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Abstract 

Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of 

similar mechanical properties to commodity plastics like polyethylene (PE) and 

polyethylene terephthalate (PETE).  There has recently been a great interest in using PLA 

to replace these typical petroleum-derived polymers because of the developing trend to 

use more sustainable materials and technologies.  However, PLA’s inherent slow 

crystallization behavior is not compatible with prototypical polymer processing 

techniques such as molding and extrusion, and in turn inhibits its widespread use in 

industrial applications. 

In order to make PLA into a commercially-viable material, there is a need to 

process the material in such a way that its tendency to form crystals is enhanced.  The 

industry standard for producing PLA products is via twin screw extrusion (TSE), where 

polymer pellets are fed into a heated extruder, mixed at a temperature above its melting 

temperature, and molded into a desired shape.  A relatively novel processing technique 

called solid-state shear pulverization (SSSP) processes the polymer in the solid state so 

that nucleation sites can develop and fast crystallization can occur.  SSSP has also been 

found to enhance the mechanical properties of a material, but its powder output form is 

undesirable in industry.  A new process called solid-state/melt extrusion (SSME), 

developed at Bucknell University, combines the TSE and SSSP processes in one 

instrument.  This technique has proven to produce moldable polymer products with 

increased mechanical strength. 
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This thesis first investigated the effects of the TSE, SSSP, and SSME polymer 

processing techniques on PLA.  The study seeks to determine the process that yields 

products with the most enhanced thermal and mechanical properties.  For characterization, 

percent crystallinity, crystallization half time, storage modulus, softening temperature, 

degradation temperature and molecular weight were analyzed for all samples.  Through 

these characterization techniques, it was observed that SSME-processed PLA had 

enhanced properties relative to TSE- and SSSP-processed PLA. 

Because of the previous findings, an optimization study for SSME-processed PLA 

was conducted where throughput and screw design were varied.  The optimization study 

determined PLA processed with a low flow rate and a moderate screw design in an 

SSME process produced a polymer product with the largest increase in thermal properties 

and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-

processed PLA.  It was concluded that the SSSP part of processing scissions polymer 

chains, creating defects within the material, while the TSE part of processing allows these 

defects to be mixed thoroughly throughout the sample.  The study showed that a proper 

SSME setup allows for both the increase in nucleation sites within the polymer and 

sufficient mixing, which in turn leads to the development of a large amount of crystals in 

a short period of time. 
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1. Introduction 

The introduction of polymers into mainstream culture came in the 1940’s as 

discoveries in polymerization chemistry coincided with the increasing demand for a light 

material that could be used to package goods [Society of Plastic Engineers at Texas 

A&M University, 2013; American Chemical Council, 2014].  This new class of materials 

replaced metals and ceramics in many applications as polymers were less expensive to 

process and had more desirable properties for consumers.  Throughout the last 75 years, 

the everyday uses of polymers have expanded from the original nylon polymer to other 

commodity polymers such as polyethylene (PE), polypropylene (PP), polyvinyl chloride 

(PVC) and polystyrene (PS).  In 2009, the United States produced 31.1 million tons of 

plastic products [United States Environmental Protection Agency, 2013].  However, these 

polymers are often criticized as they are derived from petroleum, and therefore not 

considered environmentally-friendly nor sustainable [Haas, T., et al. 2009; Mooney, B. P., 

2009].   

In 1988, the Society of the Plastics Industry (SPI) introduced the Resin 

Identification Code (RIC) in response to plastic manufacturer’s demands to help preserve 

natural resources.  Table 1, developed by the SPI, shows the 6 types of commonly used 

polymers as well as a category that includes the remaining polymers that can be recycled 

[Society of the Plastic Industry, 2013; American Chemical Council, 2014].  These efforts 

have led to an increase in the rate of recycling in the United States from 8 to 32% over 

the last 25 years [Zero Waste, 2014].  However, despite these efforts, it was estimated 

that in 2008, over 80% of post-consumer plastics still went to landfills [History of Plastic, 
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2013].  Though the amount of recycling has increased over time, it is still not as 

sustainable as many environmentally-conscious citizens desire.  

 

Table 1: The RIC for each type of polymer that can be recycled [Society of the Plastic 

Industry, 2013] 

 

 

From an industrial standpoint, petroleum-derived polymers are becoming more 

and more expensive due to the increase in petroleum prices.  Between 2000 and 2010, the 

price of PP increased about from approximately $0.40/lb to $1.00/lb [The Hedging 

Corner, 2011].  As a result, a need exists for an alternative polymeric material  in the 

commodity plastics market.   

For these reasons, significant research efforts have been targeted  towards 

sustainable polymers, which include bio-based, bio-derived, naturally-occurring, and 
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biodegradable polymers [Van de Velde, K. & Kiekens, P., 2002].  One of the most 

promising bio-derived and biodegradable polymers is polylactic acid (PLA) [Madhavan 

Nampoothiri, K., et al., 2010; Drumright, R. E., et al., 2000; Mooney, B. P., 2009; 

Averous, L., 2008].  PLA has emerged as an alternative polymer to PE and PS as it has 

been found to have similar characteristics.   The physical properties of neat PLA can be 

manipulated, both intrinsically by controlling the level of polymer crystallites 

(semicrystalline format) and extrinsically by adding plasticizers (amorphous format) 

[Pillin, I., et al., 2006; Labrecque, L. V., et al., 1997; Baiardo, M., et al., 2003; Jacobsen, 

S. & Fritz, H, 1999].   PLA is commercially supplied by a variety of companies around 

the world, and can be processed by many techniques such as blow and injection molding 

[Bergeret, A., 2011].   

However, one of the main hurdles for the widespread use of PLA is the large 

amount of time and energy needed to process the material into an application-friendly, 

semicrystalline form, preventing the mass-manufacturing of PLA-based products.  When 

PLA is processed through conventional melt-processes like injection molding, polymer 

crystals do not form at a sufficiently high rate to complete processing in a time similar to 

that of petroleum-based polymers [Vadori, R., et al., 2013].  The low level of crystallinity 

that occurs leads to a low quality and inconsistent polymer product.   

In this honors thesis, the processing of PLA will be investigated by comparing the 

current industrial processing technique of twin-screw extrusion (TSE) to two novel, 

innovative processing techniques of solid-state shear pulverization (SSSP) and solid-

state/melt extrusion (SSME).  The mechanical and thermal properties, as well as the 
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structure, of the resulting PLA will be analyzed and compared between each respective 

processing technique.  An optimum processing method will be one that would yield 

products with similar or enhanced properties relative to the current standards but with 

faster processing time. Once the processing technique with the greatest set of properties 

has been determined, that process will be optimized in terms of flow rate and screw 

design to find the processing conditions at which PLA is most effectively processed. 

The balance of this thesis begins in Chapter 2 with a literature review of the PLA 

material and relevant processing techniques involved.  Chapter 3 introduces the methods 

by which PLA was processed and the techniques by which the extruded samples were 

analyzed.  Results of an initial survey study of the three different processing methods 

(TSE, SSSP, and SSME) are shown in Chapter 4 and an optimization study will be 

discussed in Chapter 5.  The final chapter will summarize the key findings from this 

Honor’s thesis work and provide recommendations for future research directions in this 

field.  
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2. Background 

2.1 Polylactic Acid 

Polylactic acid (PLA) was discovered in 1932 by DuPont as a chemical used for 

drug delivery and has since expanded its use to be one of the most popular biodegradable 

polymers used in the manufacturing of everyday plastic products [Auras, R.A., et al., 

2011]. In 2012, PLA accounted for 41% of the 269,000 metric tons of worldwide 

biodegradable polymers.  A projected increase in total demand for biodegradable 

polymers to 525,000 metric tons by 2017 [Plastemart, 2013] is due in part to the 

environmental concerns of petroleum-based polymers and to the increased price of these 

polymers because of rising oil prices.  PLA is not affected by the price of oil as PLA is a 

bio-derived and biodegradable polymer.  In the future, as the cost of processing decreases, 

the use of PLA will likely supersede the use of petroleum-based polymers.  Currently, 

PLA is used in many applications including packaging, electronics, and agriculture 

[Avérous, L., 2008; Drumright, R. E., et al., 2000; Garlotta, D., 2001; Plastemart, 2013].  

PLA is a polyester, a molecule whose repeat molecule contains a ester and methyl 

group, as seen in Figure 1.  The methyl groups attached to the structure can vary in 

orientation (chirality) depending on the method of synthesis and processing. PLA is  

derived from lactic acid, which can be produced from chemical synthesis, starting with 

cellulose, or more commonly, from the fermentation of the carbohydrate lactate, glucose, 

or sucrose to produce 100% L-lactic acid or via hydrolysis of lactonitrile to produce a 
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racemic mixture L-lactic acid and D-lactic acid [Lim, L. T., et al., 2008; Garlotta, 2002; 

Averous, L., 2008]. 

 

 

 Figure 1: Chemical structure of PLA  

 

Because of cost, the route most typically used is the fermentation of 

carbohydrates, which are usually extracted from corn [Xiao, L., et al., 2012].  The first 

step in the synthesis of lactic acid is the hydrolysis of the carbohydrate.  Hydrolysis 

creates a dextrose product, which can be fermented to produce lactic acid [Garlotta, 2002; 

Averous, L., 2008; Lim, L. T., et al., 2008].  PLA can then be synthesized via direct 

condensation polymerization or azeotropic dehydration condensation depending on the 

chirality of the original monomer molecule, as seen in Figure 2 [Avérous, L., & Pollet, E., 

2012]. The polymer is then molded into small pellets and sold to manufacturers. 

Depending on the method by which PLA is synthesized, the degree of chain-

length can vary greatly within the polymer leading to varying properties [Averous, L., 

2008; Avérous, L., & Pollet, E., 2012].  If produced with the azeotropic dehydration 

method, PLA chain lengths are generally longer than when produced via the direct 

condensation polymerization method [Avérous, L., & Pollet, E., 2012].  PLA’s crystalline 



7 
 

 

state can vary from completely amorphous (non-crystalline) to up to 40% crystalline; 

many physical properties of the polymer depend on the amount of crystallinity that has 

occurred within the polymer.  In most PLA polymers, the glass-transition temperature (Tg) 

ranges between 50°C-80°C, while the melting temperature (Tm) is between 130°C-180°C 

[Averous, L., 2008].  PLA is non-flammable, UV resistant, chemically resistant, and 

insoluble in most solvents [Farrington, D. W., et al., 2005; Lunt, J., & Shafer, A. L., 

2000].   

 

 

Figure 2: The synthesis steps of PLA from lactic acid [Avérous, L., & Pollet, E., 2012] 

 

PLA, as currently produced, does not necessarily achieve all of the desired 

technical properties.  It has a low thermal stability, low toughness, poor moisture barrier 

properties due to the glassy state and low crystallinity at ambient temperatures [Brunner, 
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P. J., 2013].  Improvements in these physical properties can be realized if the PLA is 

prepared with a higher amount of crystals.  However, the kinetic and transport nature of 

PLA makes it a very slow crystallizing material [Brunner, P. J., 2013].  PLA’s slow 

crystallizing nature restricts fast and/or mass production of products using this material.  

Many have attempted to overcome long processing times and low crystallization 

temperatures of PLA by various methods, the most popular being the addition of 

nucleating agents [Lunt, J., 1998; Brunner, P. J., 2013; Day, M., et al., 2006].  The 

addition of nucleating agents decreases the surface free energy barrier towards nucleation, 

which allows for crystallization at higher temperatures [Liao, R., et al., 2007].  Additives 

such as carbon nanotubes, talc and microcrystalline cellulose have been successfully used 

as nucleating agents and have proven to show an increase in crystallization rates [Liao, R., 

et al., 2007; Xiao, L., et al., 2012].  However, the technique can be costly, and is not 

considered to be environmentally friendly, causing many in industry to be hesitant about 

implementing it on a large scale.  Therefore, there is a need to develop an 

environmentally-benign technique that can enhance the crystallization kinetics of PLA.  

 

2.2 Extrusion Processing 

Extrusion is a common industrial processing method to mold a polymer from its 

original, pellet form into the desired product [Plastics Technology, 2005; Polymer 

Processing, 2001].  This technique is also desired in many polymer blend and composite 

applications as it allows dispersion and mixing to occur within the polymer matrix 

[Villmow, T., et al., 2008; Jonoobi, M., et al., 2010; Wang, Y., et al., 2004].  Typically, 
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the polymer pellets are automatically fed into the extruder at a constant rate by an 

external volumetric feeder.  The material enters the extruder at a hopper upstream, and 

undergoes phase change and mechanical kneading and mixing as the rotating screws push 

it downstream.  The output of an extruder is usually molten strands that are subsequently 

cooled, though it is possible to extrude a product directly into a desired shape using a 

mold.  Current industrial methods use twin screw extrusion (TSE), but other more 

advanced methods of solid-state shear pulverization (SSSP) and solid-state melt extrusion 

(SSME) are being considered as alternative ways to process polymers [Brunner, P. J., et 

al., 2012; Brunner, P. J., 2013; Fielding, A. S., 2009]. 

Twin screw extrusion (TSE) is considered to be the most common polymer 

processing technique in industry [Plastics Technology, 2005; Rauwendaal, C., 2014].  

This continuous process allows polymer pellets to enter a feeder, which then feeds the 

polymer through heated zones with rotating screws, as seen in Figure 3.   

 

 

Figure 3: Diagram depicting TSE processing 

 

TSE is an easily-scaled process that can produce polymer strand products at high 

production rates [Kalyon, D. M., et al., 2013; Daurio, D., et al., 2011].  However, when 

processing complex polymer systems such as immiscible blends [Lebovitz, A. H., et al., 

2002] and composites [Treece, M. A., et al., 2007], or even neat polymers with 
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unpredictable behaviors such as PLA, TSE is not an effective method because of 

insufficiently rigorous mixing in the molten state.  Resulting products often contain non-

homogeneous morphology and behave in an inconsistent fashion. In addition, the high-

temperature nature of TSE can thermally degrade the materials being processed, 

especially temperature and moisture sensitive polymers like PLA. 

Because of the ineffectiveness of TSE to process certain polymers and composite 

materials, a new production technique was developed at Northwestern University in the 

1980’s, termed solid-state shear pulverization (SSSP).  This method can use the same 

extruder as TSE, but instead of melting the polymer, SSSP cools the polymer with an 

ethylene glycol-water cooler throughout all zones, as shown in Figure 4.  SSSP applies 

large amounts of shear force to the polymer in the solid state by rotating the screws at a 

high speed.  The product is a powder that can exhibit large amounts of homogeneous 

mixing in polymer blends and composite systems and consistent morphology.   

 

 

Figure 4: Diagram depicting SSSP processing 

 

In a specific scenario involving PLA, SSSP has been used to show increases in 

the crystallinity of the polymer [Brunner, P. J., 2013].  SSSP was found to induce 

crystallinity within PLA by creating an increased amount of nucleation sites because of 

the many defects created by the harsh processing of the SSSP technique.  However, there 
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are also two main disadvantages to using SSSP to process a material.  Because shearing 

and compressive forces in the solid state create a large amount of friction, heat needs to 

be removed constantly by the chilling fluid.  As a result of this limiting factor, SSSP 

processing is confined to low production rates.  The second disadvantage is that the final 

product is a powder, which is undesirable in industry because of challenges in handling 

as well as health and environmental hazards. 

A new processing method was developed several years ago at Bucknell 

University to overcome the shortcomings of SSSP processing.  Solid-state/melt extrusion 

(SSME) combines SSSP and TSE in one instrument, essentially combining the 

advantages and removing the constraints of the two previously-discussed processes.  The 

first portion of the instrument cools the polymer and applies similar processing steps as 

SSSP to create nucleation sites within the polymer, while the second portion heats the 

polymer to give the easily-handled, molten stands/pelletized product as seen in Figure 5. 

 

 

Figure 5: Diagram depicting SSME processing 

 

SSME can be conducted at high production rates, relative to SSSP processing, and can 

provide a high level of dispersion for nanocomposite materials [Whittington, A. M., et al., 

2013].  Based on these composite results, SSME is expected to be effective in creating 

nucleation sites for neat materials akin to the success in SSSP [Brunner, P. J., 2013].   
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3. Materials and Methods 

3.1 Materials 

The material used throughout all trials is PLA 2002D, supplied by NatureWorks 

LLC in the form of approximately 5-mm-diameter pellets, as seen in Figure 6.   

 

 

Figure 6: Sample of PLA pellets 

 

NatureWorks 2002D is a commercial-grade thermoplastic resin designed for 

extrusion/thermoforming applications. This high molecular weight polymer has a 

number-average molecular weight (Mn) of 110,000 g/mol and a weight-average 

molecular weight (Mw) of 194,000 g/mol, as determined by gel permeation 

chromatography (GPC) in our laboratory.  According to NatureWorks specifications, this 

type of PLA is rated to have a specific gravity of 1.24, a melting temperature of 210°C, 

tensile strength of 53 MPa and yield strength of 60 MPa [NatureWorks, 2005]. 

NatureWorks 2002D PLA is a commercially well-known biodegradable polymer 

derived from corn [NatureWorks, 2005].  The starch within corn is hydrolyzed to form 

dextrose, which is fermented to produce a lactic acid product [Inskeep, G. C., et al., 1952].  
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The lactic acid is then polymerized and shaped into small pellets, which are sold for 

various purposes.  Because the 2002D grade is specifically formulated for extrusion and 

molding, it is relatively stable in the molten state. 

Post-consumer PLA can either be recycled or undergo a 2-step environmentally-

friendly degradation process.  Studies have shown that the degradation of PLA spans a 60 

day period when the material is subject to an ambient compost environment with a 

moisture content of 52.4% [Iovino, R., et al., 2008].  First, the polymer undergoes chain 

scission due to moisture and heat in the atmosphere [NatureWorks 2005].  The long PLA 

polymer chain breaks down into smaller chains so that microorganisms can recognize and 

metabolize the PLA.  Microorganisms have the ability, on their own, to produce lactic 

acid via fermentation.  When degraded PLA is exposed to a microorganism, the 

microorganisms are able to quickly digest the polymer [Salminen, S., et al., 2004].  The 

resulting products from the metabolism of PLA are carbon dioxide, water, and humus, a 

soil nutrient.  These components are released into the ground and atmosphere. 

 

3.2 Processing Methods 

In this study, PLA was processed through three different methods: twin screw 

extrusion (TSE), solid-state shear pulverization (SSSP), and solid-state/melt extrusion 

(SSME).  Each method uses the same extruder: the KrausMaffei Berstorff ZE-25A UTX, 

as seen in Figure 7; however, in each process, the temperatures along the length of the 

extruder and the screw designs are modified to give the desired product.  
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Figure 7: KrausMaffei Berstoff ZE-25A UTX Extruder 

 

The extruder has 2 co-rotating, intermeshing screws that can rotate at a speed of 

up to 600 rpm.  The screws have a nominal length, L, of 850 mm and a diameter, D, of 25 

mm, giving an L/D ratio of 34.  Each screw can be customized with elements that convey 

or provide shear forces to the polymer, based on the processing mode and the level of 

compressive and shear forces to be applied.  There are 3 different conveying elements 

that allow the polymer to flow along the length of the screw, as seen in Figure 8. 

 

 

Figure 8: a. Short conveying element b. Medium conveying element  

c. Long conveying element 
 

There are also kneading elements, as shown in Figure 9, that provide shear and 

compression to the polymer in the cold processes (SSSP and the cold part of SSME) and 

a. b. c. 
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mixing in hot processes (TSE and the hot part of SSME).  Each element is available in 

two different lengths, which is chosen based on the extent of pulverization/mixing and 

the time desired for that specific function.  Each of the three different screw elements 

shown in Figure 9 provides a different amount of shear forces to the polymer.  Reverse 

kneading elements are considered to be the harshest screw elements, followed by neutral 

and forward.  The reverse element severely pulverizes or mixes the polymer, restricting 

the polymer’s flow along the length of the screw.  Neutral and forward kneading 

elements impart the same pulverizing or mixing action, but in a less severe manner. 

 

 

 

Figure 9: Long kneading elements a. Forward b. Neutral c. Reverse 

 

A screw is assembled by combining various screw elements based on the desired 

level of shear or mixing.  Surrounding the screws are 5 temperature-controlled zones seen 

in Figure 10.  Zones 2-6 have the ability to be individually cooled or heated depending on 

the desired process.  The heating is supplied via an electric cartridge heater and the 

cooling via a recirculating coolant.  The following sections describe each processing 

method and how the method differs from the others. 

a. c. b. 
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Figure 10: Diagram of KrausMaffei Berstorff ZE-25A UTX extruder showing Zones 2-6 

can be temperature-controlled 
 

 

3.2.1 Twin Screw Extrusion (TSE)  

TSE uses six heated extruder barrel zones to melt and transport the polymer.  The 

goal of TSE is to mix a polymer while it is in the molten state within the extruder, and 

pressurize the molten polymer out a narrow die to shape the polymer, usually into strands.  

Each zone is set at a specified temperature above the polymer’s melting temperature via a 

computer interface, which controls an electric heater.   

 

3.2.2 Solid-State Shear Pulverization (SSSP) 

SSSP uses the same extruder as TSE; however, all zones within the SSSP are 

cooled with an external, continuously recirculating chilling fluid.  The external chiller 

employed is from Budzar Industries Model BWA-10AC.  In this processing technique, 

the chiller cools the zones to 11°F, allowing for the polymer to stay in the solid state as it 

gets pulverized within the instrument.  The final output of any SSSP process is a fine 

powder or flake.  Because of the need for the chilling fluid to continuously remove heat 



17 
 

 

generated by the pulverizing friction in all five zones, SSSP is a more energy-intensive 

process than both TSE and SSME. 

 

3.2.3 Solid-State/Melt Extrusion (SSME) 

SSME is a process by which the extruder is modified to combine SSSP and TSE 

into one process.  For SSME processing, Zones 2 and 3 in Figure 10 follow the SSSP 

processing technique of cooling the polymer, while Zones 5 and 6 heat the polymer to 

model the TSE processing technique.  Zone 4 is moderately heated to make the transition 

from a chilled state to a molten polymer. The final product is an extruded polymer strand 

that can be easily shaped into products. As with TSE, the heated zones are heated with an 

electric heater, while similar to SSSP, the cooled zones are cooled with a recirculating 

chiller at 11°F.  Within the instrumentation lengths of 34 L/D units, the SSSP region has 

an L/D ratio of 22 and the TSE region has an L/D ratio of 12. 

 

3.3 Characterization Methods 

When processing was completed, each sample was prepared into appropriate size 

and shape specimens and was subjected to many types of characterization by different 

instruments.  These instruments allowed for the determination of thermal and mechanical 

properties, as well as structural information of each sample. 
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3.3.1 Sample Pressing 

Samples produced from TSE and SSME were in polymer strand form, while 

samples received from SSSP were provided in powder form.  Samples from all forms of 

processing needed to be molded into a consistent shape so that they could be easily 

handled and cut into various shapes for various tests.  A Carver Laboratory Press was 

used to heat PLA samples to 200°C and subsequently press the PLA at 200°C into a 

uniformly flat sheet of 0.5 mm in thickness. 

The sheets were pressed by loading the polymer strand or powder onto a non-

adhesive Mylar sheet.  A brass mold edge, i.e. spacer, was then placed on the Mylar sheet 

to outline the polymer.  Another Mylar sheet covered the polymer and an aluminum plate 

was placed on either end of the Mylar sheets.  The aluminum plates were then placed 

within the pre-heated press, as seen in Figure 11.  Pressure was applied once the press 

and the aluminum plates had equilibrated to the set temperature of 200°C. 

 

 

Figure 11: Schematic of sheet pressing procedure 
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Pressure of 10,000 psig was applied and maintained for 2 minutes after which the 

aluminum plates were left to cool between 2 refractory bricks, as seen in Figure 12, for 

30 minutes. 

 

 

Figure 12: PLA sample cooling between two bricks 

 

It was found that the bricks effectively and consistently dissipated the heat from 

the aluminum plates as the polymer cooled between them.  After 30 minutes, the polymer 

sheet was removed from the Mylar sheets and placed in an air-tight plastic bag for 

storage.  The polymer was then set aside for at least 24 hours before samples were cut 

from the sheet.  Preliminary tests conducted before the study indicated that initial 

crystallization occurs within 24 hours of the sample being pressed.  After this time period, 

the polymer assumes a stable structure and can be assumed to be uniform throughout the 

sample. 

Bricks 
Sample Between 

Aluminum Plates 
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3.3.2 Differential Scanning Calorimetry 

The thermal properties of each sample were measured and analyzed using 

differential scanning calorimetry (DSC).  DSC measures the heat required to reach the 

thermal transition points of glass transition temperature, melting, and crystallization.  For 

this study, crystallization was of greatest importance in characterizing the material. 

To conduct this test, a sample of 5-10 mg in size was placed in an aluminum 

hermetic pan.  The pan was covered by its accompanying lid and crimped shut.  The 

reference pan contained no materials and was just a crimped lid and pan.   

The sample and reference pans were placed on the specimen stage of the TA 

Instruments Q1000 DSC, as shown in Figure 13.   

 

 

Figure 13: Clamped hermetic pans within the DSC.  Pan R5 is a reference pan and all 

others contain samples to be tested. 

 

The DSC was then programmed to complete an isothermal or non-isothermal run 

where the DSC arm loaded each sample into the control furnace where testing took place.  

Isothermal runs were set at 105°C, PLA’s crystallization temperature, to analyze the 
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development of crystals over a two hour period.  Non-isothermal runs were completed by 

heating the sample at a rate of 5°C/minute from -40°C to 200°C.  These runs were 

completed so that crystallization trends could be compared to trends of mechanical 

stiffness that were seen in DMA data.  When comparing the plots, one can often correlate 

increases and decreases in stiffness to increases and decreases, respectively, in 

crystallinity. 

All data collected were plotted and analyzed by TA Universal Analysis software.  

Data were also exported to Microsoft Excel if further analysis was necessary.  When 

analyzing non-isothermal data, heat flows were plotted against a range of temperature 

during which crystallization occurred, while isothermal data were analyzed by plotting 

the heat flow over the isothermal holding time.  The integral of the heat flow curve over 

the crystallization range in both plots provided the enthalpy of crystallization.  The data 

were then normalized by taking the ratio the enthalpy of crystallization found to the 

enthalpy of crystallization of a theoretically 100% crystalline sample, which corresponds 

to percent crystallinity.  For isothermal samples, the crystallization half time was found 

by plotting the percent crystallinity over the time of crystallization.  The crystallization 

half time was considered the point at which the sample had crystallized to half of its total 

crystallinity. 

 

3.3.3 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) is an instrument used to measure the 

modulus of a material at varying temperatures.  The instrument applies a sinusoidal strain 
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to a rectangular sample and measures the resulting stress associated with each 

temperature.  The built-in software of the DMA instantaneously determines two types of 

moduli: the storage modulus (E’) and the loss modulus (E’’).  The storage modulus 

measures the stored energy or the elastic stiffness of the polymer in the elastic region, 

while the loss modulus measures the viscous response of the polymer.  The loss response 

is associated with the damping of the polymer and its ability to dissipate energy.  When 

added in Equation 1, these give the complex elastic modulus (E*) of the polymer.   

             (1) 

Because the focus of this study was to apply results to a solid PLA sample, the loss 

modulus was not considered in analysis. 

A TA Instruments RSA3 was used with a strain frequency of 6.283 rad/s and 

strain rate of 0.03% to complete a dynamic mechanical strain test, where the resulting 

stress to PLA was measured while heating the sample from room temperature to 160°C at 

a rate of 5°C/min.  Each sample tested was cut from a pressed sheet into a rectangular 

strip with dimensions of approximately 40 mm x 5 mm x 0.5 mm.  The strip was clamped 

to either side of film fixture, as shown in Figure 14.  The instrument then applied an 

oscillatory strain as the temperature increased to 160°C.  Calculations of the storage and 

loss moduli were taken and plotted on TA Orchestrator software.  The data was then 

exported to Microsoft Excel for analysis. 
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Figure 14: Diagram of DMA testing apparatus showing the direction of tension on a 

sample 

 

3.3.4 Thermogravimetric Analysis 

Thermal degradation behavior of a polymer can characterized using 

thermogravimetric analysis (TGA).  TGA heats a material to a high temperature at a 

specified rate and measures the residual mass of the material as a function of both time 

and temperature.   

TGA was completed using a TA Instruments SDT-Q600, as seen in Figure 15.  

The instrument uses two cantilever balances in a nitrogen environment furnace.  To 

conduct the test, an empty alumina ceramic pan was placed on one of the cantilever 

balances a second alumina pan was filled with 10-20 mg of the sample was placed on the 

other cantilever balance.  The furnace was heated from 30-600°C at 10°C/min.  The 

degree of degradation over the course of times and temperatures was found using the TA 

Universal Analysis software that accompanied the instrument.  The characteristic 

quantity measured was the heat degradation temperature at a 5% mass loss.  Therefore, 

the data analysis software identified the temperature at which 95% of the total mass still 

remained. 
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Figure 15: Opened TGA showing the balance and alumina pan 

 

3.3.5 Gel Permeation Chromatography 

Gel permeation chromatography (GPC) is a size exclusion-based chromatography 

that can measure the number average (Mn) and weight average (Mw) molecular weight.  

Molecules with lower molecular weights exit the column later than those with larger 

molecular weights.  The molecular weight was measured to show the degree of 

degradation that had occurred within the polymer. 

An Agilent Technologies 1200 Infinite Series GPC was used for this analysis, 

using tetrahydrofuran (THF) as the solvent.  Before analyzing any sample, a molecular 

weight calibration was made with polystyrene (PS) standards.  PLA samples were 

dissolved in THF at 30°C and mixed on mixer setting 2 on a VWR VMS-C7 stir plate for 

24-48 hours.  300μL of the dissolved PLA was injected into the GPC.  The column ran on 
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a 25 minute program with normal elution times between 11-15 minutes.  A typical elution 

time plot can be seen in Figure 16. 

 

 

Figure 16: Sample GPC plot of response as a function of retention time 

 

The retention times of each sample were compared to the polystyrene (PS) 

standard using GPC analysis software supplied by Agilent Technologies.  Based on the 

known molecular weights of the standard, the software computed the number-average 

and weight-average molecular weight of each sample.   

 

3.3.6 Tensile Testing 

All ambient mechanical properties were determined using a tensile tester.  A 

tensile test applies an increasing tensile strain to a sample so that the sample’s stress 

strain curve can be derived.  From the stress-strain curve, yield strength, breaking strain, 
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and the Young’s modulus of each sample can be determined.  These parameters give 

insight into the mechanical robustness of the material. The yield strength is the maximum 

stress exerted in the elastic region, the breaking strain is the maximum strain a material 

can tolerate before fracture, and the Young’s modulus is the slope of the stress-strain 

curve in the elastic region, and is a measure of the stiffness of the material.    

For this study, a Tinius Olsen H5K-S tensile tester was used to complete this 

study.  Preliminary tests indicated that PLA in the form of a dogbone would crack upon 

tightening within the grips, so a rectangular shape was used for this instrument.  Tensile 

testing was completed using samples measured to be approximately 40 mm x 4 mm x 0.5 

mm.  Both sides of the sample were pulled by a soft grip (Tinius Olsen HT50) as shown 

in Figure 17.  All recorded samples were those with a clean break near the center of the 

sample. 

 

 

Figure 17: Tensile tester with soft grip attachment 
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The tensile tester was programmed to pull each strip at a rate of 1 mm/min as this 

was found to be standard among PLA tensile tests [Jonoobi, M., et al., 2010; Ochi, S., 

2007; Suryanegara, L., et al., 2009].  Samples were pulled until the strip broke cleanly 

between the two grips.  Once data had been gathered, the data were analyzed with an in-

house MATLAB® interface. 
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4. Survey of Processing Methods for PLA 

4.1 Introduction 

Previous studies have shown how PLA processed via SSSP and TSE can affect 

the properties of PLA in different ways [Fielding, A. S., 2009].  TSE has been shown to 

increase thermal properties such as percent crystallinity and crystallization half time of 

PLA, while SSSP has been shown to increase mechanical properties such as yield 

strength and Young’s modulus of PLA.  We believe that both processing methods can be 

combined in SSME to create a product with enhanced thermal and mechanical properties.  

The initial study, presented in this chapter, compares and contrasts samples processed 

through the three processing techniques (TSE, SSSP, and SSME) to determine if PLA 

processed via SSME does, in fact, have the a combination of the superior thermal 

properties seen in TSE and the superior mechanical properties seen in SSSP. 

 

4.2 Processing Parameters 

The control sample for this study was unprocessed, as-received NatureWorks 

2002D PLA while 3 other samples were NatureWorks 2002D PLA processed by each of 

the three processing methods.  Processing conditions for each processed sample are listed 

in Table 2.  The three runs were designed such that the processing parameters remain 

relatively similar in terms of initial pellet condition, screw design and throughput. 
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Table 2: Processing conditions used for each sample of PLA 

Sample Dried or As 

Received 

Screw Design Screw 

Number 

Throughput 

(g/hr) 

SSME As Received Moderate SSME004 250 

TSE As Received Standard EX001 300 

SSSP As Received Moderate SS042 M 200 

Unprocessed As Received  N/A N/A N/A 

 

The goal of this comparison was to identify the processing method with both 

desirable mechanical and thermal properties.  The samples were tested through various 

analyses to show which method of processing allowed for the greatest extent of 

crystallization in the shortest period of time, while also maintaining comparable 

mechanical properties to the control, neat unprocessed samples of PLA.   

Within the extruder, there are 5 different zones in which the temperature can be 

controlled, as discussed in Chapter 3.  Each zone temperature can be specified based on 

the desired process.  For TSE processes, all 5 zones were heated to over the polymer’s 

melting temperature, while in SSSP processes, the barrels were cooled as much as 

possible to keep the polymer below its melting temperature and cause the polymer to be 

pulverized in the solid state.  Table 3 lists the temperatures at which the extruder zones 

were set.  The chilled zones for any trial included a cooling component, where zones 

were set to 0°F.  The actual temperature was achieved by a using a chiller to recirculate a 

coolant at 11°F.  

Table 3 shows that in experimentation, SSME does indeed combine the two 

processes of TSE and SSSP by using the set point of 0°F from SSSP for Zones 2 and 3 

and the set point of 390°F from TSE for the Zones 5 and 6.   
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Table 3: Temperatures of each zone within the extruder 

 Temperatures (°F) 

Sample Zone 6 Zone 5 Zone 4 Zone 3 Zone 2 

SSME 390 380 70 0 0 

TSE 390 390 380 370 360 

SSSP 0 0 0 0 0 

 

Processing screws within the extruder were also carefully constructed so that relatively 

consistent conditions could be used for all extrusion processes.  Table 4 shows the 

number of conveying and kneading elements, as discussed in Chapter 3, used in the screw 

design of each process.  The TSE process used an industry-standard extrusion screw 

design, while the screw design for SSSP and SSME screw designs were considered to be 

of moderate harshness for their respective processing technique.  The TSE screw design 

had 23 conveying elements, and 10 kneading element, while the SSSP screw design had 

28 conveying elements and 9 kneading elements.  The screw design chosen for SSME 

combines parts of the TSE and SSSP screw design to create a moderate screw design 

with 27 conveying elements and 7 kneading elements. 

 

Table 4: Screw element components contained on the screw used for each processing 

method 

Sample Conveying 

Elements 

Forward 

Kneading 

Elements 

Neutral 

Kneading 

Elements 

Reverse 

Kneading 

Elements 

SSME 27 6 1 0 

TSE 23 5 3 2 

SSSP 28 7 2 0 
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4.3 Thermal Properties 

Detailed thermal analysis was conducted using differential scanning calorimetry 

(DSC), to evaluate the rate and level of crystallization of each sample.  Preliminary tests 

determined that 105°C was a suitable temperature at which crystal growth occurred over 

a measureable time period.  Therefore, this temperature was selected as the isothermal 

crystallization temperature. 

In each run, the heat flow to the melted polymer at 105°C was measured over the 

specified time of 120 minutes and plotted.  This plot reflected a change in the phase of 

the polymer, which is the development of PLA crystals.  The crystallization curve was 

integrated to calculate the enthalpy of crystallization.  The enthalpy of crystallization was 

divided by the enthalpy of a theoretically 100% crystalline PLA sample (93 J/g) [Lim, L. 

T., et al., 2008; Avérous, L., 2008] to find the percent crystallinity.  Calculated values of 

the percent crystallinity calculated can be seen in Figure 18. 

 

 

Figure 18: Percent crystallinity for each processing method 
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SSME-processed PLA has the highest extent of crystallization (percent 

crystallinity) at 43%, compared to TSE- and SSSP-processed PLA that had 32% and 28% 

crystallinity, respectively.  TSE-processed PLA has a slightly higher degree of 

crystallization relative to the unprocessed sample, while SSSP-processing shows a 

slightly lesser degree of crystallization relative to the unprocessed sample.  In TSE 

processing, the creation of crystals is possible because of the large amount of mixing that 

is facilitated in the heated state.  Because of the mixing, nucleation sites are created and 

polymer crystals form.  It is hypothesized that the lower degree of crystallinity in the 

SSSP sample results from the intense pulverization that occurs in the process.  SSSP 

processes can impart significant mechanical energy to the polymer, potentially destroying 

some of the intramolecular bonds and reducing the length of polymer chains.  As a result, 

a development of an organized lattice structure from these irregular lengths chains can be 

more difficult.   

However, the increased crystallinity within the SSME sample indicates that the 

SSSP portion of processing allows for a larger number of defects or more chains 

available to participate in crystallization, while the TSE portion of SSME mixes the 

polymer chains so that they are evenly distributed throughout the material.  The screws 

within the extruder are able to facilitate both mechanisms as they co-rotate to process the 

polymer.  SSME processing allows for the optimum amount of both mixing and 

pulverization to create a sample with a large amount of crystal sites. 

The crystallization half time (t1/2) for each sample was also calculated using heat 

flow data from the isothermal crystallization.  The crystallization half time was calculated 
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as the time necessary for each sample to crystallize half way to full crystallization.  

Calculations were completed by graphing the relative amount of crystallization over the 

time of crystallization as seen in Figure 19.  The crystallization half time was determined 

to be the time at which relative crystallization reached 0.5. 

 

 

Figure 19: Example crystallization curve showing crystallization half time (t1/2) 

 

Table 5 shows the difference in t1/2 between SSME, SSSP, and TSE.  First, it is 

noted the rate of crystallization for any processed sample is significantly higher than that 

of the unprocessed sample.  In TSE, this effect is a result of the mixing that occurs within 

the sample that allows for an even distribution of molecules, while in SSSP and SSME, 

cold pulverization allows for nucleation sites to form.  The SSME-processed sample has 

the lowest t1/2 as the SSSP portion of processing allows for the creation of nucleation sites, 

which are distributed throughout the polymer in the TSE section of the process.  SSSP 

has the largest t1/2 among processed samples.  This result could be attributed to 
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insufficient mixing after pulverization of the polymer had completed.  In this study, the 

t1/2 of the TSE-processed sample was between that of SSME and SSSP, showing that the 

melt mixing that occurs impacts the crystallization half time more than the degree of 

chain scission caused by pulverization does. 

 

Table 5: Crystallization half time for processed and unprocessed samples 

Sample  Crystallization Half Time (min) 

SSME 2.3 

TSE 6.9 

SSSP 11.1 

Unprocessed 62.4 

 

The large differences in the crystallization behavior between each method are 

significant, and speak to the advantage of using SSME when faster and higher degrees of 

crystallization are desired.   It is surprising that SSSP-processed PLA showed a smaller 

degree of crystallinity relative to an unprocessed sample and required the most amount of 

time to crystallize among the processed samples.  Earlier studies at Northwestern 

University indicated a crystallization half time of approximately 4 minutes for SSSP-

processed PLA samples when subject to a specific energy of 8 kJ/g [Brunner, P.J., 2013].  

However, many processing parameters between both studies were different so a 

comparison of nominal times cannot be made. 

Non-isothermal DSC analysis was also used to investigate how polymer crystals 

had developed during sheet pressing.  Each sample taken from a pressed sheet was heated 
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from -40°C to 200°C at a rate of 5°C/min and heat flow values were plotted as displayed 

in Figure 20.   

Figure 20 shows that the SSME-processed PLA sample had a higher temperature 

at which the crystals within the sample melted relative to TSE- and SSSP-processed 

sample, indicating that the crystallites that formed within the polymer were larger and 

thus able to withstand higher temperatures before the crystals melted.  Since polymer 

crystallites often contribute to a polymer’s stiffness, this result implies that the stiffness 

of PLA can be maintained for a larger range of temperature when processed via SSME, 

compared to TSE and SSSP. 

 

 

Figure 20: Non-isothermal DSC thermogram for each sample at a heating rate of 

5°C/min. The curves were shifted in 3 mW increments for clarity 

 

One can also observe a small increase in heat flow for the SSSP-processed 
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the crystallites melt.  This trend is characteristic of cold crystallization, in which a sample 

does not completely crystallize during the cooling that occurs after sheet pressing.   The 

sample, at room temperature, cannot form the crystallites.  When the polymer is heated to 

a moderate temperature, crystals form.  This increase in crystallinity is expected to lead to 

an increase in stiffness for at the specific temperature. 

 

4.4 Thermomechanical Properties 

Dynamic mechanical analysis (DMA) was completed to quantify the changes in 

stiffness that were implied in DSC data.  As with DSC, the samples analyzed were taken 

from a pressed sheet.  The stiffness was quantified by the storage modulus of each sample 

(E’), as seen in Figure 21, over a range of temperatures from 25°C to 160°C. 

 

 

Figure 21: Storage modulus for each processed an unprocessed sample from 30°C to 

155°C 
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Each sample shown in Figure 21 decreases in stiffness at approximately 60°C as 

this is the glass transition temperature of PLA.  Further decreases in stiffness can be seen 

at approximately 135°C as this is PLA’s melting temperature [Lim, L.T., et al., 2008].   

Processing through any type of extrusion is shown to increase the stiffness of PLA as a 

result of an increasing number of crystallites within the sample.  The crystallites increase 

the rigidity of the polymer and allow it to be stiffer across all temperatures. 

Though the storage modulus for the SSME-processed PLA resembles the shape of 

TSE-processed PLA, it is clear from Figure 21 that the magnitude of the storage modulus 

across all temperatures is less for the TSE-processed sample than the SSME-processed 

sample.  The TSE-processed sample also melted after 125°C, while the SSME-processed 

PLA sample was able to maintain a storage modulus about 10
8
 Pa until 145°C.  

Compared to the unprocessed sample, both the TSE-processed and SSME-processed PLA 

sample resemble a similar shape, but the storage modulus for the unprocessed sample is 

lower at all times because of the lack of crystals.   

The magnitude of the storage modulus of each process sample was then compared 

to one another at various temperatures, as shown in Figure 22.  Figure 22 suggests that 

while all PLA samples have similar stiffnesses at ambient temperatures, only the SSME-

processed PLA sample retains most of its stiffness as the temperature increases.  PLA 

processed via SSSP loses stiffness very quickly with only minimal temperature increase 

past the glass transition temperature. The PLA sample processed via TSE maintains a 

high value of stiffness similar to SSME, but loses all stiffness after melting at 125°C.  

The sample processed via SSME holds its stiffness for the longest period of time and 
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maintains a higher stiffness than samples processed via TSE and SSSP throughout a 

wider range of temperatures.  This is consistent with DSC data discussed above.  DSC 

data showed a decrease in crystallinity for both TSE and SSSP-processed samples before 

that of SSME-processed samples.  Figure 22 shows that decrease in crystallinity results in 

a decrease in stiffness at those temperatures.   

 

 

Figure 22: Storage moduli of PLA processed samples at 30°C, 60°C, 100°C, and 140°C 

 

Additionally, it is noted that the stiffnesses at specified temperatures in Figure 22 

of the processed samples are all higher than that of an unprocessed sample.  The 

unprocessed sample has a stiffness at 60°C and 100°C that is approximately one order of 

magnitude less than that of the SSSP-processed PLA, the polymer with the lowest 

stiffness at these temperatures.  Thus, it can be concluded that processing PLA through 

any of these methods, followed by melting the polymer into a pressed sheet allows PLA 

to gain an increase in stiffness relative to an unprocessed sample of PLA that is just 

melted. 
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DMA data also provided important implications about the heat stability within the 

material by showing the temperature at which the polymer decreased in stiffness 

significantly.  The softening temperature of the PLA was defined in this study as the 

temperature at which the polymer decreased in stiffness by at least three orders of 

magnitude from the original stiffness.  Figure 23 displays that the softening temperature 

of the SSME sample is significantly higher than all other types of processing.  The 

increased amount of crystals within the PLA sample adds to the strength of the material 

and creates a sample that is much more resistant to higher temperatures. 

 

 

Figure 23: Softening temperature of each processing method 
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associated with a higher average polymer chain length [Qu, X., et al., 2000].  This 

concept thus relates to the decomposition of the polymer, by way of chain scission that 

occurs when the polymer is processed through one of the three processes. 

In this analysis, the temperature at which a 5% loss in mass was seen for each 

polymer was found and compared to other samples in Figure 24.  Based on these 

temperatures, one can infer the relative degree of chain scission and thus degradation that 

occurred in the polymer through each processing method.   

 

 

Figure 24: Degradation temperature for each processing technique at a 5% loss 

 

One can observe that all processed sample have a higher degradation temperature 

than an unprocessed sample, indicating that processing in any of these three methods has 

an increasing effect on the sample’s resistance against degradation.   PLA processed 

through TSE has the highest degradation temperature followed by SSME, and SSSP.  

This indicates that TSE processing allows PLA to resist chemical degradation more so 
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than SSME and SSSP processes.  Though this seems to contradict molecular weight and 

softening temperature data, one explanation for these results could be related to crystal 

size.  Crystal size was not measured by any method in this study, but an explanation for 

the results could be that crystals within a TSE-processed sample are larger and thus have 

a greater resistance to melting under high temperatures.  However, further testing needs 

to be performed to confirm this explanation.  When analyzing the other processed 

samples, one can see that the degree to which SSME allows for thermal degradation of 

PLA is slightly more than that of SSSP.  Through TGA data, it is inferred that the cold 

pulverization portion of extrusion has the greatest effect on the thermal degradation of 

PLA.  The degradation temperature for SSSP is lower than for TSE, and as expected, 

SSME is between TSE and SSSP.  This shows that the cold pulverization decreases 

PLA’s ability to resist chemical degradation more so than melt mixing.  It is therefore 

implied that cold pulverization causes a higher degree of chain scission within the 

polymer than melt mixing. 

 

4.6 Molecular Structure 

While TGA results suggest relative degrees of chain scission, gel permeation 

chromatography was chosen as the method to analyze the polymer’s true molecular 

structure.  GPC is a size exclusion method of chromatography that can show a polymer’s 

number average molecular weight (Mn) and weight average molecular weight (Mw).  

Differences in molecular weights can show the varying degrees of chain scission that 

occurs within a polymer.  From these data, implications can be made about the relative 
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harshness of a process by identifying which process breaks the largest amount of bonds 

and thus, causes the largest amount of degradation.  This method of analysis allows one 

to measure the average chain length of a given polymer in a direct manner. Results for 

each type of processing method can be seen in Figure 25. 

 

 

Figure 25: Mn and Mw for each processing technique.  All error bars represent 1 standard 

deviation between the two reported trials 

 

All processed samples have much lower Mn and Mw values than the unprocessed 

sample as a result of chain scission during processing.  The chain degradation in terms of 

the reduction in Mn is greatest when processing with TSE, followed by SSSP and SSME.  

Mw data shows a similar trend except that the SSME-processed sample has a higher 

degree of degradation than SSSP-processed sample.  Overall, however, the difference in 

molecular weights is small and among processed PLA and thus the degree of degradation 

can be considered minimal when comparing the across processed samples.  In this study, 

the greatest degree of chain degradation occurred in TSE processing.  The polymer’s Mw 
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decreased from 194,000 g/mol to 144,000 g/mol and Mn from 110,000 g/mol to 67,000 

g/mol. 

The data for unprocessed samples are relatively consistent with literature data as 

most sources report an Mn for NatureWorks PLA at approximately 110,000 and an Mw at 

approximately 200,000 g/mol [Gámez-Pérez, J., et al., 2011; Mallet, B., et al., 2013; 

Pantani, R., & Sorrentino, A., 2013].  The SSSP-processed PLA Mn and Mw data, 

however, are approximately 30% higher than those found at Northwestern [Brunner, P. J., 

2013].  This could, again, be due to the harshness of the SSSP process. 

 

4.7 Ambient Mechanical Properties 

Mechanical testing at room temperature was completed via a uniaxial tensile 

testing.  Tensile testing results in a stress-strain curve, from which one can calculate the 

yield strength, breaking strain, and Young’s modulus.  These three quantities correspond 

to a polymer’s strength, ductility, and stiffness, respectively.  All data shown is an 

average of 5 specimens taken from identical samples.   

Figure 26 shows the yield strength of all methods of processing.  The average 

yield strength of all processed PLA is very similar.  Samples processed via SSSP have a 

slightly higher average yield strength than those processed via SSME and TSE, but when 

considering the error bars representing one standard deviation of each sample, all samples 

produced relatively the same yield strength as one another. 
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Figure 26: Average yield strength of each processing method.  The error bars correspond 

to one standard deviation in our measurement 

 

Figure 27 shows the average breaking strain of PLA processed through each 

processing method.  As with yield strength, the averages for each method are very similar 

to one another.  Samples processed through TSE have a slightly higher average breaking 

strain than those processed through SSME and SSSP.  The averages, however, for all 

samples are not significantly different from one another.  PLA processed via SSSP has 

the highest average breaking strain, but that is only approximately 6%.  On the contrary, 

the unprocessed samples have a breaking strain of 12%.  These data show how brittle 

PLA is and how much more brittle it becomes as it is processed.  These data can be 

explained using theory about the degree of processing.  When a polymer is subject to a 

large amount of chain scission, some molecules may get degraded to such an extent that 

they behave more like short chain molecules (oligomers) rather than polymers.  

Oligomers, generally, have more brittle properties than polymers and break with much 

less strain applied to the material.  Therefore, the PLA samples could have been 
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processed in such a way that the intensity of the processing lead to a mechanical behavior 

similar to that of a PLA oligomer.  The oligomers would have a much lower breaking 

strain, like the processed samples seen in Figure 27 where all processed samples have a 

breaking strain that is, on average approximately half of the unprocessed sample. 

 

 

Figure 27: Average breaking strain of PLA processed through each method.  The error 

bars correspond to one standard deviation in our measurement 

 

The average Young’s modulus of PLA processed through each processing method 

is shown in Figure 28.  The Young’s modulus was also not statistically different from one 

another  across processing methods.  SSME is reported to have the highest average 

Young’s modulus of 5.26 x 10
8
 Pa, while TSE has the lowest average Young’s modulus 

among processed samples of 5.23 x 10
8
 Pa.   

This data can be compared to the storage modulus or stiffness data found at 30°C 

in DMA testing.  The data suggests that there is approximately a factor of 2 difference 

between the two sets of data as the DMA data suggests that the stiffness of PLA at 30°C 
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is approximately 1.00 x 10
9
 Pa, while tensile testing suggests that the stiffness is 

approximately 0.5 x 10
9
 Pa.  Tensile test data does however agree that the differences in 

yield strength among processing methods is relatively small when looking at the stiffness 

of the polymer. 

 

 

Figure 28: Average Young’s modulus of PLA processed through each method.  The 

error bars correspond to one standard deviation in our measurement 

 

Overall, the mechanical properties of yield strength, breaking strain, and Young’s 

modulus provide little information about the superiority of one processing method over 

any other.  All processed samples recorded results that were not statistically different 

from one another when accounting for one standard deviation of error.   

The data also can be compared to the mechanical properties of samples of PLA 

processed via SSSP and TSE at Northwestern University.  Mechanical studies on SSSP-

processed PLA show the yield strength to be 6.12 x 10
7
 Pa, the breaking strain to be 0.08, 

and the Young’s modulus to be 2.7 x 10
9
 Pa.  The data collected in this study’s 
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mechanical tests seem to be much lower than that of the Northwestern University data in 

all categories.  Similarly, other studies also suggest the yield strength of unprocessed 

PLA to be approximately 60.0 x 10
6
 Pa and the Young’s modulus to be approximately 

2.5 x 10
9
 Pa [Jonoobi, M., et al., 2010; Oksman, K., et al., 2003; Yang, S. L., et al., 2008]. 

When analyzing mechanical properties, it can be seen that across all three 

parameters, the processing methods produced relatively similar results and thus, little 

information can be gained about the superiority of one processing method over another.  

One reason for the small deviation between samples could be the shape of the polymer 

tested.  From pressed sheets, each sample was cut into a rectangle instead of a dogbone 

shape. The reason for this change was because of the brittleness of PLA.  In initial studies, 

it was found that when the tensile tester was used to test samples in the ASTM D1708 

dogbone shape, the PLA would crack before a test could be completed.  However, here it 

is hypothesized that this rectangular shape does not produce data that is representative of 

the true mechanical properties of the material.  In future studies, a different ASTM 

standard shape may be considered to verify the results presented above. 

 

4.8 Summary 

From all tests completed, the SSME-processed PLA displays much more 

favorable qualities in terms of the percent crystallinity and the rate at which the polymer 

crystallizes.  It is clear that PLA processed via SSSP and TSE has some desirable 

properties in regard to mechanical and molecular properties, but fails to surpass SSME 

processed samples in thermal properties.  Even though SSME-processed PLA sample did 
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not always have the greatest degradation and mechanical properties, the results in a given 

test of an SSME sample were relatively close to the highest performing in the group of 

samples analyzed.   

The results conclude that when processing PLA, SSME is a very viable method if 

thermal properties are of importance.  In the following chapter, the optimization of the 

SSME process is considered to examine if PLA processed with different SSME 

conditions results in products with different properties.  The optimization chapter will 

consider variations in screw design and throughput to examine their effect on the thermal 

and mechanical properties of PLA. 
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5. Optimization of SSME Processing Parameters 

5.1 Introduction 

The previous chapter identified SSME as the processing technique with the 

greatest potential to minimize the time needed to process PLA and maximize the degree 

to which PLA could crystallize.  In this chapter, SSME-processed PLA under different 

processing conditions will be analyzed to determine which parameters have the most 

impact in maximizing the thermal and mechanical properties of PLA. 

The parametric study employed the same extruder and the same thermal and 

mechanical property testing and structural characterization techniques as in the previous 

chapter.  Tensile testing was not part of the testing procedures in this study because the 

previous study found that the rectangular sample shape did not accurately portray the true 

mechanical properties of the samples.  The KrausMaffei Berstoff ZE-25A UTX Extruder 

was manipulated in two different ways: screw design and flow rate into 9 configurations 

using 3 different screw designs and 3 different flow rates.  The screw designs were 

selected based on the SSME screw design in the last chapter.  One screw was designed to 

be harsher and one was designed to be milder than the original moderate screw design.  

The harsher screw design is designated with SMHS, the original (moderate) with SMMD, 

and the mild with SMML.  Table 6 lists each of the three screw designs and their 

components.  Essentially, the screw harshness is a factor of the ratio of conveying to 

kneading elements with a higher ratio implying less processing and thus a milder screw.  
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The harsh screw has 9 kneading elements in contrast to the very mild screw, which has 

only 4 kneading elements. 

 

Table 6: Screw design elements contained within the screws used for optimization trials 

Sample 

Category 

Conveying 

Elements 

Forward 

Kneading 

Elements 

Neutral 

Kneading 

Elements 

Reverse 

Kneading 

Elements 

SMML 30 4 0 0 

SMMD 27 6 1 0 

SMHS 24 7 2 0 

 

  The flow rate to the extruder, referred to as the throughput of the material, was 

also varied between slow, medium and fast feed rates.  250 g/hr was used in Chapter 4 as 

the standard flow rate.  Because of the limiting specifications on the feeder, it is difficult 

to feed pellets at a rate slower than 250 g/hr.  As a result, medium and fast flow rates of 

approximately 500 and 750 g/hr, respectively, were chosen for each screw design.  Table 

7 lists the processing conditions for each trial. 

 

Table 7: Processing conditions for all samples used in the optimization study 

Sample Processing 

Method 

Dried or As 

Received 

Screw 

Design 

Screw 

Number 

Throughput 

(g/hr) 

SMML1 SSME As Received Mild SSME007 250 

SMML2 SSME As Received Mild SSME007 500 

SMML3 SSME As Received Mild SSME007 750 

SMMD1 SSME As Received Moderate SSME005 250 

SMMD2 SSME As Received Moderate SSME005 500 

SMMD3 SSME As Received Moderate SSME005 750 

SMHS1 SSME As Received Harsh SSME004 300 

SMHS2 SSME As Received Harsh SSME004 500 

SMHS3 SSME As Received Harsh SSME004 600 
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All other parameters such as screw speed and the temperatures of the heated zones were 

maintained at the values used for the SSME sample presented in Chapter 4 and are listed 

in Table 8. 

 

Table 8: Parameters used for SSME processing in optimization study 

  Temperatures (°F) 

Sample Screw Speed (rpm) Zone 6 Zone 5 Zone 4 Zone 3 Zone 2 

SSME 200 390 380 70 0 0 

 

5.2 Thermal Properties 

Each processed sample was pressed into a 0.5 mm sheet and analyzed for its 

thermal properties.  Isothermal crystallization was completed for all samples at the 

temperature of 105°C.  Figure 29 displays the percent crystallinity of each trial.   

 

 

Figure 29: Percent crystallinity for all 9 SSME-processed PLA samples, measured via 

isothermal crystallization at 105°C 
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The samples processed with the moderate screw design have the highest degree of 

crystallinity, followed by those processed with the harsh screw design.  Figure 29 shows 

that the samples processed with the mild screw design have similar levels of crystallinity 

as the unprocessed sample.  From these data, it is surmised that the mild screw design did 

not process the polymer with sufficient shear and compressive forces to induce an 

increased crystallization activities in the polymer.  However, when PLA is processed 

using a moderate screw design, the degree of crystallinity greatly increases as this allows 

for a larger degree of chain scission in the SSSP portion of the extruder.  Figure 29 also 

suggests that screw design is a more important parameter than flow rate.  Within each 

screw design, there is little variation of the percent crystallinity, but when compared with 

other screw designs, there is a clear difference in crystallinity. 

The SMMD1 and SMMD2 sample achieved the highest percent crystallinity of 43 

and 44%, respectively.  A reason for this could be that the low and medium rate and 

moderate screw design are optimum for producing crystals within PLA.  The moderate 

screw design allows for pulverization to occur such that an optimum amount of chain 

scission happens.  Within the polymer, some degree of chain scission allows more 

polymer chains to participate in crystallization.  The pulverization in SMMD1 and 

SMMD2 is not so harsh that the polymer chains are scissioned to a degree where they are 

unable to crystallize because of their small size but not so mild that an insufficient 

amount of nucleation sites are created.  The moderate flow rate allows for an optimum 

amount of polymer within the extruder at any given point in time so that effective 
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pulverization can occur.  The data show that among screw designs, the moderate screw 

design produces the highest percent crystallinity and among flow rates, the samples with 

a medium flow rate tended to have the highest percent crystallinity.  The SMMD screw 

design has fewer kneading elements within the chilled region than the SMHS screw 

design and therefore pulverizes the polymer to a lesser extent.  The mild flow rate allows 

for a large amount of PLA to melt in the heated zones, but not so much that the melting 

of the polymer within the zones becomes ineffective to create crystallites.  Combined, 

these two parameters allowed PLA to crystallize to the largest extent within the extruder.   

Additionally, from the isothermal crystallization data, the crystallization half 

times are displayed in Table 9. These data agree with the percent crystallinity data above 

in that PLA processed with the SMML screw resemble an unprocessed sample more than 

an SSME-processed PLA sample with an SMMD or SMHS screw design. 

 

Table 9: Summary of crystallization half times for SSME-processed samples 

Sample Number Crystallization Half Time (min) 

SMML1 13.9 

SMML2 14.3 

SMML3 13.6 

SMMD1 2.3 

SMMD2 2.8 

SMMD3 3.3 

SMHS1 2.2 

SMHS2 2.8 

SMHS3 3.0 

Unprocessed 62.4 
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  Crystallization half times are relatively similar for PLA processed with a 

moderate and harsh screw design across all three flow rates.  The time necessary to 

crystallize with a mild screw is approximately 5 times that of a moderate or harsh screw.  

However, compared to an unprocessed sample, the time necessary to crystallize is 

significantly less, suggesting that some structural change has taken place in the SMML 

samples, but larger structural changes have occurred in the SMMD and SMHS samples.  

The SMMD and SMHS samples are shown to have very small crystallization half times 

as a result of the increased pulverization.  The increased pulverization allowed for 

creation of more nucleation sites within the polymer.  A higher number of nucleation 

sites decreased the overall time necessary for the polymer to crystallize.  Between 

samples produced with these two screws, there is little difference in the crystallization 

characteristics.  These data could suggest that the moderate screw design is an optimum 

screw design for creating crystals, and when the harshness of the screw is increased, there 

is little effect on the amount of crystals or the time needed for the sample to crystallize.  

Thus, these characteristics of the sample start to decrease at this point, but only slightly 

because both screw designs provide a level of processing that allows the maximum 

amount of nucleation sites to be created within a polymer sample. 

In addition to isothermal DSC, non-isothermal DSC was employed to depict the 

trends of crystallization when heating pressed PLA from 30°C to 200°C at a rate of 

5°C/min.  These data were compiled to gain insight into the molecular behavior of the 

polymer when heated at this rate in the DMA tests.  Figure 30 displays all non-isothermal 

heat flow curves as a function of temperature.  
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Figure 30: Heat flow for all SSME-processed PLA samples.  All trials were shifted  

in 3 mW increments for clarity 
 

Figure 30 shows that all samples were consistent in shape within a specific screw 

design.  The mild screw design produced a moment of cold crystallization around 110°C 

that resembles that of SSSP-processed PLA, discussed in the previous chapter.  The slight 

increase in crystallization at that point suggests an increase in the stiffness of the polymer 

at that temperature.  Figure 30 also shows a shift in the melting point of the polymer 

samples as the processing method increases in harshness.  All samples extruded with the 
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mild screw exhibited this characteristic and a melting point that was much less than that 

of the moderate or harsh screw designs.  This shows that harsher processing allows for 

greater chain scission so that more sites can participate in crystallization. 

 

5.3 Thermomechanical Properties 

DMA was used to examine the stiffness of the polymer as the polymer was 

subjected to a 5°C/min ramp heating over the temperature range of 30°C to 160°C.  The 

stiffness of the polymer was measured with storage modulus (E’), as done in the previous 

chapter.  Figure 31 shows that samples SMML1, SMML2, and SMML3 all started to 

increase in stiffness at approximately 105°C—the cold crystallization temperature, as 

expected, and then decreased in stiffness as the crystals melted from the pressed sheet.  

Though greater in magnitude at the cold crystallization curve, the SMML storage 

modulus values at temperatures other than the cold crystallization temperature range are 

similar to the unprocessed sample.  Thus, the mild processing can be concluded to have 

little overall effect on the polymer except for the range of temperature between its cold-

crystallization and melting temperatures.  The mild screw design allowed the polymer to 

be pulverized to a lesser extent so that a relatively smaller percentage of the polymer was 

scissioned.  This led to the creation of fewer defect sites relative to the SMMD and 

SMHS samples, which acted as nucleation sites only at the cold crystallization 

temperature.  Therefore, the storage modulus at the cold crystallization temperature is 

observed to have increased with mild processing relative to an unprocessed sample.  
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However, all other storage moduli are similar in magnitude to those of the unprocessed 

sample at all other temperatures. 

 

 

Figure 31: Storage modulus of SSME-processed PLA between 30-160°C 

 

Trends in the samples processed with a moderate and harsh screw design showed 

very similar shape and magnitude.  Samples SMMD1-3 and SMHS1-3 all have a very 

high stiffness for the majority of the heating process.  The stiffness of each sample 

decreases approximately one order of magnitude at PLA’s glass transition temperature 
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(~60°C) and then loses further stiffness at PLA’s crystallization temperature (~140°C).  

Within these samples, there is very little difference in the magnitude between screw 

designs and polymer flow rates.  This trend agrees with DSC data in that the samples 

processed with moderate and harsh screw designs have very similar thermal properties.  

The similarities in crystallinity across a wide range of temperatures translate to 

similarities in the stiffness of the polymer over the same range of temperatures. 

Further differences in the stiffness profile for each polymer is the softening 

temperature, or the temperature at which the polymer experiences a decrease in stiffness 

that is greater than or equal to 3 orders of magnitude.  The softening temperature for each 

SSME-processed sample can be seen in Figure 32. 

 

 

Figure 32: Softening temperature of SSME-processed PLA 

 

This softening temperature for each sample is within 10°C of one another except 

for sample SMMD2.  The SMMD2 sample is shown to have a relatively lower softening 
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temperature.  Though all other DSC data and DMA trends indicate SMMD2 to be similar 

to other SMMD trials, the softening temperature reveals an apparent weakness in the 

material.  All SMML samples have the same softening temperature of 145°C, while the 

SMMD and SMHS sample seem to decline in softening temperature as the flow rate 

increases.  This indicates that the heat stability of PLA decreases slightly with increasing 

flow rates.  This phenomenon could be explained by the decrease in the total crystallinity 

as the flow rate of the polymer increases.  At a lower flow rate, the polymer is able to 

melt and mix the material completely, but at higher flow rates, both the melting and the 

mixing are insufficient and cause a decrease in total crystallinity.  Because there are less 

crystalline structures, the polymer does not retain its rigidity as the temperature increases 

to larger values.  

  

5.4 Thermal Degradability 

The thermal degradation of the polymer was measured by TGA, identifying the 

degradation temperature at a 5% mass loss.  Samples were inserted into the TGA and 

heated from 30°C to 600°C at a rate of 10°C/min.  The degradation temperatures in 

Figure 33 indicate a decrease in degradation as the flow rate and the harshness of 

processing increase. 

Low thermal degradation temperatures, such as those seen in all SMHS samples, 

indicate the relative degree of harsh processing that occurred.  Harsher processing leads 

to a larger number of chain scissions and therefore, a larger reduction in molecular 
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weight.  This reduction in molecular weight causes the polymer to vaporize at a lower 

temperature and thus, have a lower degradation temperature. 

 

 

Figure 33: Degradation temperature for each SSME-processed sample, defined as the 

temperature at a 5% mass loss 

 

  SMMD trials show the opposite trend in terms of flow rate, but the magnitude of 

difference between samples is considerably less than those of the very mild and harsh 

screw design-processed samples, since the degradation temperature of SMMD1-3 are all 

within 5°C of one another, showing relatively constant values across the screw design.  In 

the extruder, this indicates that as the pulverization of samples increases in harshness, the 

amount of chain scissions also increases.  Even though the increased chain scission could 

cause an increase in the amount of crystallites formed, the small polymer chains 

evaporate at a lower temperature than the longer polymer chains produced by less harsh 

screw designs. 
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5.5 Molecular Structure 

To confirm hypothesis about chain scission and the physical degradation of the 

polymer chains, all samples processed by SSME were tested in GPC runs for their 

number average (Mn) and weight average (Mw) molecular weight, as seen in Figure 34.  

These data show the degradation at a molecular level, as a lower molecular weight 

indicates a larger amount of chain scission and thus degradation.   

 

 

Figure 34: Mn and Mw for all SSME-processed PLA samples. All error bars represent 

one standard deviation between the two reported trials 

 

Figure 34 displays a decreasing trend in Mn and Mw as the flow rate and harshness 

of the processing method increase.  SMML samples have a larger molecular weight than 

SMHS samples and within all screw designs, samples processed with increased flow rates 
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have decreased molecular weights.  Figure 34 shows that the number average molecular 

weight is very similar in magnitude in SMML samples as in SMMD samples.  There is 

very little difference when comparing these two sets of data and one can surmise that 

there was a very similar amount of chain scission that occurred within the polymer.  

Samples produced with these screw designs may not be distinguishable in a number 

average molecular weight sense.   However, the weight average molecular weight 

decreases rather consistently as flow rate and screw harshness increase and clearly shows 

the difference in the degree of chain scission that occurs during processing.  Samples 

processed with a harsh screw design are shown to have a lower Mw. 

From the weight and number average molecular weights, the polydispersity index 

(PDI) was calculated using equation 2: 

    
  

  
   (2) 

The PDI for a given polymer examines the variation in chain length among the sample.  

Table 10 shows the PDI for each sample in this study.  The PDI with a specific screw 

design is relatively constant, but between screw designs, there is some variance with the 

SMML screw designs having the highest PDI followed by the SMHS and SMMD screw 

designs.  The low PDI in the SMMD samples exemplifies ideal pulverization in this study.  

The moderate screw design chosen gave the polymer sufficient time to pulverize the 

polymer chains uniformly, causing a relatively narrow distribution of molecular weight.  

The SMML and SMHS samples have relatively higher PDIs, which can be attributed to a 

screw design that did not allow for sufficient, uniform pulverization.   
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Table 10: Polydispersity Index for SSME-processed PLA samples 

Sample Number Polydispersity Index 

SMML1 1.58 

SMML2 1.66 

SMML3 1.73 

SMMD1 1.22 

SMMD2 1.26 

SMMD3 1.33 

SMHS1 1.47 

SMHS2 1.49 

SMHS3 1.45 

Unprocessed 1.77 

 

The SMML screw design is considered to be not harsh enough, while the SMHS screw 

design is considered to be too harsh for PLA.  The increased harshness caused an increase 

in chain scission to a large fraction of the polymer, but much of the polymer remained 

unchanged. 

 

5.6 Summary 

It can be concluded that PLA samples processed via SSME have higher thermal 

and molecular degradation properties when a moderate screw design is used.  A moderate 

screw design allowed the pulverization within the extruder to induce defects with the 

polymer, causing large amounts of nucleation sites and therefore, high amounts of 

crystallinity.  Mild screw designs were shown to process the polymer in such a way that 

less defects were formed so additional nucleation sites contributed to a decreased amount 

of time necessary to crystallize.  PLA processed with a harsh screw design showed an 
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increase in crystallinity, but not to the extent of the moderate screw design.  The harsh 

screw caused an increased amount of chain scission, which allowed for a decreased 

amount of time to crystallize for the sample to crystallize, but the increased degradation 

to the polymer caused these values to be less than that of the moderate screw design. 

The optimum sample in this study was found to be the SSME sample processed 

with a low flow rate and a moderate screw design-SMMD1.  This sample was found to 

crystallize in shortest amounts of time (2.2 minutes) and with one of the highest amounts 

of crystallinity (43%).  This degree of crystallinity is relatively high among maximum 

amounts of crystallinity in many studies [Day, M., et al., 2006; Guinault, A., et al., 2010; 

Mallet, B., et al., 2013].  In addition, this sample had the highest softening temperature 

and the largest number and weight average molecular weight among samples processed 

with a mild or harsh screw design.  This indicates that among those samples, SMMD1 

had a sufficient level of defects in the polymer chains. 
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6. Conclusions and Recommendations 

PLA is a bio-derived and biodegradable material with similar properties to 

petroleum-derived polymers such as PE and PETE.  The recent rise in the price of 

petroleum and the heightened environmental awareness by the general public have led to 

a desire for many manufacturers to consider utilizing PLA for polymer products.  Current 

industrial processing practices use melt-based techniques, which for PLA is neither time- 

nor cost-efficient.  The goal of this thesis was to find a method by which PLA could be 

processed to produce a high percent crystallinity in a short amount of time without 

negatively impacting its properties. 

In the initial study of the effects of three processing methods (TSE, SSSP, and 

SSME) upon PLA’s structure and properties, SSME was identified as the processing 

method with the largest increase in desired thermal properties.  PLA samples processed 

with SSME formed 30% more crystals in one-third of the amount of time relative to TSE, 

while also having comparable or enhanced mechanical properties.  The increased 

crystallinity within the sample is attributed to the large amounts of defects formed within 

the polymer during SSSP processing that allow for nucleation sites to be created.  The 

nucleation sites are then distributed throughout the sample in the TSE portion of 

processing.   

The second study attempted to optimize the SSME process by varying two 

fundamental process parameters: throughput and screw design.  This study showed that 

SSME processing with a moderate screw design and low throughput produced a sample 

that had the largest amount of crystallites within the shortest period of time and had one 
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of the largest resistances to thermal degradation.  These properties are a result of the ideal 

pulverization and mixing that occurred with the moderate screw design.  The mild and 

harsh screw design created a sample that had either insufficient pulverization, which 

resulted in too few defects, or excessive pulverization, which strained the polymer to the 

point where chain lengths were not large enough to form crystallites.  The low flow rate 

allowed for a small amount of polymer to be contained within the extruder so that 

uniform, effective processing could occur. 

Though the sample with a moderate screw design and low throughput had the 

shortest crystallization time and the highest degree of crystallinity, the rate at which the 

PLA was processed (250 g/hr) was lower than that of a typical laboratory-scale extruder. 

Therefore, further optimization studies need to be conducted where other variable such as 

screw speed and the number of heated zones are varied.  The goal is to achieve a polymer 

with similar thermal and mechanical properties at a higher throughput.  

In the future, a better understanding of the properties of PLA should also be 

investigated through additional characterization techniques.  The crystallization behavior 

of PLA could be observed with polarized optical microscopy, and the morphology of the 

polymer with a melt-flow index test.  Since tensile testing was not completed with a 

method that produced results consistent with that in the literature, proper tensile tests 

should be completed to determine the true effect that processing has on a polymer’s 

mechanical properties. 

Overall, this study showed that PLA processed via SSME had an increased 

amount of crystallinity in a decreased amount of time.  As PLA continues to be part of 
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today’s environmentally conscious society, some of the inherent challenges associated 

with the crystallization behavior and less-than-desirable properties of the material can be 

overcome by the SSME technique.      
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