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ABSTRACT

The workflow of a network simulation study requires adherence to best practices in methodology so
that results are credible and reproducible by third parties. The opportunities for one to introduce errors
start at model description and permeate the process through to the reporting of results. The literature
indicates that even publications in respected venues include inadvertent mistakes and poor application of
methodology. When experts are liable to fail, it is unreasonable to expect that students would fare any
better. This paper presents a system designed to provide guidance for inexperienced users of the popular
ns-3 network simulator. SAFE automates the workflow from the initialization of model parameters, to
the parallelized execution of experiments, to the processing and persistent storage of output data, and to
graphical visualization of results. We discuss the architecture and the implementation of the system in the
context of similar contributions in the literature.

1 INTRODUCTION

The development of computer network protocols is a complex undertaking and, therefore, not for the
faint of heart. In the process of implementing protocols, verifying their correctness, and evaluating their
performance, researchers have often resorted to running computer simulations of these systems. Among
several benefits, simulation enables one to evaluate systems under many different scenarios with absolute
control and maximal observability.

For more than a couple of decades, however, it has become apparent that the intricacies of the simulation
workflow have worked against the primary justifications for the use of the technology. The misuse of
modeling and simulation methodology in the field of networking has led to an increasing discredit of
simulation, which can be exemplified by a real anecdote. One of the authors, while writing code during
the coffee breaks in a technical workshop, had the following exchange:

“Hi. What are you working on?”
“A simulator for wireless ad hoc networks.”
“Why bother? You know the results are not going to have any connection with reality.”

In an isolated context, this exchange would have been of little concern. What invited deep reflection
is the fact that this punchline was delivered by someone who had been deeply involved with network
simulation. Conversations like this have been happening with distressing frequency, as network protocol
experts have grown increasingly suspicious of published simulation studies. Thankfully, the simulation
research community has been well-aware of the problem and has engaged in a healthy investigation of the
roots of the problem.

The landmark paper by Pawlikowski, Jeong, and Lee (2002) pointed out that this crisis of credibility
could be resolved with the application of common-sense guidelines: the use of i.i.d. random number
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generators and high quality simulation output data analysis. However, the roots of the problem went
broader and deeper. Later on, Kurkowski, Camp, and Colagrosso (2005) showed that many published
studies leave something to be desired in reproducibility, statistical rigor, and suitability of experimental
scenario. The paper goes on to evaluate in finer detail how publications have failed to properly deal with
important issues in the simulation experimental workflow. “The Incredibles” exposed a number of pitfalls
that have traditionally caught network simulation researchers. These papers have analyzed a large body
of publications from highly regarded sources: conferences such as the IEEE International Conference on
Computer Communications (INFOCOM), the ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), and journals such as the IEEE Transactions on Communications, IEEE/ACM
Transactions on Networking, and Performance Evaluation Journal. It is fair to assume that the problems
that undermine the credibility of network simulation studies extend well-beyond these venues and are at
least as severe.

Borrowing from Goethe, we can say “der Worte sind genug gewechselt, laßt mich auch endlich Taten
sehn”, or in English: “we have enough analyses, its time to see deeds,” as translated by Walter Kaufmann
(von Goethe 1961). At this point, what the community needs are tools that supplement and enhance the
expertise of the experimenter to provide guidance through the workflow of the process, while avoiding
the known pitfalls. We are developing the Simulation Automation Framework for Experiments (SAFE) to
address these needs, but also very importantly, so that it can be used as a tool in the teaching of computer
networks. Our previous work (Perrone et al. 2008, Perrone et al. 2009) identified simulation workflow
problems that can be addressed with the use of automation software and presented a proof-of-concept
tool for a specialized simulator. Our current work is focused on developing production tools to serve the
community of users of ns-3, a modern, popular network simulator.

The main contribution of this paper is the presentation of SAFE’s conception, design, and implementation.
We expect that the ideas and decisions that drive this project are transferrable to other domains and can
have a positive impact in the way that the community thinks of end-user software for computer simulation.
In a sense, our work could be seen as an effort to redefine the term computer-aided simulation to describe
systems that guide the experimenter through the process from model construction all the way to output
data analysis and visualization.

The remainder of this paper is structured as follows. Section 2 presents a historical perspective on the
evolution of the concepts that led to SAFE. Section 3 discusses the design objectives and the architecture of
SAFE, while Section 4 presents some of the broader implementation details. Section 5 situates the project
in the context of related work, and finally, Section 6 wraps up the paper with a summary of lessons learned
and directions for future work.

2 EVOLUTION

Network simulation models often consist of a collection of sub-models, which characterize the various
components of the protocol stack, the node mobility models, and the radio propagation channel. Within
this collection, the total number of model parameters can be unwieldy, but most often researchers are
interested in simulation studies that vary a small subset of them. The workflow for these studies starts with
the construction of the experimental scenario and its corresponding simulation model, the identification
of the parameters with which to experiment (“factors”), and the specific values these parameters will be
assigned (“levels”). This defines a collection of experiment design points, which constitute the design of
experiment space. As the number of factors and levels grows, there can be a combinatorial explosion of
design points, which would make the experiment unmanageable without computer assistance.

In order to support these large, parametric simulation studies with the SSFNet simulator (Cowie et al.
1999), a group from AT&T Research and Dartmouth College created a collection of scripts called Scripts for
Organizing ’Spiriments (SOS) (Griffin et al. 2002). With relative ease, the SOS user can define experiment
runs, launch their execution, extract output data, and save it in a database for persistent storage. Once runs
terminate and data become available in the database, the entire history of the experiment is aggregated in
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one single repository (a database), which scripts can query to build plots. SOS works well in performing
these functions, but it requires the user to have expertise in understanding the format of the simulator’s
output, in writing Perl to create custom “extractors” (scripts that find the data of interest in the output
stream), and of databases/SQL. While a graduate student or an experienced researcher might have little
trouble ascending SOS’ learning curve, undergraduate students don’t fare as well.

A more suitable tool for supporting the needs of an undergraduate student would have a simple user
interface and would require little to no programming effort in customization. Our SWAN Tools (Perrone,
Kenna, and Ward 2008) was conceived to meet those goals; it was a web-based application that worked from
a complete network simulation previously implemented by an experienced user. Although this simulation
script could be complex and contain a large number of model parameters, only small a subset of them was
exposed through the web-interface as customizable factors. SWAN Tools had users enter levels from the
web interface, constructed the design of experiment space, dispatched each design point to be executed
on an independent host computer, extracted from the simulation output streams only a predefined set of
metrics, stored them in a database, and offered results through the web interface for visualization as text
and by a very simple plotting utility. Although it was only a proof-of-concept, SWAN Tools taught us
important lessons. The restrictive environment provided the guidance that inexperienced users of network
simulation needed to create credible experiments. On the other hand, adjusting SWAN Tools to support the
needs of experienced users required too much effort – almost every customization required programming
knowledge in Ruby on Rails and “plumbing into the guts” of the system.

These two systems have given us first hand experience with the benefits in automating the simulation
workflow. They made it clear that going forward with this type of project, the priorities should include
comprehensive support for users at all stages of the workflow and different interfaces for users of different
skill levels. Such projects will have a much stronger impact in our field if their design goals are well
aligned with findings from the literature that identify the most egregious pitfalls in simulation.

Our work on SAFE, which is supported by the U.S. National Science Foundation, is creating computer
aided simulation tools for the ns-3 network simulator following the stated priorities. We expect that these
tools will enable undergraduate and graduate students in computer networking classes to use the popular
ns-3 without having to get into the details of programming for the simulator or creating ancillary tools for
experiment execution and output data processing. Next, we present the design and the implementation of
the SAFE project.

3 SYSTEM ARCHITECTURE

3.1 Design Objectives

Many published simulation studies fail to report the complete scenario necessary for a third party to replicate
the experiment, use models composed of incompatible pieces or which fail to include components that have
interdependencies, determine the length of simulation in manners inconsistent with the study’s goals, and
do not use best practices for output data collection, processing, and analysis. These problems arise from
individuals in the network simulation community not always having the required combined expertise in
the areas of simulation methodology and network modeling. SAFE is constructed to address these issues,
which have been identified by Pawlikowski, Jeong, and Lee (2002) and Kurkowski, Camp, and Colagrosso
(2005).

SAFE is designed to meet additional goals. It should be easy to use by students and novice users,
that is, it should offer simple interfaces for model and experiment configuration, for simulation execution,
and for output data visualization, and it should automate output data analysis. (The configuration interface
should protect these users from mistakes, validating the users’ choices against best practices.) At the same
time, SAFE should be flexible to use by power users, that is, it should allow these users to bypass some of
its safeguards while allowing them to use mechanisms that make it easy to stage experiments and visualize
their results. The system should support multiple users and provide a protected compartment for each
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of them in which to store input configurations and output data. Finally, the system should implement
the multiple replications in parallel (MRIP) paradigm supporting networks of workstations and compute
servers with multi-core processors, as discussed by Pawlikowski (2003).

SAFE implements differentiated user interfaces by supporting two user stories, one for power users
and another for novices. Our working definition of power user is someone who prefers command-line
interfaces, can write XML experiment descriptions and model configurations, works comfortably with
system tools for remote login and file transfer (ssh, sftp, scp), and can write C++ simulation scripts
for ns-3. A novice user is someone who will work with web-based interfaces, will not have expertise to
write configuration code in XML, will only run experiments with previously written C++ simulation scripts
stored in the system, and will rely on automated output data processing. In the remainder of this section,
we describe how power users and novices use the system, and give an overview of the architecture that
supports these user stories.

3.2 Story for Power User

The requirements that power users make of the SAFE system are driven less by the niceties of a sheltering
user interface than by access to the core functionality of the system. This type of user works in a local ns-3
installation, which they will have downloaded from http://www.nsnam.org. They develop and/or customize
models, and write their own simulation scripts. We assume that these scripts will be initialized with levels
for experimental factors via a collection of command line options constructed when the program is executed.

Once the code base is compiled and debugged, the simulation script is ready for use. The user writes
a file containing details of the execution of the experiment, that is, defining the design of experiment
space and the termination condition for the simulation. Next, the user starts the execution by invoking a
SAFE script to launch the experiment. The system deploys the code in the collection of worker machines
specified in its configuration and each one contributes to the computational effort of covering the design
of experiment space by running simulations of design points. Each simulation run generates output data
that is relayed to SAFE for persistent storage, and executes until the chosen termination condition is met.
The simulation data is logged to a database, which can be queried by the user directly or via automated
scripts that extract data and build plots.

The main functionality that SAFE provides for power users is support for the execution of experiments
and for the safekeeping, analysis, and visualization of output data. The system helps one to record experiment
scenarios in persistent storage together with output data, offers reliable mechanisms for the processing of
results, and executes the experiment using the MRIP paradigm. Since the usage constraints for this type
of user are few, users can express freely the scenarios they envision and also make procedural mistakes.
The user must have expertise in writing valid ns-3 simulation scripts and in debugging them.

3.3 Story for Novice User

One of the main motivations for the development of SAFE is to support educational uses of ns-3. For every
simulator, there is a learning curve that users have to ascend in order to be able to make effective use of
the tool’s features. In the context of an undergraduate or graduate course on computer networks, it is often
desirable to have students use simulations rather than real systems so that they can have full control over
their experimental scenario. Training students to use simulators correctly, however, is a task that requires
substantial time. For this reason, it is highly desirable to offer students simplified interfaces that abstract
away most complexities and provide plenty of guidance in staging experiments and analyzing their results.

For the novice user, SAFE provides a web-based interface that only allows the execution of experiments
previously crafted by experienced programmers, which have been installed in the system. The user points a
web-browser to a given URL, presents credentials to authenticate with the system, and finds a collection of
experiments that can be customized within pre-specified constraints. These experiments are associated with
configuration files that determine which factors are exposed through the web interface and how the user

http://www.nsnam.org
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supplied levels are validated. Once all factors have been associated with levels, the design of experiment
space is defined and the execution of the experiment can be started. The data produced by simulations
associated with each design point are logged to the database. Through the web interface, the user can
explore the data visually, download portions of the data, and create custom plots to be saved in the database
and/or downloaded in different graphics formats.

The protections against common errors that SAFE offers to this type of user are multiple. First and
foremost, novices do not write ns-3 simulation scripts of their own. This does away with the need to
learn to program in the simulator’s environment, which would expose the user to issues of validation and
verification. The user selects one instance among several ns-3 simulation scripts that have been carefully
constructed and debugged by experts, and only defines the design of experiment space. Second, the
system validates each level in the experiments’ design points against pre-defined model constraints, what
guarantees that the specific values chosen for levels are always within the permissible ranges. This type
of safeguard, for instance, would not let a user create a simulation with an IEEE 802.11b wireless model
using bandwidth outside the range from 1 Mbps to 11 Mbps. Third, whenever models require levels to be
chosen from a discrete list of levels, the interface restricts the user to pick from that specific list. Using
the IEEE 802.11b example again, the user would be constrained to select a bandwidth level from the list
{1,2,5.5,11}Mbps. The other protections for novice users include the thorough recording of experimental
scenario, the organization of experiment output, and the execution of experiments until enough samples
are collected to yield the correct coverage for specified confidence levels.

3.4 The Big Picture

In order to meet our design objectives and to support the user stories described above, we have created a
system around three main structural components, which are described as follows:

• One database that aggregates all the data pertaining to each experiment (input configuration and output
data). This database enables the systematic organization and the persistence of the experimental
data.

• One experiment execution manager (EEM): a server-side process that works as a central coordi-
nator that implements functionalities behind user interfaces, intermediates access to the database,
dispatches replications of simulations to worker machines, and processes output data that comes
back from replications. The EEM is aware of a collection of worker machines that are registered
with the framework as compute servers.

• Multiple simulation clients (SC): a client-side process that run on each worker machine. Each SC
requests design points to the EEM, starts ns-3 runs to simulate it, and relays output data to the
EEM.

SAFE implements differentiated user interfaces by supporting two user stories, one for power users
and another for novices. Our working definition of power user is someone who prefers command-line
interfaces, can write XML experiment descriptions and model configurations, works comfortably with
system tools for remote login and file transfer (ssh, sftp, scp), and can write C++ simulation scripts
for ns-3. A novice user is someone who will work with web-based interfaces, will not have expertise to
write configuration code in XML, will only run experiments with previously written C++ simulation scripts
stored in the system, and will rely on automated output data processing.

Both types of users must first authenticate with SAFE before using any of its functionality, each using
their choice of interface. The users’ credentials are kept in one same database, regardless the user interface
through which the user accesses the system. Authentication is used not only to grant access to system
resources, but also to create individual data compartments for each user’s experiment data.

The system is designed around a common server backend, which provides all the basic functionality
that is exposed to the user in the guise of the two different interfaces. Figure 1 shows SAFE’s general
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structure and outlines the sequence of steps in the execution of an experiment. In the following description
of how the system works, the numbers in parentheses correspond to the numbered balloons in this figure.

SERVER
CLIENTS

Database

3

1-2

Users

Disk
with user repos

4

Analysis

7

6
File Transfer

USER

5

EEM

Launcher
Daemon

Termination
Detector

SAMPLES &
ARTIFACTS

9

8

Figure 1: High level architecture of SAFE.

The process starts with the user writing or obtaining an ns-3 simulation script for the experiment and
placing it in a directory within the local ns-3 installation (1). Next, in (2), the user either writes or has the
system generate an experiment configuration file in the ns-3 Experiment Description Language (NEDL),
which is an XML-based language designed for SAFE (Hallagan 2010). NEDL is constructed to express
the design of experiment space. The main elements provided by the language are as follows:

• factorlist aggregates the list of experiment factors,
• conditions defines the specific levels associated with each factor,
• exclusionrestriction and linkingrestriction defines combinations of factors and

levels that should be not be included in the design of experiment space,
• termination defines the type of simulation and the termination condition (confidence level and

precision for steady-state simulations, and horizon for terminating simulations).

The following step initiates the execution of the simulation script (3). Up until this time, all files
associated with the experiment reside on the user’s development machine. The entire ns-3 installation in
this machine is archived and compressed so that it can be transferred to the server. Before the actual transfer
takes place, however, the user’s credentials are checked and, only upon success, the launcher daemon (LD)
running on the server receives the file bundle and stores it in a local compartment for that specific user
associated to a unique identification for the experiment. These measures serve to record the environment
of the experiment (the simulator code base and configuration files) so that it may be faithfully replicated in
the future, possibly by third parties. The server replicates this bundle in each designated client, or worker
machine and each one invokes the build script for its ns-3 installation (4).

The LD initiates the execution of the experiment by instantiating the EEM with the experiment description
file received from the user and also a termination detector (TD) process (5). Using the information in this
file, the EEM generates the design of experiment space and then waits for requests for design points. In
the meanwhile, each client runs a bootstrap program to detect how many cores it has and then it creates
one instance of the SC process for each core (6). Figure 2 shows that as SCs are started, they register
themselves with the EEM, request a simulation to run (that is, a design point), and wait for the EEM’s
response. The arrival of a design point causes the SC to start an ns-3 run locally, in the worker machine.
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As the simulation executes, for each sample of a metric of interest, ns-3 generates a tuple {expid, mid,
time, value}, which corresponds to the unique identification for the experiment, a unique identification for
the corresponding metric, a simulation time value, and the metric value, respectively. This tuple is sent
from ns-3 to the SC, which packages it into a result message that it sends to the EEM. As result messages
are received by the EEM, it records the data in the database (7). When the termination condition for the
simulation run is reached, the EEM sends a message to the SC, which in turn, terminates the simulator.
This process is repeated until all design points have been simulated; at that point, the EEM sends a message
to terminate all SCs.

Simulation
ClientEEM

Register Message

Next Simulation Request

Next Simulation Reply (design point)

Result

Simulation
of design point

Next Simulation Request

Next Simulation Reply (design point)

Simulation
of design point

Finished

Result
Result

...

Result

Result

...

Next Simulation Request

...

Terminate Simulation Client 
terminates

Figure 2: Communication protocol for EEM and SCs.

As samples accumulate in the database, the TD process evaluates whether there is enough of them to
compute confidence intervals of each metric meeting the confidence level and precision specified by the
user. Once the termination condition is ascertained, the TD communicates the fact to the EEM, which then
proceeds to send termination signals to all the clients (8). Before the experiment is completely finalized,
it is important to verify whether ns-3 simulations have generated output files as additional artifacts (it
is common, for instance, to have simulations record the packets that pass through a simulated network
interface to pcap files). When that is the case, those files archived, compressed, and sent from clients to
the EEM, which archives them as part of the experiment’s output data. (9)

In order to implement authorization controls from the web interface, SAFE needs to manage its own
internal collection of user credentials, as indicated in Figure 1. While the use cases for power user can rely
on system level authentication, novice users accessing SAFE over the web might not even have system
accounts.

4 IMPLEMENTATION

Usability is one of the main requirements driving SAFE’s implementation. Our interpretation of this
requirement has implications at multiple levels. First and foremost, SAFE must be comfortable to use
through both the power user and the novice interfaces. Second, SAFE must be easy to deploy and work
on the platforms most favored by ns-3 users. Finally, SAFE must be easy to maintain and extend. These
requirements have steered us toward some important choices, which are reflected in the early design
described by Ward (2010). The framework is developed in the Python programming language and its
central components rely on well-established, open source software such as:

• Twisted – http://www.twistedmatrix.com: an event-driven network programming framework, which
provides a wealth of useful components that implement protocols and client/server applications.

http://www.twistedmatrix.com
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This framework supports most of the network communication between SAFE’s components such as
the file transfer from users’ computer to the SAFE server and from the server to client computers.

• Django – http://www.djangoproject.com: a framework based on the model-view-controller (MVC)
design pattern, which supports the agile development of database-centered web applications. This
framework is the keystone of SAFE’s web-based interface and database storage.

4.1 The SAFE Server

As shown in Figure 1, the SAFE server comprises multiple components. The Launcher Daemon (LD) is
responsible for transferring files associated with the experiment from a user’s computer to the SAFE server
and for kickstarting other server processes. The connection between LD and a power user is implemented
in Twisted, using a library for secure file transfer between user and server (sftp). The user’s credentials
are authenticated against information stored internally in SAFE. If the authentication succeeds, the files
are transferred to into a compartment for the specific user on the server’s disk space. We opted to handle
authentication directly so as to use the same mechanism and credentials via the two interfaces for the
framework (web and command line).

The story for novice users is implemented differently: an experienced user sets up a repository for
this use case with one compartment for each experiment that can be configured through the web interface.
Someone without any knowledge of ns-3 programming can access the server through a web browser, select an
experiment, and go through configuration dialogs that expose only a small, manageable set of experimental
factors to be initialized. When supported by mechanism for simulation output data visualization through
the web browser, this feature has the potential to enable the extensive use of network simulation in the
classroom, particularly in undergraduate courses. The SAFE server supports data analysis and visualization
allowing users to construct representations of the data visually, through the web browser, and to save them
in different graphical formats.

The LD supports both user stories by deploying, on client worker machines, the files in a disk
compartment that holds the ns-3 simulator and experiment configuration files. The actual simulations are
performed in the client workers under a special-purpose user identity associated with SAFE. This guarantees
that all simulations dispatched across a network of workstations and compute servers are authorized to
access system resources. Currently, the LD relies on Fabric (http://fabfile.org), a Python library for secure
application deployment over the SSH protocol.

Another responsibility of the LD is to start additional processes that run in the server, namely, the
experiment execution manager (EEM) and the termination detector (TD). The EEM is the central component
in the server. It processes experiment description files to generate design points, dispatches simulation
runs to client computers, and receives and stores output data generated by simulations. The EEM does not
perform complex, computationally expensive tasks, but instead serves as coordinator and communication
broker for the processes that perform the heavy work.

In order to play well its role without becoming a bottleneck in the framework, the EEM must be highly
responsive and available. This type of application is often implemented using the reactor design pattern
(Schmidt 1995). In this event-driven programming model, the application registers functions to handle
each type of event (known as callback) and enters a main loop where it simply waits for events to occur.
Effectively, events and callbacks are analogous to hardware interrupts and their software handlers. The
Twisted library (Fettig 2005) implements the reactor design pattern and the EEM relies on it to handle
message exchanges with other processes, such as the TD and the simulation client (SC), to handle queries
from the database, and to handle additional events.

While the EEM starts simulation runs, the TD works toward terminating them. Among the egregious
problems in the credibility of simulation studies are the use of samples of output data collected during
model “warm up” (or transient) phase and also terminating the runs before enough valid samples have
been collected (Pawlikowski, Jeong, and Lee 2002). To address these problems, which arise in experiments
with steady-state simulations, SAFE will provide two mechanisms. First, we are investigating methods for

http://www.djangoproject.com
http://fabfile.org
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automatic steady-state detection – having the time when metrics enter steady-state will allow for accurate
deletion of data collected during transients. Second, we are investigating methods for detecting when
enough samples have been collected to yield estimates of metrics with a chosen confidence level and
precision. In the architecture of the system, the role of the TD is to encapsulate algorithms to analyze
globally the samples produced by multiple replicas of a design point’s simulation. Once the TD determines
that the simulation of a design point has met its termination condition, it notifies the EEM, which in
turn communicates with SCs to shutdown gracefully their ns-3 runs. Since the discussion of steady-state
and termination detection algorithms is beyond the scope of this paper, we refer the interested reader to
Pasupathy and Schmeiser (2010) and Pawlikowski (1990).

4.2 The Simulation Client

In comparison with the EEM, the simulation client (SC) is a much simpler component of SAFE. As
discussed in 3.4, after registering with the EEM, the SC requests a design point to run. Once the response
arrives, the SC spawns a new process, which encapsulates the ns-3 run. The SC passes to the ns-3 script,
as command line parameters, the levels that constitute the design point for the run.

As the simulator runs, the SC stays out of the way, until it receives communications from the EEM or
from ns-3. When the server has enough data to terminate the simulations associated with a given design
point, any related runs are shut down. If the simulations have created artifacts in the file system of client
workers, those are sent back to the server for archival, followed by a request for another design point. When
the server tells SCs that the experiment is completed, they first terminate their ns-3 runs and then terminate
themselves. The SC also listens for results from ns-3, which are relayed to the EEM. Again, Twisted’s
reactor design pattern is useful in the implementation of the SC, as it handles asynchronous events from
multiple sources.

5 RELATED WORK

The literature reports on several frameworks that share with SAFE common aspects in terms of motivation,
goals, and implementation. Among these, Akaroa2 (Pawlikowski 2003) stands out as a major turning point
toward automating the simulation experimental process to address issues of credibility. Akaroa2 includes
support for executing simulation experiments on networks of workstations and compute clusters according
to the the MRIP paradigm. This control framework automates the analysis of simulation output data and
the determination of run length. Although it has been adapted to work with popular network simulators,
such as ns-2 (http://www.isi.edu/nsnam/ns/) and OMNeT++ (http://www.omnetpp.org), we didn’t try to
leverage it for this project because its licensing restrictions would constrain our ability to redistribute the
work as open source software. Instead, we have chosen to create for ns-3 our own implementations of
functionality offered by Akaroa2, although in a broader scope.

Another very interesting, albeit much younger, network simulation framework is STARS, which aims at
conducting statistically rigorous experiments (Millman, Arora, and Neville 2011). STARS implements the
MRIP paradigm with OMNeT++ as the underlying simulator. The architecture of the framework consists
of a central manager, a central data store, and numerous workers that carry out the simulation runs. As
the simulations begin to generate results, MATLAB (http://www.mathworks.com/products/matlab) is used
to test for both stationarity and ergodicity of selected metrics. A core feature of STARS is its ability to
automatically launch a new experiment if the current experiment fails to produce sufficient ergodic data.
The experimenter can either continue to wait until the framework produces a sufficiently large dataset, or
define an upper limit on the number of runs that can be conducted.

Outside the area of network simulation, we have found also frameworks that seems closely aligned with
the scope of SAFE’s goals and functionalities. A notable example is JAMES II (Ewald et al. 2010), which
provides researchers in computational systems biology with support for modeling, experiment design and
execution, run length control, experiment storage and retrieval, and data visualization and analysis. The
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concept of plug ins, which is widely applied in the architecture of JAMES II, imbues the framework with
a great deal of adaptability. We have learned from this architecture and, in the development of SAFE, we
are working toward defining clear interfaces between the system core and ancillary components, which
will function as plug ins.

SAFE differs from most frameworks for network simulation not only by offering comprehensive support
throughout the experimental process. Arguably, one of its more important features is the dual interface
(with a common backend) to address the needs of power users and novices alike. In order to be able to
make good use of a complex network simulator with minimal investment of training time, novice users
need all the help they can get. However, it is important to remember that power users also need guidance
and support, as evidenced by the literature on simulation credibility.

6 CONCLUSION

The literature offers plenty of evidence that users of network simulation make mistakes. The analyses of
the causes of the crisis of credibility have brought to light a comprehensive list of failures in methodology
that have compromised published simulation studies. Increasingly, the community has been applying the
lessons from the credibility literature toward the construction of frameworks that shield the experimenter
from error prone tasks. By automating the experimental process, one can provide higher level of abstraction
interfaces that steer the user away from known pitfalls in methodology. We view the development of
such “augmented” simulators as defining computer-aided simulation tools, which will likely lead users to
produce more credible simulation studies.

The goals of the SAFE project include implementing these ideas for the ns-3 simulator. In our view,
the project is creating a first version of support infrastructure that the community will be able to build upon
in future years. Our main contributions, at this point, have been the general architecture of the framework,
the definition of an infrastructure to support the needs of both network simulation novices and power users,
and a working implementation that can be put to practice as soon as it is released to the public. Just like
ns-3, SAFE is free software, licensed under the GNU GPLv2 license, and will be publicly available for
research, development, and use from http://www.nsnam.org.
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