and ii) resonators. Integrators are not
capable of displaying subthreshold oscillations, while resonators are. Due to the pres-
ence of these subthreshold oscillations, resonators are most sensitive to inputs within
a certain frequency range, while integrators are most sensitive to high frequency in-
puts. The frequency selectivity of resonator neurons provides a novel framework for
the derivation of decision boundaries within a neural network, and thus expands the
possible repertoire of problems that the network is capable of classifying.

Moreover, experimental and theoretical studies have demonstrated that resonator
neurons are capable of generating action potentials in response to inhibitory inputs
- a phenomenon known as anode break excitation [6], [30], [31]. On the other hand,
integrators are not capable of responding to inhibitory stimuli. In the context of
neural networks, the IAF model captures some of the qualitative features of integrator
neurons in the brain. However, there does not exist a neural model in neural networks
that captures the features of resonator neurons.

Furthermore, much of the contemporary literature suggests that neural subthresh-
old oscillations are a crucial aspect of the mechanisms through which the brain en-
codes information [32] and [33]. For instance, the oscillatory behavior of a neuronal
network in the brain could provide a ”background field”, and a specific pattern of
action potentials could be superimposed on this background field to carry relevant
information. A specific instance where the presence of a background field has been
experimentally shown arises in the brain of monkeys. It is thought that the relative
phase of action potentials with respect to the background field enables the monkey
to know its location in space [32]. Thus while the background field encodes a gen-
eral location, such as a room, the phase of action potentials in relation to this field
indicates the monkey’s position within the room.

CHAPTER 1. INTRODUCTION 23

1.6 Project Motivation

One of the motivations of this project is to consider how frequencies may be utilized
to encode information in the brain. The notion of a frequency code that encodes
relevant information in the brain has become a central tenet of neuroscience, and it
has gained relevance in theoretical as well as experimental studies. Thus through
this project we strive to explore how frequency and time-dependent neuronal mod-
els may be introduced to the field of neural networks. As we have discussed in the
previous sections, biophysical neural models suggest that some nerve cells are most
sensitive to input stimuli that are applied within a certain frequency range. Further-
more, the derivation of tuning curves along with the insights gained regarding the
information processing of the nervous system suggest that the frequency of action
potential generation plays a functional role in conveying relevant information in the
brain. Therefore, through this thesis we seek to analyze a neural model that displays
frequency sensitivity, and is sensitive to the timing of input stimuli. Furthermore, we
also consider how such a neural model could be utilized in neural networks, and how
the learning procedure could incorporate and reflect the distinction between integra-
tor and resonator neurons. Thus in the subsequent chapter, we analyze the properties
of the Resonate-and-Fire neuron.

24

Chapter 2

The Resonate-and-Fire Neuron

A prevalent notion in contemporary neuroscience suggests that biological nervous
systems encode information in the frequency of action potentials. Thus the timing
and pattern of multiple action potentials conveys information in the brain. However,
the current emphasis in neural networks lies in the ability of a neuron to generate
a single action potential, where the state of the neuron is either ”on” or ”off”. In
order to implement frequency encoding in neural networks, we must derive an ”ac-
tivation function” that is itself frequency sensitive. Through this chapter we seek to
analyze the capabilities of the circuit model depicted in figure 2.1, which we refer
to as the resonate-and-fire (RAF) neuron. The RAF model is a specific form of a
time-dependent activation function. Thus we are retaining the activation function-
based approach to neuronal modeling, while augmenting the neuron models that are
currently utilized in neural networks. The RAF model is an extension of the model
analyzed by Izhikevich in [34]: while the model in [34] implements a resonator neuron,
our model may be tuned to be an integrator or a resonator depending on the choice
of parameters. Also, since the RAF model is defined by a linear system of differential
equations, the synaptic weights that comprise the input to the perceptron may be
trained using the conventional learning procedures of neural networks, such as error
backpropagation. Finally, since the RAF neuron is a frequency sensitive model that
is dependent on the timing of input stimuli, we may introduce the notion of frequency
encoding in neural networks.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 25

2.1 System definition of the resonate-and-fire neu-

ron

The resonate-and-fire neuron may be characterized as follows:

Stimulus(t) = IR + IC + IL ⇒ Stimulus(t) =
v

R
+ C ∗

dv

dt
+

1

L

∫

vdt (2.1)

Rm
Cm

Li

S mulus

IR IC IL

Figure 2.1: The circuit description of the resonate-and-fire neuron. The stimulus refers
to a perturbation of the membrane potential (see text). The resistor repre-
sents the Ohmic leakage impedance of the neural membrane, and the capac-
itance models the lipid bilayer that comprises the membrane. The inductor
introduces a relatively large time constant to represent the role of long-term
currents in neuronal processes

where Rm refers to the membrane resistance, Cm is the membrane capacitance, and
Li represents a memory storage element which operates at a much longer time-scale
than the time constant introduced by the capacitance. The notion that underlies
the resonate-and-fire neuron is that a biological neuron’s internal activity level is
determined by the interplay of fast and slow membrane currents. We are mimicing this
dynamic interplay of membrane currents by considering time constants that operate at
different time scales. Thus the time constant introduced by the capacitance operates

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 26

on a short time scale, while the time constant introduced by the inductor functions
at a much longer time scale. The resonate-and-fire neuron essentially augments the
integrate-and-fire (IAF) model by considering an extra term - the inductance.

The inductor mimics the presence of currents that are dependent on long-term
processes, such as the intracellular calcium concentration, The role of calcium currents
is known to be crucial in mediating biological learning, and calcium conductances are
largely implicated in forms of learning such as long term potentiation (LTP) [1] and
[35]. The inclusion of the inductor in the RAF model thus allows us to represent the
role of long term currents in the neural membrane through a longer time constant. The
interplay of the different time constants introduced by the inductor and capacitor also
entail that the RAF neuron is a frequency selective model. We subsequently consider
how the choice of parameters in the RAF neuron alter the dynamics of the model.

Upon differentiating, and dividing by C, we may represent the natural response
of the resonate-and-fire model as follows, where Istim(t) is zero:

d2v

dt2
+

1

R ∗ C

dv

dt
+

v(t)

L ∗ C
= 0 (2.2)

⇒ 2 ∗ δ ∗ ωn =
1

R ∗ C
and ω2

n =
1

L ∗ C
(2.3)

Since the resonate-and-fire model is defined by a linear time-invariant system, we
may utilize a differential operator in equation 2.2 to obtain the natural roots of the
system. Implementing the differential operator is equivalent to taking the Laplace
Transform of equation 2.2, with all initial conditions set to zero. Thus we have:

V (s) ∗ [s2 + s ∗
1

R ∗ C
+

1

L ∗ C
] = 0 (2.4)

If we solve for s in equation 2.4, we obtain the natural roots of the resonate-and-fire
model. Since the resonate-and-fire neuron is defined by a second order differential
equation, the system has two natural roots, which may be expressed as:

s1,2 =
−1

2 ∗ R ∗ C
±

√

1

4 ∗ (R ∗ C)2
−

1

L ∗ C
(2.5)

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 27

⇒ s1 = −δ ∗ ωn +
√

(δ ∗ ωn)2 − ω2
n (2.6)

⇒ s2 = −δ ∗ ωn −
√

(δ ∗ ωn)2 − ω2
n (2.7)

Consequently, the solutions of the resonate-and-fire model may be represented as:

v(t) = A ∗ exp(−t ∗ s1) + B ∗ exp(−t ∗ s2) (2.8)

where the constants A and B are determined by the initial conditions of the system.

The roots in equation 2.5 may be distinct and real, where δ ∗ ωn > ωn, in which
case the system response is said to be overdamped. The overdamped response is
qualitatively similar to the integrate-and-fire model, in that the system does not
display transient oscillations; in response to depolarizing inputs, the membrane po-
tential monotonically increases towards the threshold. Alternatively, if the roots of
the system are complex conjugates, where δ ∗ ωn < ωn, then the system is said to be
underdamped. In the instance where the RAF model is underdamped, the neuron
is capable of displaying subthreshold oscillations of the membrane potential, as well
as postinhibitory rebound spikes in response to inhibitory inputs. Thus the resulting
differential equations of the RAF neuron enable us to combine the two different modes
of neural activity, namely that of integrators and resonators (see previous chapter), in
a single model. Moreover, by adapting the term δ ∗ ωn in our neuron model, we may
alter the internal dynamics of the neuron so that it either exhibits the characteristics
of integrator or resonator neurons. We shall delve further into the adaptation of in-
ternal variables when we derive the learning procedure for resonator neural networks
in chapter 4.

Currently subthreshold oscillatory behavior, or postinhibitory rebound spiking,
has not been extensively studied in neural networks. However there exists a large
body of evidence that suggests that neural subthreshold oscillations have a functional
role in the nervous system [32]. Also, the experimentally observed phenomenon of
anode break excitation may be understood in the context of subthreshold oscillations,
as we show subsequently through phase space analysis. A short introduction to the
method of phase space analysis is attached in appendix C.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 28

2.2 Dynamics of the Resonate-and-Fire Model

Since the resonate-and-fire model is characacterized by a second order differential
equation, we may rewrite it as a system of two differential equations. Thus, we adopt
the following convention:

v̇ = y (2.9)

⇒ ẏ = −
1

R ∗ C
y −

1

L ∗ C
v (2.10)

(2.11)

We may evaluate the equilibrium points of the system shown above by considering
the two nullclines, defined by v̇ = dv

dt
= 0, and ẏ = dy

dt
= 0. The intersection of the

nullclines of an N-dimensional dynamical system correspond to equilibrium points of
the system, i.e. points where the differential rate of change is zero. Thus the nullclines
of the resonate-and-fire model are:

v̇ = y = 0 (2.12)

ẏ = 0 = −
1

R ∗ C
y −

1

L ∗ C
v (2.13)

⇒ y = −
R

L
v (2.14)

⇒ y = −
ωn ∗ v

2 ∗ δ
(2.15)

Depending on the duration of an external stimulus, Istim(t), the effect on the mem-
brane potential may be regarded as either: i) a prolonged stimulus shifts the y-
nullcline, and thus changes the equilibrium of the system, or ii) a momentary stim-
ulus perturbs the membrane potential of the system, thus altering the phase space
representation of the system. In the first instance, the prolonged stimulus may be
viewed as a current stimulus, which transiently charges and discharges the capacitor
and the inductor. On the other hand, the second instance refers to the case where we
apply an instantaneous perturbation to the the membrane potential, resulting in the
membrane potential assuming the value of the external stimulus, and subsequently

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 29

-1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

s tate v = v
1

s
ta

te
 v

 =

 v
’

2

v’ = -v*constant

v’ = 0

Figure 2.2: Phase portrait of the resonate-and-fire neuron and system nullclines. The
resonate-and-fire model’s equilibrium is determined by the intersection of the
two nullclines defined in equation 2.12.

evolving according to the system defined in equation 2.2. We consider this second case
in further detail below. The nullclines of the resonate-and-fire model are depicted in
figure 2.2.

2.3 Application of a single stimulus to resonate-

and-fire neuron

A momentary perturbation applied to the RAF neuron deviates the membrane poten-
tial from the original equilibrium, and subsequently, the potential evolves according
to the differential equation defined by equation 2.1. We may analyze the evolution of
the membrane potential either in the time domain, or in the phase space. There exist
two alternative ways in which we may consider the effect of an excitatory stimulus.
We may regard it as an input stimulus current to the RAF circuit, or we may treat
it as a perturbation to the membrane potential. We adopt the second alternative, in
that an excitatory stimulus perturbs the membrane potential to the magnitude of the
stimulus, and subsequently the membrane potential evolves according to equation 2.2.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 30

time

Stimulus applied at time = 0

5

time

V(t)

1

0-0.8

0

0-0.8

0

V(t)

y = dV

dt

A

C

B

A

(A) (B)

(C)

0 1 2 3 4 5 6 7 8 9 10
-1

0

1
A

B

C

0

1

time

V(t)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-2

0

y = dV

dt

V(t)
(D)

Figure 2.3: The resonate-and-fire dynamics in response to a single excitatory stimulus. An
excitatory stimulus is applied at time = 0, labelled as point A in figure. (A)
The time response of the resonate-and-fire neuron with δ = 0.1, ωn = 2∗π.. (B)
Representation in Phase Space with δ = 0.1, ωn = 2 ∗ π. Upon application of
the first stimulus, the timing of a subsequent stimulus is critical to determining
the neuron’s likelihood of firing. Thus a depoloarizing stimulus applied at
point C is more likely to result in the generation of an action potential than if
the same stimulus is applied at point B. We may represent this phenomenon
in both the time domain, and in the phase space as is shown in the figure.
Threshold omitted for simplicity. (C) The time response of the resonate-and-
fire neuron with δ = 0.9, ωn = 2 ∗ π.. Upon application of the stimulus, the
membrane potential does not undergo subthreshold oscillations, but rather
evolves much like an integrator neuron. (B) Representation in Phase Space
with δ = 0.9, ωn = 2 ∗ π. Therefore the neuron may be tuned to either be an
integrator or a resonator through the adjustment of the damping factor

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 31

The time domain and phase space representations of the evolution of the membrane
potential in response to an excitatory stimulus, are depicted in figure 2.3.

An input stimulus that is applied at time=0 perturbs the membrane potential of
the RAF neuron, and this is labelled as point A in figure 2.3. We may represent
explicit solutions to this perturbation by considering the following initial conditions:

v(0) = Stimulus (2.16)

v′(0) = 0 (2.17)

where Stimulus refers to the magnitude of the perturbation, and v’(0) represents the
derivative of the membrane potential at time = 0. We may evoke these conditions in
order to solve for the constants A and B in equation 2.8. Thus we have:

v(0) = Stimulus = A + B (2.18)

v′(0) = −s1 ∗ A − s2 ∗ B = 0 (2.19)

where s1 and s2 refer to the roots of the system as defined in equation 2.5. If we
utilize the results of equation 2.18, we get:

A = Stimulus/(1 − (s1/s2)) (2.20)

B = Stimulus/(1 − (s2/s1)) (2.21)

If we utilize A and B from the above equation in equation 2.8, we obtain explicit
solutions of the evolution of the membrane potential.

The natural dynamics of the RAF entails that the excitatory stimulus evokes
damped oscillations of the membrane potential if the damping factor of the neuron
is between a value of 0 and 1. In the phase space, we may represent these damped
oscillations as a stable focus. Moreover, the timing of a subsequent stimulus relative to
the phase of the oscillation is critical in determining the likelihood that the membrane
potential exceeds the threshold, and the neuron generates an action potential. Thus
a second excitatory stimulus may enhance the effect of the first stimulus, and amplify
the evolution of the membrane potential, if the stimulus is presented after a delay
equivalent to the natural period of the neuron, labelled as point ”c” in figure 2.3.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 32

time

1

0

Stimuli applied at time = 0, and at time = 0.5s,

which is half the natural period of the neuron

0

V(t)

0

2nd stimulus

time

2nd stimulus 1st stimulus

(A)

(B)
(C)

V(t)

y = dV

dt1st stimulus

Figure 2.4: The resonate-and-fire dynamics in response to a pair of input stimuli. (A)
An excitatory stimulus is applied at time = 0, and then subsequently at time
= 0.5s - which corresponds to half the natural period, a second excitatory
stimulus is applied (B) The time response of the resonate-and-fire neuron.
The second stimulus acts to damp the response evoked by the first stimulus
(C) Representation in Phase Space. Parameter values: δ = 0.1, ωn = 2 ∗ π.
Threshold omitted for simplicity. Thus a second excitatory stimulus applied
at a specific time reduces the neuron’s likelihood of firing. See text for further
explanations.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 33

On the other hand, if the second excitatory stimulus is presented after a delay that
corresponds to half the natural period of the neuron, around point ”b” in figure 2.3,
then the neuron becomes less likely to generate an action potential.

Moreover, as is evident in figure 2.3, the resonate-and-fire neuron may also display
the qualitative features of integrator neurons if we adjust the damping factor to be
around equal or greater than 1. Under such a scenario, the application of an input
stimulus does not evoke subthreshold oscillations of the membrane potential. Instead,
the membrane potential monotonically decays toward the original equilibrium point.
Therefore, the resonate-and-fire neuron is able to mimic the two major forms of
neural activity in nervous systems, i.e. that of integrators and resonators. Through
the adjustment of the damping factor that characterizes the neuron, we may alter its
activity to either mimic integrator neurons or resonator neurons.

2.4 Application of a pair of input stimuli to the

Resonate-and-Fire Neuron

In figure 2.4, a second excitatory stimulus applied in the falling phase of the membrane
potential’s oscillation reduces the activity level of the neuron, and thus reduces the
likelihood of the neuron generating an action potential. This is due to the fact that
subsequent to the initial stimulus, the second stimulus is applied after a delay that
corresponds to half the natural period of the neuron. Thus the stimulus is applied
at the falling phase of the oscillation, and this precise timing damps the membrane
potential. If instead of an excitatory stimulus, an inhibitory stimulus was utilized
to perturb the neuron subsequent to the initial excitatory stimulus, then the neuron
would become more likely to generate an action potential. However, the crucial aspect
of the input stimulus is the exact time at which it is presented. Thus subsequent to
the excitatory stimulus at time=0, if an inhibitory stimulus is applied after a delay
that corresponds to half the natural period of the neuron, then the neuron would
become more likely to generate an action potential.

In figure 2.5, we depict the time domain and phase space representations of the
membrane potential in response to a pair of stimuli. An excitatory pulse is again
applied at time = 0. Subsequently, after a delay that corresponds to half the natural
period of the neuron, an inhibitory stimulus is applied. The inhibitory stimulus en-
hances the neuron’s likelihood of firing because it is applied during the falling phase

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 34

time
0

1

-1

Excitatory stimulus applied at time = 0, and inhibitory

stimulus applied at time=0.5s, which is half the natural

period of the neuron

time

V(t)

2nd Stimulus

2nd Stimulus

1st Stimulus

1st Stimulus

V(t)

y = dV

dt

(A)

(B) (C)

0 1 2 3 4 5 6 7 8 9 10

-1.5

-1

0

1

1.5

Figure 2.5: The resonate-and-fire dynamics in response to postinhibitory facilitation. (A)
An excitatory stimulus is applied at time = 0 and then subsequently at time
= 0.5s, which corresponds to half the natural period, an inhibitory stimulus of
the same magnitude is applied. (B) The time response of the resonate-and-fire
neuron. The second stimulus acts to enhance the response evoked by the first
stimulus (C) Representation in Phase Space. The inhibitory stimulus increases
the ”radius” of the stable focus, thus indicating an enhanced likelihood of
firing. Parameter values: δ = 0.1, ωn = 2∗π. Threshold omitted for simplicity.
Thus an inhibitory stimulus applied at a specific time increases the neuron’s
likelihood of firing. See text for further explanations.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 35

of the oscillation, around the negative peak of the membrane potential. Thus dur-
ing the rebound oscillation, the neuron evolves through a greater value of membrane
potential, in comparison to the case where solely the excitatory stimulus is applied.
Therefore, the resonate-and-fire model is capable of displaying subthreshold oscilla-
tions of the membrane potential, and as a consequence of this, the neuron may also
exhibit postinhibitory rebound spiking. The phenomenon of postinhibitory rebound
spiking refers to the instance where a neuron generates action potentials in response
to inhibitory stimuli. Through both theoretical and experimental analyses, many
neurons have been shown to be capable of exhibiting postinhibitory rebound spikes
[6]. One of the limitations of the integrate-and-fire neuron is that the model is not
capable of generating action potentials in response to inhibitory inputs. If inhibitory
input is applied to the integrate-and-fire model, the neuron will never reach thresh-
old and thus the neuron will never generate action potentials. This limitation of the
integrate-and-fire model is depicted in figure 2.6.

2.5 Parameters and Possible Configurations of Resonate-

and-Fire Neuron Model

The scenarios that we have considered so far have been limited to instances where we
perturb the neuron with a single excitatory stimulus, followed by a precisely timed
excitatory or inhibitory stimulus. The general insights gained from these instances
suggest that the resonate-and-fire neuron is acutely sensitive to the timing of input
stimuli, and that a particular neuron is tuned to be most sensitive to inputs that
arrive at a specific frequency. We may extend our approach to the instance where
we perturb the neuron with multiple excitatory stimuli through one input, while also
applying inhibitory stimuli from a second input. At any given time, the instantaneous
input to the neuron constitutes the sum of the instantaneous stimuli received through
each input. This specific framework is shown in figure 2.8.

Let us first consider the case where the inhibitory input is set to zero for all time,
while the neuron is receiving excitatory inputs at some input frequency. Stimuli
that are delayed with respect to each other, by a time period that corresponds to
the membrane potential’s natural period of oscillation tend to enhance the neuron’s
probability of firing; on the other hand, stimuli that are applied at delays that are
significantly different from the natural period of oscillation diminish the probability
of firing. The case where a train of stimuli enhances the likelihood of firing is depicted

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 36

V(t)

time

time

Inhibitory Stimulus applied at time = 0

0

V(t)

y = dV

dt

Inhibitory Stimulus

Membrane potential

exponentially increases

back to rest

Inhibitory Stimulus

Threshold

Rest

VRest

(A)

(B) (C)

Figure 2.6: The integrate-and-fire (IAF) neuron in response to inhibition. (A) An in-
hibitory stimulus is applied at time=0 (B) Time domain representation: the
membrane potential exponentially rises back to rest subsequent to being in-
hibited. Since the integrate-and-fire neuron cannot display subthreshold os-
cillations of the membrane potential, it cannot generate action potentials in
response to inhibitory inputs. (C) Phase space representation of IAF neuron’s
response to inhibition. Parameter value: R*C=0.2.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 37

V(t)

time
0 3

V(t)

dV

dt

0

-5

0

5

3-2
V(t)

y = dV

dt

time

1

A train of excitatory stimuli is applied, with

the delay between each stimulus being equal

to the natural period of the neuron

0

(A)

(B)

(C)

0 1 2 3 4 5 6 7 8 9 10

-2

0

3

Figure 2.7: The evolution of the resonate-and-fire neuron’s membrane potential in re-
sponse to a train of excitatory stimuli. The input train is applied at a fre-
quency that corresponds to the neuronal membrane potential’s natural fre-
quency of oscillation. (A) Input stimulus train (B) Time response of mem-
brane potential (C) Phase space representation of membrane potential’s evo-
lution. Parameters: δ = 0.1, ωn = 2 ∗ π. Threshold omitted for simplicity.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 38

in figure 2.7. We may alter this probability of firing at particular instants in time
by applying a second input at precisely timed intervals. Thus in the case where an
excitatory and inhibitory input are applied at the same time, they effectively cancel
each other out. When the inputs are applied at a certain phase relative to each
other, we may manipulate the neuron’s membrane potential by controlling the phase
between the inputs. This general framework is depicted in figure 2.8.

From our discussion in this chapter, we may apply a certain pattern of input
stimuli through two generic methods: i) we apply input stimuli to the RAF neuron
through a single input, with each input stimulus applied at a certain delay relative
to one another; this particular instance corresponds to the case where we have a
single input to the RAF neuron, and each of the input stimuli are applied at a
relative delay with respect to each other through the same input line, and ii) there
exist multiple inputs to the resonate-and-fire neuron, and each of the input patterns
applied are related to each other through some difference in timing. The first instance
represents temporal summation in that there exists a single input, and each stimulus
is delayed by a certain amount relative to the previous stimulus. The second instance
corresponds to spatial summation since the neuron recieves input stimuli through
multiple presynaptic channels. These two general approaches are depicted in figure
2.9.

In the subsequent chapter we characterize the RAF neuron’s response to different
profiles of spatial and temporal input patterns, and we subsequently analyze the
neuron’s capabilities in classifying logic gates, and in solving the XOR problem.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 39

S�m1

∑

w1

w2
= - w1

Netj
RAF

Outj

θ

S�m2

0

-1

1

S�m1

S�m2

Rela�ve Phase between excitatory and inhibitory s�muli

�me

(A)

(B)

Figure 2.8: The resonate-and-fire neuron with two inputs, one excitatory, and the other
inhibitory. (A) Schematic representation of the resonate-and-fire neuron re-
ceiving two inputs of equal magnitude, but of opposite sign. (B) The relative
delay between the excitatory and inhibitory inputs may be manipulated to
either enhance or inhibit neural activity.

CHAPTER 2. THE RESONATE-AND-FIRE NEURON 40

RAF

Neuron

weight

Input

stimulus

Delay ∂t

 (A)

RAF

Neuron

w1

w2

w3

Input

stimulus 1

Input

stimulus 2

Input

stimulus 3

 (B)

Figure 2.9: Possible input configurations to the resonate-and-fire (RAF) neuron. (A) The
RAF neuron receives inputs through a single input channel, and each input
stimulus is offset in time from the previous stimulus by a certain delay. (B)
The resonate-and-fire neuron receives inputs through multiple input channels,
and the stimuli applied to each input are delayed with respect to one another.

41

Chapter 3

The Classification of Logic Gates

and The XOR Problem

The classification of different input patterns as belonging to a specific ”class” was
one of the earliest problems explored in the field of neural networks. The inspiration
underlying the classification problem is that biological nervous systems are extremely
adept at recognizing patterns, such as the letters of an alphabet, or the facial profile of
different individuals. The classification problem was originally studied in the context
of binary logic gates. The McCulloch-Pitts (MP) neuron that we reviewed in our
introductory chapter, has been shown to be adept at correctly classifying simple logic
expressions, such as the ”OR” and ”AND” gates. However, the MP model is not
capable of classifying linearly inseparable patterns such as the XOR problem. The
limitations of the MP neuron in the context of the XOR problem served to become
the basis of many of the criticisms that neural networks faced in the early years of the
field [36], and the XOR problem continues to be an important benchmark problem
in neural networks. Through this chapter we explore the capabilities of the resonate-
and-fire (RAF) neuron in classifying logic expressions, and we show that the RAF
model is capable of solving the XOR problem. Subsequently, we investigate how the
process of frequency encoding could be achieved in a neural network comprised of
RAF neurons.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM42

3.1 The ”OR” and ”AND” problems

Let us consider the logic that defines the OR and AND gates - depicted in figure 3.1.
We may derive a decision boundary which separates the input space into two distinct
regions - if a point lies above the boundary, then the output is considered to be ”one”,
and conversely, if a point lies below the boundary, then the output is ”zero”. In the
case of the classic McCulloch-Pitts neuron, the output is defined as:

out = w1 ∗ x1 + w2 ∗ x2 − θ (3.1)

and thus the decision boundary is defined by:

0 = w1 ∗ x1 + w2 ∗ x2 − θ (3.2)

If we solve equation 3.2 for x2, we obtain a decision boundary in the form of a
straight line, that segments the input space into two different classes. Thus the
decision boundary is:

x2 = −
w1

w2
∗ x1 +

θ

w2
(3.3)

Moreover, we may adjust the slope and y-intercept of the decision boundary by adjust-
ing the free parameters of the system, i.e. the weights and threshold. We next explore
how these two elementary logic problems may be classified using the resonate-and-fire
model.

3.1.1 Single Stimulus Solution to the ”OR” and ”AND” prob-

lems with the Resonate-and-Fire Neuron

The ”OR” and ”AND” logic classifications may be solved through a variety of differ-
ent approaches in the resonate-and-fire (RAF) model. Let us consider the simplest
instance, where the inputs are presented to the RAF neuron at a single time instant.
For simplicity, let us also assume that the inputs are excitatory and of equal magni-

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM43

Classifica�on:

=1

= 0

X
1

X
2

Output =

Y

0 0 0

0 1 1

1 0 1

1 1 1

X
1

X
2

Output =

Y

0 0 0

0 1 1

1 0 1

1 1 1

1

10

X2

X1

Decision

Boundary

Classifica�on:

=1

= 0

X1 X2 Output =

Y

0 0 0

0 1 0

1 0 0

1 1 1

1

10

X2

X1

Decision

Boundary

(A)

(B)

Figure 3.1: (A) The ”OR” Problem. If either of the inputs are a logical ”one”, then the
output of the neuron should also be ”one”. (B) The ”AND” Problem. If both
inputs are logical ”one”, then the output is ”one”. The decision boundary
segments the input space into two different classes: ”zero” and ”one”. If the
input lies above the decision boundary, then the output is considered ”one”,
otherwise the output is ”zero”.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM44

tude - thus the synaptic strengths are both positive and of equal magnitude. This
general framework is depicted in figure 3.2.

Let us consider the response of the resonate-and-fire model:

v̇ = y = Stimulus1(t) + Stimulus2(t) (3.4)

⇒ ẏ = −
1

R ∗ C
y −

1

L ∗ C
v (3.5)

(3.6)

where v refers to the membrane potential, and R,C, and L are the membrane resis-
tance, capacitance, and inductance respectively. Furthermore,

Out(t) = 1 if v ≥ VThreshold

Out(t) = 0 otherwise (3.7)

where Out(t) refers to the output of the neuron for classification purposes, and
VThreshold is a constant.

In the instance where we wish to solve the ”OR” problem, we must satisfy the
condition that when the input to the perceptron is (0,0), our output must be zero. For
all other inputs, the output must be one. We may satisfy these conditions by applying
a very small threshold - for instance, a threshold of zero. Thus when the input is
(0,0), there does not exist a net input to the perceptron. When the input is (1,0) or
(1,1), the output of the perceptron exceeds the threshold, and thus our binary output
is considered ”one”. The resonate-and-fire solution for the ”OR” problem with single
stimulus input (1,0) is depicted in figure 3.3.

We may adopt a similar method to classify the ”AND” problem with the resonate-
and-fire neuron. In the context of an ”AND” gate, our output should be ”one” only
when both our inputs assume a binary value of ”one”. In this instance, we may set
the threshold of the resonate-and-fire neuron between the analog values of one and
two. Consequently, the inputs (0,0), (1,0) and (0,1) will not cause the membrane
potential to exceed threshold, while only the input (1,1) will result in the neuron
generating action potentials. The solution to the ”AND” problem with the resonate-
and-fire model is depicted in figure 3.4. We subsequently review the resonate-and-fire
neuron’s solution for the XOR problem.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM45

S�m1

∑

w1

Netj
RAF

Outj

θ

S�m2

0

1

�me

S�m1

S�m2

�me
0

1

(A)

(B)

Figure 3.2: The resonate-and-fire model for the solution of the ”OR” and ”AND” prob-
lems. (A) The framework through which we apply input stimuli to the
resonate-and-fire model for the ”OR” and ”AND” problems. Both weights
are assumed to be excitatory and equal in magnitude. (B) Timing of input
stimuli. In this instance, we present the input pattern (1,1). Thus an input
stimulus is applied on both inputs at the same time instant.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM46

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

�me

V(t)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

V(t)

y = dV

dt

Threshold

0

1

�me

Input

S�m1

S�m
2 �me

0

(A)

(B)

Input

0 1 2 3 4 5 6 7 8 9 10
0

1

Out(t)

(C)

�me

Figure 3.3: The ”OR” Problem solution with the resonate-and-fire neuron. (A) An input
stimulus is applied to the resonate-and-fire neuron at a single time instant. In
this instance we consider the input (1,0). The results are qualitatively similar
for inputs (1,1) and (0,1). Also depicted in this panel is the time response
of the resonate-and-fire neuron. We assign a threshold value of zero, thus
each time the membrane potential exceeds the threshold, the binary output
(shown in panel (C)) is ”one”. (B) Phase space representation of resonate-
and-fire model in response to input stimulus (1,0). (C) Binary output is
”one” each time membrane potential exceeds the threshold value. Parameters:
δ = 0.1, ωn = 2 ∗ π.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM47

�me

Input

S�m1

S�m
2 �me

0
Input

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Threshold

Binary Output zero for

all time since we did not
exceed threshold

0
1 2 3 4 5 6 7 8 9 10

2

0

V(t)

Threshold

0 1 2 3 4 5 6 7 8 9

1

0

V(t)

�me

�me
�me

Out(t)

1

�me

Input

S�m1

S�m
2

�me

Input

1

1

(A)

(B)

Figure 3.4: Solution to the ”AND” Problem with the resonate-and-fire neuron. (A) An in-
put stimulus is applied to the resonate-and-fire neuron at a single time instant.
In this instance we consider the input (1,0).Also depicted in this panel is the
time response of the resonate-and-fire neuron. We assign a threshold value of
1.2, and thus the membrane potential never reaches threshold. Consequently,
the binary output is ”zero” for all time. This is the correct classification when
the inputs to an ”AND” gate are (1,0), (0,1), or (0,0). (B) When the input
stimulus (1,1) is applied, the membrane potential exceeds threshold for cer-
tain values of time. Thus the binary output is ”one” each time the membrane
potential exceeds threshold. Parameters: δ = 0.1, ωn = 2 ∗ π.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM48

3.2 The XOR Problem

One major drawback of the elementary McCulloch-Pitts perceptron is that it is capa-
ble of only classifying input patterns that are linearly separable. However, nonlinearly
separable patterns are ubiquitous, and a specific example arises in the Exclusive OR
(XOR) problem. The XOR problem is a very special instance of a more general
problem - that of classifying points within a unit hypercube as belonging to either
of two classes - class 0 or class 1. In the specific case of the XOR problem, we are
only concerned with the four corners of the unit square. Thus the four input patterns
are (0,0), (0,1), (1,0), and (1,1) as is shown in figure 3.5. The elementary perceptron
model is not capable of solving the XOR problem, and thus the solution is to utilize
a multilayer perceptron network. More recently, Rowcliffe, Feng and Buxton have
proposed a solution [37] that utilizes a combination of the integrate-and-fire neuron,
and diffusion coefficents. The method proposed in [37] derives a decision boundary as
a function of synaptic diffusion parameters, and subsequently adjusts these coefficents
to yield the appropriate decision boundary. Here, we propose a much simpler solution
to the XOR problem, that exploits the time-dependent capabilities of the resonate-
and-fire neuron. The XOR truth table and the required classification in input space
is shown in figure 3.5.

In the instance of the resonate-and-fire neuron, we may view the XOR problem
in one of two ways:- i) an input is presented to the neuron at a single time instant,
and the neuron produces an output based on its internal activity level, or, ii) the
XOR problem may be recast into a time-dependent framework, where we perturb the
neuron with a train of stimuli, that correspond to the inputs. We consider the first
instance in this section, where the input stimuli are presented at a single time instant.

In the instance, where we apply the input stimuli once, there exists a simple way in
which we may correctly classify the XOR problem using the properties of inhibition.
This method constitutes setting the synaptic weights to be of equal magnitude, but of
opposite signs, as is depicted in figure 2.8; however contrary to figure 2.8, we consider
the application of a single stimulus. Thus we have:

v̇ = y = w1 ∗ Stimulus1(t) + w2 ∗ Stimulus2(t) (3.8)

⇒ ẏ = −
1

R ∗ C
y −

1

L ∗ C
v (3.9)

(3.10)

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM49

X
1

X
2

Output =

Y

0 0 0

0 1 1

1 0 1

1 1 0

X
1

X
2

Output =

Y

0 0 0

0 1 1

1 0 1

1 1 0

1

10

X2

X1

Classifica!on:

=1

= 0

Figure 3.5: The XOR Problem requires that inputs lying on the opposite corners of the
unit square be classified as belonging to the same class.

We may introduce a threshold, and apply the decision rule that whenever the
membrane potential exceeds the threshold, we consider the binary output of the
neuron to be one. In this instance, let us assume a threshold value of zero. When the
input is (1,1), the net input to the neuron is zero, since the inputs are weighted by
equal weights of opposite signs. Thus the weighted inputs cancel each other. Under
such a framework, the inputs (1,1) and (0,0) yield an output of zero, while the inputs
(1,0) and (0,1) yield non-zero outputs. The input (0,1) yields an output of ”ONE” due
to the properties of the RAF neuron with regards to inhibition. Since the net input to
the neuron is negative and the model is tuned to operate in the underdamped regime,
the membrane potential is capable of undergoing anode break excitation. Thus due
to the post-inhibitory rebound of the membrane potential, the RAF neuron is capable
of classifying (1,0) and (0,1) as belonging to the same input class ”ONE”. This is
depicted in figure 3.6.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM50

0

1

�me

Input

S�m1

Input

S�m2 �me
0

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

V(t)

�me

Threshold

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Out(t)

�me

(A)

0

1
�me

Input

S�m1

Input

S�m2

�me
0

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Threshold

V(t)

0 1 2 3 4 5 6 7 8 9 10
0

1

Out(t)

�me

(B)

Figure 3.6: A simple solution to the XOR problem with the Resonate-and-Fire Neuron.
The inputs are applied at time=0 only, and the input synaptic weights to the
neuron are assumed to be of the same magnitude, but opposite signs. In this
instance, the threshold is arbitrarily set, and anytime the neuron’s membrane
potential exceeds the threshold, the binary output is considered to be one.
(A) Input pattern (1,0) is correctly classified as ”ON”. (B) Classification of
input stimulus (0,1), which also yields a ”ONE”. The input cases of (1,1) and
(0,0) (not shown in figure) always yield an output of ”ZERO” because the net
input to the neuron is zero for both cases.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM51

3.3 Application of a train of stimuli to the Resonate-

and-Fire neuron

One of the original motivations of this project is to consider how the timing of input
stimuli may be utilized by the nervous system to encode information. Thus we wish
to consider a time-dependent version of the XOR problem, where an input train
of stimuli is applied to the RAF neuron. However, in this section, we elaborate
more on the time dependent aspects of the resonate-and-fire model instead of delving
into the XOR classification problem. Our objective in this section is to use a time-
dependent implementation of the XOR problem’s input stimuli in order to highlight
the sensitivity of the RAF neuron to the timing of input stimuli. Thus we again have:

v̇ = y = w1 ∗ Stimulus1(t) + w2 ∗ Stimulus2(t) (3.11)

⇒ ẏ = −
1

R ∗ C
y −

1

L ∗ C
v (3.12)

(3.13)

In the instance of the XOR Problem, once again the inputs (1,1) cancel each other
out due to the opposite signs assigned to the synaptic weights. Moreover, the neuron
is capable of correctly classifying the inputs (0,1) and (1,0) as belonging to class one if
the input stimulus train is presented at the right frequency, i.e. the natural frequency
of the RAF neuron. On the other hand, if the same input (1,0), or (0,1), is presented
at a frequency that corresponds to half the natural frequency of the neuron, then the
RAF neuron classifies the input train as belonging to class ”ZERO”. This frequency
and time-dependence of the RAF model is depicted in figure 3.7.

Therefore, the RAF neuron is extremely sensitive to the timing of input stimuli.
As is depicted in figure 3.7, the same input train of stimuli may be presented to the
neuron at different frequencies, and the neuron may classify the input as belonging
to different classes. Thus the timing of individual stimuli relative to the phase of the
evolution of the membrane potential determines the output of the resonate-and-fire
neuron. We explore this relationship between the resonate-and-fire neuron’s natural
frequency and the timing of input stimuli further in the subsequent chapter.

CHAPTER 3. THE CLASSIFICATION OF LOGIC GATES AND THE XOR PROBLEM52

90

1

Input

S�m1

Input

S�m2 �me
0

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

�me

�me

V(t)

Out(t)

�me

Threshold

(A)

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

1

Input

S�m1

Input

S�m2 �me
0

�me

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Threshold

Out(t) is zero for all time since

we never exceed threshold

(B)

Figure 3.7: The XOR problem with the application of a train of stimuli. The threshold
is arbitrarily set, and anytime the neuron’s membrane potential exceeds the
threshold, the binary output is considered to be one. (A) In this panel, we
depict the input (1,0) being applied to the RAF neuron at the neuron’s natural
frequency of 1 Hz. As would be the correct classification in the XOR Problem,
the neuron generates a train of action potentials, and thus classifies the input
as belonging to class ”ONE”. (B) The same input (1,0) may be applied
at a frequency of 0.5 Hz, which is half the neuron’s natural frequency. In
this instance, the membrane potential never exceeds threshold, and thus the
neuron classifies the input as belonging to class ”ZERO”. Therefore, the RAF
neuron may classify the same input as belonging to different classes depending
on the timing of input stimuli.

53

Chapter 4

The Temporal Backpropagation

Algorithm

The learning procedure represents one of the most important paradigms in neural
networks, as well as neurobiology and biophysical neural modeling. The notion of
learning connotates a wide variety of mechanisms and principles of nervous system
function, and the specific interpretation of learning that we adopt depends on the
specific approach to neural modeling that we are interested in. However, a generic
definition of learning regards the ability of the nervous system to change and reor-
ganize itself in response to external stimuli. Inherent in the process of learning are
structural alterations in nervous system architecture, as well as morphological changes
in individual neurons [1].

As we reviewed in chapter 1, the learning procedure in traditional neural networks
entails the adjustment of synaptic weights according to the static error backpropaga-
tion algorithm, whose derivation is attached in appendix B. The static backpropaga-
tion algorithm assumes static activation functions, and thus time is not represented
explicitly in the network architecture. However, the resonate-and-fire (RAF) neuron is
defined by a differential equation whose internal dynamics are critically dependent on
the timing of input stimuli. Moreover, the dynamics of the RAF model is dependent
on the internal parameters of the neuron, since these parameters determine whether
the neuron is an integrator or a resonator. Thus through this chapter we explore
the learning procedure to adapt a neural network comprised of RAF neurons. We
specifically consider how the backpropagation algorithm may be implemented within
time dependent neural networks, and how we may adapt: i) the synaptic structure

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 54

of a neural network comprised of RAF neurons, and ii) the internal parameters that
characterize each RAF neuron model. Further instances of the implementation of a
time dependent version of the backpropagation algoritm are found in [38], [39], and
[40]; however each of these applications are significantly different than the adaptation
procedure that we derive through this chapter.

Depicted in figure 4.1 is a model for an individual neuron j. The neuron receives
input signals from presynaptic neurons i, through p synapses. The input signal on
each synapse is weighted by the synaptic weight wij, and delayed by a time amount
τij . Thus the net input to the neuron at time t is given by:

xnet,j(t) =
p

∑

i=1

wij ∗ xi(t − τij) (4.1)

where wij refers to the synaptic weight from neuron i to neuron j, τij refers to the time
delay that exists on the synaptic connection between presynaptic neuron i and neuron
j, and xi(t) refers to either an externally applied stimulus or the signal originating
at presynaptic neuron i at time t. We may model each individual neuron as being a
linear time invariant (LTI) system, since the resonate-and-fire neuron is itself such a
system. Thus at any time t, the input to the LTI system is the sum of the products
of the synaptic weights and input signals to the neuron. Since our model neuron is
assumed to be an LTI System, the membrane potential of the neuron, vj(t) may be
obtained through the convolution integral.

Thus we have:

vj(t) = uj(t) − θj

⇒ vj(t) =
∫ +∞

−∞

[hj(λ) ∗ xnet,j(t − λ)dλ] − θj (4.2)

where hj(λ) refers to the impulse response of neuron j with respect to the dummy vari-
able λ, and θj refers to an externally applied threshold to the neuron. Since xnet,j(t)
refers to a summation of weighted input signals, equation 4.2 implicitly includes a
summation within the convolution integral. Thus in complete form, equation 4.2 may
be represented as follows:

vj(t) =
∫ +∞

−∞

[hj(λ) ∗ (
p

∑

i=1

wij ∗ xi(t − τij − λ))dλ] − θj (4.3)

Moreover, the output of neuron j is given by:

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 55

x1

x2
.

.

.

.

.

.xN

∑.

.

.

.

.

LTI

System

v j

θ

Xnetj(t)
s(vj) = 1/(1+exp(-a*vj))

Y
j

Figure 4.1: Neuron model for temporal backpropagtion algoritm. The input to the neuron
(LTI System) at any time t is given by xnet(t) =

∑p
i=1 wij ∗ xi(t − τ), where

wij refers to the synaptic weight from neuron i to neuron j, and τij refers to
the time delay that a signal experiences as it reaches the neuron j. The output
of the LTI system, vj(t) is passed through a nonlinear mapping function s(vj)
as shown.

yj(t) = s(vj(t)) = 1/(1 + exp(−a ∗ vj(t))) (4.4)

where the function s(v) is assumed to have a sigmoidal nonlinear form.

For given inputs in time, we may also consider a desired response, dj(t), which
represents the desired output that an output neuron in the network should yield at
time t. Thus the difference between the desired response and the actual response
of an output neuron constitutes the amount of error that the specific output neuron
yields at time t. Thus we have:

Ej(t) = dj(t) − yj(t) (4.5)

where Ej(t) refers to the error at time t arising at output neuron j, dj(t) refers to the
desired response, and yj(t) refers to the actual response of output neuron j. Moreover,
the ensemble error at any time t is defined as the sum of the errors arising across all
output neurons at time t. Thus:

φ(t) = (1/2) ∗
∑

jǫO

[dj(t) − yj(t)]
2 (4.6)

where φ(t) refers to the ensemble error across all output neurons at time t. Thus

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 56

φ(t) is obtained by summing the individual errors arising across all output neurons.
Finally, we may define a total error surface which considers the ensemble error over
all time t. Thus we have:

ξtotal =
∫ t=+∞

t=−∞

φ(t)dt ⇒ ξtotal = (1/2) ∗
∫ t=+∞

t=−∞

∑

jǫO

[dj(t) − yj(t)]
2 (4.7)

where ξtotal refers to the error surface of the neural network. The objective of the
learning procedure is to minimize the total error surface, ξtotal, with respect to the
free parameters of the system, i.e. the synaptic weights and delays, and also the
parameters that characterize the impulse response of the LTI system itself. Thus the
core of the backpropagation algorithm constitutes of how the error surface should be
minimized, and how the free parameters of the network should be adapted.

4.1 Segmenting the training procedure in resonator

neural networks

The convention in adapting connectionist neural networks is to adjust the synaptic
weights of the system until a static input pattern yields a certain desired output. In
our instance, we are considering a time-dependent neural network where the synapses
are characterized by synaptic weights and transmission delays. Moreover, each indi-
vidual neuron is defined by the resonate-and-fire (RAF) differential equations, which
are in turn dependent on the damping and natural frequency of the neuron. Finally,
since each neuron element is comprised of the RAF model and the sigmoidal nonlin-
earity, we may treat the parameter a in equation 4.4 as the final parameter in the
learning procedure. Therefore, the training procedure in this instance is comprised of
i) adapting the synaptic structure of the network by adjusting the synaptic weights
and delays, and ii) adapting the parameters that define each individual perceptron
model, i.e. adjusting the damping, natural frequency, and the slope of the sigmoidal
nonlinearity.

The core of the backpropagation algorithm relies on gradient descent, and thus
we must derive a gradient descent procedure to adapt each of the free parameters in
our neural network. We first turn our attention to how we could adapt the synaptic
structure of a resonator neural network.

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 57

4.1.1 Adapting RAF neural networks

In order to perform gradient descent, we must compute the partial derivative of
the total error surface, ξtotal, with respect to the specfic parameter that we wish to
optimize. Thus in order to adapt the synaptic structure of a resonator neural network,
we must compute the following terms:

i) ∂ξtotal

∂
−→wij

: to adapt the synaptic weights of the network;

ii)∂ξtotal

∂
−→τij

: to adapt the time delays that characterizes each synaptic link

We may compute the terms above by applying the chain rule of differentiation,
and thus we have:

∂ξtotal

∂−→wij
=

∫ t=+∞

t=−∞

(
∂φ(t)

∂Ej(t)
) ∗ (

∂Ej(t)

∂yj(t)
) ∗ (

∂yj(t)

∂vj(t)
) ∗ (

∂vj(t)

∂−→wij
) (4.8)

and also:

∂ξtotal

∂−→τij
=

∫ t=+∞

t=−∞

(
∂φ(t)

∂Ej(t)
) ∗ (

∂Ej(t)

∂yj(t)
) ∗ (

∂yj(t)

∂vj(t)
) ∗ (

∂vj(t)

∂
−−→
xi(t)

) ∗ (
∂
−−→
xi(t)

∂t −−→τij
) (4.9)

Moreover, we may also perform gradient descent with respect to the free parameters
that characterize each individual perceptron. Towards this end, we must compute
the following:

i) ∂ξtotal

∂αj
: to adapt the damping factor of each neuron, where αj refers to the

damping factor of neuron j;

ii) ∂ξtotal

∂Ωj
: to adapt the natural frequency of each neuron, where Ωj refers to the

natural frequency of neuron j;

iii) ∂ξtotal

∂aj
: to adapt the ”slope” of the sigmoidal nonlinearity.

Similarly, we may again apply the chain rule of differentiation to obtain the fol-
lowing:

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 58

∂ξtotal

∂αj
=

∫ t=+∞

t=−∞

(
∂φ(t)

∂Ej(t)
) ∗ (

∂Ej(t)

∂yj(t)
) ∗ (

∂yj(t)

∂vj(t)
) ∗ (

∂vj(t)

∂αj
) (4.10)

and also:
∂ξtotal

∂Ωj
=

∫ t=+∞

t=−∞

(
∂φ(t)

∂Ej(t)
) ∗ (

∂Ej(t)

∂yj(t)
) ∗ (

∂yj(t)

∂vj(t)
) ∗ (

∂vj(t)

∂Ωj
) (4.11)

and finally:
∂ξtotal

∂aj

=
∫ t=+∞

t=−∞

(
∂φ(t)

∂Ej(t)
) ∗ (

∂Ej(t)

∂yj(t)
) ∗ (

∂yj(t)

∂aj

) (4.12)

Thus the learning algorithm to adapt the free parameters of the neural network may
be represented as follows:

−→wij(k + 1) = −→wij(k) − η ∗
∂ξtotal

∂−→wij
(4.13)

−→τij(k + 1) = −→τij(k) − β ∗
∂ξtotal

∂−→τij
(4.14)

adapts the synaptic structure of the neural network. In order to tune the free param-
eters of each individual neuron, we must implement the following:

αj(k + 1) = αj(k) − ν ∗
∂ξtotal

∂αj
(4.15)

Ωj(k + 1) = Ωj(k) − ρ ∗
∂ξtotal

∂Ωj
(4.16)

aj(k + 1) = aj(k) − γ ∗
∂ξtotal

∂aj
(4.17)

where η, β, ν, ρ, and γ refer to the momentum rate of the learning procedure, and they
may be assigned a constant value between 0 and 1. Thus given a random initialization
of the free parameters of the system, we may iterate through the learning algorithm
presented in equations 4.13 through 4.17 in order to adapt the network to yield a
certain desired response.

4.2 Discrete Time Implementation

We may proceed by approximating the convolution integral as a convolution sum.
Thus we may replace the continuous time variable, t, with a discretized version,

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 59

where now t = n*∆t. Furthermore, we may represent equation 4.3 as a combination of
two distinct summations, where the first summation runs over the indices of synaptic
weights (the spatial summation) and the second summation represents the discretized
convolution integral (the temporal summation). Thus we have:

vj(n) =
p

∑

i=1

M
∑

l=0

((hj(l)) ∗ (wij) ∗ (xi(n − τij − l))) − θj (4.18)

In equation 4.18, we have replaced the infinite limits of the convolution integral with
a finite upper limit of M. The assumption that underlies this approximation is that
our LTI system has finite memory, i.e. the impulse response hj(t) = 0 for t > T and
T = M*∆t. Also, the summation that represents the discretized convolution integral
in equation 4.18 has a lower limit of l = 0, which implies that the LTI system is a
causal system, i.e. hj(t) = 0 for t < 0. Thus equation 4.18 has embedded within it a
spatial summation which considers presynaptic spatial signals i=1:p, and a temporal
summation that runs over l=0:M. Intuitively, equation 4.18 is considering two forms
of synapses: a static spatial synapse, and a dynamic temporal synapse that is defined
by the value of the impulse response of the system at discretized time l. Since an input
signal is being weighted by a combination of the synaptic weights and the impulse
response of the system, we may define an equivalent weight wij(l) at time l, which
constitutes the product of the synaptic weight and the value of the impulse response
at time l, hj(l). Thus we have:

wij(l) = wij ∗ (hj(l)) (4.19)

By substituting equation 4.19 in equation 4.18, we have:

vj(n) =
p

∑

i=1

M
∑

l=0

(wij(l) ∗ xi(n − τij − l)) − θj (4.20)

Our objective in implementing the temporal backpropagation algorithm is to minimze
an error surface with respect to the free parameters of the system, i.e. the synaptic
weights and the form of the impulse response that defines the LTI system, along with
the delays of synaptic transmission. Thus we may discretize equation 4.5 to obtain
the instantaneous error of an output neuron j:

Ej(n) = dj(n) − yj(n) (4.21)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 60

where dj(n) refers to the desired output from an output neuron j, and yj(n) refers
to the actual output of neuron j, which is obtained from the discretized version of
equation 4.4:

yj(n) = s(vj(n)) = 1/(1 + exp(−a ∗ vj(n))) (4.22)

Moreover, we may represent the discretized form of the total ensemble error across
all output neurons at discrete time n as follows:

φ(n) = (1/2) ∗
∑

jǫO

[dj(n) − yj(n)]2 ⇒ φ(n) = (1/2) ∗
∑

jǫO

(Ej(n))2 (4.23)

where index j refers to neurons in the output layer. The objective of the temporal
backpropagation learning algorithm is to minimize an ensemble error surface over all
time n. Thus the error surface we wish to minimize, ξtotal, is defined as:

ξtotal =
∑

n

φ(n) ⇒ ξtotal = (1/2) ∗
∑

n

∑

jǫO

(Ej(n))2 (4.24)

Our objective is to minimize the error surface, ξtotal, with respect to the free parame-
ters of the neural network. Since the method of gradient descent underlies the back-
propagation algorithm, we must compute the partial derivative of the error surface,
ξtotal with respect to the free parameter that we wish to optimize. Upon inspection
of equations 4.8 through 4.11, it is evident the computations required for performing
gradient descent are similar for all the parameters. Specifically, we must derive a
localgradient for each neuron within the neural network, and we must backpropagate
this gradient in order to adjust the free parameters.

4.3 Computation of the local gradient

The adjustment of the synaptic weights and delays of the network requires that we
compute the following:

∂ξtotal

∂ ~xij(n)
=

∑

n

(
∂ξtotal

∂vj(n)
) ∗ (

∂vj(n)

∂ ~xij(n)
) (4.25)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 61

where ~xij refers to either the weight or delay that exists on a synapse between input
signal i, and neuron j. Similarly, the adaptation of the damping factor and natural
frequency of each neuron requires that we compute the following:

∂ξtotal

∂xj(n)
=

∑

n

(
∂ξtotal

∂vj(n)
) ∗ (

∂vj(n)

∂xj(n)
) (4.26)

where xj refers to the internal parameter of the neuron. Thus in both these com-
putations, we must compute the local gradient of a neuron, δj(n), which is defined
as:

δj(n) = −
∂ξtotal

∂vj(n)
⇒ δj(n) = −

∂φ(n)

∂vj(n)
(4.27)

Thus the local gradient is obtained by computing the partial derivative of the instan-
taneous error, φ(n), with respect to the activity level of neuron j. Moreover, we know
that the error of the network at time n is the sum of the errors across all output
neurons j, and may be represented as:

φ(n) = 1/2 ∗ (
∑

jǫO

(Ej(n))2 ⇒ φ(n) = 1/2 ∗ (
∑

jǫO

(dj(n) − yj(n))2) (4.28)

Thus the partial derivative of φ(n) with respect to vj(n) may be computed through
the chain rule of differentiation:

∂φ(n)

∂vj(n)
= (

∂φ(n)

∂Ej(n)
) ∗ (

∂Ej(n)

∂yj(n)
) ∗ (

∂yj(n)

∂vj(n)
) (4.29)

In order to compute equation 4.29, we have the following:

∂φ(n)

∂Ej(n)
= Ej(n) (4.30)

∂Ej(n)

∂yj(n)
= −1 (4.31)

∂yj(n)

∂vj(n)
=

∂s(vj(n))

∂vj(n)
(4.32)

(4.33)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 62

where s(v) refers to the sigmoidal nonlinearity. The derivative of the sigmoidal func-
tion with respect to the membrane potential may be computed as follows:

∂yj(n)

∂vj(n)
= Ψ′(vj(n)) = a ∗ yj(n) ∗ (1 − yj(n)) (4.34)

where Ψ(vj(n)) = 1/(1 + exp(−a ∗ vj(n))).

Therefore, the local gradient arising at an output node of the neural network is:

δj(n) = Ej(n) ∗ Ψ′(vj(n)) (4.35)

Thus for the case where neuron j is an output node, the computation of the local
gradient is relatively straightforward. However, for the case where the neuron in
question is a hidden neuron, we must compute the error gradient arising at the output
layer of the network, and backpropagate this gradient to the presynaptic hidden layers
of the network. Thus let us define a set σ, which refers to the set of all neurons whose
inputs are fed by the hidden neuron i in the forward pass. Thus we may define a local
gradient at layer i at time n as follows:

δi(n) = −
∂ξtotal

∂vi(n)
(4.36)

δi(n) = −
∑

jǫσ

∑

n

(
∂ξtotal

∂vj(n)
) ∗ (

∂vj(n)

∂vi(n)
) (4.37)

(4.38)

We may further define the term −∂ξtotal

∂vj(n)
as the local gradient arising in neuron j of

the postsynaptic layer. Thus we have:

δj(n) = −
∂ξtotal

∂vj(n)
(4.39)

Thus, the local gradient arising at a hidden neuron i at time index n may be repre-
sented as:

δi(n) =
∑

jǫσ

∑

n

δj(n) ∗ (
∂vj(n)

∂yi(n)
) ∗ (

∂yi(n)

∂vi(n)
) (4.40)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 63

From equation 4.40 we know that the term ∂yi(n)
∂vi(n)

is the derivative of our sigmoidal
nonlinearity function. Furthermore, we also know the local gradient arising at a
postsynaptic neuron j. However, we need to compute the partial derivative

∂vj(n)

∂yi(n)
,

which is the derivative of the activity level of a postsynaptic neuron with respect to
the output of the hidden neuron i. Thus vj(n) refers to the membrane potential of
postsynaptic neuron j, and it is determined by the outputs of the presynaptic neurons
that it receives input signals from. Thus we have:

vj(n) =
p

∑

j=0

M
∑

l=0

wij(l) ∗ yi(n − τij − l) (4.41)

where the summation from j=0:p refers to the spatial summation, and the summation
from l=0:M refers to the temporal summation. Also, τij refers to the time delay that
exists on synapse ij. Since convolution is a commutative operation, and because we
wish to compute the term

∂vj(n)

∂yi(n)
, we may rearrange equation 4.41 as follows:

vj(n) =
p

∑

j=0

M
∑

l=0

yi(l) ∗ wij(n − τij − l) (4.42)

Subsequently, we may compute the partial derivative of vj(n) with respect to the
output of a hidden neuron, yi(n) as follows:

∂vj(n)

∂yi(n)
= wij(n − τij − l) if 0 ≤ n − τij − l ≤ M

∂vj(n)

∂yi(n)
= 0 otherwise (4.43)

Thus if time index n is outside the range l+τij ≤ n ≤ M+l+τij , the partial derivative
∂vj(n)

∂yi(n)
evaluates to zero. Therefore, for a hidden neuron i, the local gradient we need

to compute is:

δi(n) = Ψ′(vi(n))
∑

jǫσ

M+l+τij
∑

n=l+τij

δj(n)∗wij(n−τij−l)δi(n) = Ψ′(vi(n))∗
∑

jǫσ

M
∑

n=0

δj(n+τij+l)∗wij(n)

(4.44)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 64

Upon inspecting equation 4.44, we notice that it violates causality, because we require
future values of the local gradients arising from postsynaptic neurons. We may cir-
cumvent this problem by considering a delayed form of the local gradient originating
at a hidden node by storing the following vector:

−−−−−−−→
∆j(n − M) = [δj(n − M), δj(n − M + 1), ..., δj(n)] (4.45)

Thus the computation of the local gradient arising at a postsynaptic neuron may be
effectively made causal by considering previous values of the gradient. Therefore, we
may reformulate equation ?? as follows:

δi(n − lM) = Ψ′(vi(n − lM)) ∗
∑

jǫσ

−−−−−−−−→
∆T

j (n − lM) ∗ ~wij (4.46)

where M is the memory of the LTI system, and index l identifies the hidden layer
in question. Specifically, l=1 corresponds to the presynaptic layer of neurons that
provide inputs to the output layer, while l=2 refers to two layers back from the
output layer.

4.3.1 Adapting the synaptic weights

If a neuron j is in the output layer, the weight update algorithm is implemented as
follows:

−−−−−−→
wij(k + 1) = ~wij(k) + η ∗ δj ∗ ~xi(n) (4.47)

δj(n) = Ej(n) ∗ Ψ′(vjn) (4.48)

Moreover if a neuron i is in a hidden layer, the weight update algorithm for the input
synaptic weights, ~whi, is:

−−−−−−−→
whi(k + 1) = ~whi(k) + η ∗ δi(n − lM) ∗ −−−−−−−−→xh(n − lM) (4.49)

δi(n − lM) = Ψ′(vi(n − lM)) ∗
∑

jǫσ

−−−−−−−−→
∆T

j (n − lM) ∗ ~wij (4.50)

where M is the memory of the LTI system, and index l identifies the hidden layer in
question.

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 65

4.3.2 Adapting the synaptic delays

In order to adapt the synaptic delays that characterize each synapse, we may perform
a procedure that is similar to the weight update algorithm. Therefore, if a neuron j
is in the output layer, the adaptation algorithm for the synaptic delays that exist on
its input synapses is:

−−−−−−→
τij(k + 1) = ~τij(k) + β ∗ δj ∗ wij(n) ∗

∂ ~xi(t)

∂(t − ~τij)
(4.51)

δj(n) = Ej(n) ∗ Ψ′(vjn) (4.52)

Moreover if a neuron i is in a hidden layer, the update algorithm for the input synaptic
delays, ~τhi, is:

−−−−−−→
τhi(k + 1) = ~τhi(k) + β ∗ δi(n − lM) ∗ ~whi(n − lM) ∗

∂ ~xi(t)

∂(t − ~τij)
(4.53)

δi(n − lM) = Ψ′(vi(n − lM)) ∗
∑

jǫσ

−−−−−−−−→
∆T

j (n − lM) ∗ ~wij (4.54)

where M is the memory of the LTI system, and index l identifies the hidden layer in
question.

4.3.3 Adapting the Damping and Natural Frequency of each

neuron

Let us consider the discretized form of the internal activity level of a neuron repre-
sented in equation 4.3:

vj(n) =
p

∑

i=1

M
∑

l=0

((hj(l)) ∗ (wij) ∗ (xi(n − τij − l))) − θj (4.55)

For the specific case of a resonator neuron, we know that the form of the impulse
response will be:

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 66

hj(l) = exp(−αj ∗ l) ∗ cos(Ωj ∗ l + ϕ) (4.56)

which represents an exponential sinusoid. Moreover, we know that if we take the
partial derivative of vj(n) with respect to either parameter α or Ω, we will obtain vj(n)
multiplied by some constant. Therefore, if we were to adapt the internal parameters
of a resonator neuron, i.e. the damping factor and the natural frequency, we would
have to consider the internal activity level of the neuron in question.

Thus let us consider the scenario where we adapt the damping factor of each
neuron, αj . If the neuron is an output neuron, we may implement the following
learning algorithm:

αj(k + 1) = αj(k) − ν ∗ δj ∗ n ∗ vj(n) (4.57)

δj(n) = Ej(n) ∗ Ψ′(vjn) (4.58)

where the index n runs over the time indices of vj . Moreover, if the neuron i is a
hidden neuron, which receives input signals from presynaptic neurons h, and transmits
signals to postsynaptic neurons j, we have:

αj(k + 1) = αj(k) − ν ∗ δi(n − lM) ∗ (n − lM) ∗ vj(n − lM) (4.59)

δi(n − lM) = Ψ′(vi(n − lM)) ∗
∑

jǫσ

−−−−−−−−→
∆T

j (n − lM) ∗ ~wij (4.60)

where M is the memory of the LTI system, and index l identifies the hidden layer in
question.

4.3.4 Adapting the slope of the sigmoidal nonlinearity

In order to adjust the shape of the sigmoidal nonlinearity, we must consider the form
of the logistic function, Ψ(a ∗ v):

s(a ∗ v) = Ψ(a ∗ v) = 1/(1 + exp(−aj ∗ vj)) (4.61)

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 67

where aj is the parameter that we wish to adapt. Therefore, we must compute the
following:

∂ξtotal

∂aj(n)
=

∑

n

(
∂φ(n)

∂Ej(n)
) ∗ (

∂Ej(n)

∂yj(n)
) ∗ (

∂yj(n)

∂aj(n)
) (4.62)

If we compute the above derivatives, we have:

∂φ(n)

∂Ej(n)
= Ej(n)

∂Ej(n)

∂yj(n)
= −1

∂yj(n)

∂aj(n)
= vj ∗ yj ∗ (1 − yj) (4.63)

Therefore, we may define a local sigmoidal gradient, δj,sig, arising at each output
neuron j as:

δj,sig(n) = −
∂ξtotal

∂yj(n)
⇒ δj,sig(n) = Ej(n) (4.64)

Thus for an output neuron, we may easily compute the local sigmoidal gradient,
δj,sig(n), since this is just the error arising at the output neuron j. However, for a
hidden neuron i which is located in a hidden layer, we must compute a gradient at
the output layer, and backpropagate this gradient against the direction of synaptic
communication.

Therefore, if the neuron j is an output neuron, the learning algorithm to update
the parameter a in the logistic function is:

aj(k + 1) = aj + γ ∗ δj,sig(n) ∗ vj(n) ∗ yj(n) ∗ (1 − yj(n)) (4.65)

δj,sig(n) = Ej(n) (4.66)

Moreover, if we are adapting the logistic function of a hidden neuron i, then the
adaptation algorithm for the parameter a is:

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 68

aj(k + 1) = aj + γ ∗ δi(n − lM) ∗ vj(n − lM) ∗ yj(n − lM) ∗ (1 − yj(n − lM))(4.67)

δi(n − lM) = Ψ′(vi(n − lM)) ∗
∑

jǫσ

−−−−−−−−→
∆T

j (n − lM) ∗ ~wij(4.68)

where M is the memory of the LTI system, index l identifies the hidden layer in
question, and Ψ′(vi(n − lM)) refers to the partial derivative of the logistic function
with respect to the internal activity level of the hidden neuron.

4.4 Practical Considerations and Implementation

in MATLAB

As is evident through the derivation presented in this chapter, we may adapt the
synaptic structure of a neural network comprised of RAF neurons by optimizing
the synaptic weights and delays of the network. Moreover, we may also adapt the
internal parameters that define each RAF neuron by adjusting the damping factor,
the natural frequency, and the shape of the sigmoidal nonlinearity for each neuron
in the network. Thus the temporal backpropagation learning procedure for resonator
neural networks incorporates: i) the connectionist approach to learning by adapting
the synaptic structure of the network, and, ii) the cellular notion of learning, since the
algorithm adapts the internal parameters that define each RAF neuron. We explore
the implications of such a learning procedure in the subsequent concluding chapter.

An approach to learning that considers the synaptic structure as well as neuronal
internal parameters is a novel idea in neural networks, and thus there exist a variety
of practical considerations regarding the implementation of the temporal backpropa-
gation algorithm. For instance, the learning procedure may be implemented in a syn-
chronous method, where each parameter is updated simultaneously on each learning
iteration. Alternatively, it may be desirable to adapt each parameter asynchronously,
and on different time scales.

Also, the algorithm may be implemented in a myriad of software environments.
In our instance, we utilize the Biological Neural Network (BNN) Toolbox since the
toolbox contains many in-built theoretical neuron models. However the toolbox does
not contain the temporal backpropagation algorithm. Thus the derivation presented
in this chapter could provide the theoretical basis for the backpropagation algorithm

CHAPTER 4. THE TEMPORAL BACKPROPAGATION ALGORITHM 69

in the BNN toolbox. In appendix D we have attached program code that implements a
resonator neural network within the BNN toolbox; however the adaptation procedure
needs to be implemented.

In order to implement a simple form of the temporal backpropagation learning
algorithm, we have attached an example of a gene translation problem in appendix
D, entitled function yk = translate(x). This simple example considers how a time
dependent neural network may be implemented and adapted to recognise binary words
in time. Thus x[n] specifies a 6 bit binary word, where each of the bits may assume a
value of -1 or +1. We assume that each bit codes for a nucleotide base in the genetic
code. The objective of the network is to essentially translate x[n], which represents a
codon, to a corresponding amino acid represented by the temporal code yk. A desired
temporal pattern D[n] is implicitly defined for each input pattern x[n].

The basis of the algorithm is to assume that each neuron is defined by a certain
impulse response, and thus the activity level of the neuron at any time is determined
by the convolution of the net input to the neuron, with the impulse response at the
specific time of interest. Thus we may define vectors of temporal weights, which are
constituted of the product of the input weights to a neuron, with the impulse response
of that particular neuron. The temporal backpropagation algorithm performs gradient
descent on each of the temporal weight vectors, in order to minimize the ensemble
error over the entire training time. In the following chapter, we further explore the
implications of the temporal backpropagation algorithm, and we turn our attention
towards possible future directions of research that could be pursued with the resonate-
and-fire neuron.

70

Chapter 5

Conclusions and Future Directions

Through this thesis we have explored the resonate-and-fire (RAF) neuron, and how
this specific neuron model may be implemented within neural networks. Biophysical
neural models along with the methods of phase space analysis gave rise to the dis-
tinction between integrator and resonator neurons. The solutions to the differential
equation that defines the RAF neuron model display either the characteristics of in-
tegrator neurons, or that of resonator neurons, depending on the internal parameters
that define the RAF neuron. Moreover, in the previous chapter we explored how
a neural network comprised of RAF neurons could be adapted, and made to learn
to perform certain desired tasks, through the temporal backpropagation algorithm.
Thus while the resonate-and-fire neuron was originally inspired from the insights
gained through biophysical neural modeling, the implementation of the resonate-and-
fire neuron inherently belongs to the realm of neural networks. Naturally, possible
future projects could consider either: i) practical connectionist applications of how
resonator neural networks could achieve engineering specifications, or ii) the physio-
logical implications of biological neuronal networks being comprised of resonator and
integrator neurons. Therefore through this chapter we explore each of these possible
future research directions in turn.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 71

5.1 Resonator Neural Networks and Engineering

Design

One of the original ideas that inspired the resonate-and-fire neuron was the question
of how to incorporate internal dynamics into a neuron model. The obvious constraint
was that the RAF neuron must also have explicit solutions, so that a network of
RAF neurons may be implemented, and the resulting neural network be adaptable.
The RAF neuron is thus defined by a 2nd order linear differential equation, whose
solutions have the form of an exponentially decaying sinusoid. Since the solutions to
the RAF model are time dependent solutions, we may represent time explicitly within
the neural network, and we may also incorporate time in the learning procedure, as
we showed in the previous chapter.

Therefore neural networks that are comprised of RAF neurons could be adept at
classifying time dependent input patterns, and at solving time dependent problems.
We showed a simple example of how a single RAF neuron could classify time depen-
dent input patterns through our solution to the XOR Problem in chapter 3.5. One of
the insights that we gained from our solution was that the neuron’s classification is
dependent on two factors: i) the strength of the input signal it receives, determined by
the synaptic weights, and ii) the internal parameters that define the dynamics of the
neuron model. Thus the internal parameters of the neuron govern the characteristics
of the evolution of the membrane potential, while the static synaptic weight defines
the magnitude of the perturbation. Also, we concluded that in the underdamped
limit, the RAF neuron’s dynamics is largely dependent on the timing of input stim-
uli. Therefore RAF neural networks could also be adept at classifying input patterns
that have different temporal structures.

The idea that a neuron’s response is dependent on its internal parameters as well
as the static synaptic weights is a novel idea in neural networks, and it raises the
question of what connectionism should really entail. In traditional neural networks,
the memory of a network is distributed in the synaptic structure of the network.
On the other hand, in resonator neural networks, the notion of ”memory” includes
synaptic weights and delays, as well as a neuron’s internal parameters. Moreover, the
learning procedure in resonator neural networks is also a combination of adapting the
synaptic structure of the network, as well as a neuron’s internal parameters. Thus one
of the ideas raised in this thesis that could be pursued further regards the nature of the
learning procedure itself, i.e., what should be the adaptation mechanism in a neural
network, and to what extent should it involve the internal parameters of individual

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 72

neurons? We speculate that the adaptation of neuronal internal parameters could
enable a neural network to learn more complex decision boundaries than possible in
traditional neural networks.

The adaptation of RAF neural networks could also have potential applications
in multi-variable control problems, where it is necessary to maintain desired levels
of numerous variables of interest. Moreover, since we may represent time explicitly
in our RAF model, a neural network comprised of RAF neurons could potentially
ensure that any given variable is of a desired value, at a specific instant of time.
For instance, RAF networks could be utilized to maintain desired levels of multiple
variables in the design of, for instance, aeroplane controllers or surgical equipment.
Multi-variable control problems are ubiquitous in complex systems, and they are an
inevitabe aspect of engineering as well as biology. Thus we subsequently focus our
attention on how the findings of this thesis could potentially provide novel research
directions in neurobiology.

5.2 The RAF Neuron and Neurobiology

A central question in contemporary biology regards the relationship between structure
and function in living systems. Thus in the context of nervous systems, how are
the structure of neuronal networks (i.e. the topology of connections, the synaptic
structure, etc.) related to the functions that these networks ultimately perform? This
particular question of structure and function could also be asked for individual nerve
cells: how are the molecular characteristics of nerve cells, along with the dendritic tree
that serves as its input related to the functions that the cell is involved in mediating?
In the context of neural networks comprised of RAF neurons, ”structure” may be
thought of as the synaptic structure of the network, along with the internal parameters
that define a neuron. On the other hand, ”function” relates to the task that we wish
our resonator network, or individual RAF neuron, to perform. Thus the question
that arises is whether certain structures are particularly adept at performing specific
desired functions. Moreover, the nature of these structure-function relationships could
provide insights into how the interplay between the structure of an individual neuron,
and the function(s) that the neuron mediates, manifests itself in nervous systems.

A particular instance of the interplay between structure and function is found in
the context of neural plasticity. The term plasticity refers to the degree to which the
nervous system is capable of exhibiting change and adapting itself; thus the process

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 73

of learning in nervous systems is a specific instance of neural plasticity. Contempo-
rary research in neurobiology suggests that the nervous system possesses an immense
ability to exhibit plasticity throughout development, and we are only beginning to
elucidate the neural mechanisms that underlie the learning process. However, what
is certain is that the biological learning process is as much a connectionist paradigm
(i.e. the adaptation of synaptic structures), as it is a cellular mechanism (i.e. the
adjustment of cellular morphological and physiological characteristics).

One of the notions that this thesis explores is how the learning procedure in neural
networks could incorporate the adjustment of synaptic structures, as well as the inter-
nal parameters of a neuron. Thus the learning procedure in resonator neural networks
involves an interplay between the adaptation of synaptic structures and neuronal in-
ternal parameters. The question that arises is whether such an interplay between the
adaptation of cellular and synaptic structures also exists within biological nervous
systems. Moreover, there exists a certain limitation (biological and in engineering) to
the extent to which we could optimize synaptic structures and neuronal parameters,
and there exists an inherent limit to the extent that error can be minimized in a
neural network. The question that arises is whether such a limitation to optimization
also exists in biological nervous systems, and the physiological implications of such
constraints inherent in the process of learning.

A specific characteristic of the resonate-and-fire neuron is the dependence of its
activity level on the timing of input stimuli. Thus one of the capabilities of the RAF
neuron is that it may be utilized as a switching device, which transmits information
to post synaptic neurons only if input patterns are applied at specific times. The
question that arises is how information traverses through nervous systems, and how
integrator and resonator neurons are involved in controlling the flow of information.
Thus do there exist certain characteristic network motifs of integrators and resonators
in the nervous system that regulate the flow of information? A network motif refers
to a characteristic pattern of interactions that occurs ubiquitously within a network.
These motifs are usually detected as patterns that occur significantly more often than
would be expected in a randomized network [41].

The notion of motifs in neural networks could be interpreted in several ways. For
instance, a motif could refer to a specific neural pathway that is activated when a
certain input pattern is applied to the network. Thus the activation of an entire
set of interconnected neurons could represent a specific external stimulus within the
network. Due to the time dependence of the RAF neuron, distinct temporal patterns
of input stimuli would activate different pathways within the network. The specific
pathways that are activated could represent the network’s memory regarding differ-

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 74

Input Pa!ern

"me

Output 1

Output 2

Output 3

Figure 5.1: The activation of neuronal pathways and the representation of inforamtion.
An input pattern with a certain temporal pattern activates one neuron in the
input layer, which transmits to its postsynaptic partner. Information may flow
through any of the pathways shown before activating an output neuron. Thus
the pathway of information flow that elicited an output could have functional
significance.

ent input patterns. The learning procedure in such networks would consequently
need to define desired responses for sets of neurons that are within common neuronal
pathways, instead of just output neurons. Figure 5.1 depicts such a framework of
information representation. It could be interesting to study naturally occuring net-
work motifs in nervous systems, as well as motifs that arise as a result of the learning
procedure in neural networks.

75

Appendix A

Derivation of the

Resonate-and-Fire Neuron

Neural signaling represents an important field in mathematical biology, and the theory
of nerve action potential generation provides vital insights into the generic dynam-
ics of biological oscillators. One of the first experimental studies that proposed a
theoretical framework for the mechanism of action potential generation was Hodgkin
and Huxley’s (HH) Nobel Prize winning work on the giant squid axon [21]. The HH
model provides an instance of a simple biophysical model that relates the dynamics of
the neural membrane potential to the dynamical gating parameters that regulate the
flow of ions through the neural membrane. Due to the inherent complexity of the HH
model, various simpler phenomenological models have been proposed that capture
the key aspects of the full system. One of the earliest and most insightful of these
is the Fitzugh-Nagumo (FHN) model [23], [42], [43], [24], which considers a reduced
system of the HH model. Through this appendix we begin with the Hodgkin-Huxely
model, and subsequently consider theoretical models which represent simplifications
of the HH system. The insights that we obtain from these classic models are utilized
to derive the differential equation that govern the dynamics of the resonate-and-fire
neuron.

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 76

A.1 The Hodgkin-Huxley model

Let us assume that the positive direction of current is denoted by positive charge
leaving the nerve cell. The current I(t) is comprised of individual ionic currents
that pass through the membrane, Ii, and the time variation of the transmembrane
potential, V (t), i.e. the contribution due to the membrane capacitance. Thus we
have:

I(t) = C ∗
dV

dt
+ Ii (A.1)

where C is the membrane capacitance, V is the transmembrane potential, and Ii is the
current due to the flow of ions across the neural membrane. Based on experimental
and theoretical studies, Hodgkin and Huxley assumed the following convention:

Ii = INa + IK + IL

⇒ Ii = gNam
3h(V − VNa) + gKn4(V − VK) + gL(V − VL) (A.2)

where V is the membrane potential, and INa is the sodium current, IK is the potassium
current, and IL is a leakage current that is comprised of all other ions which contribute
to the ionic current Ii. Moreover, VNa, VK , and VL refer to constant Nernst equilibrium
potentials. Also, g refers to a constant conductance, and the variables m, n, and h
represent ionic gating variables that are bounded between 0 and 1. Thus the term
gNam

3h in equation A.2 represents the sodium conductance, and it is a measure of
the proportion of sodium channels that are ”open” at a given membrane potential.
Thus the conductances of the sodium and potassium ionic channels are functions of
the membrane potential. The gating variables in the Hodgkin-Huxley system are
governed by the following differential equations:

dm

dt
= αm(V) ∗ (1 − m) − βm(V) ∗ m

dn

dt
= αn(V) ∗ (1 − n) − βn(V) ∗ n

dh

dt
= αh(V) ∗ (1 − h) − βh(V) ∗ h (A.3)

where α and β are functions of V, and were empirically determined to be:

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 77

αn(V) = 0.01 ∗
10 − V

exp(10−V
10

) − 1

βn(V) = 0.125 ∗ exp(
−V

80
)

αm(V) = 0.1 ∗
25 − V

exp(25−V
10

) − 1

βm(V) = 4 ∗ exp(−V/18)

αh(V) = 0.07 ∗ exp(−V/20)

βh(V) =
1

exp(30−V
10

) + 1
(A.4)

Therefore, if an external current stimulus Istim(t) is applied, equation A.1 becomes:

C ∗
dV

dt
= −gNam

3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Istim (A.5)

The system of equations A.2 to A.3 constitute the 4-variable Hodgkin-Huxley model.

One of the crucial insights provided by the Hodgkin-Huxley model regards the
generation and transmission of action potentials. The variable m in equations A.5
and A.3 represents sodium channel gating, and is responsible for the generation of
the action potential. Typically when the membrane potential reaches some critical
threshold value, thousands of sodium channels are activated resulting in the rapid
influx of sodium ions into the nerve cell. The influx of positive charge significantly
depolarizes the membrane potential, resulting in the upstroke of the action poten-
tial. Subsequently, potassium channels are also sensitive to deviations of membrane
potential, and thus the action potential activates potassium channels as well. In the
HH model, the gating variable n governs the dynamics of potassium channels. The
opening of potassium channels result in potassium ions leaving the nerve cell, and
since in this instance postive charge leaves the cell, the membrane potential is repo-
larized. Moreover, the activation of sodium channels is followed by the inactivation
of the same channels through the gating variable h in equations A.3 and A.5.

The time scales for m, h, and n in equation A.3 are significantly separated in
that the time scale that defines the evolution of variable m is much faster than the
repolarization variables h and n. Thus the convention is to assume that it is suffi-
ciently fast that it relaxes immediately to its steady state value, determined by setting

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 78

dm
dt

= 0. Furthermore, since the variable h evolves at a much slower rate than m and
n, we may also set h to be some constant ho. Through invoking these simplifying
assumptions based on the separation of time scales, we may reduce the 4-dimensional
Hodgkin-Huxley model into a 2-dimensional dynamical model which retains many of
the qualitative features of the Hodkin-Huxley system. Thus we next turn our atten-
tion to the FitzHugh-Nagumo model, which represents such a simplification to the
original Hodgkin-Huxley equations.

A.2 The FitzHugh-Nagumo Model

The core idea that underlies the FitzHugh-Nagumo (FHN) model is that we may take
projections of the four dimensional HH model onto a two dimensional phase space,
and essentially reduce the Hodgkin-Huxley equations into a fast-slow system of two
differential equations. Thus the FitzHugh-Nagumo model is a 2-variable model in V
and w, and is represented by the following differential equations:

F (v, w) =
dv

dt
= v(a − v)(v − 1) − w + Istim

G(v, w) =
dw

dt
= b ∗ v − γ ∗ w (A.6)

where 0 < a < 1, and b and γ are positive constants. Thus the variable v qualita-
tively mimics the evolution of the membrane potential, and the recovery variable w
represents a reduction of the (m,n,h) system into a single varible. The phase portrait
and the nullclines of the FitzHugh-Nagumo Model are depicted in figure A.1.

The nullclines of the FHN model may be determined by considering dv
dt

= 0 = dw
dt

,
which results in the following relations in the (v,w) phase space:

dv

dt
= 0 ⇒ w = −v3 + (1 + a) ∗ v2 − a ∗ v + Istim

dw

dt
= 0 ⇒ w = (b/γ) ∗ v (A.7)

Thus the equilibria of the FHN model are determined by the intersection of the v
and w nullclines in the phase space. Since the v nullcline is a cubic nullcline, the

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 79

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

R
e
c
o
v
e
ry

 V
a

ri
a

b
le

 w

Membrane Poten!al V

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

R
e

c
o

v
e

ry
 V

a
ri

a
b

le
 w

Membrane Poten!al V

(A) (B)

Figure A.1: Nullclines and Phase Portrait of The FitzHugh-Nagumo Model. (A) The
characteristic nullclines and phase portrait of resonator neurons. (B) A rep-
resentative phase portrait of integrator neurons.

FitzHugh-Nagumo model may have upto three equilibria points. If we set Istim = 0
in equation A.7, we are guaranteed that an equilbrium point exists at (v*,w*)=(0,0).
Moreover, we know that the topological neighbourhood of this equilbrium point may
be determined by linearizing around the equilibrium, and considering the Jacobian
matrix.

Thus the Jacobian Matrix is:

A =

[

Fv Fw

Gv Gw

]

where from equation A.6 Fv = dF
dv

, Fw = dF
dw

, Gv = dG
dv

, and Gw = dG
dw

. Thus upon
evaluating the Jacobian matrix at the equilibrium point (0,0), we obtain:

A =

[

−a −1
b −γ

]

The characteristic roots of the linearization are thus:

s1 = (1/2) ∗ (−a − γ + ((a + γ)2 − 4 ∗ a ∗ γ − 4 ∗ b)1/2)

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 80

s2 = (1/2) ∗ (−a − γ − ((a + γ)2 − 4 ∗ a ∗ γ − 4 ∗ b)1/2) (A.8)

The case where the characteristic roots around the equlibrium point are distinct and
negative correspond to the case where the neuron is an integrator neuron. On the
other hand, if the characteristic roots are complex conjugates, then the neuron is
referred to as a resonator neuron. Depicted in figure A.2 are representative phase
portraits and trajectories in the phase space of integrator and resonator neurons, along
with the evolution of the same states in time. The core idea behind the resonate-and-
fire neuron is that we may incorporate the two major modes of neuronal dynamics, i.e.
of integrators and resonators, within a single neuron model by selecting appropriate
values for the damping and natural frequency parameters.

APPENDIX A. DERIVATION OF THE RESONATE-AND-FIRE NEURON 81

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
e
c
o
v
e
ry

 V
a

ri
a

b
le

 w

Membrane Poten�al V

0 5 10 15 20 25 30

-0.6

0

0.6

V(t)

�me

(A)

(C)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

V(t)

�me

(D)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
e

c
o

v
e

ry
 V

a
ri

a
b

le
 w

(B)

Membrane Poten�al V

Figure A.2: Phase space trajectories of integrators and resonators in the FitzHugh-
Nagumo model. (A) Representative phase space trajectory of a resonator
neuron, in response to an excitatory stimulus applied while the neuron is
at rest (B) State space trajectory around the equilibrium resting state for
an integrator neuron in response to an excitatory stimulus. (C) Time do-
main representation of evolution of membrane potential for resonator neuron
shown in panel (A). The subthreshold oscillatory behaviour is a signature
profile of resonator neurons. (D) Evolution of membrane potential in time
for integrator neuron. The monotonic evolution of the membrane potential
is characteristic of integrator neurons.

82

Appendix B

Derivation of The Static

Backpropagation Algorithm

Through this appendix section, we present the derivation of the static backpropaga-
tion algorithm. In this instance static refers to the nature of the inputs and outputs,
i.e. the objective of the learning procedure is to map a static input vector, ~x, to a
desired static output. This is in contrast to the temporal backpropgation algorithm,
which considers time varying inputs and time varying outputs. However, as will be-
come evident, the temporal backpropagation algorithm is an extension of the static
implementation. The backpropagation algorithm is essentially a paradigm in error
minimization, and the mathematical derivation first appeared in the doctoral thesis
of Werbos in [14]. The algorithm was adapted for utilization in the field of neural
networks in [15], and error backpropagation has become one of the central supervised
learning paradigms in neural networks.

Given a neural network, we may derive an error signal that exists at each output
node of the network. Thus for each of the output neurons in the network, consider
an error signal:

ej(n) = dj(n) − yj(n) (B.1)

where neuron j is an output node, dj(n) denotes the desired output, and yj(n) denotes
the actual output. The iteration index n refers to the presentation of the nth training
pattern. The output yj(n) is defined as follows:

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM83

yj(n) = s(vj) = 1/(1 + exp(−a ∗ vj(n))) (B.2)

where the function s(v) is assumed to be the logistic function, and vj(n) refers to
the net internal activity level of neuron j at iteration n. We know that the internal
activity level is the product of synaptic weights and input signals, and thus:

vj(n) =
p

∑

i=0

(wji(n) ∗ yi(n)) (B.3)

where wji refers to the strength of the synaptic connection from presynaptic neuron
i to neuron j, p is the total number of inputs, and yi(n) is the input signal to neuron
j from presynaptic neurons in layer i. The synaptic weight wj0 corresponds to the
threshold applied to neuron j (given that y0 = −1).

Since ej refers to the error of a particular output neuron j, we may define an
instantaneous sum of squared errors for all the output neurons in the network as:

ε(n) = (1/2) ∗
∑

jǫC

(ej(n))2 (B.4)

where the set C refers to the neurons in the output layer of the network. Finally, if
N refers to the total number of patterns in the training set, we may sum ε(n) over all
n, and obtain an averaged squared error as follows:

εave = (1/N) ∗
N

∑

n=1

(ε(n)) (B.5)

The objective of the backpropagation algorithm is to minimize the average squared
error, εave, with respect to the synaptic weights of the network. Therefore, the algo-
rithm applies a correction ∆wij(n) to the synaptic weight wji(n), where ∆wij(n) is

proportional to the instantaneous gradient ∂ε(n)
∂wji(n)

. Also, wji(n) refers to the strength

of the synaptic connection that neuron j receives from presynaptic neuron i at iter-
ation n. According to the chain rule of differentiation, we know that the gradient
is:

∂ε(n)

∂wji(n)
= (

∂ε(n)

∂ej(n)
) ∗ (

∂ej(n)

∂yj(n)
) ∗ (

∂yj(n)

∂vj(n)
) ∗ (

∂vj(n)

∂wji(n)
) (B.6)

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM84

Thus the gradient ∂ε(n)
∂wji(n)

represents a sensitivity factor that defines the direction of

change of the instantaneous error in weight space. If we compute each of the terms
in equation B.6, we have:

∂ε(n)

∂ej(n)
= ej(n) (B.7)

∂ej(n)

∂yj(n)
= −1 (B.8)

∂yj(n)

∂vj(n)
= s′(vj(n)) (B.9)

∂vj(n)

∂wji(n)
= yi(n) (B.10)

where s′(vj(n)) refers to the derivative of the sigmoidal nonlinearity with respect to
vj(n). If s(v) is the logistic function, then we have:

yj(n) = s(vj(n)) = 1/(1 + exp(−vj(n))) (B.11)

∂yj(n)

∂vj(n)
= s′(vj(n)) = yj(n) ∗ (1 − yj(n)) (B.12)

Thus the gradient may be evaluated as:

∂ε(n)

∂wji(n)
= −ej(n) ∗ s′(vj(n)) ∗ yi(n) (B.13)

The correction ∆wji(n) to a synaptic weight wji(n) is thus defined by:

∆wji(n) = −η ∗
∂ε(n)

∂wji(n)
(B.14)

where η is a constant referred to as the learning − rateparameter . Alternatively, we
may represent the weight update algorithm as follows:

∆wji(n) = η ∗ δj(n) ∗ yi(n) (B.15)

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM85

where δj(n) is referred to as the localgradient arising at neuron j at iteration n. Thus
the local gradient is itself defined as:

δj(n) = −(
∂ε(n)

∂ej(n)
) ∗ (

∂ej(n)

∂yj(n)
) ∗ (

∂yj(n)

∂vj(n)
) (B.16)

As is evident in equation B.15, the local gradient defines the required changes in the
synaptic weights of neuron j. If neuron j is an output neuron, we may explicitly
compute an error signal and a local gradient associated with the output neuron.
However, if a neuron is a hidden node, we must backpropagate the error signals
arising at the output of the network, and subsequently adjust the synaptic weights
of the hidden neuron. Thus we subsequently delve into how the local gradient is
computed for hidden neurons.

B.1 The computation of the local gradient for hid-

den neurons

For a hidden neuron j, the local gradient is defined as follows:

δj(n) = −(
∂ε(n)

∂yj(n)
) ∗ (

∂yj(n)

∂vj(n)
) ⇒ δj(n) = −(

∂ε(n)

∂yj(n)
) ∗ s′(vj(n)) (B.17)

where neuron j is assumed to be a hidden neuron, and s′(vj(n)) represents the dif-
ferentiation of the sigmoidal nonlinearity with respect to the internal activity level
of the neuron. In order to compute the partial derivative ∂ε(n)

∂yj(n)
, consider again the

instantaneous sum of the square errors across all output nodes:

ε(n) = (1/2) ∗
∑

kǫO

(e2
k(n)) (B.18)

where neuron k is an output neuron, and the set O refers to the output layer of the
network. Thus if we differentiate with respect to the output signal of neuron j, we
have:

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM86

∂ε(n)

∂yj(n)
=

∑

k

(ek(n)) ∗ (
∂ek(n)

∂vk(n)
) ∗ (

∂vk(n)

∂yj(n)
) (B.19)

We know that the error at an output neuron k is:

ek(n) = dk(n) − yk(n) ⇒ ek(n) = dk(n) − s(vk(n)) (B.20)

where s(v) refers to the sigmoidal nonlinearity. Thus we have:

∂ek(n)

∂vk(n)
= −s′(vk(n)) (B.21)

Moreover, we know that the net internal activity level of an output neuron k is:

vk(n) =
q

∑

j=0

wkj(n) ∗ yj(n) (B.22)

where q is the total number of synaptic inputs from hidden neurons j to output
neuron k, the synaptic weight wk0 corresponds to the threshold applied to neuron k,
and y0 = −1. Therefore,

∂vk(n)

∂yj(n)
= wkj(n) (B.23)

Therefore, we may evaluate the partial derivative:

∂ε(n)

∂yj(n)
= −

∑

k

(ek(n)) ∗ (s′k(vk(n))) ∗ (wkj(n)) (B.24)

Therefore, the local gradient associated with hidden neuron j is:

δj(n) = s′j(vj(n)) ∗
∑

k

(ek(n)) ∗ (s′k(vk(n))) ∗ (wkj(n)) (B.25)

where neuron j is a hidden neuron, sj(vj(n)) refers to the sigmoidal nonlinearity
associated with hidden neuron j, and sk(vk(n)) is the sigmoidal nonlinearity associated
with neuron k in the subsequent postsynaptic layer, or the output layer.

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM87

B.2 Summary of the static backpropagation algo-

rithm

We may summarize the weight update algorithm of the backpropagation algorithm
through the delta rule as follows:

∆wji(n) = −η ∗ (δj(n)) ∗ (yi(n)) (B.26)

where yi(n) is the input signal to neuron j, and the local gradient δj(n) depends on
whether neuron j is an ouput node or a hidden node. If neuron j is an output node,
the local gradient is:

δj(n) = ej(n) ∗ s′(vj(n)) (B.27)

where neuron j is an output node. Moreover, if neuron j is a hidden node, the local
gradient associated with the neuron is:

δj(n) = s′j(vj(n)) ∗
∑

k

(ek(n)) ∗ (s′k(vk(n))) ∗ (wkj(n)) (B.28)

where neuron j is a hidden node, and the index k refers to neurons in the postsynpatic
layer which receive inputs from the hidden neuron j.

B.3 Example: A neural network implementation

of a square-root finding algorithm

An instance of how a neural network may be adapted to learn a particular problem is
shown in appendix D under the function entitled yk = sqrtfind(x). In this program
~x is a vector of four numbers between 0 and 1, and the objective of the learning
procedure is to adapt the neural network to learn a square root finding algorithm for
the values contained in ~x. Thus the target vector and the output vector yk are also
vectors of length four, and each of the elements of the target vector correspond to
the square root of the elements in ~x. The network uses one hidden layer comprised
of eight sigmoidal neurons, and four sigmoidal output neurons. Since the sigmoidal

APPENDIX B. DERIVATION OF THE STATIC BACKPROPAGATION ALGORITHM88

nonlinearities utilized in this function are bounded between zero and one, we only
consider input vectors whose elements are within the range 0 and 1. Upon iterating
through k iterations (where k is defined in the program code), the network output yk
converges to the target vector.

89

Appendix C

Introduction to Phase Space

Analysis

One of the most common methods utilized to model a natural system is through a
system of differential equations. The subject of nonlinear dynamics is a powerful
tool in the modeling of natural systems, and an excellent introduction to the subject
may be found in [44]. Instances of the application of nonlinear dynamics specifically
towards neuronal signaling are found in [3], [45] and [6]. Through this appendix we
provide a short introduction to the methods of phase space analysis.

In the simplest of instances, a system has only one variable of interest, and we
may thus derive a differential equation that characterizes how our variable evolves
with time. As an example, let us consider the one dimensional system shown below:

dv

dt
= v (C.1)

We may picture how the system of equation 1 evolves by considering the phase space,
which depicts the state of a variable at a particular time, along with the velocity vector
associated with the variable at that point in time. The term velocity in nonlinear
dynamics is often used to indicate the derivative of a variable at an instant of time,
i.e. the direction in which it is going to evolve. In the simple system defined by C.1,
the differential equation v̇ = v represents a vector field on the phase line. In order
to sketch the vector field, we may graph v̇ versus v, and draw representative arrows

APPENDIX C. INTRODUCTION TO PHASE SPACE ANALYSIS 90

v

dv

dt

Figure C.1: Phase line representation for v̇ = v

that indicate the velocity vector at each point v, as is depicted in figure C.1.

As is evident from figure C.1, when v̇ > 0, v increases, and thus the flow is to the
right. Conversely, when v̇ < 0, v is decreasing, and thus the flow is to the left. Since
equation C.1 defines a one dimensional linear system, we only have one point in the
phase space where v̇ = 0, and this point corresponds to an equilibrium point. The
equilibrium point occurs at v = 0, and at this point there is theoretically no flow.
However, this is an unstable fixed point since the flow diverges away from this fixed
point. Thus any perturbation to the system from the equilibrium point will amplify
itself and drive the state variable v to ±∞. Depicted in figure C.2 are the time
responses of the variable v.

As is observed in figure C.2, if the initial value of v is greater than zero, i.e. the
initial state of the system is situated to the right of the unstable equilibrium point, v
continues to grow exponentially for all time ≥ 0. Conversely, if the initial state of v
is negative, then v → −∞ as time → ∞.

We may extend our method of analysis and consider a general two dimensional
system of the form:

dx

dt
= ẋ = f(x, y) (C.2)

APPENDIX C. INTRODUCTION TO PHASE SPACE ANALYSIS 91

v

time

time

v

(a) (b)

(a) Exponential growth corresponding to v(0) > 0

(b) Exponential fall-off corresponding to v(0) < 0

Figure C.2: Time response for v̇ = v

dy

dt
= ẏ = g(x, y) (C.3)

For instance, let us consider the following:

dx

dt
= ẋ = −y (C.4)

dy

dt
= ẏ = −x (C.5)

Solutions to the two dimensional system in equations (C.4,C.5) are essentially
trajectories in the (x, y) space, known as the phase space. The conventional method
for viewing the phase space is to plot velocity vectors at each point in the (x, y) plane,

APPENDIX C. INTRODUCTION TO PHASE SPACE ANALYSIS 92

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

x

x nullcline y=0

y nullcline x=0

Figure C.3: Phase portrait along with representative state trajectory of system (C.4,C.5)

(xo, yo); the directions of the velocity vectors are defined by the system of differential
equations ẋ = −y and ẏ = −x. Thus depicted in figure C.3 is the phase space of the
system (C.4,C.5).

In figure C.3, the vector field assumes different directions in different regions of the
phase plane. The set of points where the vector field changes its horizontal direction
of flow is known as the x-nullcline, and it is defined by the equation f(x, y) = 0.
Similarly, the set of points where the vector field changes its vertical direction is
known as the y-nullcline, and it is defined by g(x, y) = 0. Thus in the simple system
depicted in C.3, the x-nullcline is defined by the line y = 0, and the y-nullcline
is defined by the line x = 0. The intersection of these two nullclines defines the
equilibrium point of the system, and in this instance, it is (x∗, y∗) = (0, 0).

The nullclines and equilibria define the steady-state characteristics of the system,
and they provide a geometrical representation of the system’s evolution when released
from certain initial conditions. In order to determine the stability of an equilibrium,
we must consider the behavior of the vector field in a small region around the equi-
librium point. Subsequently, we may utilize some basic concepts of linear algebra to

APPENDIX C. INTRODUCTION TO PHASE SPACE ANALYSIS 93

determine the stability of an equilibrium.

Let us once again consider the general two-dimensional dynamical system, having
an equilibrium point (x∗, y∗). We may linearlize the nonlinear functions f(x, y) and
g(x, y) near the equilibrium point as follows:

f(x, y) = a(x − x∗) + b(y − y∗) + higher order terms (C.6)

g(x, y) = c(x − x∗) + d(y − y∗) + higher order terms (C.7)

where a = ∂f
∂x

(x∗, y∗), b = ∂f
∂y

(x∗, y∗), c = ∂g
∂x

(x∗, y∗), and d = ∂f
∂x

(x∗, y∗) correspond

to the partial derivatives of f(x, y) and g(x, y) with respect to the state variables x
and y, evaluated at the equilibrium point (x∗, y∗). When evaluating the stability of a
two-dimensional system, we may consider the following corresponding linear system:

u̇ = au + bv (C.8)

v̇ = cu + dv (C.9)

where u = (x − x∗) and v = (y − y∗) are the deviations from the equilibrium point.
The implicit assumption underlying the linearization method for determining stability
is that we may neglect the higher order terms.

The linearization matrix:

A =

[

a b
c d

]

is known as the Jacobian matrix of the general two-dimensional system at the equilib-
rium (x∗, y∗). The eigenvalues of the Jacobian matrix are given by the characteristic
equation det(A − λI) = 0, where I refers to the identity matrix. Thus the character-
istic equation becomes:

det

[

a − λ b
c d − λ

]

= 0

APPENDIX C. INTRODUCTION TO PHASE SPACE ANALYSIS 94

Expanding the determinant, we get:

λ2 − λ ∗ (a + d) + ad − bc = 0 (C.10)

⇒ λ2 − λ ∗ τ + ∆ = 0 (C.11)

where τ = a + d and ∆ = det(A) = ad − bc. We may solve for λ as follows:

λ1 =
τ +

√
τ 2 − 4∆

2
and λ2 =

τ −
√

τ 2 − 4∆

2
(C.12)

If we know an initial condition to the system, then the general solution to the system
is simply:

~x = c1 ∗ exp(λ1 ∗ t)~v1 + c2 ∗ exp(λ2 ∗ t)~v2 (C.13)

where ~v refers to a fixed vector to be determined. From linear systems theory, we
know that the case where λ > 0 corresponds to exponential growth, and thus implies
instability. On the other hand, λ < 0 implies exponential decay, so u(t) → 0 and
v(t) → 0, which implies that x(t) → x∗ and y(t) → y∗, and thus the equilibrium is a
stable point. Finally, λ defines a pair of complex-conjugates if 4∆ > τ 2. If the real
part of the complex number is less than zero, then the equilibrium point is a stable
focus, while if the real part of the complex number is greater than zero, then the
equilibrium point is an unstable focus.

95

Appendix D

Computer Simulations Program

Code

%%%

% Resonate-and-Fire Neuron

%%%

% Set model parameters

Damping1 = 0.1; % Resonator case

Damping2 = 0.9; % Integrator case

Omega = (2*pi); %natural freq = 1 Hz

f = Omega/(2*pi); deltaT = 1/f; StimStrength = 100; StimPeriod = 1;

Vth = 0.05; %Threshold

Vpeak = 30; Vrest = 0.0;

dt = 0.01; tend = 10; %End time in seconds

fireflag = 0;

time = 0:dt:tend; %Create time vector in seconds

deltaT = 1/dt; %Declare after how many time steps we apply stim

start_neg = 1;

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 96

%Create stimulus vector

PosStim = zeros(1,length(time)); %positive stimulus

NegStim = zeros(1,length(time)); %negative stimulus

VStim = zeros(2,length(time)); %Overall stimulus

VStim(1,:) = PosStim(1,:); VStim(2,:) = NegStim(1,:);

%plot stimulus

figure(1)

plot(time,VStim(1,:),’b’); hold on;

plot(time,VStim(2,:),’k’); hold off;

V = zeros(1,length(time)); %initialize V

W = zeros(1,length(time)); %initialize W

V2 = zeros(1,length(time)); W2 = zeros(1,length(time));

BinaryOut = zeros(1,length(time)); k = 0;

for t = 2:length(time)

V(t) = V(t-1) + dt*((W(t-1)) + VStim(1,t) + VStim(2,t));

W(t) = W(t-1) + dt*(-1.0*(2*Damping1*Omega*W(t-1) + Omega*Omega*V(t-1)));

%Damping*Wn = 1/(R*C), Wn = 1/sqrt(LC); Resonator Simulation

V2(t) = V2(t-1) + dt*((W2(t-1)) + VStim(1,t) + VStim(2,t));

W2(t) = W2(t-1) + dt*(-1.0*(2*Damping2*Omega*W2(t-1) + Omega*Omega*V2(t-1)));

% Integrator Simulation

if (V(t)>Vth)

%update binary output if potential exceeds threshold

BinaryOut(1,t) = 1;

%increment amount of time active

k = k + 1;

end

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 97

end

%%%

%FitzHugh-Nagumo Model Simulations

%%%

function dv=fhnde(t,v)

%FHNDE State transition function for FitzHugh-Nagumo Model.

%Program code adapted from course materials: ELEC 472 Digital Signal

%Processing

% initialize the output vector

dv=[0 ; 0];

% initialize parameters of FHN model

b=1; c=5; a=0.99;

% compute the values of the output vector

dv(1)=v(1)*(a-v(1))*(v(1)-1)-v(2);

dv(2)=b*v(1)-c*v(2);

function [t,v] = fhnsim(odefun,v0,tdelta,tstart,tend)

%FHNSIM Simulates the behavior of a system with a given state transition function.

%Code adapted from course materials in ELEC 472: Digital Signal Processing

t = tstart:tdelta:tend; %time vector

v = zeros(length(t),length(v0)); %output state matrix

Istim = zeros(2,length(t)); Istim(1,2000:4000) = 50;

v(1,:)=v0(:).’; %initial conditions

%loop through matrix v and evaluate the behavior of system

for n=2:length(t)

dv = odefun(t(n-1),v(n-1,:).’) + Istim(1,n);

v(n,:) = v(n-1,:) + tdelta*dv.’;

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 98

end

%hold on;

v1 = linspace(-10,10,30);

v2 = linspace(-10,10,30);

phaseport(@fhnde,v1,v2)

title(’Phase Portrait for FitzHugh-Nagumo Model’)

axis([-10 10 -10 10])

hold on;

%view evolution of states in state space

plot(v(:,1),v(:,2),’r’); hold on;

%plot nullclines

% initialize parameters of FHN model

b=1; c=5; a=0.99;

y1 = v1.*(a-v1).*(v1-1);

y2 = (b/c).*v1;

plot(v1,y1,v1,y2)

%%%

% SQUARE ROOT FINDING ALGORITHM WITH STATIC NEURAL NETWORKS

%%%

function yk = sqrtfind(x);

% function SQRTFIND(X) finds the square root of the elements contained in

% the vector x, and outputs these values in the vector yk. The objective of

% this program is to implement this square root finding algorithm through a

% neural network adapted through error backpropagation

% obtain the length of the vector x

p = length(x);

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 99

% initialize and define target vector T

T = zeros(p,1);

T = sqrt(x);

% obtain length of target vector

tN = length(T);

% define n as the number of training iterations

n = 2000;

% define output matrix yk, which stores the outputs of output neurons

yk = zeros(tN,n);

% Intialize error matrix Ek, which stores the difference between the target

% value of output neuron k and the actual output of output neuron k

Ek = zeros(tN,n);

% initialze ensemble error matrix phi, which stores the sum of all the

% errors Ek, across all output neurons k

phi = zeros(1,n);

% Define hidden layer comprised of h hidden neurons

h = 8;

% initialize vector vj to store activity levels of hidden neurons

vj = zeros(h,1);

% initialize vector yj to store outputs of hidden neurons, where

% yj=10/(1+exp(-vj))

yj = zeros(h,1);

% initialize input weight matrix wij; this matrix will connect inputs to

% first layer of hidden neurons. Thus we require this matrix to contain p

% columns (p = length(x), i.e. the number of inputs we receive) and

% h rows (h = number of hidden neurons)

wij = ones(h,p);

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 100

% initialize hidden weight matrix wjk; this matrix connects hidden neurons

% j to output neurons k; Thus we require this matrix to contain tN rows,

% where tN is the length of our target vector; also, we need this matrix to

% contain h columns, where h is the number of hidden neurons

wjk = ones(tN,h);

% initialize vector vk to store activity levels of output neurons

vk = zeros(tN,n);

% define momentum constant eta

eta = 0.5;

% initialize matrix sprime to store derivative of sigmoidal nonlinearity

% for output neurons k

sprimek = zeros(tN,n);

sprimej = zeros(h,n);

temp = zeros(tN,n);

% loop through each training iteration 1 through n

for iter = 1:n

% loop through inputs and weight matrix to compute activity levels vj and

% outputs of hidden neurons yj

for j = 1:h

vj(j,1) = wij(j,:)*x;

yj(j,1) = 1/(1+exp(-vj(j,1)));

sprimej(j,iter) = yj(j,1).*(1-yj(j,1));

end

% loop through inputs, obtained from the outputs of hidden neurons, and

% weigh by hidden weight matrix wjk to compute activity levels of output

% neurons, vk, and corresponding outputs yk

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 101

for k=1:tN

vk(k,iter) = wjk(k,:)*yj;

yk(k,iter) = 1/(1+exp(-vk(k,iter)));

% obtain error Ek from each output neuron k

Ek(k,iter) = T(k,1)-yk(k,iter);

% Compute derivative of sigmoidal nonlinearity for output

% neurons

sprimek(k,iter) = yk(k,iter).*(1-yk(k,iter));

%temp3(1,iter) = sprimek(k,iter)*wjk(k,j);

temp(k,iter) = Ek(k,iter)*sprimek(k,iter);

end

% compute the ensemble error phi, which sums the errors across

% all output neurons k

phi(1,iter) = 0.5*sum((Ek(:,iter)).^2);

% Implement weight update algorithm for weight matrix wjk,

% which connects hidden neurons h to output neurons k

for row = 1:tN

for col = 1:h

delta_wjk(row,col) = Ek(row,iter).*(yk(row,iter).*(1-yk(row,iter))).*yj(col,1);

wjk(row,col) = wjk(row,col) + eta*delta_wjk(row,col);

end

end

% Implement weight update algorithm for weight matrix wij,

% which connects inputs xi to hidden neurons j

for inrow = 1:h

for incol = 1:p

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 102

wjk_train = sum(wjk(:,inrow).*sprimek(incol,iter));

delta_wij(inrow,incol) = (sprimej(inrow,iter).*x(incol,1))*wjk_train;

wij(inrow,incol) = wij(inrow,incol) + eta*delta_wij(inrow,incol);

end

end

end

%%%

% TRANSLATION EXAMPLE WITH TEMPORAL BACKPROPAGATION ALGORITHM

%%%

function yk = translate(x);

% YK = TRANSLATE(X) The objective of this function is to implement a neural

% network, and adapt this network to learn the protein code. Thus x[n]

% specifies a binary word vector in time index n, and the network maps x[n]

% to its corresponding amino acid; The amino acid is also specified by a

% temporal binary code

% obtain length of input vector x, and create time vector that is 5

% times as long as input vector

L = 5*length(x);

% define numpoints to be number of time indices we would like to consider

% for impulse response hj(l) and hk(l)

numpoints = 5*L;

% Specify number of hidden layers

num_hid = 1;

% define time vector n, which runs upto L

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 103

n = linspace(1,L,numpoints);

M = length(n);

% create vector x[n-lM]=x_eff

x_eff = zeros(1,2*M+length(x));

for i = 1:length(x)

x_eff(i+M) = x(1,i);

end

% Create target vector D[n]; we need the time alignment of D[n] to match

% that of yk[n]. Thus we may allocate a temporal desired vector if we know

% the time memory of a neuron within each layer. Here we assume that each

% layer is comprised of neurons with equal M=L*5=150. Also, we know that we

% will be utilizing one hidden layer

D = zeros(1,2*M + length(x) - 2);

D(1,1:M) = ones;

% intialize output vector yk[n], which should be a [1XL] row vector; We are

% using only one row because we have only one output neuron in this example

yk = zeros(1,2*M + length(x) - 2);

% Define number of hidden neurons h that we would like to use; in this case

% try h=5

h = 5;

% initialize vector hj to store impulse response of a given neuron j;

hj = ones(h,length(n));

% assign an impulse response to each hidden neuron j; in this instance

% assume that we use alpha = 0.5, and OMEGA = 2*pi*50 for all neurons

alphaj = 0.5;

omegaj = 2*pi*50;

% define number of training iterations k

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 104

k = 1000;

% initialize a = 1 for all neurons where y = 1/(1+exp(-a*v))

a=1;

% Define learning rate momentum constant eta

eta = 0.5;

% initialize matrix sprime to store derivative of sigmoidal nonlinearity

% for output neurons k

sprimek = zeros(1,(2*M+length(x))-2);

sprimej = zeros(h,M+length(x)-1);

% intialize matrix shift_sprime to store time shifted gradients and

% derivatives of sigmoidal nonlinearity

shift_sprimej = zeros(h,2*M+length(x));

% Initialize error matrix Ek(n) = D(n) - yk(n)

Ek = zeros(k,2*M+length(x)-2);

% Initialize matrix to store local gradient for output neurons

delta_wjk = zeros(1,2*M+length(x)-2);

shift_deltajk = zeros(1,3*M+length(x));

% Initialize ensemble error matrix which computes the total error for all

% time n

phi = zeros(k,1);

for hrow = 1:h

for hcol = 2:length(n)

hj(hrow,hcol) = exp(-(alphaj)*hcol).*cos((omegaj).*hcol);

end

end

% Initialize input weight matrix wij which connects x[n] to our hidden

% neurons j

wij = ones(h,1);

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 105

% Create temporal weight matrix which stores the effective weight on a

% synaptic connection...i.e. weff(j,l) = wij*hj(l)

wij_eff = ones(h,length(n));

for wijrow = 1:h

for wijcol = 2:length(n)

wij_eff(wijrow,:) = wij(wijrow,:).*hj(wijrow,:);

end

end

%intialize weight matrix wjk that connects hidden neurons j to output

%neuron k

wjk = ones(h,1);

% assign an impulse response to output neuron k; in this instance

% assume that we use alpha = 0.5, and OMEGA = 2*pi*50 for all neurons

hk = ones(1,length(n));

alphak = 0.5;

omegak = 2*pi*50;

for hkcol = 2:length(n)

hk(1,hkcol) = exp(-(alphak)*hkcol).*cos((omegak).*hkcol);

end

% initialize and create effective temporal weight matrix wjk_eff = wjk.*hk

wjk_eff = ones(h,length(n));

for wjkrow = 1:h

for wjkcol = 2:length(n)

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 106

wjk_eff(wjkrow,:) = wjk(wjkrow,:).*hk(1,:);

end

end

for iter = 1:k

% Create matrix xnetj which stores the input to neuron j for time index [n]

for row = 1:h

for col = 1:length(x)

xnetj(row,col) = x(col);

end

end

% compute matrix vj[n], which stores the activity levels of hidden neurons

% j; we have that vj[n] is hj[n] convolved with xnetj[n]

for jrow = 1:h

vj(jrow,:) = conv(xnetj(jrow,:),wij_eff(jrow,:));

end

%obtain dimensions of matrix v, i.e. obtain number of rows (which we know

%to be five), and number of columns (time length of vj)

[numh,lvj] = size(vj);

% compute outputs of hidden neurons yj = 1/(1+exp(-a*vj))

% initialize hidden output matrix yj, and make it to be of size [numh X

% lvj] (dimensions of vj)

yj = zeros(numh,lvj);

% Compute the matrix yj, and also compute the derivative of the sigmoidal

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 107

% nonlinearity and store the result in matrix sprimej

% Also compute the shifted time delayed matrix shift_sprimej

for yjrow = 1:numh

for yjcol = 1:lvj

yj(yjrow,yjcol) = 1/(1+exp(-a*vj(yjrow,yjcol)));

sprimej(yjrow,yjcol) = yj(yjrow,yjcol).*(1-yj(yjrow,yjcol));

shift_sprimej(yjrow,yjcol+M) = sprimej(yjrow,yjcol);

end

end

% intialize matrix xnetk_temp[n], which should have dimensions of [h X lvj]

% we shall use this matrix to store the time indices of yj[n]

xnetk_temp = zeros(h,lvj);

for kcol = 1:lvj

for krow = 1:h

xnetk_temp(krow,kcol) = yj(krow,kcol);

end

end

[numj,lvk] = size(xnetk_temp);

% compute matrix vk_temp[n] which stores the activity level of

% output neuron k; we have that vk[n] is wjk_eff[n] convolved

% with xnetk_temp[n]

for vkrow = 1:h

vk_temp(vkrow,:) = conv(wjk_eff(vkrow,:),xnetk_temp(vkrow,:));

end

[rowvk, colvk] = size(vk_temp);

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 108

% intialize vector vk[n] to store the activity level of output neuron k

vk = zeros(1,colvk);

for vkcol = 1:colvk

vk(1,vkcol) = sum(vk_temp(:,vkcol));

end

% compute output matrix yk[n] and also compute derivative of sigmoidal

% nonlinearity....the loop runs from 1 to colvk

for colyk = 1:colvk

yk(1,colyk) = 1/(1+exp(-a*vk(1,colyk)));

sprimek(1,colyk) = yk(1,colyk).*(1-yk(1,colyk));

% Compute the error at the output neuron for this iteration

E(iter,colyk) = D(1,colyk)-yk(1,colyk);

% Compute local gradient for output neuron

delta_wjk(1,colyk) = E(iter,colyk).*sprimek(1,colyk);

% Obtain time shifted local gradient for output neuron

shift_deltajk(1,colyk+M) = delta_wjk(1,colyk);

end

% Compute the ensemble error for this training iteration

phi(iter,1) = 0.5*(sum((E(iter,:).^2)));

% Implement weight update algorithm for weight matrix weff_jk that connects

% hidden neurons j to output neurons k

shift_deltajk = shift_deltajk’;

for jkrow = 1:h

for jkcol = 1:length(n)

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 109

wjk_eff(jkrow,jkcol)=wjk_eff(jkrow,jkcol)+eta*delta_wjk(1,jkcol).*yj(jkrow,jkcol);

end

end

% Implement weight update algorithm for weight matrix weff_ij that connects

% input node to hidden neurons j

for ijrow = 1:h

for ijcol = 1:length(n)

grad_wij_eff(ijrow,ijcol) =

shift_sprimej(ijrow,ijcol).*(sum((shift_deltajk(ijcol,:)).*wjk_eff(ijrow,ijcol)));

wij_eff(ijrow,ijcol) =

wij_eff(ijrow,ijcol) + eta.*grad_wij_eff(ijrow,ijcol).*(x_eff(1,ijcol+M));

end

end

end

%%%

%BIOLOGICAL NEURAL NETWORK TOOLBOX CODE

%%%

function dydt = raf(t , y)

% Resonate-and-fire neuron state space system definition

%Defining BNN model as a global variable. DON’T CHANGE THIS SECTION.

global net

tstart = 0; tdelta = 1e-3; tend = 10;

t = tstart:tdelta:tend; %time vector

y = zeros(3,length(t)); %output state matrix

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 110

Damping = 0.5; %=1/R*C

NatFreq = 2*pi; %=1/sqrt(LC)

I = zeros(2,length(t)); I(1,2:3) = 200;

dv1 = zeros(1,length(t));

dv2 = zeros(1,length(t));

for i = 2:length(t)

% Define RAF Differential equations

dv1(1,i) = y(2,i-1);

dv2(1,i) = (-Damping)*(y(2,i-1)) - (NatFreq^2)*(y(1,i-1)) + I(1,i);

y(1,i) = y(1,i-1) + tdelta*(dv1(1,i));

y(2,i) = y(2,i-1) + tdelta*(dv2(1,i));

y(3,i) = 1/(1+exp(-(y(1,i))));

end

figure(1); plot(t,I(1,:)); figure(2); plot(t,y(1,:)); figure(3); plot(t,y(2,:));

figure(4); plot(t,y(3,:)); figure(5); plot(y(1,:),y(2,:));

%Implement RAF Neuron Model

function NeuronModel = rafmodel(neuron_fun , model_type ,

state_num , model_param , spike_det_fun ,

spike_det_fun_param , reset_fun , reset_fun_param)

% Define and build Resonator Neuron model

Damping = 0.5; NatFreq = 2*pi; vth=0;

% neuron_fun refers to the diff. eqns. of neuron model;

neuron_fun = ’raf’;

% model_type is CDE by default;

model_type = ’CDE’;

% state_num refers to the number of state variables in the neuron model;

state_num = 3;

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 111

%model_param refers to the parameters defined within the neuron model;

model_param = [Damping; NatFreq];

%spike_det_fun refers to the function that detects the condition to spike;

spike_det_fun = ’threshold’;

spike_det_fun_param = ’vth’;

%reset_fun defines the functions that are called upon firing and reset

reset_fun = ’none’;

reset_fun_param = ’def’;

NeuronModel = newneuron(neuron_fun , model_type , state_num , model_param , ...

spike_det_fun , spike_det_fun_param , reset_fun , reset_fun_param);

return

%Build neural network multilayer perceptron architecture

function NetArch = rafarch(neuron_num, input_num, input_type,

neuron_type, weight_type, delay_type)

%creates a feedforward multilayer architecture, i.e. neurons are divided

%into groups called layers.

%neuron_num defines the number of neurons in each layer of the

%neural network [N_1,N_2,...N_k] with N_i being number of neurons in layer

%i;

neuron_num = [1,5,5,1];

%input_num is the number of inputs to the network: M

input_num = 1;

%input_type is a vector of size(input_num), i.e. of length M,

%and defines the type of inputs for each of the inputs defined in input_num;

%analog input is -1 and spiking input is +1

input_type = -1;

%neuron type is a vector of size N, where N=neuron_num; each element of the

%vector corresponds to a certain type of neuron; +1 is excitatory, -1 is

APPENDIX D. COMPUTER SIMULATIONS PROGRAM CODE 112

%inhibitory, and 0 is hybrid

neuron_type = ones(length(neuron_num),1);

% weight_type is a string indicating how to initialize the weight matrixes:

% random for a random uniform distribution, normal for a random normal

% distribution, one for all weights equal to 1, and zero for all weights

% equal to zero. Default is random.

weight_type = ’random’;

% delay_type is a string indicating how to initialize the delay matrixes:

% random for a random uniform distribution, one for all delays equal to 1,

% and zero for all delays equal to zero. Default is zero.

delay_type = ’zero’;

NetArch = newarchff(neuron_num, input_num, input_type,

neuron_type, weight_type, delay_type);

return

113

References

[1] E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science (Cambridge,
MA: MIT Press, 1991).

[2] D. Johnston, S. M.-S. Wu, and R. Gray, Foundations of Cellular Neurophysiology
(Cambridge, MA: MIT Press, 1995).

[3] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems (Cambridge, MA: MIT Press, 2001).

[4] J. V. Tranquillo, Quantitative Neurophysiology (San Rafael, CA: Morgan and
Claypool Publishers, 2008).

[5] J. Rinzel, Models in Neurobiology in ’Nonlinear Phenomena in Physics and Bi-
ology’ R. Enns, B. Jones, R. Miura, S. Rangnekar (eds.) (New York: Plenum
Press, 1981).

[6] E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting (Cambridge, MA: MIT Press, 2007).

[7] S. Haykin, Neural Networks - A Comprehensive Foundation (New York: Macmil-
lan College Publishing Company, 1994).

[8] S. Samarasinghe, Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition (New York: Auerbach Publica-
tions, 2007).

[9] Methods in Neuronal Modeling: From Synapses to Networks - C. Koch and I.
Segev (eds.) (Cambridge, MA: MIT Press, 1989).

[10] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of Mathematical Biophysics, 5, 115 (1943).

REFERENCES 114

[11] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain,” Psychological Review, 65, 386 (1958).

[12] F. Rosenblatt, Principles of Neurodynamics (Washington D.C.: Spartan Books,
1962).

[13] B. Widrow and M. Hoff, “Adaptive switching circuits,” IRE WESCON Conven-
tion Record, pp. 96–104 (1960).

[14] P. Werbos, Beyond regression: New tools for prediction and analysis in the behav-
ioral sciences, PhD. Thesis: Harvard University (MIT Press, Cambridge, MA,
1974).

[15] G. Hinton, D. Rumelhart, and R. Williams, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition (D.E. Rumelhart and J.L. McClel-
land, eds.) (Cambridge, MA: MIT Press, 1986).

[16] L. Lapicque, “Recherches quantitatives sur lexcitation lectrique des nerfs traite
comme une polarization,” J. Physiol. Pathol. Gen., 9, 620 (1907).

[17] S. Bohte, Spiking Neural Networks, PhD. Thesis: Universitiet Leiden (Universi-
tiet Leiden, 2003).

[18] A. Kleinschmidt, M. Bear, and W. Singer, “Blockade of ’nmda’ receptors dis-
rupts experience-dependent plasticity of kitten striate cortex,” Science, 238, 355
(1987).

[19] C. H. Bailey, M. Chen, F. Keller, and E. R. Kandel, “Serotonin-mediated endo-
cytosis of apcam: An early step of learning-related synaptic growth in Aplysia,”
Science, 256, 645 (1992).

[20] S. J. Kim and D. J. Linden, “Ubiquitous plasticity and memory storage,” Neuron,
56, 582 (2007).

[21] A. Hodgkin and A. Huxley, “A quantitative description of membrane current
and application to conduction and excitation in nerve,” Journal of Physiology,
117, 500 (1952).

[22] J. D. Murray, Mathematical Biology (New York, NY: Springer Verlag, 1993).

[23] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve
membrane,” Biophysics Journal, 1, 445 (1961).

REFERENCES 115

[24] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line
simulating nerve axon,” Proceedings IRE, 50, 2061 (1962).

[25] U. Bhalla and J. Bower, “Exploring parameter space in detailed single neuron
models: simulations of the mitral and granule cells of the olfactory bulb,” Journal
of Neurophysiology, 69, 1948 (1993).

[26] P. C. Bush and T. J. Sejnowski, “Reduced compartmental models of neocortical
pyramidal cells,” Journal of Neuroscience Methods, 46, 159 (1993).

[27] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” J. Physiol., 160, 106 (1962).

[28] D. Hubel and T. Wiesel, “Receptive fields of single neurones in the cat’s striate
cortex,” Journal of Physiology, 148, 574 (1959).

[29] D. Hubel and T. Wiesel, “Receptive fields of cells in striate cortex of very young,
visually inexperienced kittens,” Journal of Neurophysiology, 26, 994 (1963).

[30] R. Guttman and L. Hachmeister, “Anode break excitation in space-clamped
squid axons,” Biophysical Journal, 12, 552 (1972).

[31] B. R. Jones and S. H. Thompson, “Mechanism of postinhibitory rebound in
molluscan neurons,” American Zoologist, 41, 1036 (2001).

[32] E. Salinas and T. Sejnowski, “Correlated neuronal activity and the flow of neural
information,” Nature Neuroscience, 2, 539 (2001).

[33] E. Izhikevich, “Resonance and selective communication via bursts in neurons
having subthreshold oscillations,” Biosystems, 67, 95 (2002).

[34] E. Izhikevich, “Resonate-and-fire neurons,” Neural Networks, 14, 883 (2001).

[35] G. Murphy and D. Glanzman, “Mediation of classical conditioning in aplysial
californica by long term potentiation of sensorimotor synapses,” Science, 278,
467 (1997).

[36] M. Minsky and S. Papert, Perceptrons (Cambridge, MA: MIT Press, 1969).

[37] P. Rowcliffe, J. Feng, and H. Buxton, “Spiking perceptrons,” IEEE Transactions
on Neural Networks, 17, 803 (2006).

[38] S. Day and M. Davenport, “Continuous-time temporal back-propagation with
adaptive time delays,” IEEE Transactions on Neural Networks, 4, 348 (1993).

REFERENCES 116

[39] D. Lin, J. Dayhoff, and P. Ligomenides, “Trajectory production with the adaptive
time-delay neural network,” Neural Networks, 8, 447 (1995).

[40] P. Werbos, “Backpropagation through time: What it does and how to do it,”
Proceedings of the IEEE, 78, 1550 (1990).

[41] U. Alon, An Introduction to Systems Biology: Design Principles of Biological
Circuits (London, UK: Chapman and Hall/CRC, 2007).

[42] R. FitzHugh, ’Mathematical models of excitation and propagation in nerve’ in
Biological Engineering (H.P. Schwan ed.) (New York: McGraw-Hill, 1969).

[43] R. FitzHugh, “Thresholds and plateaus in the hodgkin-huxley nerve equations,”
The Journal of General Physiology, 43, 867 (1960).

[44] S. Strogatz, Nonlinear Dynamics and Chaos (Readings, MA: Addison-Wesley,
1994).

[45] H. Tuckwell, Introduction to Theoretical Neurobiology (Cambridge: Cambridge
University, 1988).

	Bucknell University
	Bucknell Digital Commons
	2010

	The Resonate-and-fire Neuron: Time Dependent and Frequency Selective Neurons in Neural Networks
	Himadri Mukhopadhyay
	Recommended Citation

	hmukhopa_2010_Signature
	hmukhopa_2010.pdf

